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Abstract

This paper describes a method of seamless cloning based on aesthetic theory of lightness perception. Judgment
of lightness and color harmony is treated as low level aesthetic judgment made by the human visual system. The
equation written based on this consideration is an improvement to Poisson image editing, and produces results
that are better than the current state of the art in the area of scratch/object removal. The reason our result is
aesthetically pleasing is that it is fundamentally based on aesthetic theory, and it proves the usefulness of our
theoretical approach.

1. Introduction
1.1. Scratch removal and image reconstruction

During the last few years there has been significant progress
in the area of image reconstruction or Inpainting. The goal
is to remove defects like scratches or unwanted objects by
seamlessly filling in the damaged area. The state of the art
today is represented by 2 algorithms, Inpainting and Poisson
Editing [BSCB00, PGB03].

The method of Inpainting [BSCB00, BBS] is related to
ideas from fluid dynamics and solves a higher order partial
differential equation (PDE) to reconstruct the image in the
selected area. The idea of this approach is edge continuation
into the inpainting area. A simplified inpainting method that
produces similar results on many pictures would be to solve
Laplace’s equation for the inpainting area based on Dirichlet
boundary condition.

The Poisson editing approach [PGBO3], based on a
form of cloning, is another way of achieving high quality
results. The cloning is done not in normal pixel space,
but in the space of changes, also called the gradient do-
main [FLWO2]. After cloning, the changes are integrated
back to the image. That’s why a better name would prob-
ably be “gradient domain cloning” or “gradient domain
fusion” [ADA*04]. In this paper we call it Poisson cloning.
Poisson cloning has been used in Adobe Photoshop since
version 7.0 [Ado02, Geo04].

(© The Eurographics Association 2005.

1.2. Reconstruction by Poisson cloning

We would like to demonstrate Poisson cloning on a typical
example of an image needing repair. Figure 1 is a picture
of San Marco cathedral in Venice (courtesy of Russell
Williams). The image was scanned from film, with dust
added on purpose.

Figure 1: Basilica San Marco, Venice.

Figure 2 shows detail-in_the same pi(‘tan Film grnin,
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Figure 2: Detail from Figure 1.

noise and a scratch are visible. The goal is to remove the
scratch in a seamless way. In Figure 3 (left) we see the
result of Laplace inpainting. The method does a good job
at interpolating colors in the inpainted area, but suffers
aesthetically. It lacks the look and feel of real texture. It
is too smooth. Adding noise is the simplest solution, often
used with inpainting techniques.

Figure 3: Scratch removed by inpainting (left) and Poisson
cloning (right).

Figure 4: Areas in Figure 2 used for Poisson cloning.

Figure 3 (right) shows the scratch removed by Poisson

cloning. The source and target areas for the Poisson cloning
are shown in Figure 4.

This technology was first implemented in Photoshop 7.0
[Ado02], and first described in the Poisson Image Editing
paper [PGBO3]. The algorithm is based on solving the Pois-
son equation with right hand side (source term) taken from
the image in some area of texture (see Figure 4). If the
grayscale image is f(x,y) and the sample area image is
g(x,y), Poisson cloning is solving the Poisson equation

Af(x,y) = Aglx,y) 1)

with Dirichlet boundary condition constraining the new
f(x,y) to match the original image at the boundary.

Everywhere in this paper
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Also, g(x,y) is the texture we want to transfer to the

inpainted region. Texture is assumed translated to the
reconstruction area.

A= @

Dirichlet boundary conditions for the Poisson equation
make Poison cloning seamlessly match the boundary of the
patch.

This simple approach has been very successful, capturing
a lot of attention in the media. An Internet search on Healing
Brush reveals its popularity.

2. Problems with Poisson cloning

Our current paper describes an improvement to Poisson
cloning based on our theory of aesthetics. Poisson cloning
between areas of different lighting conditions can be a
problem without this improvement.

To provide a clean example of the problem, let’s try to
remove the scratch from the shadow area in Figure 5 using
only source material from the illuminated area.

Figure 6 shows the result of Laplace inpainting. Again, it
is too smooth.

In Figure 8, we see the result of Poisson cloning from
illuminated area into the shadow area. It correctly matches
pixel values at the boundary of the patch, but the cloned
pebbles are still easy to spot. Aesthetically we are not sat-
isfied with the result. There is too much variation, too high
contrast, in the "healed" area of the image. This problem
is inherent in the nature of the Poisson equation (1), which
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Figure 7: Areas used for Poisson cloning in Figure 8 and
covariant reconstruction, Figure 11.

Figure 8: Scratch removed by Poisson cloning from the illu-
minated area.

transfers variations of g directly, without modifying their
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amplitude even if new brightness values are modified to
match the surroundings.

3. Aesthetics in low level vision

In order to solve the above problem, we want to step back
and consider it from the point of view of what we call the-
oretical aesthetics. What are the conditions that make this
possible in the first place? Where are the roots of the prob-
lem?

Human vision constantly adapts to changing lighting con-
ditions both on global and local level. When a person looks
at a scene under bright lighting, he sees an image. If the light-
ing is changed, human vision compensates internally for this
change of lighting, and we call the process global adaptation
to relighting.

Human visual perception also includes local adaptation,
in which a person seeing an object partly in light and partly
in shadow correctly interprets the image’s color as contin-
uous and discounts the apparent change at the shadow line.
Thus the lightness, or perceived brightness, at any pixel in
an image is determined by the context of that pixel.

Our eyes perceive lightness differently from the way a
camera would capture the same pixel values. Lightness (per-
ceived brightness) depends in a complex way on adaptation
to surrounding, and previously observed pixels. Adaptation
changes our fundamental judgement of lightness and color,
and this can be demonstrated with a number of well known
illusions [Gaz00, Sec00].

We add something to what we observe. We create a new
world just by perceiving it, by adding our subjective thing
to the object. A philosophical approach to this situation is
related to the form of sensibility or intuition in Kant’s Tran-
scendental Aesthetic [Kan98].

In a related way, there is something fundamentally aes-
thetic about being able to perceive the world, as well as to
perceive illusions. If we were to see things like a camera,
without intuition, the world would be just a record of data,
and there would be no illusions.

Color harmony, the influence of one color on another, and
“simultaneous contrast” illusions are just some of the exam-
ples of what we call aesthetics of low level vision. Pixel com-
parison is fundamentally aesthetic, and not objective (physi-
cal) measurement.

Adaptation works even on the semantic level. Semantic
information about the image can change perceived lightness.
In Figure 9, two identical grey parallelograms p and r are
perceived as different in lightness because the viewer knows
that one is an illuminated top p of a dark cube ¢, and the
other is a face r of a light cube.

The transformation of luminance into lightness can occur
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Figure 9: Semantic adaption to lighting change.

differently at each pixel. We can force ourselves to believe
we see things one way or the other. For example if you think
of Figure 9 as representing a concave shape, the illusion of
difference in lightness of p and r disappears.

Our point is to put forward the idea that there is no ob-
jective or “true” perceived lightness. Judging lightness is an
aesthetic process that depends on internal factors, or aes-
thetic criteria related to adaptation.

4. The Covariant derivative

In what follows we borrow from the Retinex [Lan77,Hor74]
and the von Kries [vVKO02] theories of the adaptation of hu-
man vision. For the mathematical aspect of our approach,
including introduction to covariant derivatives and treatment
of color, we should point the reader to [GeoO5b].

The image is just a record of pixel values. We do not see
pixels by measuring those values directly. Instead, we per-
ceive them through our internal adaptation. The result is not
a replica of the pixel record, but an illusion, or a subjective
interpretation of it.

Adaptation is what gives meaning or way of comparison
to pixels. In the spirit of Kant, this is the “intuition”, the
aesthetic part that creates a picture out of a meaningless pixel
record.

If we express the same in mathematical terms, the above
model of the image is a section in a fibre bundle [Sau89]. In
simple words this is like a function, for which the scale is
undefined at each point. Each point or “fibre”” can have its
own scale. Not having a common scale is what creates the
situation of not being able to compare pixels.

Adaptation is what makes comparison or common scale
possible. In mathemathics this is called connection because
it “connects” one pixel (or fibre) to another. The term used
in Physics is Covariant derivative [EG96, Wey23]. We would
like to call it perceptual derivative, or adapted derivative be-
cause it describes adaptation.

To make this all more intuitive, let’s look at one exam-
ple. The simultaneous contrast illusion, Figure 10 shows that

Figure 10: The central rectangle has constant pixel values.

humans do not perceive luminance directly. (See [Gaz00,
Sec00] for a general survey on lightness perception and ex-
amples of illusions.) The figure contains a constant gray
band surrounded by a variable background. Due to our vi-
sual system’s adaptation to the surrounding area, the band
appears to vary in lightness (perceived brightness) in oppo-
sition to its surroundings. Real gradient is zero, but perceived
or covarient gradient is not zero. Our perception of changing
lightness in the band is due to the covariant gradient being
nonzero.

If the equations we use do not reflect this situation, they
can not produce results that are acceptable to our visual sys-
tem. This explains the negative result in Figure 8. The co-
variant or perceptual derivative is a useful tool for making
the equations change ‘“‘co-variantly” with the adaptation of
the visual system (see [GeoO5a]). The current paper will
show how it fixes the type of problem in Figure 8.

In this paper we provide the mathematical recipe that de-
scribes effects of adaptation illustrated in Figure 10. In the
usual equations we simply replace each derivative with a co-
variant derivative. These covariant derivatives are specified
so that the covariant gradient is equal to the perceived gra-
dient. In the example of Figure 10, constant pixel values in
the band have nonzero covariant derivative and describe per-
ceived gradient.

5. Main equations

Following the example of Electrodynamics and Quantum
Mechanics, we will replace conventional derivatives with co-
variant derivatives. In our approach they describe adaptation
of the visual system in the following way. Perceptually cor-
rect gradient is written based on the following recipe: Each
derivative is replaced with a “derivative + function” expres-
sion:

J d
o — = +Ax(x,y) (3)
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Here Ay and Ay are the x and y components of the vector
function A(x,y), which is used to describe the adaptation of
the visual system. It represents the additional freedom which
redefines our perception of gradients based on adaptation
and will be specified later, in equations (8), (9) and (10). The
gradient visible in Figure 10 is due to covariant derivative
adapted to the surroundings.

It is well known that the Laplace equation Af = 0 with
Dirichlet boundary conditions is the simplest way to recon-
struct (or inpaint) a defective area in an image. Let’s write
the derivatives explicitly:

d 0 Jd 0
aafﬁ'a*y@fzoa (&)

After performing the above substitution (3), (4), the Laplace
equation (5) is converted into the covariant Laplace equa-
tion:

0 0 J 0
(a +Ax)(a +Ax)f+($ +Ay)(a—y +Ay)f =0, (6)

which after differentiation can be written as

Af+ fdivA+2A -gradf+A-Af =0. @)

Here the vector function A(x,y) = (Ax(x,y),Ay(x,y))
describes adaptation of the visual system, or (which is
the same) the aesthetics of perception. It is also related to
the “guidance field” in Poisson Image Editing [PGBO03],
and it is playing the same role as the vector potential in
Electrodynamics.

Here is how we define A(x,y) in the case of our improve-
ment of Poisson cloning. We assume the visual system is
completely adapted to the area of texture, i.e. adapted to
g(x,y). In other words, adaptation is such that g(x,y) is co-
variantly constant, the covariant derivatives of g are zero.

(24 Ax))a) =0 ®

(%+m&wwww=o ©

Solving for A(x,y) produces the specific form of the vector
function that we are going to use:
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rad
Alx,y) = —% (10)

Substituting in equation (7), we obtain the final form of the
covariant Laplace equation:

f f g g g

an

We see that the covariant Laplace equation is more
complicated, and actually very different, from the Laplace
equation. In a way, this is a Poisson equation with a modified
Ag term on the “right hand side”. However, the structure
of the equation prescribed by the covariant derivatives
formalism is very specific.

Af 2gmdf _gradg  Ag 1 (gradg) - (gradg) 0.

This section attempted to show that the expression
gradf  gradg Ng (gradg)-(gradg)
S et 2 e b |
choose as a source term in the modified Poisson equation for

seamless cloning based on the theory of adaptation.

is the correct one to

6. Results

We solve (11) by iteration with the appropriate kernel.
For details see [Geo0O5b, GeoO5a, PTVF92] Pyramidal
application of the algorithm greatly speeds up calculations.
A multigrid approach with better performance is described
in [PTVF92]. In practical terms the tool works sufficiently
fast for using it in interactive mode. For example, on a
laptop running Windows XP with a 2 GHz Pentium 4
processor, applying a brush of radius 100 pixels takes
about 0.25 seconds to converge. On a wide range of typical
machines, when retouching an image of several megapixels
with a reasonable (for the image) size brush, the iterations
converge within a fraction of a second and the user does not
notice slowness or unresponsiveness.

Figure 11: Scratch removed by covariant cloning from the
same illuminated area as in Figure 8.

Applied to the example of Figure 8, our approach fixes
the problem by automatically modifying the contrast relative
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to the surrounding shadows and shadings, just as the human
visual system discounts for shadows during adaptation. See
Figure 11. This behavior is intrinsic to our model based on
covariant (or adapted, perceptual) derivatives, which follow
directly from the theory. The proposed approach often pro-
duces good results as in Figure 11. We should note however
that the results are not always perfect. Sometimes we see
results that are somewhere between Figure 8 and Figure 11
in quality. But in our extensive experimentation we have
not been able to find a single image where the covariant
method produces result worse than Poisson Editing. In cases
where Poisson Editing works well, like Figure 3 (right), the
covariant approach produces almost the same, but slightly
better results. Often the difference is hard to distinguish.

In the end we should note that what’s really important is
not so much the result of scratch removal, but the perceptual
and aesthetical method of covariant derivative. The results
show that the method is of real value, and not just theory.

7. Conclusion and future work

The covariant (or adapted) derivative provides a way to
perform perceptual image processing. It treats images
according to how they are perceived as opposed to the
traditional way of treating images according to how they
are recorded by the camera. In this way our approach is
more human or aesthetically correct, equivalent to image
processing of the internal mental image inside the brain.
The algorithm is based on aesthetic theory of perception,
where measurement is replaced by aesthetic judgement.
Gradient domain image processing is extended into covari-
ant (perceived) gradient domain image processing.

References

[ADA*04] AGARWALA A., DONTCHEVA M.,
AGRAWALA M., DRUCKER S., COLBURN A., CUR-
LESS B., SALESIN D., COHEN M.: Interactive digital
photomontage. ACM Transactions on Graphics 23, 3
(Aug. 2004), 294-302. 1

[Ado02] ADOBE: Photoshop 7.0 User Guide. Adobe Sys-
tems, San Jose, 2002. 1, 2

[BBS] BERTALMIO M., BERTOZZI A. L., SAPIRO G.:
Navier-stokes, fluid dynamics, and image and video in-
painting. Proceedings of the International Conference on
Computer Vision and Pattern Recognition , IEEE, Dec.
2001, Kauai, HI, volume I, pp. 1-355-1362. 1

[BSCB00] BERTALMIO M., SAPIRO G., CASELLES C.,
BALLESTER C.: Image inpainting. In Siggraph
2000, Computer Graphics Proceedings (2000), Akeley
K., (Ed.), Annual Conference Series, ACM Press / ACM
SIGGRAPH / Addison Wesley Longman, pp. 417-424. 1

[BVSO03] BERTALMIO M., VESE L., SAPIRO G., Os-
HER S.: Simultaneous structure and texture image in-
painting. In IEEE Transactions on Image Processing,
12(8) (2003), pp. 882-889.

[CAKO3] CRrIMINISI A. P. P, K. T.: Object removal
by exemplar-based inpainting. In Proceedings of CVPR
2003, vol. 2 (Madison, Wisconsin, June 2003), pp. 721—
728.

[CBDM82] CHOQUET-BRUHAT Y., DEWITT-MORETTE
C.: Analysis, Manifolds and Physics. Amsterdam, North-
Holland, 1982.

[EG96] EINSTEIN A., GROSSMANN M.: Outline of a
Generalized Theory of Relativity and of a Theory of Grav-
itation. Princeton University Press, 1996. ISBN 0-691-
02610-6. 4

[EL99] EFROS A. A., LEUNG T. K.: Texture synthesis
by non-parametric sampling. In /EEE International Con-
ference on Computer Vision (Corfu, Greece, September
1999), pp. 1033-1038.

[FBM*90] FIORENTINI A., BAUMGARTNER G., MAG-
NUSSEN S., SCHILLER P. H., THOMAS J. P.: The per-
ception of brightness and darkness relations to neuronal
receptive fields. In Visual perception the neurophysiolog-
ical foundations, Spillmann L., Werner J. S., (Eds.). Aca-
demic Press, 1990, ch. 7, pp. 129-161.

[FHDO2] FINLAYSON G., HORDLEY S., DREW M.: Re-
moving shadows from images, 2002.

[FLWO02] FATTAL R., LISCHINSKI D., WERMAN M.:
Gradient domain high dynamic range compression. ACM
Transactions on Graphics 21, 3 (July 2002), 249-256. 1

[Gaz00] GAZZANIGA M.: The New Cognitive Neuro-
sciences (2nd ed.). MIT Press, Cambridge, MA, 2000.
3,4

[Geo04] GEORGIEV T.: Photoshop healing brush: a tool
for seamless cloning. In Workshop on Applications of
Computer Vision in conjunction with ECCV 2004 (Prague,
May 2004), pp. 1-8. 1

[GeoO5a] GEORGIEV T.: Image reconstruction invariant
to relighting. In Eurographics 2005 (Dublin, August
2005), pp. 61 — 64. 4,5

[GeoO5b] GEORGIEV T.: Vision, healing brush, and fiber
bundles. In Proceedings of SPIE Vol. 5666 (San Jose, Jan-
uary 2005). 4,5

[Hor74] HORN B. K. P.: Determining lightness from an
image. Computer Graphics and Image Processing 3, 1
(Dec. 1974), 277-299. 4

[HT96] HIRANI A. N., TOTSUKA T.: Combining fre-
quency and spatial domain information for fast interactive
image noise removal. In SSIGGRAPH ’96: Proceedings of
the 23rd annual conference on Computer graphics and in-
teractive techniques (New York, NY, USA, 1996), ACM
Press, pp. 269-276.

(© The Eurographics Association 2005.



Todor Georgiev/ Aestheticsin Covariant Image Reconstruction

[Kan98] KANT I.: Critique of Pure Reason. Cambridge
Univ. Press, Cambridge, 1998. 3

[Lan77] LAND E. H.: The retinex theory of color vision.
Scientific American 237, 6 (Dec. 1977), 108-128. 4

[LLWO04] LEVIN A., LISCHINSKI D., WEISS Y.: Col-
orization using optimization. ACM Transactions on
Graphics 23, 3 (Aug. 2004), 689-694.

[LZPWO03] LEVIN A., ZOMET A., PELEG S., WEISS Y.:
Seamless image stitching in the gradient domain, 2003.

[PGB03] PEREZ P., GANGNET M., BLAKE A.: Poisson
image editing. ACM Transactions on Graphics 22, 3 (July
2003), 313-318. 1,2,5

[PTVF92] PRESS W. H., TEUKOLSKY S. A., VETTER-
LING V., FLANNERY B. P.: Numerical Recipes in C: The
Art of Scientific Computing (2nd ed.). Cambridge Univer-
sity Press, Cambridge, 1992. ISBN 0-521-43108-5. 5

[Sau89] SAUNDERS D. J.: The geometry of jet bundles.
Cambridge Univ. Press, Cambridge, 1989. 4

[Sec00] SECKEL A.: The Art of Optical Illusions. Carlton
Books, 2000. 3, 4

[vKO2] vON KRIES J.: Chromatic Adaptation, Transla-
tion: D. MacAdam, Sources of Color Science, MIT press
1970. MIT press, 1902. 4

[Wey23] WEYL H.: Gravitation and Electricity. Methuen
and Co. LTD., London, 1923. 4

[WL00O] WEI L.-Y., LEvOY M.: Fast texture synthesis
using tree-structured vector quantization. In Siggraph
2000, Computer Graphics Proceedings (2000), Akeley
K., (Ed.), Annual Conference Series, ACM Press / ACM
SIGGRAPH / Addison Wesley Longman, pp. 479—488.

(© The Eurographics Association 2005.

81



