
Design Principles of Hardware-based Phong Shading and Bump Mapping

K. Bennebroek&, 1. Ernst\ H. Riisseler\ O. Wittig*

*Oennan National Research Center for Computer Science,

Institute for Computer Architecture and Software Technology (OMD FIRST)

&University ofTwente, department of Electrical Engineering,

Networking Theory Group, the Netherlands

Abstract

The VISA+ hardware architecture is the first of a new genera­
tion of graphics accelerators designed primarily to render
bump-, texture-, environment- and environment-bump-mapped
polygons. This paper presents examples of the main graphical
capabilities and discusses methods and simplifications used to
create high quality images. One of the key concepts in the
VISA+ design, the use of reflectance cubes, is predestined for
environment mapping. In combination with bump- and texture­
mapping it shows the strength of our new architecture.
Furthermore_ it justifies some of·.the decision's made during
simulation and development of the complex VISA+ architec­
ture.

Keywords: real-time bump mapping, environment mapping,
environment bump mapping, reflection map, normal vector
interpolation, Phong shading hardware.

1. Introduction

Even the fastest high quality graphics workstations like
the recently announced InfiniteRealityTM graphics accel­
erators are still based on common texturing in combina­
tion with Oouraud Shading. With continuously improv­
ing VLSI technologies in combination with CAD tools to
support full custom chip design, new graphic architec­
tures must evolve. As an important step towards higher
realism, real-time Phong Shading will be the next tech­
nology-push in computer graphics.

Over the past decades, many attempts have been made, to
make Phong shading practicable for hardware implemen­
tation. Bishop and Weimar [1] proposed a Taylor series
approximation for NH. For a curvature less than 60 de­
grees, forward differencing a quadratic polynomial fits
quite well and reduces the computational efforts to five
additions per pixel. Deering [2] presented a shader that
interpolates the nonnal and eye vectors. In both ap­
proaches, exponentiation of the cosine function was done
by table lookup, which leads to intolerable hardware size
if a broad range ofexponents is to be supported.

Another method uses angular interpolation techniques
rather than vector interpolation. This has the advantage

that the vector length remains unchanged during the in­
terpolation. This way, normalization can be reduced to
vectors at the vertices and calculated in software. While
an approach suggested by U. Clausen [3] interpolates
polar angles, Kuijk and Blake [4] expand this principle to
angular interpolation on great-circles. The resulting ex­
pressions, however, are rather complicated. The angular
interpolation approach can be important if diffuse in­
tensities are calculated on an incremental basis.

The nonnal-vector shading approach of the GMD-FIRST

. is a reflection map method. This shading technique, im­

plemented in the VISA system [5] operates in a similar

way to the reflection-vector shading hardware of Voor­

hies and Foran [6].

A logical extension of the nonnal vector interpolation
principle was to support bump mapping [9]. Bumps im­
prove visual effects for low-end game, as well as high­
end VR applications. A combination of texture and bump
maps for extremely perspective and huge polygons re­
duces the total setup- and transfer-time for computer
graphics scenes.

In this paper, the quality aspects of homogeneous versus
non-homogeneous interpolation for Phong shading, bump
mapping. environment and environment bump mapping,
will be discussed': Focusing on efficient division schemes
for perspective texturing and cube-reflectance mapping, a
proposed hardware architecture is discussed in more de­
tail.

3

http://www.eg.org
http://diglib.eg.org

2. Basic Fundamentals

2.1 Phong Shading

Phong Illumination was introduced by Tong Bui Phong
in 1975 [7] as an empirical model to simulate highlights
on shiny surfaces. The model has been accepted as a very
good approximation of physical highlights. Phong intro­
duced a specular exponent, reflecting material properties,
and modelled the steep falloff of the highlight as the e0­

sine of the angle between eye-vector and reflected light­
vector, raised to the specular exponent. For the imple­
mentation of Phong Illumination on a per pixel basis, the
normal vector has to be interpolated over a polygon.
Normal Vector Interpolation Shaders are therefore called
Phong Shaders, in contrast to the commonly used
Gouraud Shaders that interpolate color-values over the
polygon (that may have been calculated using Phong Il­
lumination!). Phong's Illumination model consists of an
ambient, a diffuse and a specular component, resulting
in:

Equation 2-J:

I=a+ L(d(N.L)+s(R.EY)

for all Iightsources i in the scene, with a, d and s ambi­
ent, diffuse and specular column-vectors (R,G,B)T re­
spectively to depict material properties. N depicts the
surface normal vector, L the vector pointing from the
point on the surface to the light source, R the mirrored
vector of L around N (reflected light vector) and E the
reflected eye vector. All vectors need to be normalized.

2.2 Bump Mapping

In 1974, Blinn [8] developed a technique that enables a
surface to appear wrinkled or dimpled without the need
to model this roughness geometrically.

For this purpose, he defined a special texture map called

bump map B(u, v) containing displacement or height

values to perturb the local normal vector.
The perturbed normal vector is given as N' = N + D
where D is the perturbation vector. To calculate D, he
defmed two other vectors lying in the tangent plane of
the surface given by N .These vectors are defined as

A = N x 01' and B = N x 0U' where O(u, v) is a

parametrized function representing the position vectors
of point 0 on the surface. Then, the components of D
are given by A = BIIA - BvB . This way, he defined a

bump map function as a displacement but uses its deriva­

tives at the point (u,v) to calculate D. D can be better
expressed by

Equation 2-2:

D= EII(N x O,,)-Bv(N x 0u)

where N / INI is written as N .

3. Simplifications

3.1 Hardware Bump Mapping

Hardware bump mapping needs to be much simpler than
the classical approach (Equation 2-2).
Instead of constructing a perturbation vector out of local
derivatives which have to be defmed, we already store it
in the bump map. Since we interpolate the normal over
one triangle, we already have the tangent plane of the
surface. Given the perturbation vector

P; [LlU LlVrin we, we might construct the result­

ing normal vector as N' = N + P. To guarantee a
perturbation in the direction 0u' 0v of the tangent

plane at point i, we have to
align the texture coordinate system u, Y, w to the tangent

. 	plane system 0u' 0", N. This transformation is done

by an alignment matrix A. Then the resulting normal

vector becomes N' =N + A . P . Since we have a ho­
mogeneous interpolated normal vector, the equation ex­
pandsto

Equation 3-1

N' = N+ [A·-P]*BumpMorph .
w w w

Note the additional BumpMorph parameter which is used
to control the amplitude of the bump perturbation (length
of p). Since this parameter is constant over the polygon,
it can be included in the matrix A. This way, Equation 3­
1 can be simplified to:

Equation 3-2

N' 1
- =-(N + AP) To convert P; from we to
w w

ScreenSpace we need two multiplications for each of its

1
components by -. However in section 3.2 we explain

w
why we have to calculate the reflected ray in we instead
of ScreenS pace coordinates. Hence we must convert the
normal N from ScreenSpace to we too. This is done by

1
three divisions (-).

w

4

http:L(d(N.L)+s(R.EY

The resulting fonnula, which is implemented in our
hardware, than becomes:

Equation 3-3:

Note that N is generated by interpolating the normal­
ized edge nonnal vectors of the triangle. Hence N is
unnonnalized inside the triangle which leads to small
highlight shifts on the surface. This artifact can not be
recognized because there are no color differences near the
edges ofadjacent triangles [9].

The alignment matrix A can be used not only to get the
correct perturbation vector, but also to rotate, stretch,
mirror or shorten the perturbation vectors for one trian­
gle.

3.2 Hardware Reflected Ray

Based on the M. L model [10], ~ith homogeneous eye
._' E . . - - N
vector E.';' - .and surface nonnal vector N = -, the

W W
homogeneous reflected ray in ScreenS pace coordinates
leads to ." .'

Equation 3-4:

R=[Yx rv ~]= 2N(NE) - (NN)E =
Since calculating R in 1 1 1 1 1
ScreenS pace leads to 2-N(-N-E)- (-N-N)E=
higher precision multi­ w w w w w
pliers and adders (extra 1 1

2-N(NE)--3 (NN)E=R= [rx r,. ~]= W3 w
bits for homogenous
component), we convert ~ (2N(NE) - (NN)E) = ~R
E and N to WC to re- w . w
duce the overall gate-
costs for the Reflected Ray Unit.

3.3 Hardware Phong

There are two ways to calculate the color contribution of
each lightsource.
~ Using reflection maps (VISA)

N and R are used as an index into the diffuse
and specular reflection map respectively.
Diffuse:

[nx ny nz]~ max{lnJ In,I In,I},

sign(nT nv 11;)
MapAddress = [a, a,]=

X ­ Faces[I::1 1::1]

Y - Faces[I::1 1::1]

Z - Fawll::1 I~I]
Note that the homogeneous perturbed nonnal is
N'
-(see Equation 3-1) which in the case of X­
w

Faces leads to

Equation 3-5

As we can see, the division by w is canceled out.
This means that no conversion from and to homo­
geneous coordinates is necessary when indexing
the maps.

Specular:
The specular index is calculated analogously
to the diffuse index using R.

Equation 3-6

X - FaceS:[1 2.. .3.J
kl klJ

For example the a, index expands to

ey.{-n/ +n/ n/)+2.n,.. (ex 'n, +e, 'n,)

a, e .(-n./ _n.,2 +n/)+ 2 .n: .(e, 'n, +e,_ .ny)
z

Again we can use the index division for the
transfonnation from ScreenSpace coordinates to
we.
As mentioned in section 3.2 Nand E are already
converted to WC, therefore we only need a di­

5

vider without the additional precision bits for the
homogenous component

To avoid distortion, an arcus tangens table is used
to correct the reflectance map address.

[ax a,,]' 	=[tan-l(aJ tan-1(a,,)]

=> 	using DirectPhong™ (VISA+)
The common problem for designers of hardware
shaders is the exponentiation in the Phong for­
mula. Oouraud Shaders calculate the intensities on
polygon-vertices in software and interpolate these
ROB values to produce pixelvalues. The flaw in
this approach is that no real, focused highlights
can be achieved if the highlight lies within a poly­
gon. This reduces the realism of the rendered
scene. Attempts to implement Phong Shading all
use table lookups for the exponentiation. This re­
sults in intolerable hardware sizes if different val­
ues of n must be supported. The VISA system
implements Phong Shading using reflectance
maps. This is a fast solution to provide real-time
Phong Shading with real highlights. The problem

. with this implementation is that it can only model
one value of n per scene. Currently, the VISA+
renderer is being designed at the OMD-FIRST
that supports DirectPhong™. The VISA+ system
is based upon the concept that Phong's exponen­
tiation-function is purely empirical. It implements
an alternative function to simulate the shape of
Phong's function and to provide real-time Phong
Shading for a broad range of specular exponents,
defined by the OpenGUM specifications. It is be­
yond the scope of this paper to describe the VISA +
system in more detaiL Future publications will fo­
cus on this subject.

3.4 Hardware Environment Mapping

perfect mirror

Figure 3-1: Principle ofenvironment mapping

Metallic or mirror-like objects can easily be simulated
using the reflectance cube approach. Since the reflected
view-vector must be calculated for modeling specular
highlights, Phong Shading can easily be extended to en­
vironment mapping. Closed room surroundings can be
stored in the cube maps. Each cube side contains the im­
age of the specified direction (up, down, left, right, front,
back). The reflected view-vector will then be used for
addressing these maps, corresponding to the address gen­
eration for the reflection maps (section 3.3).

Figure 3-2: 	 Effect on interpolation techniques using cube
environment mapping

In the example shown in Figure 3-2, the surface (perfect
mirror) reflects the sky (top side) of the environment.
Figure 3-1 illustrates the principal of cube environment
mapping.
Even the slightest change of the reflectance vector at the
polygon edges produces visible artifacts. Therefore it is
strongly recommended to use homogeneous interpolation
for eye and normal vectors (see image on the right in
Figure 3-2), to get undistorted, high quality results. The
image on the left in Figure 3-2 is generated using linearly
interpolated eye-vectors. As a result, the mirror image is
shifted at the polygon edges. This results in missing per­
spective and crooked illumination.

3.5 Hardware Environment Bump Mapping

A powerful new feature in our hardware architecture is
environment bump mapping. Now·the modeler can in­
corporate structured mirrors into his or her virtual envi­
ronments. To accomplish this task, bump mapping and
cube environment mapping is combined.
The perturbed reflection vector is calculated on the basis
of the perturbed normal vector. This normal is generated
exactly in the same manner as if only bump mapping was
used.

6

Figure 3-3: Linear (left) versus homogeneous (right) in­
terpolation for bump-environment mapping

Figure 3-3 demonstrates the capabilities of this new
graphics feature. For the images, we computed a bump
map with a small depth structure on our perfect mirror
surface. As a result, the sky is reflected perfectly with the
bump structures taken into account.
The image on the left hand shows linearly interpolated
eye-vectors and therefore the same artifacts as in the case
of pure cube environment mapping. Homogeneously in­
terpolated eye-vectors lead to artifact-free results (image
on the right hand in Figure 3-3).

3.6 Simulated curvature

To reduce the complexity of curved objects course trian­
gulation can be used. A typical example for simulated
curvature using different directions for edge normals are
tessellated hemispheres.
In Figure 3-4, a projection of a surface is shown with
normals perpendicular to this surface. Assuming that this
surface is a patch of a hemisphere with the shapes drawn
below, normals are rotated about 45°, 30° and 10° re­
spectively.
However to simulate a hemisphere by a cube's shape is
only useful if it is very small. For example, it might be
useful for a level of detail representation, required for far
away objects.

single patch

.

~.
.~..... "l~

tesselated shapes

Figure 3-4: Simulating curvature using edge normals

Since we are interpolating normal vectors linearly over
the triangles, the effects discussed in the previous sec­
tions will also occur.
Fortunately, the variation of vertex normal vectors over a
triangle are not as big as on eye vectors. In our investiga­
tion on curvature we used large planes with at least
800x800 drawn pixels. Therefore shading results are ex­
tremely sensitive to interpolation artifacts. To ensure
that even small artifacts can be recognized we used cube
environment mapping with a grid texture.
In the table below, images with 5° steps of normal vector
angles are shown. Nearly invisible artifacts are in the
range of 0°-10°, which leads to over 18x 18 patches per
hemisphere (see marked region in the 10° case). Accept­
able results for medium sized polygons lie in the range of
10°_30° (18xI8-6x6). Angles greater than 30° are only
useful for very small objects since they reveal severe arti­
facts (see marked regions in images). In Figure 3-5, envi­
ronment mapping with homogeneously interpolated nor­
mal and eye-vectors is shown. It can be seen that there
are no distortions on the polygon edges and the simulated
curvature (45° normal vector angle) is expressed in the
bowed grid of the texture.

Figure 3-5: normal and eye-vectors interpolated homo­
geneously

7

20° 45°

Table 1: Simulated curvature

4. Interpolation

Figure 4-/.' 	 Effect on homogeneous and non homogeneous
interpolation ofeye- and normal vectors

Since the variation of the eye vector over the surface is
immense compared to e.g. the normal vector, we gener­
ated Figure 4-1 to sho~ the severe change in eye-direc­
tions.

Our investigations on interpolation techniques for all
critical parameters of our renderer design lead us to the
results depicted in Table 2.

homogeneous

homogeneous

homogeneous

strictly

strictly

not critical

recommended

not critical

Table 2: Interpolation technique for various parameters

5. Proposed Architecture

The VISA+ rendering engine scan-converts triangular
datasets in a uniform manner [5]. Given a triangle ver­
tex, the attached slope increments and their attribute pa­
rameters (normal, eye, fog etc.), the interpolators first
compute the edge parameters per scan line and subse­
quently the interpolated attributes within a scanline. As

the rasterization unit interpolates main shading parame­
ters in homogenous space a division by w for u,v-texture
and bump coordinates as well as for main vector entities
(normal-, eye-, etc. vectors), is mandatory for screen
space conversion. The division of w for the relevant pa­
rameters per pixel implies a screen-projective mapping.
In contrast to bilinear mapping techniques, the above
mentioned perspective-correct rendering generates arti­
fact-free perspective scenes, no swimming textures, envi­
ronments and bump-environments in an animation.

Figure 5-J.'Overall Architecture

The above figure gives an impression of the architecture.
The shaded boxes show the functional complexity of the
VISA+ rasterizer engine, the BEAT (= Bump Environ­
ment And Texture) modules implement the functions
necessary for memory relevant graphic operations with
high bandwidth requirements. (The BEAT module will
be described in a further report.) We will focus on the
functional units of the VISA+ rasterizer.

The bump engine perturbs the pixel normal by the corre­
sponding bump map entries ~u and ~v. In order to align
the bump-map vectors perpendicularly to the surface
normal, a transformation process must be executed by
this functional unit. This is done by multiplying the
bump-map entries by matrix A.

The reflectance cubes are addressed for the determina­
tion of the diffuse component by the normal N and for the
determination of specular component by the reflected ray
R. The vector's major axis determines the corresponding
reflectance cube face. Indexing of this map is done by
dividing the vector's minor-axis values by the major-axis
value.

As one can see, there is no special unit left for environ­
ment bump mapping. The VISA + engine will work in
this operation mode by storing the environment of an

8

object in the reflectance cubes. The object's structure is
stored as bump-texture in the bump-module, the object's
texture in the texture module. The color blending unit
combines all these different color sources to the blended
color ofa pixel.

For each pass up to four spot lights or up to eight local
lights can be generated according to the OpenGL illumi­
nation equation.

6. Conclusions and future work

The division by w of the relevant parameters implies a
screen-projective mapping. In contrast to bilinear map­
ping techniques, perspective-correct rendering generates
artifact-free perspective scenes and prevents swimming
textures, environments and bump-environments from
occurring in an animation.

Currently, the VISA+ architecture, supporting real-time
Phong Shading with realistic texture-, bump- and envi­
ronment-bump-mapping, is being designed at the GMD­
FIRST. The rasterization unit will be fabricated in 0.35
micron technology. The datapath IS implemented in a full
custom design style. We believe that full custom datapath
design style will be a must for high complexity designs
minimizing the power consumption [11]. The design has
a complexity of circa one million gates (spot light chan­
nels inclusive). By the end of 1996, we expect a working
prototype. Using this rendering-system, we are able to
generate animated scenes that by far surpass the realism
ofconventional Gouraud-shaders.

Acknowledgments

We are grateful to S. Budianto, K. Tehrani and our for­
mer colleague T. Le Yin for their suggestions and contri­
butions to this work.

Literature

[1] 	 Bishop G., Weimar D. M., "Fast Phong Shading", Com­
puter Graphics 20, 4 (April 1986), pp. 255-262.

[2] 	 M. Deering, S. Winner, B. Schediwy, C. Duffy, N. Hunt:
"The Triangle Processor and Nonnal Vector Shader: A
VLSI System for High Perfonnance Graphics", Computer
Graphics, Vol. 22, No.4; pp. 21-30, 1988.

[3] 	 Clausen U., "Reducing the Phong Shading Method",
Eurographics'89, pp. 333-344.

[4] 	 A.M. Kuijk and E.H. Blake, "Faster Phong Shading via
Angular Interpolation", Computer Graphics Forum, Vol.
8,1989,pp.315-324.

[5J 	 D. Jackel, H. Riisseler, "A Real Time Rendering System
with Nonnal Vector Shading", 9'h EuroGraphics Work­
shop on Graphics Hardware, Oslo, Norway, 1994

[6] 	 D. Voorhies and J. Foran, "Reflection Vector Shading
Hardware", Computer Graphics (Proc. SIGGRAPH'94),
pp. 163-166.

[7] 	 Phong, Bui Thong. "Illumination for Computer Generated
Pictures", Communications of the ACM, Vol. 18, No. 6
(1975). pp. 311-317.

[8] 	 1. F. Blinn, "Simulation of Wrinkled Surfaces", Computer
Graphics, 12(3), pp. 286-292, (Proc. SIGGRAPH '78)

[9] 	 I. Ernst, D. Jackel, H. Riisseler, O. Wittig, "Hardware
Supported Bump Mapping: A Step towards Higher Qual­
ity Real-Time Rendering", [n 10th EuroGraphics Work­
shop on Graphics Hardware (August 1995), EuroGraph­
ics, pp. 63-70.

[10] 	 P. S. Heckbert, Graphic Gems, ISBN 0-12-336156-7

[11] 	 J. Smit, M. Bosma, "On the energy complexity of
Algorithms realized in CMOS, a Graphics Exam­
ple", EuroGraphics Workshop on Graphics Hardware,
1996, Poi tiers, France.

9

