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Abstract 

The VISA+ hardware architecture is the first of a new genera­
tion of graphics accelerators designed primarily to render 
bump-, texture-, environment- and environment-bump-mapped 
polygons. This paper presents examples of the main graphical 
capabilities and discusses methods and simplifications used to 
create high quality images. One of the key concepts in the 
VISA+ design, the use of reflectance cubes, is predestined for 
environment mapping. In combination with bump- and texture­
mapping it shows the strength of our new architecture. 
Furthermore_ it justifies some of·.the decision's made during 
simulation and development of the complex VISA+ architec­
ture. 

Keywords: real-time bump mapping, environment mapping, 
environment bump mapping, reflection map, normal vector 
interpolation, Phong shading hardware. 

1. Introduction 

Even the fastest high quality graphics workstations like 
the recently announced InfiniteRealityTM graphics accel­
erators are still based on common texturing in combina­
tion with Oouraud Shading. With continuously improv­
ing VLSI technologies in combination with CAD tools to 
support full custom chip design, new graphic architec­
tures must evolve. As an important step towards higher 
realism, real-time Phong Shading will be the next tech­
nology-push in computer graphics. 

Over the past decades, many attempts have been made, to 
make Phong shading practicable for hardware implemen­
tation. Bishop and Weimar [1] proposed a Taylor series 
approximation for NH. For a curvature less than 60 de­
grees, forward differencing a quadratic polynomial fits 
quite well and reduces the computational efforts to five 
additions per pixel. Deering [2] presented a shader that 
interpolates the nonnal and eye vectors. In both ap­
proaches, exponentiation of the cosine function was done 
by table lookup, which leads to intolerable hardware size 
if a broad range ofexponents is to be supported. 

Another method uses angular interpolation techniques 
rather than vector interpolation. This has the advantage 

that the vector length remains unchanged during the in­
terpolation. This way, normalization can be reduced to 
vectors at the vertices and calculated in software. While 
an approach suggested by U. Clausen [3] interpolates 
polar angles, Kuijk and Blake [4] expand this principle to 
angular interpolation on great-circles. The resulting ex­
pressions, however, are rather complicated. The angular 
interpolation approach can be important if diffuse in­
tensities are calculated on an incremental basis. 

The nonnal-vector shading approach of the GMD-FIRST 

. is a reflection map method. This shading technique, im­

plemented in the VISA system [5] operates in a similar 

way to the reflection-vector shading hardware of Voor­

hies and Foran [6]. 

A logical extension of the nonnal vector interpolation 
principle was to support bump mapping [9]. Bumps im­
prove visual effects for low-end game, as well as high­
end VR applications. A combination of texture and bump 
maps for extremely perspective and huge polygons re­
duces the total setup- and transfer-time for computer 
graphics scenes. 

In this paper, the quality aspects of homogeneous versus 
non-homogeneous interpolation for Phong shading, bump 
mapping. environment and environment bump mapping, 
will be discussed': Focusing on efficient division schemes 
for perspective texturing and cube-reflectance mapping, a 
proposed hardware architecture is discussed in more de­
tail. 
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2. Basic Fundamentals 

2.1 Phong Shading 

Phong Illumination was introduced by Tong Bui Phong 
in 1975 [7] as an empirical model to simulate highlights 
on shiny surfaces. The model has been accepted as a very 
good approximation of physical highlights. Phong intro­
duced a specular exponent, reflecting material properties, 
and modelled the steep falloff of the highlight as the e0­

sine of the angle between eye-vector and reflected light­
vector, raised to the specular exponent. For the imple­
mentation of Phong Illumination on a per pixel basis, the 
normal vector has to be interpolated over a polygon. 
Normal Vector Interpolation Shaders are therefore called 
Phong Shaders, in contrast to the commonly used 
Gouraud Shaders that interpolate color-values over the 
polygon (that may have been calculated using Phong Il­
lumination!). Phong's Illumination model consists of an 
ambient, a diffuse and a specular component, resulting 
in: 

Equation 2-J: 

I=a+ L(d(N.L)+s(R.EY) 

for all Iightsources i in the scene, with a, d and s ambi­
ent, diffuse and specular column-vectors (R,G,B)T re­
spectively to depict material properties. N depicts the 
surface normal vector, L the vector pointing from the 
point on the surface to the light source, R the mirrored 
vector of L around N (reflected light vector) and E the 
reflected eye vector. All vectors need to be normalized. 

2.2 Bump Mapping 

In 1974, Blinn [8] developed a technique that enables a 
surface to appear wrinkled or dimpled without the need 
to model this roughness geometrically. 

For this purpose, he defined a special texture map called 

bump map B(u, v) containing displacement or height 

values to perturb the local normal vector. 
The perturbed normal vector is given as N' = N + D 
where D is the perturbation vector. To calculate D, he 
defmed two other vectors lying in the tangent plane of 
the surface given by N .These vectors are defined as 

A = N x 01' and B = N x 0U' where O(u, v) is a 

parametrized function representing the position vectors 
of point 0 on the surface. Then, the components of D 
are given by A = BIIA - BvB . This way, he defined a 

bump map function as a displacement but uses its deriva­

tives at the point (u,v) to calculate D. D can be better 
expressed by 

Equation 2-2: 

D= EII(N x O,,)-Bv(N x 0u) 

where N / INI is written as N . 

3. Simplifications 

3.1 Hardware Bump Mapping 

Hardware bump mapping needs to be much simpler than 
the classical approach (Equation 2-2). 
Instead of constructing a perturbation vector out of local 
derivatives which have to be defmed, we already store it 
in the bump map. Since we interpolate the normal over 
one triangle, we already have the tangent plane of the 
surface. Given the perturbation vector 

P; [LlU LlVrin we, we might construct the result­

ing normal vector as N' = N + P. To guarantee a 
perturbation in the direction 0u' 0v of the tangent 

plane at point i, we have to 
align the texture coordinate system u, Y, w to the tangent 

. 	plane system 0u' 0", N. This transformation is done 

by an alignment matrix A. Then the resulting normal 

vector becomes N' =N + A . P . Since we have a ho­
mogeneous interpolated normal vector, the equation ex­
pandsto 

Equation 3-1 

N' = N+ [A·-P]*BumpMorph . 
w w w 

Note the additional BumpMorph parameter which is used 
to control the amplitude of the bump perturbation (length 
of p). Since this parameter is constant over the polygon, 
it can be included in the matrix A. This way, Equation 3­
1 can be simplified to: 

Equation 3-2 

N' 1 
- =-(N + AP) To convert P; from we to 
w w 

ScreenSpace we need two multiplications for each of its 

1 
components by -. However in section 3.2 we explain 

w 
why we have to calculate the reflected ray in we instead 
of ScreenS pace coordinates. Hence we must convert the 
normal N from ScreenSpace to we too. This is done by 

1 
three divisions ( - ). 

w 

4 

http:L(d(N.L)+s(R.EY


The resulting fonnula, which is implemented in our 
hardware, than becomes: 

Equation 3-3: 

Note that N is generated by interpolating the normal­
ized edge nonnal vectors of the triangle. Hence N is 
unnonnalized inside the triangle which leads to small 
highlight shifts on the surface. This artifact can not be 
recognized because there are no color differences near the 
edges ofadjacent triangles [9]. 

The alignment matrix A can be used not only to get the 
correct perturbation vector, but also to rotate, stretch, 
mirror or shorten the perturbation vectors for one trian­
gle. 

3.2 Hardware Reflected Ray 

Based on the M. L model [10], ~ith homogeneous eye 
._' E . . - - N 
vector E.';' - .and surface nonnal vector N = -, the 

W W 
homogeneous reflected ray in ScreenS pace coordinates 
leads to ." .' 

Equation 3-4: 

R=[Yx rv ~]= 2N(NE) - (NN)E = 
Since calculating R in 1 1 1 1 1
ScreenS pace leads to 2-N(-N-E)- (-N-N)E= 
higher precision multi­ w w w w w 
pliers and adders (extra 1 1 

2-N(NE)--3 (NN)E=R= [rx r,. ~]= W3 w 
bits for homogenous 
component), we convert ~ (2N(NE) - (NN)E) = ~R 
E and N to WC to re- w . w 
duce the overall gate-
costs for the Reflected Ray Unit. 

3.3 Hardware Phong 

There are two ways to calculate the color contribution of 
each lightsource. 
~ Using reflection maps (VISA) 

N and R are used as an index into the diffuse 
and specular reflection map respectively. 
Diffuse: 

[nx ny nz]~ max{lnJ In,I In,I}, 

sign(nT nv 11;) 
MapAddress = [a, a, ]= 

X ­ Faces[I::1 1::1] 

Y - Faces[I::1 1::1] 

Z - Fawll::1 I~I] 
Note that the homogeneous perturbed nonnal is 
N' 
-(see Equation 3-1) which in the case of X­
w 

Faces leads to 

Equation 3-5 

As we can see, the division by w is canceled out. 
This means that no conversion from and to homo­
geneous coordinates is necessary when indexing 
the maps. 

Specular: 
The specular index is calculated analogously 
to the diffuse index using R. 

Equation 3-6 

X - FaceS:[1 2.. .3.J
kl klJ 

For example the a, index expands to 

ey.{-n/ +n/ n/)+2.n,.. (ex 'n, +e, 'n,) 

a, e .(-n./ _n.,2 +n/)+ 2 .n: .(e, 'n, +e,_ .ny)
z 

Again we can use the index division for the 
transfonnation from ScreenSpace coordinates to 
we. 
As mentioned in section 3.2 Nand E are already 
converted to WC, therefore we only need a di­
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vider without the additional precision bits for the 
homogenous component 

To avoid distortion, an arcus tangens table is used 
to correct the reflectance map address. 

[ax a,,]' 	=[tan-l(aJ tan-1(a,,)] 

=> 	using DirectPhong™ (VISA+) 
The common problem for designers of hardware 
shaders is the exponentiation in the Phong for­
mula. Oouraud Shaders calculate the intensities on 
polygon-vertices in software and interpolate these 
ROB values to produce pixelvalues. The flaw in 
this approach is that no real, focused highlights 
can be achieved if the highlight lies within a poly­
gon. This reduces the realism of the rendered 
scene. Attempts to implement Phong Shading all 
use table lookups for the exponentiation. This re­
sults in intolerable hardware sizes if different val­
ues of n must be supported. The VISA system 
implements Phong Shading using reflectance 
maps. This is a fast solution to provide real-time 
Phong Shading with real highlights. The problem 

. with this implementation is that it can only model 
one value of n per scene. Currently, the VISA+ 
renderer is being designed at the OMD-FIRST 
that supports DirectPhong™. The VISA+ system 
is based upon the concept that Phong's exponen­
tiation-function is purely empirical. It implements 
an alternative function to simulate the shape of 
Phong's function and to provide real-time Phong 
Shading for a broad range of specular exponents, 
defined by the OpenGUM specifications. It is be­
yond the scope of this paper to describe the VISA + 
system in more detaiL Future publications will fo­
cus on this subject. 

3.4 Hardware Environment Mapping 

perfect mirror 

Figure 3-1: Principle ofenvironment mapping 

Metallic or mirror-like objects can easily be simulated 
using the reflectance cube approach. Since the reflected 
view-vector must be calculated for modeling specular 
highlights, Phong Shading can easily be extended to en­
vironment mapping. Closed room surroundings can be 
stored in the cube maps. Each cube side contains the im­
age of the specified direction (up, down, left, right, front, 
back). The reflected view-vector will then be used for 
addressing these maps, corresponding to the address gen­
eration for the reflection maps (section 3.3). 

Figure 3-2: 	 Effect on interpolation techniques using cube 
environment mapping 

In the example shown in Figure 3-2, the surface (perfect 
mirror) reflects the sky (top side) of the environment. 
Figure 3-1 illustrates the principal of cube environment 
mapping. 
Even the slightest change of the reflectance vector at the 
polygon edges produces visible artifacts. Therefore it is 
strongly recommended to use homogeneous interpolation 
for eye and normal vectors (see image on the right in 
Figure 3-2), to get undistorted, high quality results. The 
image on the left in Figure 3-2 is generated using linearly 
interpolated eye-vectors. As a result, the mirror image is 
shifted at the polygon edges. This results in missing per­
spective and crooked illumination. 

3.5 Hardware Environment Bump Mapping 

A powerful new feature in our hardware architecture is 
environment bump mapping. Now·the modeler can in­
corporate structured mirrors into his or her virtual envi­
ronments. To accomplish this task, bump mapping and 
cube environment mapping is combined. 
The perturbed reflection vector is calculated on the basis 
of the perturbed normal vector. This normal is generated 
exactly in the same manner as if only bump mapping was 
used. 
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Figure 3-3: Linear (left) versus homogeneous (right) in­
terpolation for bump-environment mapping 

Figure 3-3 demonstrates the capabilities of this new 
graphics feature. For the images, we computed a bump 
map with a small depth structure on our perfect mirror 
surface. As a result, the sky is reflected perfectly with the 
bump structures taken into account. 
The image on the left hand shows linearly interpolated 
eye-vectors and therefore the same artifacts as in the case 
of pure cube environment mapping. Homogeneously in­
terpolated eye-vectors lead to artifact-free results (image 
on the right hand in Figure 3-3). 

3.6 Simulated curvature 

To reduce the complexity of curved objects course trian­
gulation can be used. A typical example for simulated 
curvature using different directions for edge normals are 
tessellated hemispheres. 
In Figure 3-4, a projection of a surface is shown with 
normals perpendicular to this surface. Assuming that this 
surface is a patch of a hemisphere with the shapes drawn 
below, normals are rotated about 45°, 30° and 10° re­
spectively. 
However to simulate a hemisphere by a cube's shape is 
only useful if it is very small. For example, it might be 
useful for a level of detail representation, required for far 
away objects. 

single patch 

. 

~. 
.~..... "l~ 

tesselated shapes 

Figure 3-4: Simulating curvature using edge normals 

Since we are interpolating normal vectors linearly over 
the triangles, the effects discussed in the previous sec­
tions will also occur. 
Fortunately, the variation of vertex normal vectors over a 
triangle are not as big as on eye vectors. In our investiga­
tion on curvature we used large planes with at least 
800x800 drawn pixels. Therefore shading results are ex­
tremely sensitive to interpolation artifacts. To ensure 
that even small artifacts can be recognized we used cube 
environment mapping with a grid texture. 
In the table below, images with 5° steps of normal vector 
angles are shown. Nearly invisible artifacts are in the 
range of 0°-10°, which leads to over 18x 18 patches per 
hemisphere (see marked region in the 10° case). Accept­
able results for medium sized polygons lie in the range of 
10°_30° (18xI8-6x6). Angles greater than 30° are only 
useful for very small objects since they reveal severe arti­
facts (see marked regions in images). In Figure 3-5, envi­
ronment mapping with homogeneously interpolated nor­
mal and eye-vectors is shown. It can be seen that there 
are no distortions on the polygon edges and the simulated 
curvature (45° normal vector angle) is expressed in the 
bowed grid of the texture. 

Figure 3-5: normal and eye-vectors interpolated homo­
geneously 
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20° 45° 

Table 1: Simulated curvature 

4. Interpolation 

Figure 4-/.' 	 Effect on homogeneous and non homogeneous 
interpolation ofeye- and normal vectors 

Since the variation of the eye vector over the surface is 
immense compared to e.g. the normal vector, we gener­
ated Figure 4-1 to sho~ the severe change in eye-direc­
tions. 

Our investigations on interpolation techniques for all 
critical parameters of our renderer design lead us to the 
results depicted in Table 2. 

homogeneous 

homogeneous 

homogeneous 

strictly 

strictly 

not critical 

recommended 

not critical 

Table 2: Interpolation technique for various parameters 

5. Proposed Architecture 

The VISA+ rendering engine scan-converts triangular 
datasets in a uniform manner [5]. Given a triangle ver­
tex, the attached slope increments and their attribute pa­
rameters (normal, eye, fog etc.), the interpolators first 
compute the edge parameters per scan line and subse­
quently the interpolated attributes within a scanline. As 

the rasterization unit interpolates main shading parame­
ters in homogenous space a division by w for u,v-texture 
and bump coordinates as well as for main vector entities 
(normal-, eye-, etc. vectors), is mandatory for screen 
space conversion. The division of w for the relevant pa­
rameters per pixel implies a screen-projective mapping. 
In contrast to bilinear mapping techniques, the above 
mentioned perspective-correct rendering generates arti­
fact-free perspective scenes, no swimming textures, envi­
ronments and bump-environments in an animation. 

Figure 5-J.'Overall Architecture 

The above figure gives an impression of the architecture. 
The shaded boxes show the functional complexity of the 
VISA+ rasterizer engine, the BEAT (= Bump Environ­
ment And Texture ) modules implement the functions 
necessary for memory relevant graphic operations with 
high bandwidth requirements. (The BEAT module will 
be described in a further report. ) We will focus on the 
functional units of the VISA+ rasterizer. 

The bump engine perturbs the pixel normal by the corre­
sponding bump map entries ~u and ~v. In order to align 
the bump-map vectors perpendicularly to the surface 
normal, a transformation process must be executed by 
this functional unit. This is done by multiplying the 
bump-map entries by matrix A. 

The reflectance cubes are addressed for the determina­
tion of the diffuse component by the normal N and for the 
determination of specular component by the reflected ray 
R. The vector's major axis determines the corresponding 
reflectance cube face. Indexing of this map is done by 
dividing the vector's minor-axis values by the major-axis 
value. 

As one can see, there is no special unit left for environ­
ment bump mapping. The VISA + engine will work in 
this operation mode by storing the environment of an 
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object in the reflectance cubes. The object's structure is 
stored as bump-texture in the bump-module, the object's 
texture in the texture module. The color blending unit 
combines all these different color sources to the blended 
color ofa pixel. 

For each pass up to four spot lights or up to eight local 
lights can be generated according to the OpenGL illumi­
nation equation. 

6. Conclusions and future work 

The division by w of the relevant parameters implies a 
screen-projective mapping. In contrast to bilinear map­
ping techniques, perspective-correct rendering generates 
artifact-free perspective scenes and prevents swimming 
textures, environments and bump-environments from 
occurring in an animation. 

Currently, the VISA+ architecture, supporting real-time 
Phong Shading with realistic texture-, bump- and envi­
ronment-bump-mapping, is being designed at the GMD­
FIRST. The rasterization unit will be fabricated in 0.35 
micron technology. The datapath IS implemented in a full 
custom design style. We believe that full custom datapath 
design style will be a must for high complexity designs 
minimizing the power consumption [11]. The design has 
a complexity of circa one million gates (spot light chan­
nels inclusive). By the end of 1996, we expect a working 
prototype. Using this rendering-system, we are able to 
generate animated scenes that by far surpass the realism 
ofconventional Gouraud-shaders. 
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