EUROGRAPHICS Symposium on Sketch-Based Interfaces and Modeling (2010)

M. Alexa and E. Do (Editors)

Stroke Extraction and Classification for Mesh Inflation

L. Olsen' and EF. Samavati

Department of Computer Science
University of Calgary

Abstract

We provide a method for extracting and classifying stroke segments from a line drawing or sketch with the goal
of producing perceptually-valid output in the context of mesh inflation. This is important as processing freehand
sketch input is a fundamental task in sketch-based interfaces, yet many systems bypass the problem by forcing
simplified, unnatural drawing patterns. Our stroke extraction combines contour tracing with feature-preserving
post-processing. The extracted strokes are classified according to the objects and regions in the sketch: object and
region boundaries, interior features, and suggestive lines. The outcome of this classification is demonstrated with

examples in feature-sensitive mesh inflation.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [1.3.6]: Interaction Techniques—
[1.3.5]: Surface Representations—Image Processing and Computer Vision [1.4.6]: Edge and feature detection—

1. Introduction

Sketch-based interfaces for 3D modeling (SBIM) are often
not “sketch-based” in the strictest sense, but simply offer
freehand input. That is, user are expected to draw freeform
lines in a particular fashion, instead of sketching freely as
they would on paper. The way in which an object is drawn
(the number and order of pen strokes) makes little difference
in our perception of the object — for instance, both sketches
in Fig. 1 are easily recognized as the same object. However,
few systems support unconstrained sketching.

Sketch-based mesh inflation tools in particular tend to-
ward a simple single-stroke input for creating an initial
mesh, followed by a “sketch-rotate-sketch” workflow (using
the terminology of [GIZ09]). While effective, this approach
may not facilitate the exploratory and evolutionary aspects
of sketching.

In 2D sketch-based applications, there has been a focus
on supporting natural sketching [BCF*07, RH08]. Our goal
in this work is to adapt some of these ideas to 3D SBIM.
The main distinction is that 2D sketch processing is typi-
cally concerned with sketch recognition, while 3D applica-
tions are focused on reconstruction. This requires a method

1 olsenl@cpsc.ucalgary.ca

(© The Eurographics Association 2010.

DOI: 10.2312/SBM/SBM10/009-016

~)

Figure 1: Idealized sketches (left; 1 stroke) are more com-
monly accepted as input than unconstrained sketches (right;
32 strokes).

tailored to the needs of 3D modeling — to determine “this
stroke is on an object boundary”, rather than this stroke
looks like a circle.”

In mesh inflation systems such as FiberMesh [NISAOQ7],
a sketch is usually interpreted as the boundary contour of a
smooth surface. This interpretation, which is consistent with
the ‘visual rules’ described by Hoffman [Hof00], is straight-
forward for single-stroke input. When the sketch has multi-
ple unstructured strokes, however, we must extract structural
information, such as: Where is the boundary of the object?
Which lines are inside an object, connoting interior features?
Are there stray lines that merely hint at an object or feature?

In order to answer these questions while supporting un-

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/SBM/SBM10/009-016

10 L. Olsen & F. Samavati / Stroke Extraction & Classification for Mesh Inflation

Trace

SO

Input sketch

CcC

o Classify

S Inflate

\

Inflated mesh

Figure 2: System overview: a given input sketch is rasterized to a binary image, which is then thinned and traced to extract
stroke segments. Connected components (CC) of the thinned image are then used to classify the extracted strokes.

constrained sketching, we propose a 2-stage sketch process-
ing system (see Fig. 2). First, the input is rasterized and
traced to extract contiguous stroke segments (Sec. 2). Sec-
ond, these segments are classified according to their rela-
tive positions and containment within the regions defined by
them (Sec. 3). After classification, the strokes can be used to
inflate a mesh.

Our main contributions are: a robust stroke extraction
method that can operate on both off- and on-line sketch in-
put, such that when online information is available, the algo-
rithm can be tuned to the input nature to better handle ‘real’
sketch input; and, a novel stroke classification based on re-
gion adjacency that is tailored to the needs of mesh inflation
applications.

The proposed method is also suitable as a pre-process for
a variety of SBIM systems. For example, if only boundary
strokes are of interest [IMT99, NISAQ7] these can be iden-
tified and any other strokes can be ignored. Other systems
that support non-boundary strokes [OS10] can utilize them
to add detail to the output. The stroke connectivity can also
be examined to find important patterns such as T-junctions
(a ternary branch point with two aligned branches), that are
useful in some systems [KHO6].

1.1. Related Work

Stroke Extraction. Bartolo et al. [BCF*07] use an image-
based approach for stroke extraction, based on multi-scale
Gabor filtering to identify salient features, followed by
Kalman filtering to vectorize the paths. This method is nicely
able to detect gaps between lines (and thus reduce unwanted
stroke blending). Rajan & Hammond [RHOS8] also use an
image-based contour tracing approach in a sketch recogni-
tion application, predicting the drawing sequence at ambigu-
ous points where the strokes overlap by choosing the mini-
mum angle deviation relative to the incoming direction.

Stroke-based approaches have also been explored.

Simhon & Dudek [SD04c] propose a learning-based sys-
tem for separating domain-relevant strokes from extrane-
ous ones. Sezgin & Davis [SD04a] perform point-based
‘thinning’ by fitting regression lines to local clusters of
the input strokes’ sample points. Ku et al. [KQWO06] dis-
tinguish between straight and curved strokes, then fit lines
and conic curves to local stroke clusters. Aoyama & Yam-
aguchi [AY07] extract single strokes from a set of candidates
via criteria such as the stroke with the highest pen pressure,
or by combining several lines by weighted averaging. Kara
& Shimada [KS07] extract an ordered point sequence from
multiple unordered strokes by projecting the points onto the
first principal component axis. Pusch et al. [PSNWO07] use a
similar approach, combined with adaptive space subdivision
to handle closed or looping strokes.

While stroke-based methods allow for the use of aux-
iliary information such as speed and pressure, we argue
(as has been argued before [FMK*03, BCF*07]) that an
image-based approach is better able to mimic human per-
ception, and also deal with scanned input if necessary.
In paper sketches the drawing style can be manifested in
perceptually-important ways; for example, pressure varia-
tions are manifested as darker or lighter pen marks.

Stroke Classification. After extracting a usable stroke rep-
resentation from the input, the system classifies it according
to a set of objects or commands. Olsen et al. [OSSJ09] re-
fer to sketch-based systems as either evocative or construc-
tive [OSSJ09], differing in how the input is classified.

In evocative systems, the goal is to recognize the input
as one of several known objects or templates. For example,
strokes can be classified as instances of shape primitives,
such as lines, arcs, ellipses, squares, and so on [SD04b].
More complex objects can be recognized as a particular ar-
rangement of primitives [HDOS5]. Gesture-based interfaces
must consider a form of the same problem: matching a time-
ordered set of points to a known command. Wobbrock et
al’s $1 classifier [WWL07] compares two point sets by re-

(© The Eurographics Association 2010.

L. Olsen & F. Samavati / Stroke Extraction & Classification for Mesh Inflation 11

start pjxel
IHE_|

e f

g

h

Figure 3: Tracing algorithm: (a) the input sketch is (b) rasterized and (c) thinned; (d-e)tracing starts at the top-left foreground
pixel, and continues until the line terminates or a branch point is found; (f-g) tracing continues in scanline fashion until all
strokes and branches are found; (h) the extracted strokes and branch nodes.

sampling each to the same number of points, normalizing the
rotation, scale, and position, and then computing the point-
wise Euclidean distance. Olsen et al. [OSS07] propose a sim-
ilar classification method based on counting the number of
segments in a number of angular ranges.

Mesh creation applications are constructive, in that the
goal is not to recognize the input (except perhaps in 3D
search applications, where the sketch is used to retrieve a
similar-looking model [FMK*03]), but rather to construct
a model that matches the sketch via a set of rules or
modeling operations. For example, CAD-type systems use
rules such as ‘three lines meeting at a point define a ver-
tex” [LS96], while a mesh inflation system might assume
that the sketch defines the boundary contour of a smooth ob-
ject [IMT99,NISAO07]. In most cases, the classification is im-
plicit. For example, in Cherlin et al. [CSSJO5], two strokes
define a rotational-blend surface, and adding a third stroke
defines the cross-section. Similarly, in FiberMesh [NISA07]
the first stroke entered is interpreted as a boundary contour,
and subsequent strokes are drawn directly on the object to
define features. An example of explicit classification is the
SmoothSketch system [KHO6], in which the sketch is exam-
ined to find T-junctions and cusps and infer hidden contours.

In this work, we propose a classification system tailored
to freeform meshing applications. From an unordered set
of strokes, we extract the set of closed regions to classify
strokes as being on an object boundary, inside an object,
and so on. This allows us to create a smooth mesh from the
boundary contour, and also create interior features from the
other strokes.

(© The Eurographics Association 2010.

2. Stroke Extraction

In this section, we describe our approach to extracting a set
of strokes from an unconstrained sketch. The source image
could come from a scanned sketch, but in our research we
have used a digitizing tablet device. Our method is simi-
lar to previous work based on thinning and contour trac-
ing [RHO8]. The main contributions are: the identification
of branch points; sharp feature recovery; and, use of on-line
sketching information to improve accuracy.

The algorithm is focused on line drawings without shad-
ing cues. Thus in the following description, we assume a bi-
nary image with white background (paper) pixels and black
foreground (ink) pixels; edge detection, thresholding, and
other image processing techniques can be applied to attain
such an image if necessary [SSO1].

Figure 3 depicts the steps of our extraction algorithm.
The first step (a-b) is rasterizing the input strokes (that is,
drawing them to an image). An important factor in the ex-
traction’s success is the width w of the strokes — if drawn
too thin, then perceptual connections may not be made, but
drawing too thick can conversely result in unwanted con-
nections or region closing. (In Sec. 4, we describe how the
nature of the input can be used to control w.)

Varying the size W x H of the raster image changes the
relative stroke widths (eg. a width of 4 pixels in a 256 x 256
raster is equivalent to a width-8 stroke in a 512 x 512 raster).
Changing the raster size has a more prominent impact on
running time, since the complexity of scanline algorithms
is O(W - H); however, small rasters are less able to resolve
small-scale sketch features.

12 L. Olsen & F. Samavati / Stroke Extraction & Classification for Mesh Inflation

Figure 4: Sharp features: (a) characterized by a ternary
branch point with an acute angle ¢ between the longer
branches; (b) after restoring the sharp feature. (The image
before thinning shown in gray; thinned image in black.)

After rasterizing, a binary image is generated by applying
a Gaussian blur (to soften small-scale noise) and then thresh-
olding the image. Morphological thinning [SS01] is then ap-
plied until each line is only a single pixel wide (Fig. 3c); the
number of thinning iterations is proportional to w.

We use a modification of the standard contour tracing al-
gorithm [Pav81]. In the algorithm, the image / to be traced
is paired with a label image L of the same size; all pixels are
initially unlabeled. The goal is to assign a label to all fore-
ground pixels of / such that connected pixels (lines) have
the same label. Starting from an unlabeled foreground pixel
(Fig. 3c), tracing proceeds by advancing to the first unla-
beled (counter-)clockwise foreground neighbor until a termi-
nation condition is met — returning to the start pixel, a pixel
with no unlabeled neighbors, or a branch point (Fig. 3c-d).

When the algorithm reaches a pixel with multiple fore-
ground neighbors (Fig. 3e), instead of continuing in the de-
fault direction, we mark that pixel as a branch point and
terminate the active line. Tracing then resumes at the next
unmarked foreground pixel until the entire image has been
scanned (Fig. 3f-g). After tracing, the set of extracted strokes
and branch points can be thought of as a graph, with the for-
mer as edges and the latter as nodes.

2.1. Post-processing

An unfortunate effect of morphological thinning is erosion
around sharp features. When drawing a sharp corner the pen
path overlaps, resulting in a thicker ink region — after thin-
ning, this variation results in an unwanted branch point with
a short line attached (see Fig. 4a). In most cases (when w
is small) the effect is not prominent; however, for very sharp
features, or very messy sketches where w must be higher (see
Sec. 4), the erosion results in incorrect sketch topology (an
extra branch point). Fortunately, these artifacts can be easily
identified both visually and algorithmically (Fig. 4a).

We restore sharp features by identifying branch points
with three connected strokes (cy, ¢3, and c¢y), such that the
shortest stroke cs has a length close to the pen width, and
the angle between the other two strokes is acute. When these

trim short contours

merge branches

Figure 5: Post-processing: the extracted strokes are cleaned
up by trimming spurious short lines and merging branch
points with only 2 connected strokes.

Object boundary
Feature

BG

/ ,h—' Region boundary
Suggestive

Class Style #BG | #Non-BG
Object boundary 1 1
Region boundary —— = 0 2
Feature - 0 1
Suggestive - 1 0

Table 1: Stroke classification is based on the number and
type of adjacent image regions.

conditions are satisfied, we discard ¢y and then extend ¢; and
¢; to pass through the midpoint of c; (Fig. 4b).

After tracing all the lines and restoring sharp features,
some additional post-processing is done to refine the out-
put. First, very short strokes (with length on the order of w)
arise in regions where the rasterized line thickness is not uni-
form; after thinning, the non-uniformity results in a spurious
branch that can be trimmed (Fig. 5). Second, branch points
with only two connected strokes — as a result of sharp feature
restoration and stroke trimming — can be discarded, and the
connected strokes merged.

3. Stroke Classification

After extracting strokes from the sketch, a mesh inflation
system needs to how the strokes are perceived as an object.
This should consider not just where the strokes are placed,
but also the regions they define. For example, consider the
sketch in Fig. 3: the two strokes defining the ‘eyes’ are mean-
ingless if seen alone, but in the context of the other strokes —
contained within the head, near the mouth — we can perceive
them as features of a larger object. Thus our classification
must consider concepts such as containment and adjacency.

(© The Eurographics Association 2010.

L. Olsen & F. Samavati / Stroke Extraction & Classification for Mesh Inflation 13

To do this, we use the connected components (CC) label-
ing algorithm [SSO1] on the rasterized stroke image, which
assigns a unique label to contiguous image regions. This ap-
proach is similar to [OS10], but our classification is more
generic and complete, able to handle sketches with overlap-
ping and crossing strokes when coupled with robust stroke
extraction. A stroke-based method could also be used, but
the CC algorithm fits well in an image-based approach with
complexity dependent on the raster size, not the number of
strokes or regions. An example labeling is shown in Table 1.

Given that strokes are terminated at branch points, each
stroke must be adjacent to two regions — it could not be ad-
jacent to more regions, as any point where 3 or more regions
meet would be a branch point. Thus it is sufficient to check
the regions adjacent to a stroke at any point along it; we use
the stroke’s midpoint.

In a CC labeling, there are only two region types: back-
ground (BG), and interior (INT; labeled A, B, ... in the fig-
ures). Since each stroke is adjacent to two regions, the possi-
ble adjacency arrangements are: BG-BG, BG-INT, and INT-
INT. In the last case, the interior region can be the same, or
two different regions. Thus there are a total of four possi-
ble arrangements, or classes. As illustrated in Table 1, we
have named these classes as object boundary (BG-INT), re-
gion boundary (INT1-INT2), interior feature (INT-INT), or
suggestive (BG-BG).

In the example in Table 1, the sketch has three regions: A,
B, and background BG. The circular ‘head’ strokes are adja-
cent to BG and A, and so are classified as object boundaries.
The ‘eyes’ are each adjacent to only A, and so are features.
The ‘mouth’ stroke is adjacent to both A and B, defining a re-
gion boundary, while the ‘neck’ strokes are adjacent to only
BG and so are only suggestive.

Class information is useful in a mesh-inflation applica-
tion. The object boundary indicates the region to be filled
with mesh faces, while region boundaries and features can
be used to create a constrained triangulation in which edges
follow internal lines. Region boundaries, when closed and
not adjacent to any object boundary, define potential holes
in the object. Suggestive lines may or may not be useful to
a particular application; for example, they could be replaced
by “pipes” in 3D, or aligned pairs could be used to construct
rotational blending surfaces [CSSJO05].

In addition to stroke-region adjacency, region-region ad-
jacency can provide insight into object structure, such as the
location of holes or the presence of multiple objects. Con-
sider Fig. 6: region A is adjacent to both BG and B, while
B is only adjacent to A; thus B is contained within A. All of
the non-BG regions are connected, and thus define a single
object. In general, any region not adjacent to BG is a poten-
tial hole, and each connected set of non-BG regions define a
unique object in the sketch.

(© The Eurographics Association 2010.

BG

oD re

Figure 6: A region hierarchy, constructed from the stroke-
region adjacency information, is useful for identifying po-
tential holes in an object.

pV low med high

high / / /

Figure 7: Parameter tuning based on the input stroke’s pres-
sure (P) and velocity (V); dashed lines indicate strokes that
are not rasterized (useful as guidelines).

4. Parameter Tuning

The stroke extraction algorithm previously described can
work well in an offline environment, i.e. when only the
stroke image is available. In an online usage scenario where
the user is creating their sketch within a computer appli-
cation, additional information (speed, pressure, orientation)
may be available. This information can allow us to tweak our
algorithm to attain better results.

For example, it has been observed that artists will of-
ten sketch iteratively, at first making light, hasty strokes to
define rough boundaries and guidelines, then tracing these
rough lines with harder, more deliberate strokes [SIJ*07].
The viewer naturally perceives the harder (and thus darker
and perhaps thicker) strokes as being more important, and
uses these lines to understand the sketch.

Using this observation of artistic drawing tendencies, we
assert that when the stroke speed and pressure are available,
they can be somehow mapped to perceptual concepts such as
“importance” and “trustworthiness.” Strokes with very low
pressure or high speed can be de-emphasized or ignored,
while strokes with high pressure or low speed can be trusted
as truly capturing the artist’s intent.

In our implementation, we map each stroke’s average
pressure and speed to the rasterized width w. Pressure (P)
and velocity (V) are quantized to 3 levels: low, medium, and
high. The intuition is that low pressure and high velocity cor-

14 L. Olsen & F. Samavati / Stroke Extraction & Classification for Mesh Inflation

Deliberate mﬁ]—'

¥ S

~_ thick

\

-/

~

&6

a

Hasty i ’\\L,‘ ,\\1\, -

N ()
v

=8

Figure 8: Parameter tuning: (a) for deliberate sketches, thin rasterization (top) is best; (b) for hasty sketches, thicker lines
(bottom) that overlap and blend together lead to better results. Reversing the settings can cause unwanted blending (eg. the

stem in (a-bottom)) or misclassification (b-top).

relate to ‘hasty’ strokes, while high pressure and low veloc-
ity correlate to ‘deliberate’ strokes. Thus, in the former case
a larger width w should be used to create perceptual connec-
tions and overlaps, while in the latter case a narrower w can
be used to preserve the original input. This style-to-width
mapping is illustrated in Fig. 7. Note that the width adjust-
ment does not change what the user sees — it only happens
internally for the purposes of stroke extraction.

Figure 8 shows an example of two apples sketched in dif-
ferent styles. After parameter tuning, the deliberate sketch
is rasterized with thinner strokes to preserve the fine details,
while the hasty sketch’s strokes are drawn thicker to blend
together. In each case, the strokes are extracted and clas-
sified successfully. Reversing the settings (thin lines in the
hasty sketch, and vice versa) can lead to misclassification
and unwanted stroke blending.

5. Results & Discussion

Figure 9 shows some example sketches gathered from a
number of artist and non-artist sources, along with the result
of extraction and classification. The line style for each stroke
class is as listed in Table 1. It can be seen that the algorithm
produces a clean and accurate set of classified strokes.

The classified strokes are used to create a 3D mesh, via
a 3-step inflation process [OS10]. First, a planar mesh is
constructed from the constrained Delaunay triangulation of
all non-suggestive input strokes, with critical points on the
strokes serving as Delaunay vertices. Then, the planar mesh
is subdivided and vertices are displaced to align with the
strokes. Finally, a smooth 3D mesh is created by displacing
vertices away from the plane, with boundary vertices fixed
and interior vertices displaced proportional to their distance
to the boundary. Suggestive lines have been replaced with
cylindrical pipes.

This creates meshes whose edges and vertices follow all
sketched lines, not only on the boundary (Figure 10). This
allows for feature-based editing — such as raising the fish’s
eyes, and creating a hole in the guitar body — without costly
re-meshing operations.

Strokes
Name | In | Out
Apple | 43 3
Snake | 13 15
Face 55 37
Cow 20 | 28
Hand | 51 44
Turtle | 87 48

Time (s)

Thin (Iters) | Trace CC
0.266 (7) 0.005 | 0.016
0.765 (5) 0.063 | 0.031
0.765 (5) 0.063 | 0.031
1.109 (7) 0.094 | 0.047
0.610 (4) 0.063 | 0.047
1.890 (12) | 0.063 | 0.047

Table 2: Timing results for the sketches in Fig. 8b and Fig. 9.
The raster size is 512° for each, except the apple (256°).

Discussion. A marked benefit of an image-based approach
is that the complexity is related to image resolution, rather
than the number of input strokes. This can be seen in the
timing results listed in Table 2. The time required to trace
the strokes and extract the connected components varies with
image size, generally requiring 50-80 milliseconds. Morpho-
logical thinning takes the bulk of the algorithm’s time, typ-
ically around 0.5 seconds depending on the number of iter-
ations required (which in turn depends on the width of the
rasterized strokes). Stroke classification requires only two
pixel lookups per stroke, and effectively required zero time
in our test cases. By reducing the raster size, the running
time would be suitable for devices with limited computing
power (at the expense of precision).

Our implementation is sub-optimal in a couple of ways
that could be remedied for an end-user application. First,
the algorithm is implemented in C# with an external library
for thinning; replacing this with a native C implementation
would streamline the most time-consuming component. Sec-
ond, the Trace and CC algorithms are implemented as sep-
arate passes over the image, but could be combined into a
single pass [CCO3].

There are both method-specific and fundamental limita-
tions to stroke extraction. In the former case, morphologi-
cal thinning tends to introduce spurious and perceptually-
unimportant short branches where the line thickness varies.
In particular, this happens where multiple strokes overlap
and at corners (Fig. 11a). The occurrence of these branches

(© The Eurographics Association 2010.

L. Olsen & F. Samavati / Stroke Extraction & Classification for Mesh Inflation 15

Figure 9: Extraction and classification results from our system (number of input strokes in parentheses): snake (13), face (55),

cow (20), hand (51), turtle (87).

Figure 10: Meshing results: (left) input sketch; (middle) the
generated mesh; (right) after some feature-based editing.

is reduced when the initial stroke rasterization has thin lines
to begin with. However, ‘messy’ sketches often require a
thicker rendering to induce the perceptual connections and
crossings after thinning. We try to strike a balance by char-
acterizing each input stroke’s trustworthiness during online
sketching, but classification errors can still occur with very
’messy’ sketches (Fig 11b).

This also illustrates an inherent limitation of sketch pro-
cessing. While most human observers would recognize the
sketch as an automobile and be able to label regions such as
the tires, hood, and fenders, this is not explicitly conveyed
by the sketch. It could represent any number of things, such
as a collection of chopsticks and plates. Our interpretation
of the image depends on our vast shape knowledge. Bring-
ing this knowledge to bear on the problem of sketch pro-

(© The Eurographics Association 2010.

Figure 11: (a) Even after processing, some short branches
may persist; (b) When the sketch has large inter-stroke gaps,
region boundaries may be missed because the strokes do not
define closed regions.

cessing is a gargantuan task (though there has been work in
that direction [YSvdP05]). Our position is that a system that
respects the user’s explicit stroke structure is more reliable
than a system that attempts to infer, perhaps incorrectly, im-
plied features.

6. Conclusion & Future Work

We have proposed a method for extracting and classifying
perceptually-meaningful strokes from either a scanned line
drawing or an unordered collection of user strokes. Salient
strokes are extracted via an image-based thin-and-trace ap-
proach, with branch points identified and used to construct
a stroke graph. We then classify each extracted stroke based
on the number and type of adjacent regions.

The ability to process and classify complex sketches for
inflation can be a great benefit for sketch-based modeling,

16 L. Olsen & F. Samavati / Stroke Extraction & Classification for Mesh Inflation

as it allows artists to construct their sketch ‘on the paper’
before transitioning to 3D for further editing.

In the future, the parameter tuning could be improved to
handle a broader range of sketches. For offline sketches, it
would be beneficial to characterize how a stroke was drawn
—in terms of velocity and pressure — based on its appearance.
Sketches with large inter-stroke gaps can also be problem-
atic, as well as those with ‘implicit’ stroke crossings. Per-
haps some combination of multi-scale extraction and line
extrapolation could be used to handle such cases. As well, a
formal user study should be conducted to evaluate the ‘per-
ceptual’ correctness of our methods.

Artifacts caused by thinning — unwanted branching and
erosion of features — can be troublesome for very complex
sketches, and alternative methods to stroke extraction should
be explored. Extending the stroke extraction beyond line
drawings, to sketches with hatching or shading marks, is also
an interesting problem worth considering.

Acknowledgments This research was supported by the Na-
tional Science and Engineering Research Council (NSERC)
and GRAND NCE of Canada, and the Informatics Circle of
Research Excellence (iCore) of Alberta.

References

[AY07] AOYAMA H., YAMAGUCHI H.: Sketch Based Modeling
System, vol. 4563/2007 of Lecture Notes in Computer Science.
Springer Berlin/Heidelberg, 2007, pp. 421-430. 2

[BCF*07] BARTOLO A., CAMILLERI K. P., FABRI S. G., BORG
J. C., FARRUGIA P. J.: Scribbles to vectors: preparation of scrib-
ble drawings for cad interpretation. In Proc. of Eurographics
Workshop on Sketch-Based Interfaces and Modeling (SBIM ’07)
(2007), pp. 123-130. 1,2

[CCO03] CHANG F., CHEN C.-J.: A component-labeling algo-
rithm using contour tracing technique. In Int. Conf. on Document
Analysis and Recognition (ICDAR’03) (2003), vol. 2. 6

[CSSJO5] CHERLIN J. J., SAMAVATI F., SOUSA M. C., JORGE
J. A.: Sketch-based modeling with few strokes. In Proc. of
Spring Conference on Computer Graphics (SCCG ’05) (2005),
pp. 137-145. 3,5

[FMK*03] FUNKHOUSER T., MIN P., KAZHDAN M., CHEN J.,
HALDERMAN A., DOBKIN D., JACOBS D.: A search engine for
3d models. ACM Trans. Graph. (Proc. of SIGGRAPH '03) 22, 1
(2003), 83-105. 2,3

[GIZ09] GINGOLD Y., IGARASHI T., ZORIN D.: Structured an-
notations for 2d-to-3d modeling. In Proc. of SSIGGRAPH Asia
2009 (2009), pp. 1-9. 1

[HDO5] HAMMOND T., DAVIS R.: Ladder, a sketching language
for user interface developers. Elsevier Computers and Graphics
28 (2005), 518-532. 2

[Hof00] HOFFMAN D. D.: Visual Intelligence: How We Create
What We See. W. W. Norton & Company, 2000. 1

[IMT99] IGARASHI T., MATSUOKA S., TANAKA H.: Teddy:
A sketching interface for 3d freeform design. In Proc. of SIG-
GRAPH’99 (1999). 2,3

[KHO6] KARPENKO O. A., HUGHES J. F.: Smoothsketch: 3d
free-form shapes from complex sketches. In Proc. of SSGGRAPH
"06 (2006), pp. 589-598. 2, 3

[KQWO06] Ku D., QIN S., WRIGHT D.: Interpretation of over-
tracing freehand sketching for geometric shapes. In Proc. of Int.
Conf. on Computer Graphics, Visualization and Computer Vision
(WSCG °06) (2006), pp. 263-270. 2

[KSO7] KARAL. B., SHIMADAA K.: Sketch-based 3d shape cre-
ation for industrial styling design. IEEE Computer Graphics and
Applications 27, 1 (2007), 60-71. 2

[LS96] LipsoN H., SHPITALNI M.: Optimization-based recon-
struction of a 3d object from a single freehand line drawing.
Computer-Aided Design 28, 8 (1996), 651-663. 3

[NISAO7] NEALEN A., IGARASHI T., SORKINE O., ALEXA M.:
Fibermesh: Designing freeform surfaces with 3d curves. In ACM
Transactions on Graphics (Proc. of SIGGRAPH ’07) (2007),
ACM Press. 1,2,3

[OS10] OLSEN L., SAMAVATI F. F.: Image-assisted modeling
from sketches. In Proc. of Graphics Interface (GI ’10) (2010). 2,
5,6

[OSSO07] OLSEN L., SAMAVATI F., SOUSA M. C.: Fast stroke
matching by angle quantization. In Proc. of the First Intl. Con-
ference on Immersive Telecommunications (ImmersCom 2007)
(2007). 3

[OSSJO9] OLSEN L., SAMAVATI F., SOUSA M., JORGE J.:
Sketch-based modeling: A survey. Computers & Graphics 33
(2009), 85-103. 2

[Pav81] PAVLIDIS T.: Algorithms for Graphics and Image Pro-
cessing, 1 ed. Computer Sciences Press, 1981. 4

[PSNWO0O7] PuUSCH R., SAMAVATI F., NASRI A., WYVILL B.:
Improving the sketch-based interface: Forming curves from
many small strokes. The Visual Computer 23, 9-11 (2007), 955—
962. 2

[RHO8] RAIJAN P., HAMMOND T.: From paper to machine: Ex-
tracting strokes from images for use in sketch recognition. In
Proc. of Eurographics Workshop on Sketch-Based Interfaces and
Modeling (SBIM *08) (2008). 1,2, 3

[SDO4a] SEZGIN T. M., DAvVIS R.: Handling overtraced strokes
in hand-drawn sketches. In Making Pen-Based Interaction Intel-
ligent and Natural (2004). 2

[SD04b] SEzGIN T. M., DAVIS R.: Scale-space based feature
point detection for digital ink. In Making Pen-Based Interaction
Intelligent and Natural (October 21-24 2004), AAAI Fall Sym-
posium, pp. 145-151. 2

[SD04c] SIMHON S., DUDEK G.: Pen stroke extraction and
refinement using learned models. In Proc. of Eurographics
Workshop on Sketch-Based Interfaces and Modeling (SBIM '04)
(2004). 2

[SU*07] ScHMIDT R., ISENBERG T., JEPP P., SINGH K.,
WyYVILL B.: Sketching, scaffolding, and inking: A visual history
for interactive 3d modeling. In Proc. of the Int’l Symposium on
Non-photorealistic Animation and Rendering (NPAR’07) (2007),
pp. 23-32. 5

[SSO01] SHAPIRO L., STOCKMAN G.: Computer Vision. Prentice
Hall, 2001. 3,4, 5

[WWL07] WOBBROCK J. O., WILSON A. D., L1 Y.: Gestures
without libraries, toolkits or training: a $1 recognizer for user in-
terface prototypes. In Proc. of ACM symposium on User interface
software and technology (UIST 07) (2007), pp. 159-168. 2

[YSvdP0O5] YANG C., SHARON D., VAN DE PANNE M.: Sketch-
based modeling of parameterized objects. In Proc. of Eurograph-
ics Workshop on Sketch-Based Interfaces and Modeling (SBIM
’05) (2005). 7

(© The Eurographics Association 2010.

