Eurographics Conference on Visualization (EuroVis) (2015)
E. Bertini, J. Kennedy and E. Puppo (Editors)

Short Papers

State of the Art in Mobile Volume Rendering on iOS Devices

A. Schiewel, M. Anstootsl, and J. Krijgerl’2

ICenter of Visual Data Analysis and Computer Graphics (CoViDAG) & HPC Group, University of Duisburg-Essen, Germany
2Scientific Computing and Imaging (SCI) Institute, University of Utah, USA

—— I\

Figure 1: Next generation low-level graphics APIs allow for unprecedented performance on mobile devices. The Visible Human
CT dataset with a resolution of 256 X256 X 942 voxels ray-casted at interactive frame rates of 5 FPS (left) and up to 7 FPS (right).

Abstract

The ubiquity of ever-increasing computing power with mobile devices has put last generation desktop-grade
hardware in everyone’s palms. Mobile computing hardware is rapidly approaching today’s desktop-grade hardware
capabilities enabling applications of advanced rendering algorithms to previously untouched environments such
as medical care. Recent developments in graphics APIs have introduced novel low-level APIs such as AMD’s
Mantle API for desktops and Apple’s Metal API for mobile hardware. Microsoft’s DirectX 12 and the OpenGL
successor Vulkan will be available in the near future. AAA game titles were announced for which publishers see an
advantage—as promised by the creators of the new APls—over traditional portable implementations. The new APls
are mostly advertised to allow for more draw-calls per frame compared to for example, OpenGL-based solutions.
Visualization algorithms and in particular direct volume rendering do not exhibit a significant amount of draw-calls
as a bottleneck. This work evaluates and highlights the utility of recent low-level APIs for mobile devices and puts
them into perspective with available alternatives.

Categories and Subject Descriptors (according to ACM CCS): 1.3.6 [Computing Methodologies]: Computer Graphics—

Methodology and Techniques 1.3.2 [Computing Methodologies]: Computer Graphics—Graphics Systems

1. Introduction

Volume rendering has been shown to be an effective tool
in a number of application areas, ranging from engineering
to medicine. Recently, mobile volume rendering has gained
attention as portable devices such as tablets and smartphones
are present in practically any area of social life and many
workplaces. In a number of recent works, mobile rendering
has been demonstrated to be advantageous over similar visu-
alization methods on the desktop [BTJ*13].

To bring visualization in general and volume rendering in

(© The Eurographics Association 2015.

DOI: 10.2312/eurovisshort.20151139

particular to the mobile device, two principal directions can
be followed: firstly, server-based rendering where the datasets
and the rendering engine reside on a server machine or desk-
top and rendered images are streamed to the mobile client
and secondly, on-device rendering, where the datasets are
streamed to the device up front or on demand and rendered
directly on the mobile client. The former method has the
advantage of leveraging the superior computing horsepower
of the desktop whereas the second method is more robust to
network limitations. (Furthermore, we will show that from

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org



http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/eurovisshort.20151139

140 A. Schiewe, M. Anstoots, and J. Kriiger / State of the Art in Mobile Volume Rendering on iOS Devices

a power consumption standpoint, remote rendering can be
more efficient.)

In this paper, we will focus on the former method and demon-
strate how recent advantages in mobile hardware and software
impact client-based rendering on these devices. Therefore,
we implemented a mobile ray-caster using OpenGL ES 3.0
and Metal functionalities. Finally, we compare these imple-
mentations to previous OpenGL ES 2.0-based solutions.

2. Related Work

For a complete introduction to volume rendering techniques,
we refer the reader to the book by Engel et al. [EKRSWO06].
Early mobile volume rendering systems [MWO08] based
on the OpenGL ES 1.x specification were forced to uti-
lize 2D texture-based approaches with object-aligned slices
[RSEB*00] due to the lack of alternatives.

For the first time, the programmable rasterization pipeline for
mobile devices was introduced with OpenGL ES 2.0, this en-
abled GPU-based direct volume ray-casting implementations
as pioneered by Kriiger et al. [KWO03] during the evolution
of desktop-grade graphics boards. At this time, mobile ray-
casting implementations for OpenGL ES 2.0 hardware were
reported to be inefficient [RA12, Noo12] compared to the
alternative slice-based solution. Only a few graphics chips
had hardware support for 3D textures to avoid costly manual
trilinear interpolation operations in the shader code. Special
slice-based sampling techniques were developed to bring the
image quality level of sliced-based approaches closer to that
of ray-casting-based solutions without sacrificing as much
performance as switching completely to a ray-caster [Krii10].
Currently available mobile volume rendering systems [VES,
BTJ*13] and WebGL-based solutions [NJ12,ML12, MCL14]
still build on the OpenGL ES 2.0 specification. According to
our knowledge at the time of writing, we are not aware of any
published OpenGL ES 3.x class volume rendering system.

In contrast to local rendering methods, remote and poten-
tially distributed server-based approaches [HHN*02,L.S07,
PKI08, TK14,NDB* 14] are a viable alternative, especially
when it comes to the display of large datasets that would not
fit the mobile system-on-a-chip’s available memory.

3. Graphics APIs

This work evaluates the potential of different volume ren-
dering implementations for—but not limited to—the iOS
platform, which enables new avenues of graphics program-
ming not yet seen on any other mobile platform, in particular
the new low-level graphics API Metal. The general question
arises: “Is it worth investing resources to support another
API besides OpenGL ES?” The industry tries to answer this
question by advertising this new API to excel with very low
operation overhead and more direct control by the program-
mer, resulting in many more draw-calls that can be issued
in the same time frame compared with conventional APIs.
However, visualization purposes in contrast to games, espe-
cially for volume ray-casting, the number of draw-calls is

countable, namely two single draw-calls per frame to render
the front-facing and back-facing sides of the proxy-geometry
unit cube as the entry point for the ray-casting shader. In the
remainder of the paper, we address to answer the question of
resource expenditure.

4. Test Environment

Our target test hardware includes an iPhone 6 Plus and an
iPad Air 2 device. All reported tests are done with the iPhone
running the latest iOS version 8.1.3. The measured values
could not be reproduced with the iPad running the same i0S
version. In fact, the performance numbers across the local
renderers were almost identical and even slightly worse for
Metal. We account this to graphics driver optimization issues.
Developer versions as of iOS 8.3 beta confirm the findings
for the iPhone presented in this paper.

The devices’ graphics capabilities are driven by Imagina-
tion Technologies’ PowerVR G6430 and GX6650 graphics
processors, which render into 1536 x 2048 and 1242 x 2208
frame buffers for display at so-called retina resolutions.

Unless otherwise noted, all performed tests used, for vol-

ume rendering purposes, well-known Bonsai dataset from
[BM] with a downsampled resolution of 1283 voxels at 8 Bits
per voxel and a total of 8 MiB in memory size. In addition to
the scalar volume data, we store precomputed gradients for
lighting computations in our volume datasets. We did not use
the original 256° sized Bonsai dataset because we could not
reliably load it throughout all test runs with an OpenGL ES
2 graphics context. In order to utilize the graphics hardware
to its full capacity, we instead increased the sampling rate of
the dataset to 400% and render at full retina output resolu-
tion. Please see Figure 4 for reference images of the rendered
frame sequences on the iPhone.
For equivalent sampling rates of the 2D texture slice-based
OpenGL ES 2.0 implementation and the two 3D texture-
based ray-casters implemented with OpenGL ES 3.0 and
Metal, we set the ray-casters ray-marching step size to a
value that the sample count matches at least the number of
slices drawn by the slice-based volume renderer (SBVR).
This means that the ray-casters do even more work in terms
of sampling in cases where early ray termination does not
occur. The main test scenario rotates the dataset constantly
around its x-axis. This results in at most /2 times more
samples for the ray-caster than for the SBVR at 45-degree
viewing angles of the volume.

5. Performance and Efficiency Evaluation
5.1. Battery consumption

The first scenario tests the number of frames that can be
rendered with a fully charged device. We disconnected the
device from the power supply and started the endless rotating
Bonsai. At 20% battery level, an alert window from the op-
erating system pops up and interrupts the test run. Because
of this interruption and potential energy saving mechanisms
triggered with lower battery levels, we did not continue our

(© The Eurographics Association 2015.



A. Schiewe, M. Anstoots, and J. Kriiger / State of the Art in Mobile Volume Rendering on iOS Devices 141

Energy consumption and efficiency (Bonsai dataset)

X — OpenGLES 2
s — OpenGLES 3

i — Metal

w Remote Low Latency
W\ Remote High Latency

200k

©
=3
*

175k

@
=3

150k

~
=)

125k §

o
=]

100k

Battery level (%)
Frame cou

v
=3

75k

IS
=)

w
=3
N
)
~

v 50k

\\\
v \\
\ \\
ok

0 50 100 150 200 250 300 350 400
Time (min)

Figure 2: Energy consumption (dashed lines) and number
of total rendered frames (solid lines) over time for a test run
from a battery level of 100% down to 20% for a variety of
different renderers on the iPhone 6 Plus with the highest
quality settings.

Renderer Frames per Frames per
battery level | second

OpenGL ES 2 298.35 2.49

OpenGL ES 3 228.82 1.55

Metal 516.85 3.78

Remote Low Latency | 1863.48 8.71

Remote High Latency | 962.72 2.88

Table 1: Average values derived from the energy consumption
test shown in Figure 2.

test runs below 20%.

Figure 2 and Table 1 show the results of local and remote
renderers. Our remote renderer uses high-quality JPEG-based
image compression as done by others [NDB* 14] and streams
the data to the mobile device. The mobile device itself uses
an OpenGL ES 2 context to display the received data. We
conducted two remote renderer scenarios: one with a high
maximum bandwidth and low latency (limited by 433 Mbit/s
Wi-Fi connection; average ping of 3.6 ms; one hop to the ren-
der server) and one with a low maximum bandwidth and high
latency (limited by 12.6 Mbit/s ADSL2+ connection; 52.4 ms
ping; 14 hops) Wi-Fi network connection. The renderer with
low latency used an effective transfer rate of 15 Mbit/s and
the renderer with high latency 8 Mbit/s. Both transferred the
same images but at different speeds.

In terms of performance and energy consumption, the low
latency remote renderer clearly outperforms the other ap-
proaches with approximately 9 FPS and almost 1900 frames
per battery level (FPBL). Metal is able to claim the second
place and is superior to the other local renderers with respect
to speed at 4 FPS, but the remote renderer with high latency
places second with 960 FPBL.

Among the local renderers, OpenGL ES 3 consumed the
least energy but rendered slowest. OpenGL ES 2 SBVR’s

(© The Eurographics Association 2015.

frame rate placed half way between the other two local ren-
derers and consumed the most energy of all renderers. We
attribute this to a measured increased CPU utilization to man-
age the slice stacks and to the larger memory footprint of two
times the dataset size for the two additional slice stacks. The
SBVR had a total measured memory footprint of 66 MiB and
the two ray-casters 47 MiB.

The remote renderer with high latency was able to run 36%
longer but with 48% fewer frames than the one with the low
latency. This also reflects the measured effective transfer rates
and shows that the hardware does efficiently save the battery
when waiting for a frame to display.

5.2. Performance

Figure 3 highlights the individual frame times of a full 360-
degree rotation of the Bonsai dataset with maximal quality
settings (see Figure 4 for reference images). Furthermore,
we compare the Bonsai dataset to an “empty” dataset with
identical dimensions where its transfer function is set to ren-
der every voxel fully transparent. This worst case scenario
forces a constant high GPU utilization over the whole test run.
Comparing the graphs for both datasets, the performance gain
at 290-degree rotation angle clearly highlights the early ray
termination advantage of the ray-casters over conventional
SBVR methods. For this setting, even the slower OpenGL ES
3 renderer outperforms the OpenGL ES 2 renderer.

The OpenGL ES 2 graph resamples the plot of the absolute
value of a cosine function, which peaks at 90-degree angles.
This is a common SBVR frame time pattern that relates to
the number of fragments generated by the rotated slice stacks.
At the 45-degree view angles, the slices create the fewest
fragments, and if the viewing direction is perpendicular to
the stack, the fragment count is maximized.

The largest loadable volume dataset was the only by one
factor downsampled original Visible Human CT scan dataset
consisting of 256 x 942 voxels at 8 Bits per voxel with a
total size of 236 MiB. This data can be rendered with Metal
at 5 FPS for a total view and with up to 7 FPS for a close-
up view. OpenGL ES 3 renders the same images with not
more than 2 FPS for the first and 4 FPS for the second view.
Reference images for these two setups are shown in Figure 1.
Only for these performance measures the quality settings
were set to 100% sampling rate and disabled retina resolution
rendering four times less pixels. The SBVR is not able to
load a dataset of this size due to the storage overhead of the
additional slice stacks.

6. Discussion

Besides pure performance considerations for direct volume
rendering of single volume datasets, numerous use cases
require incorporation of additional primitive types such as
semi-transparent triangle meshes.

In this discipline, SBVRs excel the ray-casters with a straight-
forward integration of mesh rendering support and com-
parably fast rendering performance. The geometry can be



142

A. Schiewe, M. Anstoots, and J. Kriiger / State of the Art in Mobile Volume Rendering on iOS Devices

Performance (Bonsai dataset)

=
(=3

— OpenGLES 2
— OpenGLES 3

o
©
T

— Metal

o
o

o
IS

Frame time (seconds)

o
N

e
o

Frame time (seconds)

Performance (Empty volume)

— OpenGLES 2
— OpenGLES 34
— Metal

o
©

il

o
o
T

o
>
T
%

o
N
T

I I I I I
135 180 225 270 315

Rotation angle (degrees)

o
IS
[l

90

I I I I I
135 180 225 270 315

Rotation angle (degrees)

I
90 360

Figure 3: Frame times for the 360-degree rotations around the x-axis of the Bonsai dataset (left) and a volume with a totally
transparent transfer function (right). The empty volume prevents early ray termination and thus forces many samples, which

states the worst case scenario.

AN

{ m
“ — —

Figure 4: Selected rendered frames for reference as they appear on the iPhone 6 Plus device running the rotation test scenario
where the Bonsai dataset is successivly rotated around its x-axis.

sorted view-dependently on the CPU and merged into the
slice render call. Ray-casters require, for instance, depth-
peeling [Eve01] to achieve the same goal at lower frame rates
than SBVRs.

An advantage of ray-casters is the natural support for iso-
surface rendering that can be done with OpenGL ES 3 and
Metal at real-time frame rates.

7. Conclusions and Future Work

In this work, we analyzed the potential of modern graphics
APIs on mobile devices with a special emphasis on direct
volume rendering. It has been shown that new low-level APIs
for local on-device rendering are superior to traditional APIs
even for a fairly limited number of draw-calls. We conclude
that it is worth the effort to invest resources in implementing
visualization algorithms with these new APIs unless code
portability is a major concern.

In contrast to local rendering, it has been shown that remote
rendering is a viable battery-preserving alternative if wireless
network reception is not an issue.

Hybrid rendering techniques [TK14] are feasible as an al-
ternative to local or remote rendering only. Such techniques
combine remote and local rendering into one common frame-
work and allow for “the best of both worlds” with seamless
handovers depending on the network or battery conditions.

Another advantage of Metal and possibly a disadvantage
of OpenGL ES is that it is likely that new hardware fea-
tures are being more quickly exposed through low-level APIs

than through portable specifications across vendors and plat-
forms. Current i0S devices operate on OpenGL ES 3.1 level
hardware but so far only OpenGL ES 3.0 functionality is
exposed to the programmer in contrast to the current version
of Metal that also exposes modern OpenGL ES 3.1 features
such as atomic_compare_exchange. This is the essen-
tial shader instruction to implement a modern ray-guided
volume renderer [BHP14, FSK13, HBJP12], which is the
state-of-the-art technique to render extremely large datasets
on current generation desktop hardware. Proving the utility
of this advanced rendering technique for mobile hardware is
beyond the scope of this paper but is an interesting avenue
for future work.

8. Software

The OpenGL ES 2.0 SBVR and the remote renderer imple-
mentation evaluated in this paper has been released as the
ImageVis3D Mobile software version 4.03 and is availabe for
download on the App Store. Future versions might include
the other local renderers.

9. Acknowledgements

This research was made possible in part by the Intel Vi-
sual Computing Institute; the NIH/NCRR Center for Inte-
grative Biomedical Computing, P41-RR12553-10; and by
Award Number ROIEB007688 from the National Institute of
Biomedical Imaging and Bioengineering. The content is the
sole responsibility of the authors.

(© The Eurographics Association 2015.



A. Schiewe, M. Anstoots, and J. Kriiger / State of the Art in Mobile Volume Rendering on iOS Devices 143

References

[BHP14] BEYER J., HADWIGER M., PFISTER H.: A Survey of
GPU-Based Large-Scale Volume Visualization. Eurographics
Conference on Visualization EuroVis 33, 3 (June 2014), 1-10. 4

[BM] BARTZ D., MEISSNER M.:. “Real World” medical datasets
[online]. http://volvis.org. 2

[BTJ*13] BuTsoN C. R., TAMM G., JAIN S., FoGAL T.,
KRUGER J.: Evaluation of Interactive Visualization on Mobile
Computing Platforms for Selection of Deep Brain Stimulation
Parameters. Visualization and Computer Graphics, IEEE Trans-
actions on 19, 1 (2013), 108-117. 1,2

[EKRSWO06] ENGEL K., KNISs J. M., REzZK-SALAMA C.,
WEISKOPF D.: Real-Time Volume Graphics. A. K. Peters, Ltd.,
Natick, MA, USA, 2006. 2

[Eve01] EVERITT C.: Interactive Order-Independent Trans-
parency. Tech. rep., 2001. 4

[FSK13] FOGAL T., SCHIEWE A., KRUGER J.: An Analysis of
Scalable GPU-based Ray-guided Volume Rendering. Large-Scale
Data Analysis and Visualization, IEEE Symposium on (2013),
43-51. 4

[HBJP12] HADWIGER M., BEYER J., JEONG W.-K., PFISTER
H.: Interactive Volume Exploration of Petascale Microscopy Data
Streams Using a Visualization-Driven Virtual Memory Approach.
Visualization and Computer Graphics, IEEE Transactions on 18,
12 (2012), 2285-2294. 4

[HHN*02] HUMPHREYS G., HOUSTON M., NG R., FRANK R.,
AHERN S., KIRCHNER P. D., KLosOwWSKI J. T.: Chromium:
A Stream-Processing Framework for Interactive Rendering on
Clusters. Graphics, ACM Transactions on 21, 3 (2002), 693-702.
2

[Kriil0] KRUGER J.: A new sampling scheme for slice based
volume rendering. In VG’10: Proceedings of the 8th IEEE/EG in-
ternational conference on (May 2010), Eurographics Association,
pp- 1-4. 2

[KWO03] KRUGER J., WESTERMANN R.: Acceleration Techniques
for GPU-based Volume Rendering. IEEE Visualization (2003),
287-292. 2

[LSO7] LAMBERTI F., SANNA A.: A Streaming-Based Solution
for Remote Visualization of 3D Graphics on Mobile Devices.
Visualization and Computer Graphics, IEEE Transactions on 13,
2 (2007), 247-260. 2

[MCL14] MOVANIA M. M., CHIEW W. M., LIN F.: On-Site
Volume Rendering with GPU-Enabled Devices. Wireless Personal
Communications 76, 4 (2014), 795-812. 2

[ML12] MOVANIA M. M., LIN F.: Ubiquitous Medical Volume
Rendering on Mobile Devices. In Information Society (i-Society),
2012 International Conference on (2012), pp. 93-98. 2

[MWO08] MOSER M., WEISKOPF D.: Interactive Direct Volume
Rendering on Mobile Devices. VMV (2008), 217-226. 2

[NDB*14] NACHBAUR D., Dumusc R., BILGILI A., HER-
NANDO J., EILEMANN S.: Remote Parallel Rendering for High-
resolution Tiled Display Walls. Large-Scale Data Analysis and
Visualization, IEEE Symposium on (2014), 117-118. 2,3

[NJ12] NOGUERA J. M., JIMENEZ J.-R.: Visualization of Very
Large 3D Volumes on Mobile Devices and WebGL. WSCG Com-
munication Proceedings (July 2012), 105-112. 2

[Nool2] NOON C. J.: A Volume Rendering Engine for Desktops,
Laptops, Mobile Devices and Immersive Virtual Reality Systems
using GPU-Based Volume Raycasting. PhD thesis, 2012. 2

[PKIO8] PARK S., KiM W., IHM I.: Mobile collaborative medical
display system. Computer Methods and Programs in Biomedicine
89, 3 (2008), 248-260. 2

(© The Eurographics Association 2015.

[RA12] RODRIGUEZ M. B., ALCOCER P. P. V.: Practical Volume
Rendering in Mobile Devices. ISVC 7431, Chapter 67 (2012),
708-718. 2

[RSEB*00] REzK-SALAMA C., ENGEL K., BAUER M.,
GREINER G., ERTL T.: Interactive Volume on Standard PC
Graphics Hardware Using Multi-textures and Multi-stage Rasteri-
zation. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
Workshop on Graphics Hardware (New York, NY, USA, 2000),
ACM, pp. 109-118. 2

[TK14] TAMM G., KRUGER J.: Hybrid Rendering with Schedul-
ing under Uncertainty. Visualization and Computer Graphics,
IEEE Transactions on 20, 5 (2014), 767-780. 2, 4

[VES] VTK OpenGL ES Rendering Toolkit [online]. http://
www.vtk.org/Wiki/VES. 2


http://volvis.org
http://www.vtk.org/Wiki/VES

