
Joint Virtual Reality Conference of EGVE - EuroVR (2013)
B. Mohler, B. Raffin, H. Saito, and O. Staadt (Editors)

Personalized Animatable Avatars from Depth Data

Jai Mashalkar Niket Bagwe Parag Chaudhuri

Department of Computer Science and Engineering, IIT Bombay, India

Abstract
We present a method to create virtual character models of real users from noisy depth data. We use a combination
of four depth sensors to capture a point cloud model of the person. Direct meshing of this data often creates
meshes with topology that is unsuitable for proper character animation. We develop our mesh model by fitting a
single template mesh to the point cloud in a two-stage process. The first stage fitting involves piecewise smooth
deformation of the mesh, whereas the second stage does a finer fit using an iterative Laplacian framework. We
complete the model by adding properly aligned and blended textures to the final mesh and show that it can be
easily animated using motion data from a single depth camera. Our process maintains the topology of the original
mesh and the proportions of the final mesh match the proportions of the actual user, thus validating the accuracy
of the process. Other than the depth sensor, the process does not require any specialized hardware for creating the
mesh. It is efficient, robust and is mostly automatic.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Three-Dimensional
Graphics and Realism—Virtual Reality; Information Interfaces and Presentation [H.5.1]: Multimedia Informa-
tion Systems—Artificial, augmented, and virtual realities

1. Introduction

Virtual characters are used extensively in virtual, augmented
and mixed reality applications. They often serve as a proxy
for the real user and the extent of their resemblance to the
user in shape, appearance and movement is crucial to the
sense of presence that the user feels in MR environments.
This has led to a lot of research work in area of creation
and animation of virtual avatars. Recent availability of cheap
depth sensors like the Microsoft Kinect [Kin13] have led to a
large number of techniques to capture the shape and motion
of a user. However, the techniques that generate a model of
the user, do not discuss the suitability of the model for ani-
mation. On the other hand, techniques that capture the mo-
tion, generally expect a proper animatable model as input
and hence do not discuss it either. Professional animators
and modelers are very particular about the kind of topology
a character mesh has so that it animates properly [Wil10].

In this paper, we present a system that creates a mesh
model of the user by deforming a template mesh to match
a point cloud captured from a system of depth cameras. The
process maintains the topology of the template mesh in the
process thereby producing an avatar mesh of proper topol-
ogy at the end of the process. We validate the shape of the

mesh by comparing with actual anthropological measure-
ments from the real user with measurements on the mesh.
We also capture motion data from a single depth camera
and use that to animate the created mesh. The entire process
is mostly automatic and other than the depth cameras (Mi-
crosoft Kinect cameras), no specific hardware is required.

We first introduce the related work in the area in the next
section. In subsequent sections we describe our system in
more detail with the help of a running example. Finally, we
present results to validate our model reconstruction and to
show its use in animation.

2. Background

First we discuss work related to reconstruction of humans
from scanners and depth sensors. Real-time scanning of
static scenes using the Microsoft Kinect has recently been
demonstrated by Newcombe et al. [NIH∗11]. It is well
known that the iterative closest point (ICP) algorithm and
its variants can be used to locally align and register over-
lapping rigid point clouds [BM92]. Scanning of humans of-
fers the challenge of non-rigid registration of overlapping
point clouds. Chang and Zwicker [CZ11] present work to
globally register dynamic range scans of articulated mod-

c© The Eurographics Association 2013.

DOI: 10.2312/EGVE.JVRC13.025-032

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/EGVE.JVRC13.025-032


Jai Mashalkar, Niket Bagwe & Parag Chaudhuri / Personalized Animatable Avatars from Depth Data

els. This work has been recently improved upon by Cui et al.
[CCNS12] by utilizing a probabilistic scan alignment model.
Both these techniques require computationally intensive op-
timizations and produce models with topology unsuitable for
animation. Tong et al. [TZL∗12] present a system to scan a
user using three Kinect cameras with the user standing on ro-
tating turntable. They also utilize a global non-rigid registra-
tion algorithm augmented with a rough template constructed
from the first depth frame. They even demonstrate that their
model is animatable. Even though we share some similari-
ties with this system (use of multiple Kinect cameras), we do
not directly mesh the point cloud obtained from scanning but
use a single template mesh instead to get better mesh topol-
ogy. Weiss et al. [WHB11] estimate the model of a user by
fitting the parameters of a SCAPE model [ASK∗05] to depth
data and image silhouettes obtained from a single Kinect.
This method differs from us in that it requires the use of a
parametrized database of models, whereas our method only
requires one template model to work.

Since we deform a template mesh to fit a point cloud, we
now look at work related to this area. Koo et al. [KCKC04]
and Jeong et al. [JK02] present methods that follow a shrink
and smooth approach. Given a vertex on the template mesh,
a nearest point on the point cloud is found, and the vertex
is moved closer to that point. After doing this for all ver-
tices of template mesh, the result is smoothed. This pro-
cess is iteratively repeated. We found that these methods
do not scale very well for the dense point clouds that we
deal with in our system. Another set of methods mentioned
in [SCOL∗04] take the help of Laplacian coordinates to de-
form the mesh. Laplacian coordinates capture the local sur-
face detail around any vertex. A system of linear equations is
created, to keep the Laplacian coordinates for each point the
same, and to satisfy user defined constraints. This is solved
using least squares, to get an optimal solution which main-
tains the Laplacian coordinates and adjusts the mesh to the
point cloud. Stoll et al. [SKR∗06] improve this basic method
by adding an iterative solver. After each solution, correspon-
dences are found between the mesh and the point cloud.
These are used to add additional constraints, and the sys-
tem of equations is solved again. This makes the input mesh
match the surface of point cloud closely. Since some parts
of the point cloud may be inaccurate, there is a provision to
exclude correspondences from certain parts of the mesh. We
first divide the template mesh into six parts, namely, torso,
neck, head, legs, elbows and hands. Each of these parts is fit
to the corresponding segment of the point cloud and blended
together. Subsequently we use an iterative Laplacian solver
to refine the fit of the template mesh to point cloud. This
two stage process of the part based fitting and the Laplacian
refinement gives additional robustness to our system as ex-
plained later.

There have also been previous attempts at automatic cre-
ation of virtual avatars from multi-view video. Ahmed et
al. [ADAT∗05] fit a template mesh to silhouettes obtained

from multi-view video and then texture and animate the
avatar. Though the output produced is similar to ours, their
setup requires synchronized multi-view video and more ex-
tensive processing. Performance capture methods that di-
rectly fit a scanned users mesh to multi-view video silhou-
ettes can recover motion of the person without doing ex-
plicit kinematic tracking [DAST∗08] or by recovering skele-
ton geometry first and then refining the surface template
fit [GSDA∗09]. These require more accurate template mod-
els to bootstrap the process, require significantly longer com-
putations as they must process multiple video streams and
require more expensive hardware.

Our template is a very generic mesh and we have used
two template meshes (one for each gender) to generate all
the examples in this paper. It requires no additional tuning.
Our depth cameras do not have to be synchronized, however,
they have to be calibrated initially which can be easily done
using standard computer vision algorithms [Zha00]. A pair-
wise transformation between each pair of depth cameras can
be estimated by using ICP. The computation required to fit
the template mesh to the depth data is not very intensive. The
motion capture in our system is from a single depth camera,
though this can be easily replaced by any available motion
capture setup.

3. System Overview

Fitted Mesh

Four Kinect 
Scanning Setup Noisy 

Point Cloud

Template Mesh

Textured Mesh

Animation

Figure 1: System Overview

A brief overview of our system pipeline is shown in Fig-
ure 1. We use a four Kinect setup to scan the user. This
generates a noisy point cloud. We fit our template mesh to
this point cloud, to get a fitted mesh with correct topology.
This mesh is then textured and rigged for use as a person-
alized avatar. The template mesh we use are the base fe-
male and male meshes taken from the MakeHuman Soft-
ware [Mak13]. We explain our scanning setup in Section 4,
followed by the details of two stages of the mesh fitting pro-
cess in 5. In Section 6, we explain the details of texture map-
ping the fitted mesh. We conclude the description of our sys-
tem by explaining the rigging, motion capture and animation
in Section 7.

c© The Eurographics Association 2013.

26



Jai Mashalkar, Niket Bagwe & Parag Chaudhuri / Personalized Animatable Avatars from Depth Data

4. Point Cloud Capture

We use a set of four Microsoft Kinects to capture the point
cloud of the user. The position of the four Kinects is shown
in Figure 2(a). The Kinect cameras are first calibrated to de-
termine the rigid transformation between their camera coor-
dinate frames [Zha00, BM92].

(a)

Frame 1

Frame 2

Frame 3

Frame 4
Frame 5

Frame 1 Frame 2

Frame 3 Frame 4

Plane parallel to Kinect 3 and 4

Plane parallel to Kinect 1 and 2

User
rotates 
in-place

(b) (c)

Figure 2: Capturing the point cloud of the user using the
four Kinect setup. (a) shows the four Kinect setup, (b) shows
the point cloud capture protocol and (c) the resulting noisy
point cloud.

The user stands in the space between the four Kinects and
rotates in place in five steps of approximately 30 degrees.
The order of user poses that make up the capture sequence
protocol are shown in Figure 2(b). The user has to stand in
the pose shown to avoid capture errors due to self occlusion.
This capture sequence generates four partial point clouds
of the user per frame. These 20 clouds are then registered
and merged [TZL∗12, CZ11] to generate the point cloud of
the user, as shown in Figure 2(c). As can be seen this point
cloud is noisy. We can filter the noise and perform meshing
of the point cloud [KBH06] at this point to directly generate
a model. As can be seen in Figure 3, this model has a very
random distribution of triangles of all sizes which makes it
unsuitable for animation. It can also be seen that facial fea-
tures are completely lost in this reconstruction.

Figure 3: Direct meshing of the point cloud using Poisson
surface reconstruction produces a mesh with an arbitrary
distribution of triangles as can be seen in many parts of the
mesh. This makes the mesh topology unsuitable for anima-
tion.

5. Fitting the Template Mesh

We fit the template mesh to the point cloud in the previous
section in two stages.

5.1. Stage 1: Piecewise Mesh Fitting

In the first stage we divide the mesh and the point cloud into
sections using pre-defined clipping planes. The sections cor-
respond to disjoint body parts like torso, head, legs, upper
and lower arms (see Figure 4). The 6 planes used to section
the template mesh are fixed. The position of planes used to
section the point cloud can be adjusted by the user. This is
a simple 1D adjustment and consists for moving the plane
along its normal to the appropriate location on the point
cloud.

Each section of the mesh and point cloud is then automat-
ically subdivided into equally spaced smaller segments. We
divide the torso and legs into 6 segments each, arms into 5
segments and the head into 2 segments. Each segment of the
mesh is then transformed to the corresponding segment of
the point cloud by computing the rigid transformation that
aligns the bounding box of the segments (see Figure 5). We
have arrived at number of segments experimentally and the
same number of segments were used for all examples. It
should be noted that if the segments are made too small, due
to noise there is a large variation in the transformation of
adjacent segments, and the final mesh is not appropriately
smooth. Vertex blending across segments ensures continuity
and smoothness is maintained as the mesh is piecewise de-
formed to follow the point cloud. Excessive noise can lead
to unreal dimensions for some segments. To prevent this,

c© The Eurographics Association 2013.

27



Jai Mashalkar, Niket Bagwe & Parag Chaudhuri / Personalized Animatable Avatars from Depth Data

1 2

3

4 5

6

1
2

3

4
5

6

Figure 4: Corresponding section planes on the template
mesh and the point cloud divide them into corresponding
sections.

automatic checks for normal body ratios are added as con-
straints to the process. The final mesh that is obtained from

(a) (b) (c) (d)

Segments

Figure 5: A segment on the mesh deforms to fit the corre-
sponding segment on the point cloud. (a) show the original
mesh, (b) shows the segments after they have been trans-
formed, (c) shows the blended transformed segments and (d)
shows the overlap with the point cloud.

this stage can be seen in Figure 6. Notice that though this
mesh matches the point cloud at a gross level, finer level
matches like the proportions of the face do not match the
point cloud. In order to obtain a finer fit, we use this mesh
to bootstrap the stage 2 fitting that is based on a Laplacian
deformation framework.

5.2. Stage 2: Laplacian Mesh Fitting

In this stage, we deform the mesh obtained from the previous
stage in a manner that moves every mesh vertex closer to the
points on the point cloud in its vicinity, resulting in a mesh
that closely fits the point cloud. We use a Laplacian formula-
tion [SCOL∗04] to achieve this. Laplacian coordinates, d are
calculated as d = Lp, where p defines the vertex positions in
the template mesh, and L is its corresponding Laplacian ma-
trix. In order to get a close fit of the point cloud, vertices vi
are constrained to positions qi, which are found by calculat-
ing an average position of the points within a certain radius

Figure 6: Final mesh after Stage 1 piecewise mesh fitting.

of the vertex. Displacement projected onto the vertex normal
is used to obtain the new position qi of the vertex [SKR∗06].
These constraints are added to the Laplacian system as con-
straints of the form, civi = ciqi, where ci is the weight of the
constraint.

Since Laplacian coordinates are not rotation invariant,
parts of the template mesh can be rotated to match the rota-
tions of the mesh obtained from stage 1. Scaling of Laplacian
coordinates is calculated as s = (xp/xm+yp/ym+zp/zm)/3,
where xp, yp and zp are the dimensions of the point cloud
and xm, ym and zm are the dimensions of the template mesh.
Scaling of specific parts of the mesh such as hands and legs
can also be adjusted interactively by the user, using planes
as shown in Figure 7(a) to identify corresponding regions. A
bounding box of the vertices within a specific radius of the
planes is used to determine the scaling. The Laplacian equa-
tion d = Lp is then modified as d = S ·Lp, where S = (si),
where si is the scaling of the vertex vi. This system of equa-
tions is solved using least squares to get final positions of
vertices.

Before proceeding to the iterative step, correspondences
need to be specified for finer features such as eyes, nose
which are not matched in the first stage. A set of planes
as shown in Figure 7 is used to automatically detect cor-
responding points, for features that are not clearly visible
or very noisy in the point cloud. Points within a certain dis-
tance of the planes (see Figure 7(b)) are selected on the point
cloud and template mesh. For four extreme points from se-
lected points on the mesh, points at similar relative position
are found amongst selected points on the cloud, as shown
in Figure 7(c). If there are no points near the expected po-
sitions, virtual points are assumed. Since the dimensions of
the plane are flexible, noisy areas near important features can
be avoided, by adjusting the size of the planes. The step of
determining new position based on closest points is omitted

c© The Eurographics Association 2013.

28



Jai Mashalkar, Niket Bagwe & Parag Chaudhuri / Personalized Animatable Avatars from Depth Data

(a) Corresponding section planes on the point cloud and mesh.

(b) Region around corresponding section planes selected and
bounding box extents on the plane marked on the mesh.

(c) Corresponding points identified on the point cloud.

Figure 7: Process of determining correspondences for the
Laplacian iterative refinement.

for areas of point cloud that are noisy, and areas of mesh that
have specific details such as toes, fingers. Such features get
lost in the iterative step and are maintained by adding con-
straints of the form vi = qi, where qi is the position of the
vertex vi in the mesh obtained from the first stage. Note that
this avoids direct clicking of correspondences between the
mesh and point cloud and instead only relies on placement
of 2 or 3 section planes, which can move only along their
normals.

The iterative step is repeated around 3 to 6 times to get a
proper fit of the point cloud. If this step is not bootstrapped
with the first stage, around 30 to 40 correspondence pairs
need to be specified to get a reasonable mesh. In spite of that,
finer features like toes, fingers and areas where point cloud
is noisy often get distorted. Since input of the first stage is
given to the Laplacian, much fewer correspondences are re-
quired as input, which obtained as explained above. We have
intuitive interfaces to move the section planes and provide all
such input.

It can be seen in Figure 8 that the final mesh obtained

after this stage has perfectly maintained the topology of the
template mesh and is suitable for animation.

Figure 8: Our two stage fitting process produces a mesh that
maintains the topology of the original template. This ensures
that the fitted mesh topology suitable for animation.

6. Texturing

Proper texturing is needed to make the avatar resemble the
user and heighten the sense of presence caused by the avatar.
We define line guides on the texture image to correspond to
the section planes on the mesh, as created during the stage
1 fitting (see 5.1). These are used to automatically align the
texture to the mesh. We then generate the u-v parametriza-
tion for the mesh by projecting the mesh onto the textures.
For this to work, the texture images need to be of the person
standing in a T-pose (see Figure 9a and 9b ).

The face texture is separately assembled from front and
side view images of the user’s face so that it can be wrapped
around the mesh face (see Figure 9c ). The approach fol-
lowed in [LMT98] is used to create a blended texture im-
age from front and side view images. The side view images
are deformed to be connected to the front view image along
user defined feature points. The images are then blended us-
ing the multi-resolution spline technique from [BA83]. To
map this texture on the face, similar procedure is followed
with the u-v coordinates of the face. Projections of vertices
in front and side view are used to initialize the u-v coordi-
nates. The side views are joined to the front view along user
defined feature points, as done for the images. To achieve
exact mapping of facial features, user defined feature points
are used to adjust the u-v coordinates using bilinear interpo-
lation.

These texture images can be captured during the point
cloud capture phase. In order to get seamless textures, the
texture border regions are extended from the edge of the tex-
ture image and blended by using Gaussian pyramids [BA83].

c© The Eurographics Association 2013.

29



Jai Mashalkar, Niket Bagwe & Parag Chaudhuri / Personalized Animatable Avatars from Depth Data

(b)(a)

(c)

Figure 9: (a) and (b) show textures for the mesh body. (c)
shows the texture for the mesh face.

7. Motion Capture

To make the meshes suitable for animation they must be
rigged. Rigging requires the computation of skin weights,
which can be computed automatically [BP07,Ble13]. We use
the OpenNI drivers and the NiTE framework [Ope] to get
the tracked 2D skeleton from the Kinect sensor. The track
data is streamed to our real-time motion retargeting plugin
in Blender that applies the motion in 3D to the rigged mesh
in order to animate it. The motion can be saved to a standard
BVH file if required, for later use. Figure 10 shows a frame

Figure 10: Rigging and skinning the mesh allows us to an-
imate it in real-time using motion captured from a single
depth camera.

from an animation sequence. The left image shows the rig
and the skin weights for the torso on the mesh whereas the
right image shows the actual rendered frame.

8. Results

We first compare our meshes with those generated by di-
rect meshing of the point cloud data using Poisson surface

reconstruction. The Poisson mesh reconstruction was tried
with 8 to 10 octree levels. It can be seen in Figure 11(a)
and 11(b) that the Poisson mesh has improper deformation
during animation as the mesh has many irregular folds. Au-
tomatic skinning methods like bone heat skinning [Ble13]
fail to skin such meshes properly. These problems do not
occur in the meshes generated using our method (as can be
seen in Figures 11(c) and 11(d)). Animation systems using
Poisson meshes have to rely on extensive manual skinning
to get them to work properly.

(a) (b) (c) (d)

Figure 11: Difference between animating a (a, b) Poisson
reconstructed mesh and (c, d) mesh recovered using our sys-
tem

We have created personalized avatars for multiple users
as can be seen in Figure 12. We have also animated these

Figure 12: Models of users 1, 2 and 3 created using our
system.

models using the same motion stream captured from a single
Kinect camera using our motion retargeting system as shown
in Figure 13. We measured various anthropomorphic dimen-
sions on the created mesh and the actual user. The lengths we

c© The Eurographics Association 2013.

30



Jai Mashalkar, Niket Bagwe & Parag Chaudhuri / Personalized Animatable Avatars from Depth Data

Length

User 1 User 2 User 3 User 4
User Model Error User Model Error User Model Error User Model Error
(cm) (cm) % (cm) (cm) % (cm) (cm) % (cm) (cm) %

L1 35 33 5.7 40 40 0 37 35 5.4 44 47 6.8
L2 61 54 11.4 73 76 4.2 70 72 2.7 70 77 10
L3 22 21 4.6 22 23 4.5 24 23 4.1 28 28 0
L4 42 42 0.0 46 47 2.1 42 43 2.3 44 46 4.5
L5 49 50 2.0 55 60 9 56 55 1.7 60 59 1.66
L6 37 38 2.7 48 46 4.1 47 45 4.2 50 48 4

Table 1: Measurements of lengths on the actual user, their model reconstructed using our system and the percentage error
between the two measurements.

Figure 13: Frames from an animation for models of users
1, 2 and 3. The motion was captured and applied using our
single Kinect motion capture and retargeting system.

measured are shown in Figure 14. It can be seen from the re-
sults given Table 1 that our system produces models with ac-
curate dimensions. This makes the models suitable not only
for animations, but also for other augmented and mixed re-
ality applications like virtual try-on of simulated garments.
We present this data in Table 1 as validation of the accuracy

L
1

L
3

L
4

L
5

L
6

L
2

Figure 14: Lengths measured on the mesh and user for val-
idation.

of our modeling process.

For a typical user, on a Intel Core i7 machine with 8Gb
RAM, stage 1 meshing takes 18 seconds, stage 2 meshing
takes 114 seconds, texturing takes 8 seconds. All the user
interaction takes about 10 to 15 minutes to complete. Motion
capture works in real time. The point cloud capture from
the 4-Kinect system and all associated processing to get the
point cloud takes about 20 minutes. It should be noted that
no special GPU techniques are being used to accelerate the
process yet. Such methods are obvious candidates for future
improvements.

9. Conclusions

We have presented a system for creating personalized user
avatars from depth data. In contrast to the methods in exist-

c© The Eurographics Association 2013.

31



Jai Mashalkar, Niket Bagwe & Parag Chaudhuri / Personalized Animatable Avatars from Depth Data

ing state of the art, the mesh model of the avatar maintains its
topology throughout the process, thus making it suitable for
animation. This is achieved by fitting a single template mesh
having the desired topology to the captured point cloud of
the user. The fitting ensures that mesh resembles the user in
shape. We perform texture mapping of the body and face to
make the model resemble the user in appearance. We vali-
date our claims by providing comparisons anthropomorphic
measurements on the created model and the real user. We
also show that the obtained model can be readily animated
using a single depth camera.

One of the main limitations of the system is that it still
requires some user interaction for specifying a few corre-
spondences. We would like to eliminate this and make the
process fully automatic. As future work, we would also like
to make our process near real-time and more robust to noise.

10. Acknowledgements

We would like to thank the MakeHuman [Mak13] project for
the human template models and the Blender Foundation for
the open source Blender [Ble13] 3D content creation soft-
ware. This research was supported by the Immersive Digital
Heritage project (NRDMS/11/1586/2009) under the Digital
Hampi initiative of the Department of Science and Technol-
ogy, Government of India.

References
[ADAT∗05] AHMED N., DE AGUIAR E., THEOBALT C., MAG-

NOR M., SEIDEL H.-P.: Automatic generation of personal-
ized human avatars from multi-view video. In Proceedings of
the ACM symposium on Virtual reality software and technology
(2005), pp. 257–260. 2

[ASK∗05] ANGUELOV D., SRINIVASAN P., KOLLER D.,
THRUN S., RODGERS J., DAVIS J.: Scape: shape completion
and animation of people. ACM Transactions on Graphics 24, 3
(July 2005), 408–416. 2

[BA83] BURT P. J., ADELSON E. H.: A multiresolution spline
with application to image mosaics. ACM Transactions on Graph-
ics 2, 4 (Oct. 1983), 217–236. 5

[Ble13] BLENDER:. http://www.blender.org, June 2013.
6, 8

[BM92] BESL P. J., MCKAY N. D.: A method for registration
of 3-d shapes. IEEE Transactions on Pattern Analysis Machine
Intelligence 14, 2 (Feb. 1992), 239–256. 1, 3

[BP07] BARAN I., POPOVIC J.: Automatic rigging and animation
of 3d characters. ACM Transactions on Graphics 26, 3 (July
2007). 6

[CCNS12] CUI Y., CHANG W., NÃŰLL T., STRICKER D.:
Kinectavatar: Fully automatic body capture using a single kinect.
In ACCV Workshop on Color Depth Fusion in Computer Vision
2012 (2012). 2

[CZ11] CHANG W., ZWICKER M.: Global registration of dy-
namic range scans for articulated model reconstruction. ACM
Transactions on Graphics 30, 3 (May 2011), 26:1–26:15. 1, 3

[DAST∗08] DE AGUIAR E., STOLL C., THEOBALT C., AHMED
N., SEIDEL H.-P., THRUN S.: Performance capture from sparse

multi-view video. In ACM Transactions on Graphics (2008),
vol. 27, p. 98. 2

[GSDA∗09] GALL J., STOLL C., DE AGUIAR E., THEOBALT
C., ROSENHAHN B., SEIDEL H.-P.: Motion capture using joint
skeleton tracking and surface estimation. In IEEE Conference
on Computer Vision and Pattern Recognition, 2009. CVPR 2009
(2009), pp. 1746–1753. 2

[JK02] JEONG W.-K., KIM C.-H.: Direct reconstruction of a dis-
placed subdivision surface from unorganized points. Graphical
Models 64, 2 (Mar. 2002), 78–93. 2

[KBH06] KAZHDAN M., BOLITHO M., HOPPE H.: Poisson sur-
face reconstruction. In Proceedings of the fourth Eurographics
symposium on Geometry processing (2006), SGP ’06, pp. 61–70.
3

[KCKC04] KOO B. K., CHU C. W., KIM J. C., CHOI Y. K.:
Srink-wrapped boundary face algorithm for surface reconstruc-
tion from unorganized 3d points. In Proceedings of the 4th
WSEAS International Conference on Signal Processing, Com-
putational Geometry & Artificial Vision (2004), ISCGAV’04,
pp. 17:1–17:5. 2

[Kin13] KINECT M.:. http://www.xbox.com/en-US/
kinect, Feb. 2013. 1

[LMT98] LEE W.-S., MAGNENAT-THALMANN N.: Head mod-
eling from pictures and morphing in 3d with image metamorpho-
sis based on triangulation. In Proceedings of the International
Workshop on Modelling and Motion Capture Techniques for Vir-
tual Environments (1998), CAPTECH ’98, pp. 254–267. 5

[Mak13] MAKEHUMAN:. http://www.makehuman.org/,
May 2013. 2, 8

[NIH∗11] NEWCOMBE R. A., IZADI S., HILLIGES O.,
MOLYNEAUX D., KIM D., DAVISON A. J., KOHLI P., SHOT-
TON J., HODGES S., FITZGIBBON A.: Kinectfusion: Real-time
dense surface mapping and tracking. In Proceedings of the 2011
10th IEEE International Symposium on Mixed and Augmented
Reality (2011), ISMAR ’11, pp. 127–136. 1

[Ope] OPENNI NITE 2:. http://www.openni.org/
files/nite/, Dec. 6

[SCOL∗04] SORKINE O., COHEN-OR D., LIPMAN Y., ALEXA
M., RÖSSL C., SEIDEL H.-P.: Laplacian surface editing. In Pro-
ceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium
on Geometry Processing (2004), SGP ’04. 2, 4

[SKR∗06] STOLL C., KARNI Z., RÃŰSSL C., YAMAUCHI H.,
SEIDEL H.-P.: Template deformation for point cloud fitting. In
Proceedings of the 3rd Eurographics / IEEE VGTC conference
on Point-Based Graphics (2006), pp. 27–35. 2, 4

[TZL∗12] TONG J., ZHOU J., LIU L., PAN Z., YAN H.: Scan-
ning 3d full human bodies using kinects. IEEE Transactions on
Visualization and Computer Graphics 18, 4 (2012). 2, 3

[WHB11] WEISS A., HIRSHBERG D., BLACK M. J.: Home 3d
body scans from noisy image and range data. In Proceedings of
the 2011 International Conference on Computer Vision (2011),
ICCV ’11, pp. 1951–1958. 2

[Wil10] WILLIAMSON J.: Topology in theory and practice -
blender conference 2010. In Proceedings of the Blender Con-
ference (2010). 1

[Zha00] ZHANG Z.: A flexible new technique for camera cali-
bration. IEEE Transactions on Pattern Analysis Machine Intelli-
gence 22, 11 (Nov. 2000), 1330–1334. 2, 3

c© The Eurographics Association 2013.

32

http://www.blender.org
http://www.xbox.com/en-US/kinect
http://www.xbox.com/en-US/kinect
http://www.makehuman.org/
http://www.openni.org/files/nite/
http://www.openni.org/files/nite/

