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Figure 1: The cost of volume bricks highly depends on parameters that are commonly adjusted interactively at runtime, most
notably the camera position and orientation (Fig. 1(a)). In order to prevent significant delays caused by data transfers, we
distribute bricks to compute devices redundantly (Fig. 1(b)). This can be utilized by our scheduler to evenly distribute the load
across all devices by shifting brick render tasks between devices without costly data transfers (Fig. 1(c)).

Abstract
In interactive volume rendering, the cost for rendering a certain block of the volume strongly varies with dy-
namically changing parameters (most notably the camera position and orientation). In distributed environments
– wherein each compute device renders one block – this potentially causes severe load-imbalance. Balancing the
load usually induces costly data transfers causing critical rendering delays. In cases in which the sum of memory
of all devices substantially exceeds the size of the data set, transfers can be reduced by storing data redundantly.
We propose to partition the volume into many equally sized bricks and redundantly save them on different compute
devices with the goal of being able to achieve evenly balanced load without any data transfers. The bricks assigned
to a device are widely scattered throughout the volume. This minimizes the dependency on the view parameters, as
the distribution of relatively cheap and expensive bricks stays roughly the same for most camera configurations.
This again enables our fast and simple scheduler to evenly balance the load in almost any situation. In scenarios
in which only very few bricks constitute the majority of the overall cost a brick can also be partitioned further and
rendered by multiple devices.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Parallel processing—
I.3.2 [Computer Graphics]: Distributed/network graphics—

1. Introduction

A great number of areas like medicine, material sciences,
computational physics, and various other disciplines have to

deal with large volumetric data sets. For visually analyzing
this data, interactive visualization is demanded that does not
compromise quality. Parallel volume rendering is one of the
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most efficient techniques to achieve this goal by distributing
the rendering process over a cluster of machines. Particularly
when dealing with large data sets, the volume data set is par-
titioned and distributed to render nodes. Splitting the data
in object space this way avoids the need for costly out-of-
core techniques. However, a major issue arises from the fact
that the rendering costs for the volume block that is assigned
to a computation device changes significantly with param-
eters like the camera position and orientation that are typi-
cally adjusted interactively by the user. In order to balance
the load, the rendering of certain volume parts needs to be
moved from one device to another. Common dynamic load-
balancing schemes require time consuming data transfers to
achieve evenly balanced computation load. Even if this only
induces memory copies from main to device memory, it can
still cause significant rendering delays.

At the same time, the amount of nodes in a standard clus-
ter as well as the available graphics card memory are steadily
increasing. For a wide range of areas and applications, the
total available amount of graphics memory would allow to
store the data set several times. However, common object-
space distribution techniques usually save the whole data set
in memory only once and maximally save data in boundary
regions redundantly. This largely wastes potential flexibility
for load-balancing.

We propose to split the volume in many small volume
blocks called bricks and distribute them redundantly to com-
pute devices. In each frame, for every brick a device is cho-
sen for rendering that holds the respective brick in its mem-
ory. A good distribution of bricks already allows for bal-
anced execution times and due to the fact that typically mul-
tiple bricks are rendered per device, there is no need for the
bricks to be equally expensive.

In particular, we make the following contributions:

• Concept of redundantly distributing many small, equally
sized bricks instead of allocating one brick per device.

• Load-balancing technique exploiting the brick redun-
dancy to maximum effect.

• Brick distribution algorithm to allow for good load-
balancing under all circumstances

• Evaluation of the influence of camera position and orien-
tation on the brick rendering cost

The remainder of this paper is structured as follows. Sec. 2
discusses related work in distributed volume rendering and
scheduling. Sec. 3 gives an overview on our approach, while
Sec. 4 and Sec. 5 discuss in detail its two phases, namely the
a priori initialization and the per frame load-balancing. We
show the effectiveness of our approach in Sec. 6.

2. Related Work

Distributed Volume Rendering

Distributed volume rendering has been investigated for

a long period of time and a magnitude of publications can
be found on this issue. Most of the existing systems fit ei-
ther into the sort-first or sort-last category according to Mol-
nar et al.’s classification [MCEF94]. Our approach is in the
sort-last category, i.e. the data is split between the nodes,
and each node renders its own portion. Compositing then
takes depth information into account to form a final im-
age from each node’s rendering. Sort-last volume rendering
techniques are able to handle very large datasets as demon-
strated by Wylie et al. [WPLM01] by statically distributing
these datasets among the nodes. The predominant hierar-
chical compositing schemes that are used in sort-last archi-
tectures aiming at rendering large data sets are the Direct
Send approach by Neumann [Neu93] and the Binary-Swap
algorithm [MPHK93]. Palmer et al. [PTT97] discussed how
to efficiently exploit all levels of the deep memory hierar-
chy of a cluster system. Using the clusters that compute the
simulation also for volume rendering has also been investi-
gated [PYRM08]. While the first techniques for parallel vol-
ume rendering employed slice-based rendering [MHE01],
more recent systems use GPU-based raycasting [KW03]
with a single rendering pass [SSKE05]. A simple back-to-
front raycaster in the CUDA SDK [NVI08] demonstrates the
implementation with a modern GPGPU language.

There has been a lot of work in recent years on data
structures that can be used to address dynamic load balanc-
ing issues in distributed volume rendering systems. For in-
stance, Wang et al. [WGS04] proposed a hierarchical space-
filling curve for that purpose. Lee et al. [LSH05] employ
a hybrid/BSP tree subdivision. Müller et al. [MSE06] and
Marchesin et al. [MMD06] amongst others employ a kd-tree
in order to dynamically reorganise the data distribution in a
cluster. Marchisin et al. [MMD06] also showed that when
zooming on parts of the data sets, load imbalance becomes
a challenging issue. In order to achieve good load balanc-
ing they dynamically distribute the data (i.e. they resize the
volume bricks) among the rendering nodes according to the
load of the previous frame.

Similar to our approach, Peterka et al. [PRY∗08] generate
more volume bricks than there are devices. However, they
assign every brick to only device in initialization using a
round-robin scheme and no dynamic balancing takes place
during rendering.

Frank and Kaufman [FK09] use data dependency infor-
mation to automate and improve load balanced volume dis-
tribution and ray-task scheduling. A directed acyclic graph
of bricks is employed and a cost function is evaluated to
create a load balanced network distribution. The output is a
render-node assignment which minimizes the total run time.

Scheduling

In the context of this work, scheduling refers to the way
how work packages (i.e. rendering a part of the volume) are
assigned to compute devices. Basic research in scheduling
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Subdivide To Bricks Distribute Bricks To GPUs Scheduling: Assign Bricks To GPUs
Distributed Volume Rendering
and Compositing

Compute Devices (assigned to bricks) Estimated Cost for RenderingVolume Brick

Figure 2: Overview of the basic steps of our approach. The volume subdivision into bricks and the brick-device distribution
are executed before the interactive volume rendering pass. In that pass, the scheduler determines for every frame which device
should be used to render a specific (sub-)brick prior to the actual raycasting and compositing.

for parallel applications has been done by Diekmann [Die98]
amongst others. In particular, he emphasized the amount
of required communication as an important quality crite-
ria for a schedule. Müller et al. [MFS∗09] presented CU-
DASA, a general CUDA development environment sup-
porting cluster environments. It features a GPU-accelerated
scheduling mechanism that is aware of data locality. Frey
and Ertl [FE10] proposed a framework for developing par-
allel applications for single host or ad-hoc compute network
environments. It features a scheduler that is based on the crit-
ical path method that determines prior to the actual compu-
tation which implementation to execute on which device to
minimize the overall runtime by considering device speed,
availability and transfer cost.

Teresco et al. [TFF05] worked on a distributed system
in which every CPU requests tasks from the scheduler
which are sized according to the device’s measured perfor-
mance score. Resource-aware distributed scheduling strate-
gies for large-scale grid/cluster systems were also proposed
by Viswanathan et al. [VVR07]. Zhou et al. [ZHR∗09] in-
troduced a multi-GPU scheduling technique based on work
stealing to support scalable rendering. In particular, they em-
phasize the importance of avoiding data transfers whenever
possible. In order to allow a seamless integration of load-
balancing techniques into an application, generic object-
oriented load-balancing libraries and frameworks have also
been developed [DHB∗00] [SZ02].

3. Overview

The basic procedure of our approach is illustrated in Fig. 2.
First of all, the volume is subdivided into equally sized
bricks. The brick size is influenced by several factors like de-
vice memory or device architecture (e.g. for graphics cards
there must be enough work to do in parallel for good device
occupancy), the number of devices etc. . Subsequently, the
bricks are distributed redundantly to the available devices.

These steps are denoted as initialization steps in the follow-
ing and discussed in detail in Sec. 4.

During the interactive volume rendering procedure, a
schedule is created for every device before actually render-
ing a frame. The basic input for the scheduling procedure
are the render time estimates for every brick and the brick-
device distribution. The estimated rendering costs are simply
taken from the previous frame, assuming good frame coher-
ence concerning render time costs. In Sec. 6 we will show
that this assumption is valid. The scheduling process is run
locally on every host node with the same input data yield-
ing the same results. This avoids transferring the schedule
to all nodes, but naturally requires the timing results to be
broadcasted to all nodes after rendering. However, transmit-
ting the timing results can be done in parallel to the ren-
dering and compositing computations. The scheduling and
load-balancing procedure is explained in detail in Sec. 5.

4. Initialization

The initialization phase encompasses the steps that are ex-
ecuted once prior to the interactive volume raycasting and
compositing phase. The initialization phase basically con-
sists of the determination of how bricks are distributed across
compute devices as well as the according transfers of the
bricks to the devices.

Good brick distribution is important to enable good load-
balancing properties. Optimally, each device has bricks
whose render costs are on all levels from cheap to expensive
for all camera positions and orientations. Badly distributed
blocks can severely hinder balancing, because it forces few
devices to deal with a large share of the overall load. This is
discussed in more detail later in Sec. 5 by means of Fig. 4.

In order to achieve a good brick distribution, we uniformly
distribute the bricks assigned to a device across the whole
volume. This leads to a wide load diversity for all camera
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(a) Initial Random Distribution (b) Optimized Distribution

Figure 3: Initialization of bricks (squares) with devices
(colored circles). The optimized version is reorganized such
that the distance of the bricks belonging to one device in-
creases.

parameter settings in the rendering process. We define the
criteria for a good brick distribution as follows:

(a) Each device holds the maximum amount of bricks de-
pending on its memory capacity.

(b) All bricks should be distributed about the same number
of times whenever possible.

(c) Any two devices do not share a large amount of associ-
ated bricks.

(d) The minimum distance of the bricks assigned to a device
is as big as possible.

The process to approach such a distribution is split into
two steps as illustrated in Fig. 3. First, the bricks are dis-
tributed randomly, taking care of conditions (a), (b) and (c).
Second, the brick distribution is optimized regarding condi-
tion (d) by swapping bricks between devices.. We will elab-
orate on these steps in detail in the following.

Brick Distribution Initialization

The goal of this step is to determine a fair initial distri-
bution of bricks to devices. In this context fair means that
initially every brick has the same chances to be assigned to
any device and that it is attempted to distribute bricks equally
often.

First of all, the list of the devices and the list of bricks is
shuffled randomly. Then, a brick and a device index are used
to iterate over the respective lists. In every iteration step, it is
attempted to add the current brick to the current device. If it
was successful (i.e. the brick has not already been assigned
to the device previously), both indices are incremented. In
the case of an index reaching the end of a list, the respective
list is shuffled and the index is set to the beginning of that
list.

If a brick cannot be added to device, the index of the brick
stays the same and only the device index is incremented.
When the device index reaches its original index again (i.e.
the brick could not be assigned to any device), the brick is

shuffle ( devices )
shuffle ( bricks )
b=0
d=0
while ( ! devices . empty( ) && ! bricks . empty( ) ) {

/ / brick i s inserted i f i t i s not present already
inserted = deviceBricks [ devices [d ] ] . inser t ( bricks [b] )
i f ( inserted ) {

b++
i f ( devices [d ] . size ( ) == devices [d ] . capacity ( ) ) {

/ / device i s f u l l −> delete i t from l i s t
devices . erase (d)
d−−

}
}
else {

/ / brick insert ion pending i f d != −1
i f (d == attemptingInsertSince ) {

/ / delete brick ,
/ / i t cannot be inserted anywhere anymore
bricks . erase (b)

}
else i f (d == −1)
{

/ / s tar t a new attempt to add the brick
/ / to the next possible device
attemptingInsertSince = d

}
}
d++
i f (d == devices . size ( ) ) {

d=0
i f ( attemptingInsertSince == −1) {

/ / shuf f le devices i f there is
/ / no pending brick insert ion attempt
shuffle ( devices )

}
}
i f (b == bricks . size ( ) ) {

b=0
shuffle ( bricks )

}
}

Listing 1: Pseudo-code for initializing bricks with devices.

deleted from the list. Note that while a brick is in such a
pending state, the device vector is not shuffled.

Devices are erased from the device list when they reach
their maximum brick reception capacity. The initialization
is complete when either the brick list or the device list is
empty. The procedure is outlined in more detail by means of
pseudo-code in Listing 1.

Brick Distribution Optimization

In the second step, devices swap bricks to optimize the
brick distribution. The basic procedure of this step bears
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Figure 4: Splitting jobs improves the balancing of load across devices with certain camera configurations. Note that the
assignment of bricks to devices is the same as in Fig. 1.

some similarity with the point swapping procedure em-
ployed by Balzer et al. [BSD09] for optimizing point clus-
ters. For each pair of devices, the most beneficial pair of
bricks to swap between them is determined and subsequently
exchanged if the status quo is improved by that. A swap is
only valid when there are no brick duplicates on a device as
a result.

The quality of the distribution of bricks B(d) for a device
d is measured by the quality function q:

q(d) = ∑
b0∈B(d)

∑
b1∈B(d)

√
|b0−b1| (1)

Using the square root of all brick pairs as quality measure is
useful for our purpose as – in opposite to squared distances –
many small uniform distances lead to a much higher value
than only one far away brick. This means that the maximiza-
tion of the measure q leads to a wide and largely uniform
brick distribution. The optimization step ends when all pos-
sible device pairs have been looked at without inducing a
swap.

5. Load-Balancing

After the initialization step, every device has a number of
bricks assigned to it that it can render potentially. For every
frame, it is determined which device to use for rendering a
certain brick. This process is split into two steps: the subdi-
vision of the bricks to render jobs and the scheduling of the
jobs such that the overall execution time is minimized. The
job generation process bears some similarity to traditional
load balancing in parallel volume rendering as it has been
discussed in Sec. 2. However, in contrast to these techniques,
the amount of partitions is not bound to the amount of de-
vices. In the end, this makes the (brick) partitioning easier
because it is sufficient to distribute the load of the brick only
approximately to jobs and then balance the load by smartly
assigning multiple jobs to devices.

5.1. Job Generation

Originally, every brick rendering task translates into one job.
A good balancing of load between devices can be achieved

while ( ! stable ) {
stable = true
for d0 in devices {

for d1 in devices {
baseQuality = quality ( bricksAssignedTo (d0))

+ quali ty ( bricksAssignedTo (d1) )
bestQuality = baseQuality

/ / swap al l possible brick pairs and
/ / measure quality
for b0 in bricksAssignedTo (d0) {

for b1 in bricksAssignedTo (d1) {
tmp0 = bricksAssignedTo (d0)
tmp0. erase (b0)
i f ( ! tmp0. inser t (b1) )

/ / b1 is already in assigned to d0
continue

tmp1 = bricksAssignedTo (d1)
tmp1. erase (b1)
i f ( ! tmp1. inser t (b0) )

/ / b0 is already in assigned to d1
continue

/ / determine most beneficial brick swap
i f ( quali ty (tmp0) + quality (tmp1) > baseQuality ) {

bestQuality = quality (tmp0) + quality (tmp1)
bestSwap = (b0 ,b1)

}
}

}
/ / swap most beneficial pair of bricks
/ / i f i t s bet ter than the status quo
i f ( bestQuality > baseQuality ) {

bricksAssignedTo (d0 ) . erase (bestSwap[0])
bricksAssignedTo (d1 ) . erase (bestSwap[1])
bricksAssignedTo (d0 ) . inser t (bestSwap[1])
bricksAssignedTo (d1 ) . inser t (bestSwap[0])
stable = false

}
}

}
}

Listing 2: Pseudo-code for optimizing brick assignments.
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that way when the major rendering load is distributed across
many bricks (like in Fig. 1 for instance). However, when the
rendering of only one or very few bricks constitutes the ma-
jor share of the overall cost, the bricks need to be split to
allow for equal load distribution (Fig. 4).

This is accomplished by looping over all jobs from the
previous frame and splitting them recursively until each
job’s estimated rendering cost exceeds a certain value a:

a = max
(

∑ j∈Jobs c( j)
|D| ·b2 ,r

)
(2)

c( j) The anticipated cost of a job.
|D| The number of devices.
b The maximal amount of redundant copies

of any brick.
r Lower bound for job render time.

The lower bound r for a is determined experimentally –
we used 5 ms for the measurements in the context of this
work. It is motivated from the fact that parallel devices in
general and GPUs in particular (our targeted compute de-
vice in this work) need a certain amount of work (i.e. de-
gree of parallelism) to work efficiently. In extreme cases,
low GPU occupancy could lead to a scenario in which each
of two newly generated jobs takes as long as the original job
would have. The maximum amount of redundant copies b is
used to express the number of options the scheduler has to
choose a device for a certain job. In particular if there are
many options for a scheduler, numerous smaller instead of
few big jobs are useful because this enables the scheduler to
distribute the load more finely. In contrast to that, if a job can
only be assigned to one specific device, it makes no sense to
split it and cause unnecessary execution overhead.

Before rendering the very first frame, each brick is initial-
ized with its own binary tree, only consisting of the anchor
node at first. The leaves of this tree represent the jobs that
are associated with the respective brick. The job cost esti-
mates are set to the same, arbitrary value due to the lack of
real rendering timing results initially. Starting from the sec-
ond frame, every leaf of the tree is assigned the rendering
time estimated for it. In our case, this is simply the render-
ing cost that its associated job had in the previous frame. In
Section 6, we will show that this assumption is valid at least
for our application scenario. Based on the estimated costs for
its leaves, the tree of each brick is modified per frame in two
consecutive phases: the splitting and the merging phase.

In the splitting phase, if the cost estimate for a leaf ex-
ceeds a, the volume block associated with it is split in half
and two child nodes are created representing the two new
volume blocks. Each of the children is assigned half of the
estimated cost of its parent node. Splitting is performed axis
aligned such that the resulting jobs or leaves are equally
big (i.e. their associated volume blocks have the same size).
The split axis is chosen such that the length of the diagonal

of the volume blocks attached to the jobs is minimal. This
achieves a good trade-off between resulting image size that
needs to be transferred for scheduling (smaller image-space
footprint is better) and the amount of casted rays for good
occupancy (larger image-space footprint is better). When all
edge lengths are equal, we split along the axis that is most
aligned with the view direction.

When the camera position or focus changes, rendering
costs change as well and previously split jobs might need
to be merged again in order to avoid unnecessary overhead.
To this end we iterate over all sibling pairs of jobs (they were
split from the same job in a previous frame) and determine
whether the sum of their cost estimates still meets the split-
ting criteria. If this is not the case, they are merged back
again to one job, which means that they are removed from
the tree and their total weight is assigned to the parent node.
This procedure is executed recursively for all leaf nodes until
the sums of all leaf siblings exceed a.

5.2. Job Scheduling

The task of a scheduler is to decide in every frame what jobs
a device needs to render such that every brick is rendered
exactly once and the maximum load occurring on any device
in minimal. Formally, this is an optimization problem that is
closely related to the class of packing problems. It can be
defined as follows:

Given: A set of devices D, a set of jobs J and a function
c : D× J→ R∪∞.

Find: A surjective assignment function a : D→ J such that
maxd∈D(∑ j∈a(d) c(d, j)) is minimal.

Note that c(d, j) =∞ if the brick belonging to the job j ∈ J
is not present on device d ∈ D. Alternatively, depending on
the application, it can be useful to use a sufficiently large
constant C instead (i.e. such that C is safely larger than any
possible device fill level). This would trigger the additional
assignment of bricks in cases in which a brick has not been
assigned to any device initially.

As our scheduler needs to be run for every frame and thus
needs to be fast, we do not attempt to solve this complex
problem optimally. Instead, we opted for a quick and simple
approach that still delivers good results. It bears some sim-
ilarities to the best-fit decreasing heuristic that can be used
for the bin packing problem and basically works as follows:

1. Sort all jobs in order of their weight in descending order
2. Iterate through the job list and assign each job to a device

such that the overall estimated execution time of all jobs
of a device across all devices is minimal.

The overall complexity of the algorithm is O(n logn+ nd).
While sorting is in O(n logn) with n being the number of
jobs, the job assignment procedure is in O(nd), with d de-
noting the number of devices assigned to a brick. A complete
example on the output produced by the scheduler for a spe-
cific input is provided in Fig. 1 and Fig. 4.
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Figure 6: Renderings from the first four camera and focus positions in our camera path.

Figure 5: Camera (purple) and the focal point (khaki)
movement in a 2D example with 2000 time steps.

6. Results

For the evaluation of our approach, we employed a plain
vanilla volume raycaster and a simple compositer written in
CUDA. We used a cluster featuring eight nodes connected
via Gigabit ethernet. Each node is equipped with a NVIDIA
GTX285 (featuring 1 GB of graphics memory) and a Quad-
Core AMD Opteron Processor with 2.3 Ghz. We further used
a 10243 data set volume data set with 16 bit accuracy, whose
size is 2 GB accordingly and rendered 10242 images.

Regarding the choice of the brick size, there is a trade-off
between load-balancing flexibility and overhead for render-
ing, compositing as well as data transfers. In our scenario, a
brick size of 3523 causes only marginal overhead compared
to common sort-last rendering while at the same time the
bricks can be distributed well enough to enable good load-
balancing. This brick size leads to a total amount of 33 = 27
bricks and enables each device to save 10 bricks.
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Figure 7: Change of the rendering times on the camera path
per frame. The gray curve shows both the average minimal
and maximal render time of a device along the camera path.
The khaki curve explicitly depicts the min-max ratio.

Camera Path

The camera and its focal point move along a predefined cam-
era path in a series of 5000 frames (see Fig. 5 for a 2D exam-
ple). The direction and the step size were chosen randomly
from one time step to another with some restrictions. The
camera must not exceed a certain distance to the center of
the volume or enter the volume and the focal point must not
leave the volume. Furthermore, the maximal step size length
is determined as a fraction of the diagonal of the volume.

In order to compute a step, a candidate set of 5 possi-
ble steps is generated randomly. Which step to take from
the current position to the next position is chosen from the
candidate set such that the distance of the next position to
any other previous position is maximal, whereas steps vio-
lating the restrictions that were described above are simply
ignored. If there are no valid steps, a new candidate set is
generated. This enforces that eventually all possible areas for
the camera and focus positions are sampled densely enough
to deliver a well-balanced overall result. The first four ren-
dered frames on the camera path are displayed in Fig. 6. The
influence of the different camera configurations is depicted
in Fig. 7. It can be seen that with each step the rendering cost
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Figure 8: Comparison between estimated render time (ren-
der time from previous frame) and real execution time for the
first 50 frames of our camera path. The gray and the khaki
curve express the difference relative to the previous values
on a percentage basis. While the khaki curve compares the
total execution time of all jobs, the gray curve displays the
maximum difference between any two jobs. The cyan curve
gives both the total estimated and total measured rendering
time while the orange curve depicts the maximal time differ-
ence between two jobs.

might change significantly. The magnitude of the changes
might even be less favorable in terms of frame coherency
than the average interactive volume rendering session. Still,
as we will show in the following, the render times of the
previous frame are a good indication for the current frame.

Brick Rendering Predictions

It is critical for our application that there are good predic-
tions on how expensive jobs are relative to each other for the
upcoming frame. To that end we simply use the render time
from the previous frame. Figure 8 shows that the assump-
tion of coherent render times is valid for our scenario as the
relative differences are within the range of a few percent.
Obviously, if there were really large camera leaps between
two frames, the render times from the previous frame would
not be very expressive. However, these leaps usually do not
occur in systems with stable, interactive frame rates.

Scaling

The scaling behaviour of our approach with an increasing
amount of devices is plotted in Fig. 9. It shows that the
maximal render time per device profits significantly from an
increase in device count. Its scaling factor is even slightly
larger than one. For instance, the longest time any device
needs to render its bricks is 122.9 ms with four nodes and
55.5 ms with eight nodes. The reason for that is that with
more devices more memory becomes available and the level
of redundancy rises. The increasing brick redundancy is also
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Figure 9: Scaling with the amount of compute devices. The
gray curve shows both the average minimal and maximal
render time of a device along the camera path. The khaki
curve explicitly depicts the difference. The purple curve
shows the increasing redundancy factor, meaning that bricks
are distributed to more devices (see Eq. 3). The cyan curve
shows the baseline scaling curve based on the performance
with three nodes.

plotted in Fig. 9. The redundancy factor is defined as

∑d∈D b(d)
|B| (3)

with D being the set of devices, |B| the number of bricks and
b(d) the amount of bricks stored on a device d ∈ D. More
redundancy enables the scheduler to find a more optimal
device-brick assignment. It also helps to decrease the max-
imal load imbalance (i.e. the difference between the maxi-
mum and minimum time taken for rendering by a device).

Brick Distribution Variations

Our approach consists of a set of optimizations that can be
enabled or disabled to study their benefit. It can be seen from
Table 1 and Fig. 10 that the improvement of using a certain
optimization heavily depends on the amount of devices that
are involved in the computation. The keywords in the figure
and the table stand for the following optimization variants:

Standard The normal approach with every feature pre-
sented in the paper.

No Redundancy Each brick is assigned one device only.
Brick Cluster Bricks belonging to a device are not dis-

tributed across the volume but concentrated in one area.
This is computed by using the inverse quality function in
the optimization step of the initial brick distribution (see
Sec. 4). In combination with No Redundancy, this approx-
imates the common one-brick-per-device strategy.

No Job Split Splitting of jobs into smaller jobs is disabled.
This means that a brick translates into exactly one job.

The table shows the aforementioned effect that the tech-
nique for the standard variant scales a little better than lin-
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Variants 8 Dev. 4 Dev.
Standard 55.5 122.9

Brick Cluster 58.6 140.8
No Redundancy 74.6 122.6

Brick Cluster & No Redundancy 85.2 141.5
No Job Split 75.2 123.2

Brick Cluster & No Job Split 68.2 142.2

Table 1: Averaged maximum render times in milliseconds
for different variants of our approach along our camera path
for four and eight devices respectively. For a different brick
size of 2563 and eight nodes, the "Standard" rendering time
was measured to be relatively slow with 73 ms, but it per-
formed almost equally well compared to rendering with 3523

in the "No Redundancy" case.

early due to an increased level of redundancy. Furthermore,
it can be seen that the negative effect of brick clustering is
worse with few than with many nodes. The reason for that is
again that due to the lower amount of redundancy, the sched-
uler has less possibilities to soften the negative effects. This
becomes clear when considering the variant with clustered
bricks and no redundancy. While the impact is only minor
for setups with few devices (as there is no high level of re-
dundancy to begin with), the required rendering time for 8
nodes is significantly higher. This is also true to a smaller
extent when considering the no redundancy case only. Addi-
tionally, due to the higher amount of scheduling possibilities,
disabling job splitting also has a much higher impact with
large number of devices. Remember that the reason behind
job splitting is to allow for a more fine distribution of jobs
belonging to an expensive bricks. However, when a brick is
only distributed once or twice, there is not much room for a
scheduler to widely distribute the expensive job.

Using a smaller brick size of 2563 and thus increasing the
amount of bricks to 64 leads to a significant slow-down for
our standard technique due the induced overhead. However,
when disabling brick redundancy, both brick sizes lead to
similar performance because the larger amount of bricks al-
lows for a better static load distribution.

General System Timings

The overall execution time of the whole volume rendering
process is largely dominated by the volumetric raycasting
performance. Compositing at least 27 images (depending on
the amount of job splits) takes approximately 10 ms in to-
tal with our naive compositor written in CUDA. Note that
sending the render image resulting from one job to the com-
positing node is largely done in parallel to the execution of
another job and thus does not have a significant performance
impact in our testing scenario. Distributing the job render
times is a n-to-n operation (every node needs to send its job
render time to all other nodes), but its size is only a few bytes

20

40

60

80

100

120

140

160

180

3 4 5 6 7 8

Ti
m
e
In

M
S

Devices

Standard
No Job Split Max
No Job Split Min

Brick Cluster Max
Brick Cluster Min

No Redundancy Max
No Redundancy Min

Figure 10: Comparison of the normal version to variants
with one optimization switched off respectively.

and it can be done in parallel with compositing. Accordingly,
this does not contribute significantly to the overall execution
time either, at least not in our small test cluster system. Fi-
nally, our simple scheduler delivers very high performance
and takes significantly less than a millisecond to run in our
scenario, even with a large number of jobs and devices.

7. Conclusion

We proposed a parallel volume rendering approach to uti-
lize data redundancy in order to achieve good load-balancing
with no data transfers required. In particular, we introduced a
volume brick distribution procedure as well as a job genera-
tion and scheduling technique which are efficient and easy to
implement. We showed the effectiveness of our approach in
a small cluster environment, in which we also evaluated the
dependence of brick rendering cost on camera parameters.
The generality of our approach makes it flexible enough to
be combined with basically any volume rendering accelera-
tion technique that is suitable for parallel volume rendering.

The approaches presented in this paper are also able to
handle heterogeneous environments efficiently, like differ-
ent graphics cards that vary in speed and memory. We also
expect the system to scale pretty well with larger cluster sys-
tems. For future work, we plan to investigate these aspects
in detail. Furthermore, this work almost exclusively focuses
on the volume raycasting part and largely neglects the per-
formance impact induced by compositing. In particular we
expect this impact to grow for larger scale cluster systems,
which is why we would like to take compositing timing ef-
fects into consideration in more detail in our evaluation using
state-of-the-art techniques from that area (e.g. by Makhinya
et al. [MEP10]). Finally, we aim to integrate a more elabo-
rate scheduler, that is able to compute a more optimal solu-
tion, but still preserves the good complexity and execution
time properties of our current scheduler.
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