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Trinity College Dublin, The University of Dublin

Abstract

Machine Learning For Plausible Gesture Generation From Speech For

Virtual Humans

by Ylva Ferstl

Under the supervision of Dr. Rachel McDonnell

The growing use of virtual humans in an array of applications such as games, human-

computer interfaces, and virtual reality demands the design of appealing and engaging

characters, while minimizing the cost and time of creation. Nonverbal behavior is an

integral part of human communication and important for believable embodied virtual

agents. Co-speech gesture represents a key aspect of nonverbal communication and

virtual agents are more engaging when exhibiting gesture behavior. Hand-animation

of gesture is costly and does not scale to applications where agents may produce new

utterances after deployment. Automatized gesture generation is therefore attractive,

enabling any new utterance to be animated on the go. A major body of research has

been dedicated to methods of automatic gesture generation, but generating expressive

and defined gesture motion has commonly relied on explicit formulation of if-then rules or

probabilistic modelling of annotated features. Able to work on unlabelled data, machine

learning approaches are catching up, however, they often still produce averaged motion

failing to capture the speech-gesture relationship adequately. The results from machine-

learned models point to the high complexity of the speech-to-motion learning task. In

this work, we explore a number of machine learning methods for improving the speech-to-

motion learning outcome, including the use of transfer learning from speech and motion

models, adversarial training, as well as modelling explicit expressive gesture parameters

from speech. We develop a method for automatically segmenting individual gestures

from a motion stream, enabling detailed analysis of the speech-gesture relationship. We

present two large multimodal datasets of conversational speech and motion, designed

specifically for this modelling problem. We finally present and evaluate a novel speech-

to-gesture system, merging methods of machine learning and database sampling.
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Chapter 1

Introduction

Virtual humans are becoming increasingly popular for many applications, such as video

games, human-computer interfaces (e.g., virtual museum guides [5]), virtual reality en-

tertainment, and personalized training (e.g., virtual patients for medical training [6]),

including training of interpersonal skill, and people may enjoy interacting with them

more than even with realistic video-based characters [7]. However, they often still feel

stiff and unnatural. Non-verbal behavior plays an important role in making these agents

more appealing, and co-speech gestures specifically are a key component for increasing

user engagement [8].

Users detect whether virtual agents’ gestures are consistent with the produced speech

[9] and realistic gestures are essential for adequately mimicking real human interactions,

in which non-verbal behaviour plays a major role in conveying information [10, 11].

Co-speech gesture behavior also influences user’s perceptions of personality [12, 13] and

competence [14] of the virtual agent, emphasizing the important role of gesture in agent

design.

Producing realistic gesture behavior for virtual agents is a non-trivial problem. To

remove the need for tedious hand-animation, various approaches have been proposed to

automatically generate gesture animations from speech, including rule-based systems,

statistical models, and machine learning works, each coming with advantages as well as

caveats.

Rule-based systems produce defined, exact gesture form, as well as being able to incor-

porate semantically meaningful gestures through their explicit phrase-to-gesture rules.

1
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Their design does not require actual recording of speech and gesture, rather, hand-crafted

animations can be used and explicitly associated with speech markers. The speech input

is often required as a text transcript rather than the only audio signal in order to allow

for semantic analysis. Designing the rules for a system can be tedious work and hence

the expressivity of the system can be limited.

Statistical models on the other hand rely on modelling actual collected conversational

data. They estimate conditional probabilities of specific speech features co-occurring

with a set of defined motion features within the data. Most such approaches rely on

hand-annotation of speech and/or motion features. Statistical models may work with

relatively smaller datasets than more automatic machine learning approaches, however,

they are also limited in using larger datasets if using hand-annotation.

Machine learning approaches can utilize large and unstructured datasets and produce

novel motion not seen in the training data. However, as they aim to capture relationships

between speech and motion implicitly through many examples, they are rarely able to

produce any semantically meaningful gestures. The produced motion can also lack

definition and form, and a large dataset is a requirement.

One major challenge in modelling gesture motion is the large variability of gesture, with

gesture choice and expression varying both between speakers as well as within speaker.

The same utterance may be accompanied by two completely different gestures even when

repeated by the same speaker at different points in time. Rather than speech directly

informing the gestures to be produced, the Growth Point theory of McNeill [15] argues

that speech and gesture are both expressions of the same cognitive process, two channels

expressing the same idea. Therefore, speech may give us an indication of the underlying

intention that inspired a gesture, but may never fully predict the gesture expression.

1.1 Motivation

The motivation of this work stemmed from the lack of satisfying systems for automati-

cally generating gesture motion from a speech audio. We wanted to harness the power of

new machine learning methods of being able to learn from large amounts of unlabelled

data; this gives the advantage of easy extensibility and improvement when more speaker

data becomes available, ensuring long-term usability of the system. Secondly, we wanted
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to address the problem of averaged, unappealing motion often resulting from mean pose

convergence in standard regression training of machine learning models. Addressing the

non-deterministic and highly variable relationship of speech and gesture, we wanted to

avoid modelling a specific ‘correct’ gesture for an utterance and were instead interested

in generating plausible gesture behavior, gestures perceived by the observer to match

the speech expression.

1.2 Methodology

For modelling relationship of speech and gesture, we made use of a number of machine

learning methods, described below.

1.2.1 Recurrent Neural Networks

Recurrent neural networks (RNNs) simulate situational memory that lets prior inputs

influence the output of the current input. (Situational memory is hereby opposed to

the general “memory” of a network, the connection weights set through the training

process of a neural network.) This situational memory is realized by cells maintaining

states; cells can add or remove information from this state to keep it up to date for the

current context. Long Short Term Memory (LSTM) and Gated Recurrent Units (GRUs)

are common variants of recurrent cells, with GRUs being a simpler variant that can be

trained faster.

RNNs are often used for a so-called sequence-to-sequence architecture. Here, an RNN

layer encodes an input sequence and yields its internal cell state. This encoder can also

be a stack of recurrent layers, in which case the last layer yields its internal state. This

internal state is the input to the decoder. The decoder equally is an RNN layer (or stack

thereof) and it produces an output sequence. For example, an input sequence to the

encoder could be a sentence in English, and the output of the decoder the same sentence

in French. This example is illustrated in Figure 1.1: a sequence-to-sequence model using

LSTM cells translates “How are you” to French.
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Figure 1.1: Example of a sequence-to-sequence model using LSTM cells. The LSTM
cell as three gates (marked as σ) to maintain and use the hidden cell state h: An input,
forget, and output gate. (Image adapted from Christopher Olah, colah.github.io)

RNNs are able to model temporal dynamics, such as a sequence of continuous joint

configurations, where each frame is constrained by its prior. RNNs have therefore been

popular in motion modelling.

1.2.2 Generative Adversarial Networks

Generative adversarial networks (GANs) are a method of training a network rather than

a network type. In a GAN setting, one model, the generator produces an output, as

normal. Instead of computing an error measure of the numerical distance between model

output and ground truth, a second network instead decides whether the output appears

“real”. This second network alternatingly receives generator output and real motion

and is trained using binary cross-entropy as a measure of how well it can discriminate

the two; the discriminator is essentially a classifier. Instead of explicitly minimizing the

distance between output and ground truth, the generator now optimizes its ability to

fool the discriminating network – the two networks hence engage in a kind of minimax

game where the generator tries to maximise, and the discriminator minimize the output

of the following loss function:

L = Ex[logD(x)] + Ez[log(1−D(G(z)))], (1.1)

where D(x) is the discriminator’s estimate of the likelihood that an input sample x

is real, Ex is the expected value over all true samples, G(z) is the generator’s output

given input z (normally a noise vector), D(G(z)) is discriminator’s estimate that sample

produces by the generator is real, and E(z) is the expected value over all inputs to

the generator. This training process is illustrated in Figure 1.2. The generator and

colah.github.io
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Figure 1.2: Schema of a generative adversarial network (GAN). The generator G
receives an input z such as a noise vector and produces an output G(z). The discrimi-
nator D alternatingly receives this generator output and a real sample x and decides if
a given sample is real or fake. The generator receives this decision as training feedback.

The discriminator’s training feedback is whether it was correct or not.

discriminator can have an arbitrary network architecture, for example, they can each be

an RNN.

1.2.3 Transfer learning

Transfer learning is a method of applying knowledge gained from learning one task to a

new task. For example, a model trained to detect cats in images may be re-used for a

model detecting birds. The motivation is that the cat model already knows useful things

for the bird task, such as segmenting images and detecting shapes. Another application

is creating a specialized model from a general model, such as re-using the cat model to

detect tabby cats. This can be useful when e.g. a large dataset is available for detecting

cats, but only a small dataset for tabby cats; the general dataset can be used for initial

model training and the specialized set for fine-tuning.

In practice, knowledge transfer between models is simply achieved by initializing the

weights of the new model to be trained with the weights of the first model. Options

include using only the weights of parts of the model, such as the first layers that represent

more general feature extraction, as well as only allowing parts of the new model’s weight

set to be updated during training.

Transfer learning gives some constraints with regard to the architecture to the new

model, as the origin layer dimension of the weights to be transferred needs to fit the

target layer. When training the new model, the learning rate is usually initialized lower

than for original training to avoid losing the transferred knowledge through large initial

weight updates.
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1.2.4 Performance measures

During the training phase of a machine-learned model, it is necessary to find numeric

measures of performance in order to optimize the model. We make use of the mean

squared error (MSE), a standard measure in machine learning:

MSE(p, t) =
1

n

n∑
i=1

(pi − ti)2, (1.2)

where p is the predicted value and t is the true value.

However, due to the non-deterministic and highly variable relationship between speech

and gesture expression, the MSE is not a sufficient measure of the quality of a model’s

output. A produced gesture may look plausible even if numerically far from the ground

truth motion sequence.

To assess the performance of a gesture generation model, it is therefore important to

include subjective measures, such as asking users how well the generated gestures match

the concurrent speech. We included a number of such studies and utilized Likert scales

for users’ ratings. A Likert scale is usually a 5- or 7-point scale measuring user’s attitude

in intervals, ranging from one extreme to the opposite. In generative adversarial training

(Section 1.2.2), the discriminator network mimicks a user’s judgement of a generative

model’s output and replaces the need for an explicit error measure such as MSE.

1.3 Scope

In this work, we focus on machine learning methods for modelling the the relationship

between speech and gesture motion. Many types of input can be used for designing a

speech to gesture system, from speech recordings, to semantic speech annotation, as well

as character gender, personality and mood. We focus on speech prosody as input for a

gesture generation system due to its automatic extractability from audio recordings. We

constrain our work to offline gesture generation rather than real-time; gesture naturally

precedes or co-occurs with speech and it is therefore difficult or impossible to match

gesture expression adequately to speech in real-time synthesis.
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Contexts affect speech and gesture expression: Lecture-style speech and gesture differs

from conversational, spontaneous speech. Here, we focus on spontaneous, unscripted

speech in monologue-style. We focus on modelling a single actor speaking rather than

including the dynamics of multiple speakers engaged in a conversation. We therefore

do not address turn-taking or listening motions. To reduce the complexity of modelling

gesture motion, we restrict our efforts to motion of the arm and hand joints. (In Chapter

5, we also include the spinal joints.)

No multimodal dataset of speech and 3D gesture motion of significant size was available

at the outset of this work. We therefore recorded two large databases of conversational

speech and high-quality motion.

1.4 Contributions

In a series of studies, we designed and assessed machine learning methods for modelling

the speech-to-gesture relationship. We implemented a number of novel methods for this

task and discuss the benefit and shortcomings of each. We first determined an inade-

quacy of standard regression training for our problem. We find that the highly varied

and non-deterministic nature of the speech-gesture relationship may not be captured by

a regression loss and lead to a minimizing of errors across all possibilities, namely mean

pose convergence. We then addressed the problem of mean pose convergence by propos-

ing an adversarial training targeted to assessing gesture motion characteristics. For this

purpose, we designed a novel training of multiple objectives characterizing realistic ges-

ture motion, one of our main contributions. As part of this novel motion assessment, we

implemented and trained a network for automatically segmenting motion into gesture

phases, allowing us judge gesture dynamics explicitly during training. Specifically, the

phase network can detect if a motion is in a meaningful, expressive phase, in the process

of preparation or retraction, or in a hold period. While we find adversarial training

superior to a standard regression loss, we especially see promise in this phase separation

of gesture.

Our next main contribution was a thorough investigation on how the characteristics of

individual gestures during the expressive stroke phase relate to the concurrent speech

signal. For this, we determined five gesture parameters and asserted their perceptual
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importance for speech-gesture match. We design and implement a method to estimate

these parameters from speech alone. With this, we were able to model expression of

individual gestures from speech rather than continuous motion as most common for

machine learning approaches.

Using the insights we gained about how gesture expression matches speech, we built

a novel gesture generation system merging the use of machine-learned speech-gesture

mapping and direct database sampling. Namely, we took speech audio as input and

found matching gestures within a large database of motion-captured gestures, hence

always producing natural and defined gesture form.

This database of gesture motion is furthermore a contribution of this work: We con-

tribute two large multimodal datasets of speech recordings with synchronized high-

quality motion-capture data, rich in gesture motion. Together, these datasets encompass

over 10 hours of data, making this the largest open-source dataset of 3D motion and

speech. This data has already had significant impact on the speech-gesture generation

research community.

1.5 Summary of Chapters

The rest of this work has been divided into the following chapters:

• Chapter 2 presents an introduction to gesture research as well as an overview

over gesture generation methods.

• Chapter 3 presents our two multimodal datasets of speech gesture.

• Chapter 4 presents our investigation of the benefits of representing gesture motion

in a lower dimensional space as well as employing a language model to address the

complexity of the speech signal.

• Chapter 5 presents a generative adversarial model of gesture generation, address-

ing the non-deterministic relationship between the speech and gesture channel that

the classic training paradigm using a regression loss fails to capture. A split into

multiple training objectives is proposed, phrasing the problem of appropriate ges-

ture generation as a series of smaller sub-problems, including plausible gesture
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dynamics and smooth motion. We present a method for automatically segmenting

gesture motion into its dynamic phases.

• Chapter 6 presents our study of which expressive aspects of a gesture may be

modelled from speech. A perceptual study is presented on the impact of expressive

parameters such as arm swivel and gesture velocity on speech-gesture match, and

a series of machine learned models are trained to predict these gesture parameters

from speech. We assess how well a particular parameter may be inferred from

speech.

• Chapter 7 presents a novel gesture generation system relying on the estimation

of gesture parameters from speech by selecting a suitable gesture from the large

database of gestures we built.

• Chapter 8 summarizes and discusses the contributions of this work.

• Chapter 9 explores future research in the area of co-speech gesture generation.





Chapter 2

Related Work

In this chapter, we will first briefly review research in character animation before diving

into the intricacies of gesture motion specifically, from its definition to modelling.

2.1 Animating virtual characters

Figure 2.1: Illustration from the historic
study on motion perception by Heider and

Simmel [16].

Animating a virtual character is, literally,

bringing it to life. Movement almost imme-

diately elicits perceptions of agency, as illus-

trated by such early studies as Heider and Sim-

mel [16], who with their famous animation of

an interaction between simple geometric forms

(see Figure 2.1) showed, and indeed continue

to show, how bringing movement to objects

sparks a kind of story-telling in our heads. An-

imated movies as well as interactive animation

in the form of video games consequently are a

success story and much research surrounds the

continuous improvement of animation technology. Interactive media in particular moti-

vates the advances in motion production to enable realistic character control.

11
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Figure 2.2: Steps of character creation. (1) Modelling the character, (2) Creating
a rig for the character, and (3) fitting the rig to the vertices of the model (skinning).

(Image: c©2018 Unity Technologies)

2.1.1 Animation representation

To animate a 3D model of a character (Figure 2.2(1)), a controllable rig needs to be

created for it, for humanoid models this is commonly a skeletal structure (Figure 2.2(2)).

Next, each joint in the skeleton is mapped to a number of vertices of the model, so that

moving a joint will move the associated vertices. This is the process of skinning (Figure

2.2(3)).

Animations of the character are represented as sequences of joint rotations or positions,

with local or global joint transformations. When using local transformations, the char-

acter’s skeleton represents a hierarchy of joints, where moving one joint also moves its

child joints that are lower in the hierarchy. For example, moving the shoulder joint will

also move elbow, wrist, and fingers. In the case of global transformations, a joint’s rota-

tion or position is relative to an external defined coordinate system rather than relative

to its parent.

Rotational representations are most commonly used in animation, specifically local rota-

tion systems. A local rotation system allows for restricting joints to natural constraints

through defining degrees of freedom (DOF). For example, hinge joints such as the knee

or elbow can naturally only rotate around one axis with respect to its parent joint (1

DOF), whereas the wrist or shoulder can rotate around 3 axes (3 DOF). Rotations can

be represented in a number of different ways. Euler angles are are 3 dimensional repre-

sentation of a joint rotation (3 DOF), defined by sequentially applying rotations around

the x, y, and z axis. The order of applying the axis rotations matter and need to remain
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constant within one animation, but the choice of order can vary. An advantage of Euler

angles is their intuitive format for a human reader. A disadvantage of Euler angles for

computational models are discontinuous values: a rotation of 359 degrees is numerically

far, but perceptually almost identical, to a 0 degree rotation. Furthermore, Euler angles

can produce a so-called Gimbal lock, a loss of 1 degree of freedom, when two of the three

axes are brought into a parallel configuration. As an alternative to Euler angles, quater-

nion representation is popular in animation. Quaternions are 4-dimensional vectors that

have a less intuitive interpretation but do not suffer from Gimbal lock. One disadvan-

tage is that a single quaternion cannot describe a rotation exceeding 180 degrees in any

direction. The exponential map format is also relatively popular in computer animation

and represents rotations by a unit vector describing the direction of an axis of rotation,

plus an angle describing the magnitude of the rotation.

Position representations of joints are less popular in animation. Bone length constancy

can more easily be violated as they are implicitly given through position differences,

whereas they are explicitly defined for rotation representations. However, an advan-

tage of positional representation, specifically global positional representation for motion

modelling can be the fact that large movements, such as the hand tracing a big arc, are

clearly marked by large numerical differences (e.g. the wrist position values changing

significantly), rather than given through a number of inter-dependent joint rotations.

This also allows for isolated joint analysis, such as the described hand trajectory, through

just one joint transform rather than including all relevant parent joints (such as elbow

and shoulder).

2.1.2 Motion capture

While animated movies still largely rely on hand animation by skilled animators, in-

teractive media such as video games increasingly rely on motion capture for producing

animations. Motion capture technology yields highly realistic motion, suitable for in-

creasingly realistic game characters, without the need for hours of hand labour by ani-

mators. There are two major systems of motion capture. Optical systems use markers

reflecting light generated by sets of special cameras to estimate body pose (see Figure
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2.3). Inertial motion tracking systems use sensors directly on the body without exter-

nal devices; body pose is estimated through data from accelerometers, gyroscopes, and

magnets (see Figure 2.4).

Current motion research relies heavily on open-source datasets of motion capture. Some

significant resources are listed in Table 2.1.

Figure 2.3: Left: Actress Ellen Page performing while her motion is recorded through
optical an motion capture system. Right: The character animated with the captured

motion in the game Beyond Two Souls. (Image: Quantic Dream)

Figure 2.4: Inertial motion capture systems. Top: Sensors are integrated into a suit.
Bottom: Individual sensors are attached to the performer.
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Table 2.1: Major motion capture databases.

CMU [17] Human3.6M [18] Panoptic [19] Talking With
Hands 16.2M

hours - 20 5.5 20
sequences 2605 - 65 116
motions locomotion,

dancing,
interaction,

...

discussion,
talking on the

phone,
taking photos,

eating,...

conversation,
dance,
musical

performance,...

conversation

2.1.3 Controllable character animation

Interactive control of animated characters relies on transitioning between predefined

animations (often snippets of motion capture) based on user input, for example, the

character should transition from walking to a running animation, and then jump over an

obstacle while running. To define transitions between animations, a common approach

is the use of state graphs, also called animation state machines, defining actions as

states and connections between states representing transition times. Authoring a state

machine quickly becomes tedious when large amounts of different actions should be

combined into the graph. Borer et al. [20] proposed a method to partially automate the

creation process of such a state machine for a controllable character. Using temporal

replanning, all desired actions of an agent can be merged into a behavior plan. For

example, if two desired actions overlap, temporal replanning takes timing and priority

of the actions into account to prematurely end the first action, or finish the first action

before creating a transition to the next.

Motion graphs represent another method of automatically creating suitable connections

between motion segment [21]. Motion graphs are directed graphs consisting of pieces of

captured motion and synthetic transitions between them. A coherent motion sequence

can be generated by taking a path through connected states in the graph.

Avoiding the creation of a state graph entirely, the Motion Matching method proposed

by Clavet and Büttner [22] draws animations from a database based on a set of specified

motion properties and combines them with simple blending and inverse kinematics. An-

imations are selected from the database based on the action to perform by the character,

as well as motion parameters such positions of the end effectors and the past and present
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trajectory. The method became popular with gaming studios due to its reliable motion

quality and its suitability for real-time animation through the use of efficient nearest

neighbor search.

A limitation for both Motion Graphs and Motion Matching can be memory usage for

larger datasets, increasingly available through widespread use of motion capture tech-

nology. To address this concern, Holden et al. [23] proposed a combination of Motion

Matching and neural-network based controllers, which includes compressing motion data

to a low-dimensional representation, reducing memory usage significantly. Increase in

motion data availability, however, has also enabled an entirely different approach to

character animation, namely the automatic generation of the motion itself rather than

just the transitions between predefined animation snippets.

2.1.4 Learned character animation

Locomotion such as walking and running is arguably the most successfully modelled as-

pect of human motion, providing a relatively constrained objective due to its periodicity

and relative uniformity across subjects and time. By learning a low-dimensional mani-

fold of locomotion data using a convolutional autoencoder, Holden et al. [24] proposed

an offline framework for motion generation taking into account user input, adapting to

terrain surface, and allowing for style edits. Following this, Holden et al. [25] harnessed

the cyclical nature of locomotion using a Phase-Functioned Neural Network, enabling

real-time biped locomotion across rough terrain, including jumping and avoiding obsta-

cles. Lee et al. [26] proposed the use of Recurrent Neural Networks utilizing motion

graphs to train a memory- and computation-efficient control network that simulates

graph-based motion authoring. Henter et al. [27] argued for a probabilistic model using

Normalizing Flows, naming the advantages of being able to produce realistic motion

even with a weak, under-constrained control signal and for non-periodic, varied motions

in order to generate varied motions, responding to control inputs with zero latency.

The extensive research in motion generation and control provides important guidelines

for our task at hand, namely producing body motion specifically for a speaking agent.

However, this task also has two important differences with respect to the work above:

Firstly, the input control signal is very weak; instead of a specific signal such as “move

the arm in a circle”, the signal is represented by the co-occurring speech (e.g. “and she
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went around and around”). Secondly, gesture motion is highly varied and unconstrained;

whereas e.g. a walking motion looks relatively similar across people and relies on the

feet periodically making contact with the ground, gesture motion varies hugely between

people, in style, in shape, in frequency, and more.

2.2 Defining gesture motion

For our aim of modelling and generating gestures, we firstly want to understand the

concept of a gesture. Which movement can be classified as a gesture? Here, the literature

proposes some differing definitions. Cassell [28] suggests defining gesture loosely as a

“motion of the limbs or body made to express or help express thought or to emphasize

speech”, not, however, providing observable motion characteristics for analysis. McNeill

[15] proposes a more strict definition, classifying movement of the arms and hands as a

gesture when it is “closely synchronized with the flow of speech”, implying that gesture

motion cannot stand alone, without speech. This postulation was partly based on the

observation that listeners in the author’s many hours of recordings did not produce

gestures aside from a single instance. This may also give insight to the function of

gesture, discussed below. McNeill [15] also states that the emphatic core of the gesture

motion (the gesture “stroke”, further discussed in Section 2.5) precedes or coincides

with the prosodic peak of the speech, but does not follow it, and bases this on findings

of Kendon [29]. Nobe [30] find that in about 90% of cases, the gesture precedes the

respective speech. Further evidence for these tight links between speech and gesture

production was found by studying clinical stuttering; Mayberry and Jaques [31] found

that onset of stuttering causes immediate abortion of the gesture stroke, and onset of a

gesture stroke inhibits stuttering.

Semantically, McNeill [15] asserts that co-occuring speech and gesture convey the same

underlying idea. This does not, namely, imply gesture to provide redundant information,

but rather complementing and adding to the speech information. This pragmatic aspect

of gesture relates to its function, offering the listener a better understanding of the

portrayed sentiment.
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2.3 The function of gesture

Evidence for the benefit of co-speech gesture to the listener’s understanding was pro-

vided by Cassell et al. [32], who found that when retelling a narrative, listeners were able

to describe information that was only portrayed in gesture, not speech. On the other

hand, mismatches of speech and gesture, that is, when the information provided by

the gesture did not match the information provided by the accompanying speech, were

found to significantly increase retelling inaccuracies. Adaptive teacher gestures can help

children learn [33], while artificially delaying gesture motion detrimentally affects learn-

ing in children [34]. Even non-meaningful gestures shape the way we perceive speech:

Bosker and Peeters [35] report a kind of manual McGurk effect, where rhythmic ges-

tures influence which vowels are perceived by listeners through modulating perceptions

of lexical stress.

However, the influential role of gesture may not be restricted to the listener. Rimé et al.

[36] restricting subjects’ use of gestures also restricted subjects’ verbal expressiveness.

Restriction of gesture motion also elicited increased motor activity in eyebrows, eyes,

and fingers, areas the authors also identified as being associated with verbal processing.

After further analysis of the produced speech, the authors noted an increased amount

of words used by the speakers under gesture restriction, while simultaneously expressing

themselves less clearly and with less fluidity [37]. Indeed some researchers of language

express serious doubt about the benefit of gesture for the listener, observing that the vast

majority of gestures in their experiments were produced from the speaker’s perspective

[38], and that gestures offer little useful information for the listener [39, 40], do not sig-

nificantly alter the interpretation of the speech content [40], and do not aid the listener’s

verbal understanding [41]. Focusing instead on the facilitatory role of gesture for the

speaker, Krauss and Hadar [38] report a link between gesture and lexical memory. Their

experiments showed that restricting the speaker’s gesture behavior led to difficulty in

word retrieval. Goldin-Meadow and Wagner [33] further showed that restricting gesture

negatively affected memory in a learning task. Pouw et al. [42] found another bene-

fit of gesture motion for the speaker, namely aiding speech vocalization by modulating

pitch and intensity. Additional evidence for the speaker-centric role of gesture comes

from findings that even children that are blind from birth produce gestures, and their
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gestures resemble those produced by sighted children, and this is true even when com-

municating with a known blind listener [43]. Gesture may therefore be a natural part of

speaking without serving a communicative intent for the listener. Note, however, that

by facilitating verbal expression for the speaker, gesture nonetheless indirectly benefits

the listener through the improvement of speaker fluidity and verbal expressiveness. A

potential reason for the different conclusions regarding the function of gesture drawn by

different researchers may be that there are different types of gestures that may fulfill

different objectives.

2.4 Types of gestures

Gestures are usually classified by the four categories proposed by McNeill [15], into

iconic, metaphoric, deictic, and beat gestures. Iconic gestures visualize physical prop-

erties, describing the semantic content of the verbalisation. For example, the speaker

may move his or her hands down, with flat, open palms, while saying, “he was pressing

it down”. An iconic gesture can also add information to the verbalisation, as in the

example provided by McNeill [15], where the utterance “and she [chases him out again]”

is accompanied by the hand appearing to swing an object through the air. The verbal-

isation names the action performed, whereas the gesture suggests the manner in which

the action was performed. Both channels of communication add to the understanding

of the underlying idea or thought of the speaker.

Metaphoric gestures portray an abstract idea rather than a literal physical description.

For example, consider the above used gesture description of both hands moving down,

with a flat, open palms, accompanied by the phrase, “they are suppressing women”.

Here, the speaker likely does not mean that the women were physically pushed down,

but rather is associating the concept of women’s stifled role in a matter with pushing

something down.

Deictic gestures are pointing gestures, such as pointing at an object while saying, “it

is over there”. However, the object indicated with the gesture may not be physically

present but rather have an implied presence through the narrative and the building of

the gesture space.
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Beat gestures are gestures that do not portray any specific meaning. They are, however,

closely linked to the rhythm and pace of the speech [44]. They can serve to emphasize

a verbalisation and are often co-occurring with stressed words or syllables. They can

range from small flicks of the hands or fingers to large arm motions. In conversational

discourse, beat gestures have been reported to make up the majority of gestures [45–47].

2.5 Structure of a gesture

Through further analysis of a gesture, it can be segmented into phases with qualitatively

different dynamic characteristics [29] occurring in specific patterns [48].

2.5.1 Gesture phases

First, in the preparation phase, the hands are moved into position for the gesture to be

performed. Next follow the core, meaning-carrying movement of the gesture, the stroke.

It is the expressive phase of a gesture and has the most focused energy, described as

an “accented movement” with Effort in the sense of Laban [48] (see Section 2.6.1),

conveying a sense of intention and meaning of the motion. In the case of iconic gestures,

this is the phase describing a specific shape that relates to the accompanying verbal

phrase [15]. The retraction moves the limbs back into a restful position. Sometimes the

hands are only partially moved back towards a rest position, before continuing to the

next preparation or stroke; this incomplete retraction is noted as a partial retraction.

Holds are segments with zero velocity and may occur before (pre-stroke hold) or after

the stroke (post-stroke hold) [49]. (An example of such a sequence of phases within a

gesture is shown in Figure 2.5.) Pre-hold strokes are thought to serve as a moment for

the speech to catch up to gesture, so that the gesture can be performed in synchrony with

Figure 2.5: Example phase sequence of a gesture. (Image by Ada Ren, http://web.
mit.edu/pelire/www/gesture-research/index.html.

http://web.mit.edu/pelire/www/gesture-research/index.html
http://web.mit.edu/pelire/www/gesture-research/index.html
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the associated speech part [49]. Post-stroke holds may be a way to extend the temporal

duration of a gesture, so that the stroke together with the hold are synchronous with the

associated speech part [50]. Another explanation for the function of post-stroke holds

was put forward in Duncan [51], observing that the hold may express a prolonged state

of an idea. A third type of hold can replace the stroke phase entirely, this is a so-called

independent hold, existing independently of a stroke. An independent hold describes the

meaning of the gesture by its shape, for example by describing a sign, often specific to a

cultural region, such as the thumbs-up sign or the peace sign, or to describe enumeration

(showing “one time” by lifting the index finger).

The stroke phase is the only essential part of a gesture (but can be replaced by an

independent hold), whereas all other phases are optional. That is, a gesture (stroke)

may not have a preparation but rather continue immediately from the previous position,

and similarly, instead of being followed by a hold or a retraction, can be immediately

followed by another gesture. A sequence of gestures that ends with a retraction to a

rest pose is also called a gesture unit [52]. As the stroke phase contains the gesture form

and contains the gesture’s meaning (or, in the case of beat gestures, the emphasis), we

may be most interested in separating the stroke phase from the general motion, enabling

analysis of an individual gesture.

2.5.2 Segmenting gesture into phases

Segmenting gesture motion into its phases is non-trivial and in many cases requires sub-

jective judgment. Hence the labelling process cannot be seen as deterministic and 100%

accuracy is unlikely, or even impossible. Often, gesture phases can be straightforward

to identify, but in other cases, it may be more difficult. This tends to occur when one

stroke goes directly into another or if a stroke starts from a retract position. Consider

for example the ambiguous example of a gesture sequence in Figure 2.6, where both

step (1) and (3) are determined to be a stroke phase: One could consider the motion

to the middle transition frame (2) either a partial-retract of the first stroke in (1) or a

preparation for the second stroke in (3).

The work of segmenting gesture recordings into phases is tedious; segmenting just one

minute of video into gesture phases may take one hour or more of work (e.g. [2]). Differ-

ent, automatic gesture phase annotation methods have hence been proposed, including
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Figure 2.6: Ambiguity in gesture sequence labelling. If steps (1) and (3) are each
considered a gesture stroke, the motion to the transition step (2) may be labelled as
either a partial-retract of the preceding stroke or a preparation phase for the following

stroke.

the use of support vector machines [53] and hidden Markov models [54, 55]. One limiting

factor in training phase models is obtaining labelled data, which, again, takes many hours

of skilled work. Previous work has therefore often focused on simpler sub-problems of

detecting whether one specific phase is occurring (e.g. detection only of gesture strokes),

or whether a gesture is being performed at all. Bryll et al. [56] use heuristic classifiers to

detect holds from video. Gebre et al. [57] detect gesture strokes from video using a linear

classifier. Alexanderson et al. [55] use hierarchical HMMs to extract gesture boundaries,

resulting in a segmentation into rest, gesture, and manipulator (e.g. touching of one’s

own face or hair).

Another difficulty in automatic phase detection is the difference in phase structure as

well as phase expression between speakers and even within speaker. Phase structure

differences can include overall gesture rate as well as differences in the distribution of

phases; for example, one speaker may regularly produce two or more gesture strokes

before returning to a rest position, while another speaker may average just one stroke

before returning to rest [58]. Phase expression such as the stroke velocity profile can

vary not only from speaker to speaker, but also between recordings of the same speaker

[53]. This also means that detecting and segmenting stroke phases may enable easier

speaker comparisons, allowing comparisons of stroke length, speed, frequency, etc.

2.6 Gesture expression

Gestures differ not only by their form but also in the way they are performed by the

speaker. The same gesture may be expressed in an empathic, energetic manner, or

with a sluggish motion. Gesture expression can vary both with the mental state of the

speaker, as well as between speakers, who each may have their own personal way of

performing gestures. Several works have looked at ways to analyze and describe the



Chapter 2. Related Work 23

movement characteristics of gestures during the stroke phase. By finding measurements

of gesture expression, we can investigate how gesture expression relates to the speaker’s

mental state, both temporary and permanent, specifically their emotional state and

personality.

2.6.1 Laban Movement Analysis for gesture

Laban Movement Analysis, a framework for systematic description and evaluation of

human motion has been employed for this purpose, specifically its Effort and Shape

parameters. Bartenieff and Lewis [60] describes gesture as “any movement of any body

part in which Effort or Shape elements or combinations can be observed”.

Effort hereby describes the dynamic quality of the movement rather than its content,

describing the energy used for the motion and its rhythm and timing. North [61] argues

that Effort is unique to a person, describing an individual’s way of moving. Effort

consists of four factors, described by Laban and Ullmann [62] and visualized in Figure

2.7: (1) Space (ranging from Direct to Indirect), describing whether the motion follows

a direct, straight trajectory, or a wavy, flexible trajectory. (2) Weight (from Strong to

Light), describing a motion as ranging from heavy with a feeling of resistance, to light,

with a feeling of gentleness and weightlessness. (3) Time (from Sudden to Sustained),

describing whether a motion is quick and momentary, or slower, giving a feeling of long

extend through time. (4) Flow (from Bound to Free) underlies all movement expressions

and describes how controlled versus released the motion is, ranging from hampered

motion to fluid, free motion.

The Shape dimension of Laban described the shapes and their changes described by a

moving body. Shape consists of several sub-categories, with the perhaps most relevant to

gesture motion being the Modes of Shape Change, describing the bodies interaction with

Figure 2.7: The four Laban Effort factors. (Image from Sonlu et al. [59])
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and relationship to itself and its environment through three factors: (1) Shape Flow,

describing the bodies relationship to itself, or its body parts’ relationship to each other.

(2) Direction describes the bodies directional relationship to a part of the environment,

such as reaching towards an object. (3) Shaping, describing motions such as tracing

the shape of an object with the hands. In addition to Shape Change, Shape has a

category of Form, the body expressing a static shape, and Shape Quality, whether the

body movement is Opening (the limbs expanding outwards) or Closing (moving toward

the body center).

In Section 2.7, we will discuss further how Laban’s Effort and Shape parameters have

been employed in the domain of gesture animation.

2.6.2 Low-level motion parameters for gesture

Other motion parameters have been proposed to describe and analyze motion specific

to co-speech gesture. One motivation for assessing different parameter representations

for modelling gesture is the difficulty in obtaining and manipulating Laban parameters,

requiring many hours of trained experts’ work. Alternatively, more easily extractable

motion parameters have been proposed to describe gesture. A plethora of measurements

is available here; previous work has often grounded the selection on social psychology

literature of bodily expressions of emotion and personality, and we will discuss these

findings in the next Section. Easily obtainable measurements are for example the hand-

edness of the gesture (is the right hand or the left hand performing the gesture, or

both?), the palm orientation and shape, the height of a gesture and the direction of the

gesture motion. If motion capture data is available, fully automatic methods can also

easily extract quantitative descriptors such as gesture velocity and acceleration.

2.6.3 Emotion in gesture

The study of bodily expressions of emotion dates back as early as Darwin [63] with

his work on “The expression of the emotions in man and animals”, who for example

names pushing away gestures as signs of disgust. Ekman and Friesen [64] later doubt

the existence of any specific gesture, movement, or posture for a specific emotion, but

rather emphasizes the importance of the quality of the movement (compare to Laban’s
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Effort versus Shape, Section 2.6.1). Camras et al. [65] find evidence for qualitative

motion differences between emotions, reporting for example that anger elicited more

jerky and active motion than sadness, later attributed to some extent to the dimension

of activation by Wallbott [66], with anger representing an active, and sadness a passive

emotion.

A number of works have employed the Laban movement parameters to assess expressed

emotions. Levy and Duke [67] videotaped participants in a guided movement impro-

visation task and subsequently assessed their emotional state through depression and

anxiety scores. The authors found a number of associations between the Laban move-

ment parameters and mental state. Noting a difference for genders, the authors further

report male subject with higher anxiety to produce more enclosing movements, whereas

female subjects with high anxiety showed decreased use of sagittal movements. Both

males and females with higher scores for depression also showed less sagittal movements,

depressed males additionally showed an affinity for Indirect Space, and depressed females

a decreased changing between efforts.

Expressly manipulating their emotional state, Morita et al. [68] investigated partici-

pants’ more short-term disposition. In this study, participants first listened either to

pleasant or unpleasant sounds while their movements were recorded on video. Then,

participants self-reported their emotions. Laban parameters were estimated from the

video recordings, and the authors found significant differences of Laban expression be-

tween participants experiencing positive versus negative emotions. For example, re-

ported anger and fatigue were positively correlated with Laban’s Weight component,

indicating more active movement, and tension increased Laban’s Time Space measures,

indicating more hurried movement changes. Truong et al. [69] used Laban measurement

to judge emotion in orchestra conductors’ movements with some success. Nakata et al.

[70] developed mathematical definitions of Laban parameters and use them to create

dancing motion for simple robot. They find that, for example, Weight Effort Strong was

perceived as joyous motion, whereas Weight Effort Light was often perceived as sad,

and Advancing motion tended to be perceived as angry. Masuda et al. [71] use a more

complex humanoid robot and propose another estimation algorithm mapping Laban’s

parameters to four emotions, achieving high emotion recognition scores for the robot

motion.
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Moving away from Laban representation, Volkova et al. [72] assessed subjects’ ability to

detect emotion from upper body motion and identify motion parameters such as speed

and the span between the wrists to be associated with specific perceived emotions. For

example, they found motion with wider wrist spans to be more often perceived as joyous

or surprised than as fearful or ashamed. By studying recordings of theater performances

of two actors, Kipp and Martin [73] found right-handed gestures to be associated of

performance of negative and aggressive emotions, and left-handed gestures being per-

formed more often to portray positive and relaxed feelings. However, as the authors

rely on staged performances and only two subjects for their analysis, it is unclear how

generalizable their findings are. Indeed, Castillo and Neff [74] later reports opposite find-

ings for handedness. Here, the authors investigated the perception of emotion through

gesture by systematically manipulating gesture performances with 11 modification pa-

rameters. Using Russell’s Circumplex model of emotion, they could significantly change

perceptions of the Valence and Arousal dimensions. For example, increased tension of

the motion and left-handed gesture were perceived as having lower valence, and higher

as well as longer gestures were perceived as having higher arousal.

2.6.4 Personality in gesture

Another line of work has investigated correlation of gesture expression with stable per-

sonality traits. Gallaher [75] report some correlations of four content personality traits,

anger, fear, activity, and sociability, with four dimensions of movement style, Expres-

siveness, Animation, Expansiveness, and Coordination. For example, they find Expres-

siveness to correlate with sociability and Expansiveness with fear.

Levy and Duke [67] measures personality correlates of Laban movement parameters,

finding different patterns for males and females. Males with high achievement scores

tended to produce less enclosing movements, but no such pattern was found for females.

Dominant males also showed less enclosing movements, while dominant females showed

the opposite trend, producing less spreading movements. While affiliation in males cor-

related positively Bound Flow and Direct Space movements, affiliative females preferred

movements with Strong Weight and tended to change between Effort qualities.

More recent work utilizes the OCEAN model of personality, also named the Big-Five,

to assess interpersonal differences in character. The OCEAN model encompasses five
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factors of personality, Openness, Conscientiousness, Extraversion, Agreeableness, and

Neuroticism.

Extraversion in particular as the most outward-oriented, social dimension has been under

frequent investigation for gesture behavior. Riggio and Friedman [76] found extraversion

to be correlated with gestural fluency, and Lippa [77] reported extraverts to portray

more energetic gestures, having the hands away from the body more often, producing

faster speech and, with that, more frequent gestures, and exhibiting more arm swivel

(larger distance between the elbows and the torso). Extraverts have further been found

to produce more spatially expansive gestures [78] as well as producing more varied

gestures [79]. Other work, however, has noted the importance of the personality of

the conversation partner for the speaker’s gesture style. Tolins et al. [80] matched and

mis-matched conversation pairs of introverts and extraverts and found the conversers

to adapt their gesture style to their partner over the course of the conversation. For

example, introverts started with narrow gestures but, when conversing with extraverts,

their gestures became broader over the course of the conversation. Extraverts increased

their arm swivel when matched with another extravert, but decreased arm swivel over

time when speaking to an introvert. The authors also reported an opposite relationship

between extraversion and gesture rate, compared to previous research, reporting that

introverts displayed higher gesture frequency.

Based on the findings of human social psychology studies, continuing research has em-

ployed virtual agents to systematically manipulate gesture styles, suggesting design

methods for expressive virtual agents with personality. By modifying eight factors of

Figure 2.8: (Perceptual study by Neff et al. [12]. Gesture scale was adjusted to
manipulate perceptions of extraversion. )
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gesture performance, including, scale, arm swivel, position, and duration of the gesture,

as well as modifying overall gesture rate, research has shown that perceived extraversion

of an animated agent can be manipulated [12] (example in Figure 2.8). Smith and Neff

[81] extended this work by using a set of parameter modifications to target perceptions

of all Big-Five personality traits. Again, perceptions of extraversion was found to be

most modifiable by adjusting motion parameters, positively correlating with increased

gesture size and velocity, and a strong effect of finger extension, with extended fingers

increasing perceived extraversion. Arm swivel, disfluent gestures, as well as clavicle lift

increased perceived neuroticism and decreased agreeableness. Disfluent gestures and

clavicle lift additionally decreased conscientiousness. Similar work modified only the

amplitude and speed of a robot’s gestures, finding higher gesture amplitude and speed

to elicit higher rating of extraversion and neuroticism [82]. Wang et al. [83] focused

solely on the effect of hand motion on perceived personality and found both hand pose

and amplitude of motion to affect perceptions of all five personality traits. For example,

spread fingers received high rating of extraversion, openness, and neuroticism, and low

ratings of conscientiousness and agreeableness.

2.7 Modelling gesture motion

For creation of believable agents, previous works have stressed the importance of cap-

turing emotion [84] and personality expressed through gesture [85]. To capture these

expressive aspects, a number of computational models have been proposed for synthe-

sizing new gesture motion for animated virtual agents

For animating expressive agents through descriptive Laban parameters, Laban descrip-

tors have to first be mapped to lower level motion characteristics that can be used

to modulate animations algorithmically. For the problem of mapping Laban parame-

ters to easily quantifiable motion characteristics, research has often focused on dance

movements [86–88], which may show Laban parameters more clearly and pronounced

than natural gesture motion, but efforts have been made to extract Laban’s parameters

from general motion [89], and, importantly, gesture motion [90]. Here, the authors pro-

posed an approach to extract Laban parameters from hand and arm movements using

a predefined gesture repertoire of 6 motions, each performed by an actor in 6 emotional
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variations. They quantify Laban parameters through motion analyses such as the av-

erage trajectory curvature. The authors report good results in extracting the Laban

parameters of Time, Weight Effort, and Shape Directional, while Space and Flow were

more difficult to capture.

Basing their model on the Effort and Shape parameters of Laban, Chi et al. [91] pro-

posed a computational model for animating gesture motion. Their EMOTE (Expressive

MOTionEngine) framework maps low-level motion attributes to Effort and Shape di-

mensions, allowing an animator to synthesize co-verbal gesture behavior by manipulating

Effort and Shape. Zhao and Badler [92] extended the EMOTE system, making steps

towards reversing the synthesis process to extract Effort from 3D motion. Durupinar

et al. [93] further extended the EMOTE model by working together with a number of

movement analysts to model personality-expressive motion by mathematically mapping

between OCEAN personality traits, Effort, and low-level motion parameters. For exam-

ple, they show that the Effort dimension of Time can be modified by animation speed,

directness of trajectory, and breathing frequency, and animating sustained Effort in-

creased perceptions of agreeableness while decreasing perceptions of extraversion. Sonlu

et al. [59] provide a full framework for modulating perceived personality through ma-

nipulations of Laban’s Effort and Shape, including methods of manipulating the Shape

qualities Rising, Spreading, Advancing of gesture, as well as the Effort qualities of Time,

Flow, Space, and Weight.

Hartmann et al. [94] proposed an alternative set of motion parameters to capture the

expressivity of gestures. Based on a review of social psychology literature as well as

analysis of a gesture corpus, the authors determined six motion parameters: (1) Overall

Activation, the quantity of motion, (2) Spatial Extent of the motion, (3) Temporal

Extent (quick versus sustained, similar to the Time factor of Laban’s Effort), (4) Fluidity

(smooth versus jerky, similar to the Flow factor of Effort), (5) Power (weak versus strong,

comparable to the Weight factor of Effort), and (6) Repetition, the rhythmic repeats

of motion. The authors propose a computational model to map these 6 parameters to

modifiable animation parameters. For example, they modify the parameter of Spatial

Extent by changing arm swivel by moving hand inverse kinematics targets outward.

Some parameters, such as Overall Activation, were found to be difficult to capture with

the proposed mapping. They report some evidence that matching expressive parameters

to the communicative intent makes the gesture behavior more appealing.
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2.8 Speech-driven gesture generation

To create gesture behavior matching the communicative intent of a virtual agent, a

mapping has to be created between the two. While gesture behavior can be hand-

designed to match a given utterance, this requires a skilled animator and significant

amounts of time. To remove the need of hand-authoring gesture behavior for speech

content, much work has investigated ways to produce gesture motion automatically

from the accompanying speech signal. This takes the work presented in the previous

section a step further - rather than only modelling the gesture motion space, the goal is

to find a mapping from the speech signal to this motion space.

It is worth noting that the vast majority of gesture generation systems do not work

in real-time. We have discussed that gesture either precedes or co-incides with the re-

spective speech utterance in Section 2.2. To honor this constraint, a gesture generation

system would have to plan and initiate a gesture before the related speech is produced,

and can hence not base gesture shape or expression on this speech segment. However,

Wang and Neff [95] found users could not detect gesture delays of up to 0.6 seconds

(though in side-by-side comparison sensitivity increased to about a 0.2 second thresh-

old), and Nirme et al. [96] similarly found that 0.5 second delays or advances went

unnoticed unless gesture strokes overlapped with pauses in speech. This gives a small

but potentially useful window for developing real-time systems.

The research into gesture generation from speech can largely be divided into three cate-

gories, namely rule-based systems, statistical modelling methods, and machine learning

approaches.

2.8.1 Rule-based gesture generation

The first approaches to model the speech-gesture relationship have employed rule-based

methods, explicitly formulating mappings from the speech to the gesture dimension. The

Behavior Expression Animation Toolkit (BEAT) first proposed an automatic gesture

generation system based on input text [97]. A linguistic processing module segments

utterances into clauses, and clauses into themes (connecting a clause to the previous one)

and rhemes (new information of the clause). Based on the finding that gestures generally

coincide with a rheme [98], gestures are generated with in the following manner:
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FOR each RHEME node in the tree

IF the RHEME node contains at least

one NEW node

THEN Suggest a BEAT to coincide

with the OBJECT phrase

The generator also determines if any named objects and actions can be found in the

knowledge database. If a match is found, a meaningful gesture can be sent to the an-

imation module. A similar system was proposed by Lee and Marsella [99], aiming to

provide a clearer and more standardized interface by using FML and BML standards

(functional and behavioral markup language, respectively). The presented system be-

came an integral part of the open-source animation framework Smartbody [100].

A framework focusing on deictic (pointing) and iconic gestures (e.g. miming a spatial

orientation, such as “crosswise”) was proposed with Max, the “Multimodal Assembly

eXpert” [101], designed for an interactive assembly game. Max can help assemble vir-

tual structures by pointing at locations of parts and miming spatial relations through

predefined gestures. Similarly, Kappagantula et al. [102] proposed a system for deictic

gesture production of pedagogical agents by searching for mentions of element locations

in the speech and applying inverse kinematics. In Marsella et al. [103], a new method

of processing input speech was proposed, specifically, including acoustic features rather

than relying solely on input text. By analyzing the prosody of input utterances, the

system detects stressed words as well as the overall level of agitation of the speaker. A

lexical analysis of the speech content extracts communicative functions such as affirma-

tion or emphasis, and then maps these functions to a gesture set via 97 rules. Xu et al.

[1] emphasize the relationship between multiple gestures, not just between speech and

gesture, realizing the concept of ideational units proposed by Calbris [104]: Consistency

of topic should produce consistency in motion aspects of gestures, and a shift in topic

should be marked by a shift in gestural form and movement (see Figure 2.9).

Even metaphoric gestures have been addressed with rule-based approaches. Lhommet

and Marsella [105] proposed a system specifically aimed at metaphoric gestures, using

a set of rules mapping physical properties to metaphoric ideas. For example the word

“anything” corresponds to the concept of a container containing everything, which in

turn must be a big container, and hence “anything” is mapped to the physical property
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Figure 2.9: A rule-based system proposed by Xu et al. [1] honoring ideational units
in generating gestures.

of a big container, eliciting a gesture shaping a big container. Ravenet et al. [106]

developed this approach further, proposing a method to automatically extract various

metaphorical physical properties from input speech, and mapping these to the gesture

descriptors of hand shape, wrist position, palm orientation, and arm movement type.

An advantage of rule-based systems are that they do not require obtaining a large

dataset of natural gesture, or even any at all. Gestures can be hand-defined by an

animator, and mapped to the desired communicative function. Another advantage is

the ease of generating meaningful, expressive gestures; as we will see in the following

Sections, statistical models may need a dataset containing a number of examples of the

desired meaningful phrase-gesture co-occurrence, and machine-learning models may still

have a hard time capturing semantically meaningful gestures at all. However, while the

above presented rule-based systems often designed the language-to-gesture mapping to

be tuneable and extensible, their expressiveness is always limited by the number of hand-

defined gesture correlates. Furthermore, the gesture behavior is based on the ideas of the

rule creator rather than actual human gesturing behavior, unless rule creation is based

on extensive study of human recordings. Note also the relation of phrase-to-gesture rules

to the more out-dated idea of specific emotions being associated with specific gestures,

described at the beginning of Section 2.6.2.
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2.8.2 Statistical models for gesture generation

A second approach to gesture generation from speech are statistical models, addressing

the wish to base gesture selection on actual human behavioral data. These works rely

on hand-annotation of a corpus of recordings of human conversation, tagging gestures,

or gestural features, as well as speech features.

Statistical modelling methods use estimated conditional probabilities of certain speech

features co-occurring with specific motion features. For creating these statistical models,

it was found to be beneficial to develop speaker-specific gesture production [107]. Neff

et al. [2] developed a model to capture such speaker-specific gesture style. The authors

annotated video corpora of the two talk show hosts Jay Leno and Marcel Reich-Ranicki

with 30 different gestural lexemes, such as “Cup” or “Wipe”, and about 90 different se-

mantic tags, such as “number”, “agreement”, and “positive affect”. A statistical gesture

model is computed to map the semantic tags to the gesture lexemes; following this, new

input text can automatically be processed and the gesture motion can be produced in

either the style of Jay Leno or Marcel Reich-Ranicki (see Figure 2.10). Synthetic prepa-

ration and retraction motions for the generated gesture strokes are produced through

simple pose blending, creating coherent gesture sequences. For small time windows be-

tween two strokes, pose blending can instead be applied between the end pose of one

gesture and the start pose of the next gesture.

In a similar approach, the Gesture Net for Iconic Gestures (GNetIc) used Bayesian

decision networks and hand-coded gestures with more detailed descriptors, including

handshape, palm and finger orientation, and movement direction [108]. The model again

computes the conditional likelihoods of gesture characteristics for linguistic features,

Figure 2.10: A gesture sequence of Marcel Reich-Ranicki re-created on a virtual
character by Neff et al. [2].
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specific to each one of five speakers. It was later extended into a cognitive behavioral

model for concurrently planning and producing speech and co-speech gesture [109].

Fernández-Baena et al. [110] create a detailed annotation of 6 minutes of an actor per-

forming beat gestures (gestures without a specific meaning) to analyze correlations of

speech and gesture with respect to synchrony and intensity. A motion graph is built

and used for gesture synthesis by searching the gesture with the best transition, closest

intensity match to speech, and lowest time alignment cost.

Recent work has employed motion graphs for gesture synthesis in the case of dyadic

conversation behavior. For a dataset of 30 minutes of conversational data, Yang et al.

[3] segment speech audio into phonemic clauses (groups of words with one strongly

stresses word), as well as marking hesitation pauses and listener response. Motion data

is annotated with the gesture stroke timings and used to build a motion graph. For

gesture synthesis, a stochastic greedy search is then used to search the motion graph

given a set of associated speech constraints. For synthesizing natural motion without

jumps, a coherent sequence of poses must be created. To achieve this, the work finds

a path through connected states in the motion graph, while matching the input speech

constraints with the original associated audio of a state sequence. The search through

the motion graph is illustrated in Figure 2.11.

Building a motion graph for very large datasets can potentially become problematic;

Yang et al. [3] note that the motion variety of conversational gesture behavior requires a

much larger graph than, for example, was previously used for locomotion, even for their

relatively small amount of data of 30 minutes. Constructing and searching a motion

graph for multiple hours of data would require questionable computing power. Some

Figure 2.11: Gesture synthesis method by Yang et al. [3]. Left: overview of their
method. Right: Visualization of a search through the motion graph (orange are consid-
ered low-cost action options and purple is the final selected path). (Images from Yang

et al. [3])
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alternative methods for connecting parts of natural motion into sequences were discussed

in Section 2.1.3.

As the presented statistical models work with annotated datasets, a central limitation is

the ease of extending these models; modelling any new speaker or gesture style requires

many hours of hand labour.

2.8.3 Machine learning for gesture generation

Machine learning approaches for gestures can learn from motion data produced by con-

versing humans and, like statistical models, do not rely on the explicit formulation of

if-then rules. Unlike statistical models, they often work without the need of any kind of

hand-annotation. Instead, they implicitly learn the relationship between an input speech

signal and the desired output motion. These approaches have largely focused on the gen-

eration of so-called beat gestures, simple, repetitive motions that mark speech rhythm.

The kinematics of beat gestures (e.g. speed and acceleration) have been shown to cor-

relate with the prosodic features of speech. Prosodic speech features can be extracted

fast and easily, and contain information such as emphasis and emotion. Beat gesture

systems rely purely on analysis of such prosodic features from speech without extraction

of semantic content. The reason for the focus on beat gestures in this domain is based on

the training mechanisms of machine-learning models, requiring relatively large amounts

of examples for each “rule” to be learned. For example, to model the relationship of

“you” and a pointing gesture, the training corpus should firstly contain numerous in-

stances of “you” co-occurring with the desired pointing gesture. Secondly, the semantic

tags, such as “you”, have to be additionally extracted by creating a transcript of the in-

put speech. Hence, data-driven approaches often neglect iconic, metaphoric, and deictic

gestures. While this means that the generated gestures may not aid understanding, as

semantically meaningful gestures might, they can make the agent appear more life-like

and engaging.

Especially early works on gesture generation with machine learning have employed

graphical models; in later works, neural networks have become widely popular. While

neural networks can be seen as a special type of graphical models, we will not go into

detail on mathematical definitions here.
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2.8.3.1 Graphical models

Graphical models employ a directed or undirected graph structure to model a probability

distribution, and hence represent a combination of graph theory and probability theory.

Graphical models are trained by estimating likelihoods and inference is probabilistic.

An advantage of graphical models is that they can model dependencies in the data even

with small sample sizes.

Using a hidden Markov model (HMM), Levine et al. [111] presented a system relying

solely on automatically extractable prosodic markers of speech. Based on the knowledge

of gesture phase dynamics (refer to Section 2.5.2), the authors automatically segmented

30 minutes of motion capture data by tagging shifts between slow and fast motion.

A clustering algorithm was used on the resulting segments to determine a number of

recurring gesture sub-units (20 for the head, 45 for the arms, 6 for the lower body). For

the concurrent speech, the pitch, intensity, and syllable duration were extracted. An

HMM was trained to capture the relation of speech features and animation segments.

(A similar approach was also later presented for Turkish conversational data [112].)

The proposed system works in real-time by predicting syllable peaks. A new gesture

was set to begin at the detected syllable peak, meaning the previous gesture ended

at or before this syllable peak and honored the synchrony constraint. The authors

reported problems with overfitting (lack of generalizability to new data) and proposed

an alternative approach of representing gesture motion through kinematic features and

combining an HMM (to model the transitions of motions) with a conditional random field

(to model the relation of speech features to motions) [113]. Six kinematic parameters

were extracted for each segmented (determined by velocity changes, as before): Spatial

extent, duration, velocity, acceleration, curvature, and hand height of the gesture. These

parameters could later also be used for affecting style changes of the motion. In both

works, the produced animation was one selected from the segment library, rather than

a truly “generated” motion.

Moving away from predefined gesture segments, Chiu and Marsella [114] used hierar-

chical factored restricted Boltzmann machines modelling temporal patterns of gesture

motion to generate new motion frame-by-frame. Based on wrist height, motion capture

data was segmented into gesture and non-gesture motion, resulting in a small selection

of less than 40 seconds of training data. The resulting gesture motions were relatively
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rudimentary beat gestures. Follow-up work improved results by encoding the gesture

segments in a low-dimensional space via Gaussian process latent variable models [46].

This low-dimensional embedding of the gesture space addressed the problem of finding

and generating transitions between gestures; determining the transition within the em-

bedding space allowed to take into account similarities in gesture dynamics and posture,

creating trajectories honoring the constraints of natural human motion. A conditional

random field was trained to predict sequences of labels indicating whether or not a

gesture was occurring based on the input audio features; during synthesis, appropriate

motion trajectories are then sampled from the low-dimensional space.

Going beyond beat gestures, Chiu et al. [115] modelled more complex gestures by adapt-

ing conditional random fields to deep learning and combining prosodic, semantic, and

syntactic speech features. Annotating a video corpus of over 9 hours of conversational

data, the authors marked the occurrence of about 800 different words, giving each word

a part-of-speech tag, as well as marking the occurrences of 14 gestural signs, such as

“beats”, “wipe”, or pointing gestures. Though reporting improved results compared to

previous work on gesture prediction, the applicability of the work was limited by the

small set of predefined gestural signs and the requirement for tedious hand-annotation

to obtain these.

2.8.3.2 Neural networks

With increase of computing power complex models trained on large datasets have gained

favor over the simpler graphical models. While neural networks represent more of a black

box learning, they can work on imprecise data and capture more complex patterns than

older graphical models, allowing modelling of large datasets with implicit structure.

Once a neural network is trained, inference is deterministic, rather than probabilistic.

Recent work has focused on neural networks, specifically recurrent neural networks

(RNNs) for speech-to-gesture generation. RNNs use recurrent connections between net-

work activations at consecutive time-steps to model data with temporal dependencies

(see Section 1.2.1). Through this, RNNs can capture the dynamics of a motion pattern

well, successfully modelling patterns of human motion modelling [116, 117]. RNNs have

powerful modelling capacities, but due to a relatively large amount of model parameters,
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Figure 2.12: Machine-learning method for gesture generation by Hasegawa et al. [4].

they also require larger amounts of training data than previous proposed models (such

as Gaussian process latent variable models).

Based on the DeepSpeech network architecture, successful for speech recognition, Takeuchi

et al. [118] employed a recurrent network to model the speech-gesture relationship of a

2-hour Japanese conversational dataset containing largely metaphoric gestures. Input

speech was automatically processed to extract the Mel-Frequency Cepstral Coefficients

(MFCC), and the model outputs the rotations of 51 joints describing a human skeleton.

The work was mostly unsuccessful, with the generated gestures receiving generally low

scores of perceived naturalness, and timing and content appropriateness, outperformed

on each score by mismatched real motion capture. In follow-up work, the authors pro-

posed several changes, using joint positions and their velocity instead of rotations, as

well as applying temporal smoothing to the output to address jittery and discontin-

uous motion [4] (see Figure 2.12). The generated gestures were able to outperform

mismatched real motion on the previously mentioned three scores, though problematic

phrasing of the naturalness questions were revealed. Specifically, users were asked to

judge the smoothness of the motion, however, real motion capture data was somewhat

jittery, whereas this was addressed in generated output through the temporal smoothing.

The model was further developed in Kucherenko et al. [119], employing autoencoders

to learn each a low-dimensional representation for the motion capture and speech data.

Following the autoencoder training, the speech to gesture system was then trained to

model the relationship between speech encoding and motion representation. The model

showed improvement only regarding the naturalness dimension.

One problem in training RNNs is an observed tendency to converge to the mean pose in

the data, leading to damped, constrained and somewhat lethargic motion close to the

average pose. It was proposed that this may be due to error accumulation when feeding

generated output back into the network [25]. Instead opting for a simpler feed-forward
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architecture, Kucherenko et al. [120] presented a model combining both acoustic and se-

mantic speech information. To capture the temporal dependencies between frames mark-

ing continuous motion (previously handled by the recurrent connections in an RNN),

the authors used autoregression to feed generated frames back into the model input.

Using the dataset presented in Section 3.1, speech data was transcribed and words were

encoded with a pretrained language model, and prosodic information was represented

by high-dimensional log-power mel-spectrogram features. The authors aimed to reduce

motion-dimensionality by applying Principal Component Analysis (PCA), but found a

negative effect on perceptual results. They further proposed to address issues with slow

motion output by modelling velocity in addition to joint positions, however, this was

unsuccessful. As seen in previous work employing RNNs, they reported their proposed

model to move more slowly than the true motion, producing gestures closer to the mean

pose. The authors did note a benefit of including semantic speech information, with

the inclusion of semantics improving all four scores, human-likeness, semantic accuracy,

helpfulness, and timing.

Aside from error accumulation through autoregression, a major problem in training

neural networks for speech-gesture generation is the optimization method. The previous

reported works here used a standard regression loss, essentially computing the numeric

difference between a predicted and true pose or pose sequence. For speech gesture,

however, as previously discussed, there is no one “correct” gesture for a given utterance,

rather, it depends on the speaker and their state of mind. Therefore, even when a

gesture model during training predicts a gesture that would be judged as valid by an

observer, if this gesture is numerically far from the true training sample, the model will

receive a large error feedback. Short of guessing exact correct joint configurations, the

model can minimize its error by keeping prediction around the mean pose, minimizing

the error across all possible true poses.

Generative adversarial networks (GANs) have been proposed as one alternative train-

ing paradigm. Here, instead of minimizing a standard error function such as the mean

squared error (MSE) of joint positions or angles, the model’s objective is to produce

output that is qualitatively similar to real data, as judged by another model, the dis-

criminator, that is trained simultaneously in conjunction with the generator (see Section

1.2.2). GANs have been successful in human motion modelling tasks [121, 122], as well

as in a head motion from speech generation task [123]. Based on this, Ginosar et al.
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[124] proposed a convolutional network combining a standard L1 regression loss with

an adversarial discriminator for predicting 2D gesture motion from speech [124]. To

address the need for temporal continuity of the motion output, the model took as input

the entire speech segment for which to create gesture output, generating one continuous

stack of output poses. This meant that during prediction the entire utterance had to be

passed in at once to produce temporally consistent output. The authors represented au-

dio visually as a spectrogram, which was encoded by an audio encoder and subsequently

processed by a UNet translation architecture [125]. The authors created a large dataset

of over 140 hours of 2D pose keypoints extracted from YouTube videos of 10 speakers.

(This work and dataset was not yet available at the time of our work). The speakers were

professional performers, such as John Oliver (Last Week Tonight) and Seth Meyers (Late

Night with Seth Meyers), producing largely rehearsed speech and generally producing

a relatively small set of clear gesture motions. Their speaker-specific models generated

sequences rated equally good as mismatched real gesture samples, as measured by the

rate it fooled human participants. The failure to surpass mismatched real motion is an

indication of the difficulty of the speech-to-gesture task.

2.8.3.3 Other generative models

While the idea of GANs is promising, in practice, they have been shown to be unstable

to train through their implicit error feedback mechanism. To address this, an invertible

neural network type called normalizing flows (NFs) have gained traction. NFs make it

possible the compute exact output densities in an efficient manner, providing a more

stable way of training. By modelling the non-deterministic probability distribution

of the output, NFs do not rely on standard regression loss. Based on an NF model

specific for human motion [126], Alexanderson et al. [127] proposed a model for gesture

generation from speech, using the dataset presented in Section 3.1. By learning the

next-step distribution of possible next poses, compared to standard regression training,

the gesture output was more varied and could be re-sampled repeatedly. Therefore,

inference was probabilistic again (as in graphical models), rather than deterministic (as

in standard neural networks). This work much improved on previous problematic mean-

pose regressed gesture output, however, the authors noted problems with overfitting,

with output gesture behavior appearing less diverse and vivid than the true motion.
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Lowering model complexity improved gesture diversity, but showed significant amounts

of unnatural motion.

2.9 Evaluation methods for gesture generation

An integral part of designing machine learning generative models of gesture motion

is the evaluation of the output, necessary both during development as well as for final

performance assessment. Training a model requires the use of numeric measures, whereas

judging the quality of the output of a trained model requires a perceptual evaluation.

2.9.1 Numerical evaluation

During development, rapidly computable numeric measures of quality are necessary

for model optimization: The model’s parameters are iteratively changed based on the

computed error until convergence. A common choice is computing the difference between

prediction and ground truth poses, computed frame-by-frame for a sequence of poses,

either over joint positions (e.g. [4, 120]) or angles (e.g. [118, 128, 129]). Such numerical

measures have also been used for reporting final performance of a model (e.g. [4, 120,

130, 131]), however, this can be problematic. For example, one solution minimizing

average joint error is producing just the mean pose, the best solution for a model unable

to understand speech-gesture correlations. This clearly is not a desirable output easily

determined by an onlooker. Indeed, Kucherenko et al. [132] have shown that numeric

measures of performance do not relate to this onlooker’s judgement. Final evaluation of

a model should therefore include subjective judgements from a perceptual study.

2.9.2 Perceptual evaluation

There are currently few guidelines or agreed methods for evaluating conversational

agents, and gesturing agents specifically, highlighted in a review by Wolfert et al. [133].

We discuss some current methods below.

One of the first choices to make is the character on which to display the motion to

be assessed (see Figure 2.13). Some works have used simplistic stick figures [118, 119,

124]; while this may focus judgment on the displayed motion alone, it may be hard to
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Figure 2.13: Different levels of model realism used in gesture generation evaluation
studies. (1) Takeuchi et al. [118], (2) Kucherenko et al. [132], (3) Sadoughi and Busso

[134], (4) Yang et al. [3], (5) Huang and Mutlu [138].

conclude how suitable the motion is for a production character. Other works have used

increasingly realistic models, from 3D models of a lay figure [127, 132], to low- [134] and

higher realism humanoid models [3], as well as robots, both as 3D models [135] as well

as physical robots, both video-taped [129, 136] as well as “live” [137, 138].

Regarding the experiment design, a wide variety of setups has been used with very little

coherence between researchers. Takeuchi et al. [118] used 7-point scales asking partici-

pants to rate 3 concepts, the naturalness, timing, and semantic appropriateness of the

gesture motion; Hasegawa et al. [4] asked 9 questions belonging to these 3 concepts,

again on a 7-point scale. Sadoughi and Busso [134] used 5-point scales for 2 questions,

naturalness and appropriateness; Yang et al. [3] presented stimuli pairwise, asking par-

ticipants which motion they preferred; Kucherenko et al. [132] used a MUSHRA test

(MUltiple Stimuli with Hidden Reference and Anchor), presenting 6 stimuli at once and

asking participants to rank each of them on a 100-point scale with 5 labelled intervals.

This design variation between studies can make it difficult to compare results.

Finally, there is variation in choice of experimental conditions, i.e. what to compare

the generated motion to. As an upper bound, the ground truth motion is a natural

choice. Additionally, comparing to mismatched motion-capture is a common choice:

Real motion displayed with speech from a different recording (used for example in [4,

118, 132]). Interestingly, while this baseline has no speech-gesture coherence (other

than by chance), it has been shown to be hard to out-compete with machine-learned

gestures. As lower baselines, some works have therefore used ablated versions of their

models for comparison [3, 119, 120, 127] or models from previous works [132, 139].

Comparing results to previous works is useful for determining advancements in the field;

however, challenges include the availability of code for a published model and data,

as well as the potential need for tuning others’ models to a new dataset (if used) by
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adjusting hyperparameters for fair comparison. By making our speech-gesture datasets

open source, we hope to improve reproducibility of future work, advance the field, and

enable fairer evaluation in future studies.





Chapter 3

Data Collection

A key factor in any machine learning or data-driven, approach to gesture generation

is acquiring an appropriate dataset to model. Previous research into speech gesture

generation has used small datasets [46, 114], non-English datasets [118], hand-annotated

video data [115, 140], or 2D rather than 3D motion [124, 141]. Advances in machine-

learning can only be harnessed fully with significant amounts of training data. For

developing a speech-to-gesture generation model, we required a dataset of synchronized

speech recordings and motion-capture. No large, freely available corpus of such multi-

modal recordings of English conversational speech was known to us and we therefore

recorded our own datasets for the purpose of modelling the speech-motion relationship.

When creating a corpus of speech gesture, an important consideration is whether to

focus on a single speaker or diversify with multiple speakers. As we have discussed in

Section 2.6 in the previous Chapter, gesture expression may vary significantly between

different speakers. A problem in modelling multiple speakers in a data-driven approach

is that it may be difficult to implicitly capture the relation of speech to gesture (what we

want to capture) when this relation may be additionally modified or varied by person-

specific factors such as personality traits. Each person may have their own specific way of

matching gestures to speech. Therefore, we consider the simpler problem of modelling a

single person’s gestures before tackling the problem of generalizability to other speakers

or style-control. Furthermore, previous work has also shown that gestures generated by

models based on a single speaker are preferred by subjects [107], additionally motivating

the focus on single speakers.

45
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Table 3.1: Details of the two recorded datasets.

dataset 1 dataset 2

hours 4 6.2
sequences 23 25
sequence length (minutes) 10 10-20
frame rate (frames/second) 59.94 120
number frames 877.5K 2,66M
recordings motion, audio,

full-body video
motion, audio,

full-body video, facial video
content personal stories and

interests
personal stories and

interests, sports

A second key matter in designing a gesture corpus is determining the context of the

gesture behavior to record. As discussed in Section 2.6.3, gesture behavior may vary

depending on the emotional state of the performer. One could aim to model gestures

for different emotional states by working on a dataset of diverse emotional expressions,

capturing the ways gesture is expressed in a happy, sad, angry, or other state. However,

most of our conversations are conducted in a relatively neutral emotional state. Fur-

thermore animated agents are often designed for tasks in which a calm, non-emotional

behavior is preferred, such as real estate showings [142], museum guiding [5], counselling

[143], or teaching [102]. We therefore decide to focus our gesture corpus on everyday,

calm, conversational mode, without extreme emotions. Recordings were unscripted; the

actors produced spontaneous, unrehearsed speech and gesture motion, allowing us to

capture natural conversational behavior.

We recorded two datatsets of one speaker each, detailed below, with an overview in Table

3.1.1 The two speakers exhibit distinctly different gesture style. In future chapters, we

will present comparisons of the gesture performance of these two speakers. In Chapter

5, we analyze the phase structure of the speakers’ motion, and in Chapter 6, we compare

differences in gesture stroke expression.

We released our datasets to the wider research community at

https://trinityspeechgesture.scss.tcd.ie/.

1Dataset 1 was published with the listed Publication 1. Dataset 2 is being published with the listed
Under Review Publication 1

https://trinityspeechgesture.scss.tcd.ie/
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Figure 3.1: Marker setup for body motion capture. (Image by Vicon R©)

Figure 3.2: Marker setup for finger motion capture. (Image by Vicon R©)

3.1 Dataset 1

We invited a single male actor for multiple recording sessions. The actor was an male

native English speaker producing spontaneous and natural conversational speech without

interruptions, i.e., without verbal cues from a conversation partner. The actor was

instructed to speak freely and spontaneously about any topic he chose, including hobbies,

daily activities, and movies. The actor speaks in a colloquial manner with a happy

disposition, includes a large amount of gesture motions, and appears very animated

overall.

The actor was addressing a person situated behind the camera in order to give him the

visual feedback of a conversation partner. Each recording take was about ten minutes

long. We captured 23 takes, totalling 244 minutes of data. (Two additional takes of

eight minutes each are available of video and audio data, without motion capture).

The actor’s motion was captured with a 59 marker setup and 20 Vicon cameras at 59.94

Frames per Second (FPS). The body marker placement is shown in Figure 3.1 and the

finger markers are shown in Figure 3.2. Audio was recorded at 44 kHz. Video was
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captured with a single HD camera placed between the actor and the person he was

addressing (see Figure 3.3).

Figure 3.3: View of the camera in the dataset 1. The actor is always addressing a
listener situated right behind the camera. The actor was allowed to move freely with

the restriction to stay in good view of the camera.

3.2 Dataset 2

As described above, the speaker in dataset 1 moves in an overall very animated way,

making it difficult to separate gesture motion from other body dynamics. For our second

dataset, we decided to record a different style, with a much more grounded, calm,

base motion, and defined, separable arm gesture movements. We chose an actor with

naturally frequent gesturing behavior while exhibiting little lower body motion.

We again used a single male native English speaker for the complete recording. The

speaker was unaware of the purpose of the recording and produced spontaneous, con-

versational speech without interruptions, i.e., without verbal cues from a conversation

partner. The actor’s instructions were the same described in Section 3.1, namely freely

choosing topics to speak on and addressing the person behind the camera.

We recorded 25 takes, ranging between 10 and 20 minutes each, totalling over 370

minutes (more than 6 hours) of data. The actor’s motion was captured with the same
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59 marker setup and 20 Vicon cameras but at 120 fps (frames per second). Audio was

recorded at 44 kHz. Video was captured with two cameras, one capturing a full body

shot and the second camera capturing a higher-quality close-up shot of the face and

parts of the upper body (see Figure 3.4).

Figure 3.4: Capture setup and video framing in dataset 2. We recorded both full
body video (left) as well as close-up video (right).





Chapter 4

Motion and Speech Modelling

In this chapter, we explore the use of modelling the modalities of speech and motion

before training a speech-to-motion task.1 Drawing on previous research on motion and

speech modelling, we employ transfer learning for a speech-to-motion model and assess

the benefits.

4.1 Introduction

As shown by some of the previous research presented in Section 2.8, gesture generation

has been proven to be a very complex problem. Direct end-to-end learning of speech

to gesture motion has shown minimal success, resulting in overly smooth motion close

to the mean pose. We therefore sought alternative approaches to this method. We

hypothesized that results may be improved by modelling the gesture motion space first

in isolation, before training the speech to gesture mapping. For this, in Section 4.3, we

train a motion-to-motion task to yield a motion embedding to be reused for the speech-

to-motion task. Similarly, in Section 4.4, we then investigated the benefit of prior speech

modelling. Here, we integrate a pretrained model for speech recognition into the speech-

to-gesture model. The model knowledge about the motion or speech distribution gained

from pretraining is added to the speech-to-gesture model through transfer learning.

Transfer learning allows knowledge gained from training one problem to be applied to a

related problem. For example, an image classifier trained on a large publicly available

1The contents of this chapter were published at the ACM International Conference on Intelligent
Virtual Agents 2018 (IVA’18) (Listed Publication 1)
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image dataset could be re-utilized for learning to label objects in a smaller, domain

specific dataset. Transfer learning has shown success in a variety of domains, such

as machine translation [144], image classification [145], and visual emotion recognition

[146]. Transfer learning is actualized by using the model weights resulting from training

a previous task as weight initialization for a new task.

We investigated the benefits of this knowledge transfer in the speech to motion task in

two studies. First, in Section 4.3, we applied knowledge from human motion modelling,

second, in Section 4.4, we employed language modelling.

4.2 Data processing

We used dataset 1 presented in the previous chapter in 3.1; dataset 2 was not yet available

at the time of this research. We explored different representations of the motion data

for our learning task, such as Euler angles and quaternions, but finally used the raw

joint angles in exponential map format, as proposed by Fragkiadaki et al. [147] and used

by Martinez et al. [148]. Two takes were selected as validation data, representing about

8% of the total data. During each validation step, 8 seeds are randomly selected from

the validation set to compute the validation loss.

We considered different audio features to represent the speech signal, but in the final

version of this work used the log of the 27 values of the Mel-scaled spectrogram with no

cosine transforms, computed from FFT magnitude. The more primitive mel-frequency

filter bank values have outperformed MFCC features in previous works in both pure

speech modelling [149] and speech to motion modelling [150]. We extracted the audio

features with openSMILE [151].

4.3 Motion model transfer learning

We drew upon the extensive research done in the area of human motion modelling for

attempting improvements in speech-to-motion modelling. We hereby considered gesture

generation from speech as a transfer learning task where a model is pretrained with

a simpler motion-to-motion task before training the final speech-to-motion task. Our

pretraining task was predicting the next frames of a motion sequence, based on the input
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of a preceding motion sequence. This requires modelling of the dynamics of the motion

modality which we hoped would give an advantage in tackling the later cross-modality

task.

Current work had shown the potential of recurrent neural networks for modelling human

motion [147, 148, 152]. Recurrent networks can model sequential data by using recurrent

connections between network activations at consecutive time steps. For human motion

modelling, recurrent networks seem to be able to capture the dynamics of a motion

pattern well. Here, we applied the motion model proposed by Martinez et al. [148],

which has yielded good results with a relatively simple and fast-training architecture.

We hoped that applying previous knowledge about the motion domain could decrease

the complexity of the notoriously hard to model speech-to-motion relationship.

4.3.1 Model architectures

We experimented with two variations of a sequence-to-sequence architecture for learning

the speech to motion prediction task. In the first setup, we predicted a motion sequence

directly from a speech sequence, with a direct transition between encoder and decoder

(model 1 in Figure 4.1). In the second setup, we inserted an additional recurrent em-

bedding layer between speech encoder and motion decoder (model 2 in Figure 4.1). Our

architectures are based on the motion modelling network proposed by Martinez et al.

[148]. We downsampled our data to 50 frames per second.

Figure 4.1: The three network architectures. For models 1 and 2, the decoder was
pretrained with a motion modelling task. For model 3, the feed-forward (FF) block was
taken from the pretrained DeepSpeech language model. All encoders, decoders, and

embeddings are a GRU cell of size 1024.
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4.3.1.1 Speech to motion

Both encoder and decoder consisted of a single recurrent cell, specifically a gated recur-

rent unit (GRU), of size 1024 with residual connections between the output and input of

the cell. The residual connections are skip connections that allow a copy of the input to

skip the encoder cell to directly feed into the output of the cell. The loss was computed

as the mean squared error between the predicted motion sequence and the ground truth

in angle space.

We first pretrained the network on a motion prediction task with residual connections

modelling motion velocity, as described in Martinez et al. [148]. However, we did not

tie weights between encoder and decoder, allowing encoder and decoder weights to be

updated separately. We trained this sequence-to-sequence architecture to predict the

next 15 motion frames based on an input motion sequence of 200 frames. We used our

complete set of motion data for this training task. We trained the network for 100k

iterations, results are visualized in Figure 4.3. We then took the learned weights of the

decoder and reused them for the final speech-to-motion training task.

In the speech-to-motion training task, we predicted 20 motion frames based on both the

corresponding 20 audio frames and 180 preceding audio frames (see example sequence

in Figure 4.2). Hence at each prediction step, the network gets a context of 4 seconds,

and predicts the final 0.4 seconds of gesture motion. We empirically found prediction

of longer motion sequences hard to learn, but outputs of multiple overlapping speech

sequences could theoretically be concatenated into longer motion sequences.

We ran the same network without motion pretraining to evaluate the benefits of trans-

ferring the motion model knowledge to the speech to motion models.

Figure 4.2: Example of a predicted motion sequence from the speech-to-motion model.
Annotated is the respective frame, prediction starts at frame 180.
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Figure 4.3: Results of motion pretraining. Plotted is the mean angle loss over one
evaluation period, and the validation loss at the evaluation step. One evaluation period

consists of x ∗ 1k iterations. We pretrain the model for 100k iterations.

4.3.1.2 Deep speech to motion

In our second architecture, we added an additional recurrent layer as connection between

audio encoding and a motion decoding. The additional layer consisted of a single re-

current cell (also a GRU) of size 1024, also with residual connections. The output state

of this additional cell was passed to a motion decoder that had been pretrained on a

motion modelling task as described in the previous section. As previously, we compared

the results of the pretrained versus not-pretrained model.

4.3.2 Results

We pretrained the network for an initial 10k iterations as suggested by the model’s

authors [148], we then continued training for 1k iterations at a time while checking for

improvements. The results of this process are plotted in Figure 4.4. We trained the

model for a total of 100k iterations, after which training slowed down and significant

further improvement would take an large amounts of time. We used the resulting model

weights for initializing the decoder of our speech to motion models.
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We trained both of our final architectures for 100k iterations. For the deep speech to

motion architecture, we first tested fixing the weights of the motion decoder while only

training the preceding layers in order to focus on learning a motion representation from

speech. However, this did not result in a good learning trajectory and we hence opened

all model weights to updating during training. Though loss and validation loss as plotted

in in Figure 4.4 still appear to be dropping for both models after 100k iterations, training

has largely stagnated at this point. Both networks reached a minimum of about 0.38 in

angle loss error at this point.

We compared our pretrained networks’ performances to the same architectures without

motion pretraining. Surprisingly, as we can see in Figure 4.5, pretraining only appears

to help at the beginning of the training, essentially speeding up convergence, before

stagnating at approximately the same error value.

Figure 4.4: Training results of the speech to motion models after pretraining with
motion modelling. Plotted is the mean angle loss over one evaluation period, and
the validation loss at the evaluation step. One evaluation period consists of x ∗ 103

iterations.
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Figure 4.5: Pretrained vs. not pretrained results. Left : Results of training the deep
speech to motion model with fixed decoder weights. Middle and right : Results of
training the speech to motion models without prior motion modelling. Plotted is the
mean angle loss over one evaluation period, and the validation loss at the evaluation

step. One evaluation period consists of x ∗ 1k iterations.

4.3.3 Discussion

Our models reached a relatively low error for short-term motion prediction from speech,

and we did not observe a significant difference in performance between our two network

architectures. Both the speech to motion, and the deep speech to motion network

converged to similar error results, though the validation loss in the speech to motion

model appeared more promising. Notably, for the deep network, we were forced to open

the decoder weights to further updating during training, as the pretrained weights did

not yield good results. The poor performance of the pretrained motion decoder became

further apparent when comparing network performance with and without prior motion

modelling. We found no significant advantage of training our networks on a pure motion

modelling task before training the speech to motion prediction task.
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It is interesting that transfer learning of a motion model did not help our recurrent

networks’ performance. It is possible that the pretraining did not actually learn a good

enough motion embedding. This would be supported by the finding that plugging the

pretrained model’s decoder into our deep model and only training the encoding and

connection layer did not yield good results. Martinez et al. [148] do note in their work

that aperiodic motion such as during a discussion (as opposed to periodic motion such

as walking), remain hard to model in general. The dynamics of gesture motion might

be better understood by focusing on the actual speech flow, as opposed to modelling

an inherent motion representation. That is, gestural motion may not be well suited for

modelling without the context of speech flow.

The work of Martinez et al. [148] also suggests that the motion model may be improved

by jointly learning on multiple different actions. We only trained our model on gesture

motion and hence incorporating data from multi-action databases could produce a richer

embedding and improve the training outcome.

It is possible that the speech to motion learning task is not as related to the motion-to-

motion task as we had assumed. The speech to motion ‘translation’ is arguably more

complex than motion forecasting and might require much more than a rudimentary

understanding of human motion dynamics.

We observed a major problem of mean pose regression: Model convergence during train-

ing inevitability came with a heavy collapse to the mean pose, resulting in few moving

frames before the output regressed to the mean pose. This is to be expected somewhat

when training the network on such a short-term prediction task, however, we also found

longer sequenced empirically very difficult to train. While this is a common problem

observed in motion generation with neural networks, it is also difficult to avoid. It has

been attributed to error accumulation when feeding the network’s output back into itself

at test time [25], and newer work has addressed this issue with some modifications of

the network training [153].

4.4 Language model transfer learning

We investigated the potential benefit of language modelling over motion modelling. This

is motivated by viewing the speech to motion learning task as more of a translation



Chapter 4. Motion and Speech Modelling 59

between two, if very different, languages, rather than a motion modelling problem. As

the language model, we opted for a state-of-the-art speech recognition model that has

been trained on a very large dataset, specifically, the mozilla’s pretrained DeepSpeech

model2, which performs speech-to-text translation. We hypothesized that employing

this language model could help reduce the complexity of modelling the speech to motion

relationship.

4.4.1 Model architecture

In an effort to maximize comparability to the motion transfer learning approach, we kept

as much of the network architecture and data processing as possible as described in the

previous section. In the following, we describe the changes necessary for the language

transfer learning.

The input data was processed for the DeepSpeech model, which takes at each time step

the 26 Mel-frequency cepstral coefficients (MFCCs) of the current frame, plus 9 frames

of context to each side, resulting in 494 input features.

As the DeepSpeech model was trained to map speech audio to text, we did not use

the full model architecture, but rather extract the first few layers that map the audio

features to an internal representation. Specifically, we used the first three, feed-forward

layers and loaded their pretrained weights. We experimented with taking the outputs

from other layers but the loss either did not converge or did not reach acceptably low

values. The loaded weights were fixed in our task, i.e. they were not updated during

training. Hence the training objective was the learning of a mapping from the speech

representation of the DeepSpeech model to motion data.

The network architecture built upon the DeepSpeech processing was essentially the same

as described in Section 4.3.1.1, consisting of an audio encoder and a motion decoder cell,

each a GRU of size 1024 (model 3 in Figure 4.1). We again predicted 20 motion frames

based on both the corresponding 20 audio frames and 180 preceding audio frames.

2https://github.com/mozilla/DeepSpeech
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Figure 4.6: Results from applying the DeepSpeech model to our speech to motion
task. The first three layers were pretrained with the DeepSpeech speech recognition

task.

4.4.2 Results

In Figure 4.6, it is visible that the loss values flattened out relatively quickly during

training, not reaching our previous results for models pretrained with a pure motion

task (compare results to Figure 4.4).

4.4.3 Discussion

The language model pretraining did not yield improved results compared to the motion

model pretraining. In fact, the error in angle space was higher still than the simpler

model from the previous section without pretraining. This suggests that the speech

representation learned from the speech recognition task of the DeepSpeech model is not
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suitable for our speech-to-motion-task. One reason for this could be that the DeepSpeech

model aims to recognize the phonemes (and from this the words) of an utterance, whereas

the produced motion might rely more on prosodic information (emphasis, speed, ...) of

the utterance, that is filtered out early in the DeepSpeech processing. Hence, if using a

language model for transfer learning in our task, a better choice may be a model that has

been trained on a task that relies on prosodic information rather than word recognition,

such as emotion recognition. Is is however unclear how transferable knowledge from e.g.

an emotion model is to neutral conversational speech.

4.5 Discussion

We did not observe a clear benefit of pretraining the speech-to-gesture networks, whether

a motion or a speech modelling task was applied. We furthermore observed that during

gesture generation, the output of all models quickly converged to a mean pose. This

is a previously observed problem for recurrent networks trained with a standard error

function. Longer term motion sequences have been shown to quickly regress to the

average pose (such as in Martinez et al. [148] and Jain et al. [152]). This may be due to

error accumulation when feeding generated output back into the network [25], resulting

in damped motion that may look constrained and unrealistic.

Another potential cause of mean pose regression is the common training method of

using a mean pose loss, such as the mean squared error used here. Due to the highly

varied relationship of speech and gesture, it is difficult or impossible to predict the exact

correct gesture for a speech segment. However, a standard loss function such as the mean

squared error penalizes production of any pose sequence that is numerically far from the

ground truth, even if an onlooker might judge the generated sequence as plausible for

the speech. In the next Chapter, we will explore an alternative training paradigm to a

standard regression loss, namely Generative Adversarial Networks (GANs). These aim

to assess output in a more “human-like” manner by training a second network to make

the judgment of plausibility, rather than providing an error representing the distance to

the ground truth poses.

While the motion model itself might benefit from a larger variety of actions to model

as previously mentioned, our speech to motion model might also improve with a larger
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variety of conversational data. For this work, we only had data from one actor available

and it is difficult to measure how well this specific person’s gestures can be modelled. To

reduce modelling complexity, we would like to isolate the actor’s upper body joints to

focus solely on his arm gesture motion. However, this is problematic for the actor used

here, as he exhibits a large amount of whole body motion, so that isolating arm motion

potentially removes important dynamic information. For this reason, we decided to look

at a second actor with a more suitable gesture style in the next chapter.

Finally, the results for short term prediction indicate that gesture generation directly

from speech does work to some extent; a basis upon which we built with major improve-

ments in the following chapters.



Chapter 5

Adversarial Network Training

We have discussed that a key problem of modelling co-speech gesture behavior is its non-

deterministic and variable nature that may not be captured with standard regression

training. In this chapter, we explore the use of a generative adversarial training paradigm

for mapping speech to gesture motion1. We defined the gesture generation problem as

a series of smaller sub-problems, including plausible gesture dynamics, realistic joint

configurations, and diverse and smooth motion. Each sub-problem was monitored by

separate adversaries. For the problem of enforcing realistic gesture dynamics in our

output, we trained classifiers with three different levels of detail to automatically detect

gesture phases.2 We hand-annotated and evaluated over 3.8 hours of gesture data for

this purpose, including samples of a second speaker for comparing and validating our

results. We find adversarial training to be superior to the use of a standard regression

loss and discuss the benefit of each of our training objectives.

5.1 Introduction

The non-deterministic mapping of speech to motion means for one utterance, multiple

variations of a gesture (or no gesture at all) may be perceived as plausible by an observer.

This presents a difficulty in training a speech-to-gesture model; even a plausible produced

gesture may be penalized when it is numerically far from the exact gesture found in the

1The contents of this chapter were published at ACM Motion, Interaction and Games 2019 (MIG’19)
(Listed Publication 2), as well as in Computers & Graphics 89 (2020) (Listed Publication 3). The second
author, Michael Neff, acted as an additional advisor while the implementation was conducted by myself.

2We release the classifiers for other researchers at https://trinityspeechgesture.scss.tcd.ie/.
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dataset for this utterance. A standard regression loss in training a speech-to-gesture

model is therefore not ideal.

In this chapter, we apply two novel techniques for training a recurrent neural network

(RNN) producing gesture motion based on input speech. Firstly, we trained a speech-

input-motion-output RNN in the manner of a generative adversarial network (GAN)

instead of a standard regression loss, and we specifically used multiple adversaries instead

of a single one.

Secondly, we studied the phase structure of a gesture dataset and trained a classifier to

automatically detect these phases. The phase structure of natural gesture describes the

dynamics and functions of motion segments within it, and can be divided into distinct

parts: preparation, stroke, holds, and retraction (see Section 2.5). We aimed to capture

these specific dynamic phases in our gesture generation system. While such phases

are present in any natural gesture data, capturing the phase structure implicitly would

arguably require a large dataset. Instead, we explicitly segmented the phase structure

of gesture motion. The expression of these phases and their sequencing may vary from

speaker to speaker, making their labelling a difficult and at times ambiguous task.

In an adversarial training paradigm, we used the automatic phase labelling to extract

the phase structure of real and generated motion. Producing realistic phase structures

becomes a training objective of the generator, enforced by a discriminator specifically de-

signed for distinguishing phase sequences. The set of training objectives further included

humanoid skeleton constraints, and utterance match and diversification objectives, each

represented by separate discriminators. Our multi-discriminator design allows the ges-

ture generation problem to be defined with multiple smaller sub-problems. We discuss

how each of our discriminator objectives improves the final result.

We will first introduce the phase classifier in Section 5.3, before discussing the speech-

to-gesture model in Section 5.4 and its adversarial training in Section 5.6.

5.2 Data processing

We wanted to isolate upper body motion and therefore restricted modelling to dataset

2 (see Chapter 3.2) in this chapter; dataset 1 proved very difficult to annotate due to
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the actor’s less distinct gesture motion and his frequent walking around and turning.

However, we used samples of dataset 1 in Section 5.3 to validate our results.

We processed the recorded speech with openSMILE [151] to extract 26 Mel Frequency

Cepstral Coefficients (MFCCs), as well as the F0 (pitch) value. MFCCs are commonly

used in speech recognition tasks and the F0 value as a prosodic feature carries informa-

tion about emphasis. Speech features were extracted with a window size of 20 ms at

steps of 10 ms, resulting in data of 100 fps.

We down-sampled the motion capture data from 120 to 100 fps to match the speech

features. We centered and locked the root node of the motion data to the origin position

with zero rotation and then extract the absolute positional values of the captured joints.

Our actor remains fairly static in his lower body and we were therefore able to capture

most of his dynamics from the joints upward of the locked root.

We normalized all speech and joint position features to zero mean and unit variance.

We trained all models on 20 fps; in order not to lose data, we took 20 fps data from 5

subsequent starting positions, resulting in 5 sets of 20 fps data.

5.2.1 Gesture phase annotation

We annotated the phase structure of a subset of 226 minutes of the complete dataset

using the ANVIL annotation tool [154]. The 226 minutes were selected at random from

the dataset. We aimed to annotate as much of our dataset as possible while ensuring

annotation quality. For this purpose, we trained six annotators whose work was then

repeatedly cross-checked at the start, before each annotator was assigned separate data

clips. We annotated nine different gesture phases; (1) preparation, (2) stroke, (3) pre-

hold, (4) hold, (5) independent hold, (6) rest hold, (7) partial retract, (8) retract, and (9)

‘none’. Table 5.1 shows the frequency of each phase within the annotated data subset.

Pre-hold and hold occur before and after the gesture, respectively. Independent hold

occurs when a gesture has no stroke, but is defined by a held pose. Rest hold occurs

when the hands are held in a relaxed position after a partial retract, without being fully

retracted to the sides of the body. None occurs when no gesture is being performed; the

arms are either fully retracted to the sides of the body or a no-gesture movement such
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Table 5.1: Frequency of the 9 annotated gesture phases in the total annotation set of
226 minutes.

Gesture phase Number of occurrences Percent of annotated
time

speaker 2 speaker 1 speaker 2 speaker 1

Preparation 5775 130 19.1% 14.9%
Pre-hold 979 17 3.2% 1.6%
Stroke 8655 160 39.6% 28.5%
Hold 5100 110 24.8% 26.1%
Independent hold 94 3 0.8% 0.7 %
Rest hold 474 27 3.1% 10.3%
Partial retract 1077 48 3.8% 6.5%
Retract 409 13 1.3% 2.1%
‘None’ 475 14 4.2% 9.3%
Total 23038 522 100% 100%

as a self-adaptor is occurring. An example of an annotated gesture sequence is given in

Figure 5.1.

The speaker performs on average 38.1 gesture strokes per minute, or one gesture every 1.6

seconds. Assuming roughly the same gesture frequency in the remaining un-annotated

140 minutes of data, we estimate that our dataset contains approximately 14,000 ges-

tures.

We computed pairwise coder agreement with ANVIL [154] by double-annotating five

samples totalling 50 minutes of data, each with a different annotator combination. We

found high segmentation agreement, averaging 98.5% (min=95.5%, max=99.9%), indi-

cating high consistency in detecting phase boundaries. For the overall coding agreement

that includes segment (or phase) labels, we achieved moderate agreement as defined by

Krippendorff’s alpha value [155], with a mean of ᾱ = 0.46 (αmin = 0.39, αmax = 0.5). As

we pooled all hold categories for the phase classifier in Section 5.3, we compared Krip-

pendorff’s alpha value for the case of treating post-stroke holds, pre-holds, rest-holds and

independent holds all as a uniform hold category: ᾱ = 0.47, αmin = 0.43, αmax = 0.53.

In order to evaluate the robustness of our automatic phase classification in Section 5.3,

we annotated a short sample of gesturing of a second speaker. For this, we took samples

of just under 5 minutes of data from dataset 1 (Section 3.1). This sample was not

included in the training set and only used for evaluation. The speaker in this dataset

exhibits a qualitatively very different gesturing style to the speaker in dataset 2. Speaker



Chapter 5. Adversarial Network Training 67

Figure 5.1: Sample of an annotated gesture sequence. For each annotated gesture
phase, the speaker’s accompanying phrase is given. (1) The hands start in a resting
position. (2) The preparation phase brings the hands into position for the gesture. (3)
The stroke phase carries the meaning of the gesture (the act of giving). (4) The hands
stay in position, the speaker pauses for a moment. (5) The hands are retracted partially
towards a restful position. (6) A new preparation phase immediately initializes the next

gesture. (7) Another gesture stroke is performed, describing “more”.

1 often incorporates the whole body in a gesture and rarely stands still. This means that

extracting the motion of the upper body joints does not fully describe the performed

gesture, some information will be lost. Hold phases mark another observable difference

between the two speakers; whereas holds tend to be associated with minimal movement

in speaker 2, the hold of speaker 1 appear overall less still, with the speaker in seemingly

constant motion.

Our annotated sample of dataset 1 suggests a similar gesture stroke frequency as ob-

served in our large-scale annotation of dataset 2; we calculated 33.6 gesture strokes per

minute. We annotated 160 strokes in this sample. All annotated phase frequencies are

reported and compared to speaker 2 in Table 5.1.

5.3 Phase classifier

Modelling gesture motion from speech directly is a hard problem. As described in

Section 5.1, the same phrase may be plausibly accompanied by many different gesture

shapes. Speech features may be more easily associated with the dynamics of gesture

motion; the kinematics of gestures (such as speed and acceleration) have been shown to

correlate with the prosodic features of speech [44]. However, implicitly inferring gesture

dynamics from raw positional data may be difficult and require a large amount of data.

We therefore modelled these dynamics explicitly. Namely, we extracted gesture phases
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as higher-level representation of the characteristic dynamics of gesture motion. This

representation is sufficiently low-dimensional (small set of different labels) to model its

structure from a relatively small dataset. We hand-annotated the phase structure of 3.75

hours of data (as described in Section 5.2.1) and trained a classifier to detect gesture

phases of a motion sequence. Our objective was to use this phase classification to enforce

a realistic phase structure in the gesture generator’s output. A classifier was necessary

so that any new (un-annotated) motion can be segmented into phases and judged for

its structural realism.

The phase structure variability within and between speakers previously discussed in

Section 2.5.2, makes the task of automatic classification challenging, and, for a new, un-

seen speaker, particularly error-prone. Nevertheless, we consider even imperfect phase

labelling a useful and reasonable way to explicitly describe different motion profiles

present within a gesture, separating effortful, accented gesture strokes from less accen-

tuated preparation and retraction as well as still hold phases. In this work, we focused

on modelling just one speaker and his gesture dynamics to maximise training consistency

of gesture dynamics in the training set.

The selection of gesture phases considered for enforcing realistic gesture dynamics is

detailed below in Section 5.3.1, followed by a description of the classifier training (Section

5.3.2) and network architecture (Section 5.3.3). We include a robust 1-phase classifier

for gesture stroke detection as a useful tool for future gesture analysis. The stroke phase

represents the core, meaning-carrying part of a gesture, and hence its segmentation is

essential for gesture form analysis. We validated all phase classification models on a

second speaker with different gesture style (speaker dataset 1).

An overview of the phase classifier’s role in the final architecture is shown in Figure 5.2,

and will be discussed in more detail in Section 5.6.1.

5.3.1 Phase class simplification

The classifier assigned one phase label to each time-step of an input sequence. For

training the classifier, we reduced the annotated gesture phase label set from nine to six

classes that capture the main phase types by combining all types of holds into one class.

This reduces the problem of unbalanced class frequencies (e.g. only 94 independent
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Figure 5.2: Overview of the system architecture. The generator receives speech
features and produces gesture motion. The multi-discriminator GAN receives three
different types of input: (1) the speech features belonging to a motion segment, (2) a
motion segment (real or generated), and (3) the phase structure of the motion segment

(determined by the phase classifier).

holds out of 23,038 phases), as well as removing some redundant information (e.g. a

hold occurring between preparation and stroke can be assumed to be a pre-hold; a hold

after a partial-retract is a rest-hold). Hence, we combined the labels ‘pre-hold’, ‘hold’,

‘independent hold’ and ‘rest hold’ into a super-class ‘hold’. In effect, this simplifies the

classification task by labelling all still frame sequences (sections with close-to-zero joint

velocities) as one class, with the exception of the completely retracted ‘none’ position

where the arms are relaxed by the side of the body. As discussed later, the partial-retract

phase proved difficult to classify, so for training our generative network, we decided to

combine it with the retract class, and due to its rarity we furthermore combine the fully

retracted ‘none’ class into the retract group.

For our adversarial training we therefore had four phase classes: Preparation, holds (in-

cluding pre-holds, independent holds, and rest-holds), strokes, and ‘other’. The ‘other’

class combines retracts, partial retracts, and ‘none’ annotations. We believe this subset

captures the most essential dynamics of gesture motion; we consider holds and strokes

the most important representatives of gesture dynamics and their separation tends to

get lost in standard training of recurrent networks (mean pose convergence leading to

smoothed, damped motion). Second, we separated the preparation phase due to its high

frequency and relevance in the gesture structure. Retracts are relatively infrequent for

the speaker, as is the ‘none’ phase (completely retracted position); we decided to pool

these classes together to make for a higher confidence model and a more achievable task

for the gesture generator. The phase labels produced by the classifier are used as pseudo

ground-truth during adversarial training, and we therefore need the classifier to be as

confident as possible in its decisions.
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5.3.2 Classifier training

Of our total of 226 minutes of annotated data, we separated 6.5 minutes of validation

data by randomly selecting 13 start indices from which to take 30 seconds of data

without overlap. Composing the validation data of snippets from multiple takes this

way ensured that the validation performance is not annotator- or take-specific. The

remaining annotations served as training data.

We trained three classification models for segmenting gesture. Firstly, we trained a 6-

class model distinguishing all annotated phases (but pooling all hold categories), second,

a 4-class classifier pooling rare phases into an ‘other’ class, and third, a 1-class model for

detecting only the core stroke phase with increased confidence. For the stroke classifier,

we predicted a single class, the stroke phase, which is the essential phase in gesture.

This allows for more confident classification when dealing with different speaker styles,

extending the applicability of this work. For all models, we trained a version each with

and without speech pitch input. The pitch value captures information about speech

emphasis and using a single speech feature ensures we are not increasing the input

space significantly and hence minimize the network’s ability to overfit. Including pitch

improved our classification scores for the multi-phase models slightly (see Table 5.2), in

line with the finding that speech is associated with gesture phase [156]. However, there

was no apparent benefit of including pitch for the stroke classifier.

5.3.3 Classifier architecture

The classifier processed sequences of 100 time steps (5 seconds at 20 fps), and assigned

a phase label to each step. The input of the classifier were the x, y and z directional

velocities of 16 joints (total of 48 values, each normalized to a range of 0-1), corresponding

to the shoulder, elbow, wrist, and each fingertip, as well as the corresponding pitch value.

The directional velocity of a coordinate is:

v(x) = xt − xt−1 (5.1)

The two multi-phase models are visualized in more detail in Figure 5.3, but generally

consisted of a two-layer recurrent network with an additional densely connected NN
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(neural network) layer for input processing. The recurrent layers were Long Short Term

Memory (LSTM) cells; specifically, a unidirectional LSTM in the first recurrent layer,

and a bidirectional LSTM in the second recurrent layer. LSTM cells can handle sequen-

tial data, such as time series data, and bidirectional LSTMs specifically take both past

and future data into account for predicting a time step. We regularized the network

by applying dropout after each layer and batch normalization before the final output.

Dropout rates were empirically determined to provide good performance without over-

fitting. The output layers of the multi-phase network applied a softmax activation.

The one-class stroke classifier is visualized in Figure 5.4. The architecture was similar to

the multi-phase classifiers but used only a single recurrent layer, a bidirectional LSTM

cell. The output layer applied a sigmoid activation in the single-class stroke classifier.

The differences in network architecture between the 3 classifiers resulted from empirically

Figure 5.3: The two detailed network configurations for our 4-phase classifier and our
6-phase classifier. ‘Dense’ denotes a standard densely connected NN layer. In brackets
are denoted the layer size or the dropout ratio. The 48 joint values refer to the x, y,

and z offsets of the 16 joints shown in Figure 5.5.

Figure 5.4: The network configurations for the 1-phase (stroke) classifier.
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finding the best performing configuration for each number of classes. The number and

size of recurrent layers was chosen based on the best found trade-off between modelling

capacity and generalizability, i.e. reaching good performance without overfitting.

5.3.4 Evaluation

5.3.4.1 Multi-phase classifiers

The multi-phase classifiers reached an overall weighted F-score of 0.76 for both the 4-

class and the 6-class model. The detailed results can be seen in Table 5.2. The stroke and

hold phases reached the highest scores; this is likely due to both their distinct dynamics

as well as their high frequency in the training set (see Table 5.1). Lower frequency

phases with less distinct dynamics, such as partial retracts, were more difficult to detect.

Furthermore, partial-retracts and preparation phases both averaged a length of less than

500 ms, making them potentially harder to catch as well as align; at our training sample

rate of 20 fps, a prediction with just one frame of erroneous shift would only yield

an 80% score. Notably, the annotated phase labels are only pseudo ground truth, as

determined by an annotator, resulting in some inconsistencies and errors. Inter-rater

category agreement for our evaluation samples averaged 64.4%, capping the realistically

achievable score for the phase classifier.

Since the input was always a sequence of 5 seconds from a randomly drawn starting

point, the classifier had limited context information for predicting the phase label of a

time step. Providing the label of the phase preceding a sequence or increasing sequence

length may improve classification results.

Validating our classifiers on the annotated sample of dataset 1 (denoted as ‘speaker

1’), the 4-class model proved more robust with an F-score of 0.69. The 6-class model

reached a score of 0.65, with the weakness lying in the less common classes, particularly

partial-retract. The most confidently predicted class throughout all model versions and

across both speakers was the ‘hold’ class; this may be the easiest class to extract as

it contains almost all sections of zero velocity. Possible exceptions are the no-gesture

sections annotated as ‘none’, though the speaker tends to swing his arms during these

and indeed not stay still.



Chapter 5. Adversarial Network Training 73

We compared results for the classification models, with and without speech pitch input

(Table 5.2). For the multi-phase models (Table 5.2), the benefit of including pitch in the

input to the classifier was more pronounced for the 6-class model, where all individual

scores except ‘partial retract’ were improved by including pitch, as well as showing

an improvement of 0.03 in the overall weighted F-score. For the 4-class model, the

individual class scores improved (all except stroke) or remained the same (stroke), but

the weighted overall F remained the same when including pitch as input. We also report

the performance of the no-pitch models on the second speaker. No benefit is apparent

for including pitch of the second speaker; this may be due to the articulation differences

between the training and the validation speaker and using the pitch derivative instead

could address this. For the stroke classifier, no benefit of including pitch is apparent for

either speaker (Table 5.3); for the the validation speaker, using no pitch input yielded

better performance.

We compared our results with the work of Madeo et al. [53] (Table 5.2), who employ

a hierarchical strategy of single-class classifiers, where e.g. a hold classifier first detects

all holds, subsequently a stroke classifier detects all strokes in the remaining data, etc.

Their results represent the best scores across multiple models rather than a single model

encompassing all gesture classes. That is, they trained combinations of single-class clas-

sifiers and the here reported results represent the highest scores for each class across

combinations. For example, the model achieving the score of 0.79 for detecting a prepa-

ration phase is not the same model that achieves the score of 0.79 for stroke detection.

Another significant difference to our work lies in the dataset composition; Madeo et al.

[53] restricted the two captured participants to describing one of three comic strips.

Their results indicated high dependence of performance on the comic story the classi-

fiers were trained on (significantly reduced performance when training and test data were

taken from different comic strip retelllings), as well as on which participant a classifier

was trained on. As our dataset was captured across multiple days, with a large variety

of spontaneous, uncued gestures, the performance of the classifiers presented in Madeo

et al. [53] would likely not be adequate for this work.
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Table 5.2: F-scores of phase classifier. Results without pitch input are reported in
brackets behind the results with pitch input. Our ‘other’ class combined the labels

retract, partial retract, and none.

Gesture phase 4 classes 4 classes
speaker 1

6 classes 6 classes
speaker 1

F-score
Madeo et al.

[53]

Preparation 0.64 (0.63) 0.56 (0.55) 0.65 (0.64) 0.56 (0.51) 0.79
Stroke 0.79 (0.79) 0.72 (0.7) 0.79 (0.78) 0.71 (0.71) 0.79
Hold 0.83 (0.82) 0.76 (0.76) 0.81 (0.78) 0.74 (0.77) 0.58
Partial retract - - 0.47 (0.49) 0.39 (0.35) -
Retract - - 0.73 (0.70) 0.54 (0.52) 0.5
‘None’ - - 0.75 (0.56) 0.51 (0.59) -
‘Other’ 0.64 (0.6) 0.58 (0.54) - - -
Overall 0.76 (0.76) 0.69 (0.67) 0.76 (0.73) 0.65 (0.66)

Table 5.3: F-scores of the stroke classifier.

Gesture phase trained
speaker

speaker 1

Stroke 0.79 (0.78) 0.72 (0.74)
No stroke 0.85 (0.86) 0.86 (0.88)
Overall 0.83 (0.83) 0.82 (0.84)

5.3.4.2 Stroke classifier

The stroke classifier reached a weighted average F-score of 0.83 on the speaker it was

trained on (speaker of dataset 2), and a score of 0.84 on the validation speaker (speaker

of dataset 1). Inter-coder category agreement for the case of stroke/ no stroke was

naturally higher than for the full set of gesture phases, averaging 74.3%. Interestingly,

it can be seen that the stroke classification score (first line in Table 5.3) was the same as

in the multi-phase models for the training set speaker, reaching 0.79 for the training set

speaker, and similar for the validation speaker, suggesting that we may have reaching

the maximum score possible with an imperfect training set. The higher phase label

consistency of the stroke training set may therefore be the main reason for the more

robust classification.
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5.3.5 Discussion

Looking at the relationship between the achieved F-scores and the inter-rater category

agreement, we hypothesize that improving coder agreement would much improve classi-

fication results. We believe future improvements on the phase classification should focus

on improving the training data consistency rather than the classification model.

The robust classification score of the stroke classifier for both the training speaker as well

as the validation speaker makes it a good tool for future gesture analysis. As the stroke

phase represents the essential, meaning-carrying part of a gesture, stroke segmentation

is useful for additional information extraction such as gesture form detection.

It is less straightforward to train a classifier for other single phase types, as was done

with the stroke present/ not present classifier. Since other phases occur less often across

the training set, splitting our dataset into e.g. preparation/ no preparation would result

in about a 1:5 ratio. Such unbalanced classifiers are more difficult to train, requiring a

weighted loss function or an adapted (balanced) dataset (the latter resulting in a smaller

training dataset).

‘Hold’ predictions may be more easily segmented by simply computing sections of close

to zero velocity, and this could aid additional segmentation by an annotator as well as

increase inter-coder consistency.

5.4 Gesture generator

The gesture generator was the core of our system and models the speech-to-gesture

translation. The generator took speech features as input and produces the positions of

the 21 joints shown in Figure 5.5.

5.4.1 Generator architecture

The generator received 27 speech features as input, composed of 26 MFCC values and

the speech pitch (F0) value. The generator then inferred the x, y, and z positions of 21

joints: the hand, arm, and spine joints depicted in Figure 5.5.
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Figure 5.5: The 21 joints predicted by the generator.

The generator architecture is visualized in Figure 5.6. The speech input was processed

by a densely connected NN layer (size 256, relu activation), followed by a dropout layer

(30% during pre-training, 20% during adversarial training) and batch normalization.

The network core was a Gated Recurrent Unit (GRU, size 256, dropout of 50% during

pre-training and 20% during adversarial training). A GRU is a variant of a recurrent

network cell with fewer parameters than an LSTM, allowing faster training. The output

layer (densely connected NN layer with linear activation) of the generator produced the

x, y and z position of 21 joints.

During pre-training (described in the below Section 5.4.2), the dropout rate was larger

due to the MSE function used in pre-training posing a high probability of overfitting.

The MSE gave the generator direct feedback on how far each predicted pose is from the

ground truth. During later multi-adversarial training, the generator received less direct

output feedback and was therefore less likely to be able to overfit on the dataset. The

adversarial loss merely tells the generator the likelihood of the discriminator(s) finding

its output to be real data, without per-pose numerical error feedback.

5.4.2 Generator pre-training

During later adversarial training (Section 5.6.1), the generator received feedback based

on the phase structure of its motion output. This phase structure was determined by the

phase classifier previously described in Section 5.3. The automatic phase classification

meant that no matter what input, a phase label will be assigned to each time-step.

Data points diverging from a skeleton structure and not resembling human motion could
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Figure 5.6: The generator network. The generator received 27 prosodic speech fea-
tures (26 MFCCs + F0) and produced the xyz position of 21 joints. In brackets are
denoted the layer size or the dropout ratio; the larger dropout ratios applied to pre-

training with MSE.

get assigned an indeterminable phase label. We did not want very unrealistic data to

be assigned a potentially realistic phase labelling. This could allow for the following

scenario: the generator generates effectively noise, the classifier produces a realistic phase

structure based on this, the generator receives positive feedback for having produced

motion with a realistic phase structure. We therefore first ensured a quality baseline of

generator output that can reasonably be assigned phase labels by the phase classifier.

Hence, before adversarial training, we initialized the generator to a baseline output

resembling a skeleton structure. For this, we pre-trained the generator with a standard

mean squared error (MSE) loss of generated versus real motion:

MSE(mg,mr) =
1

T

T∑
t=1

(mg −mr)
2 (5.2)

MSE training allowed for fast convergence towards a skeleton structure, but as expected,

this training suffered from mean pose convergence and produced only very damped

motions around the average joint positions. This is visualized in Figure 5.7f, as well as

in the supplemental video. We used this model as the starting point for the adversarial

training, and utilized the training history for pre-training the phase discriminator as

described in Section 5.5.1.

5.5 Adversaries

A training objective with a standard regression loss can be problematic for gesture

generation due to the variability of speech gesture. The same or a similar utterance may

reasonably be associated with various different gestures; the generator may produce a
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Figure 5.7: Motion distribution over 2 minutes, plotted at 4 fps. For one example
clip, a) shows the real data distribution, b) the distribution with our method, c-e)
examples of excluding specific training objectives, and f) the distribution for a model

trained with a standard regression loss.

subjectively valid gesture that is nonetheless objectively far from the ground-truth pose

sequence, resulting in a high training error. A common result is mean pose convergence,

where the generator produces damped motion around the mean, minimizing error across

all possibilities. Our adversarial training paradigm removed the tight constraint of

predicting exact poses while still enforcing higher-level descriptors of natural gesture, as

well as lower-level humanoid skeleton configuration constraints.

Specifically, in an adversarial training paradigm, the generator receives as feedback only

a single value per generated gesture sequence, representing the decision of the discrimi-

nator whether the presented sequence looks real or not. Therefore, rather than receiving

a numerical error for every pose in a sequence as is the case in a standard regression

loss, the generator receives a single, more qualitative judgement about the entire pose

sequence.

Our chosen descriptors of natural gesture can be summarized as three basic objectives:

(1) The generator should produce sequences of joint positions that represent valid hu-

man skeleton configurations. (2) The produced pose sequences should describe realistic

gesture dynamics, including distinct phases such as periods of acceleration as well as
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stillness. (3) The output pose sequences should be appropriate with respect to the

speech they accompany. With this selection of objectives, we aimed to ensure that our

output can both be considered speech gesture (valid human skeleton moving accord-

ing to speech), as well as addressing the problems of previous works of overly smooth or

lethargic motion by explicitly enforcing some characteristics of gesture motion dynamics.

In the next Section, we will discuss how we represented the above output objectives with

a set of training adversaries, called discriminators, each enforcing a different part of the

objectives. Each discriminator was a separate neural network, with its own training

loss feedback. Their architectures are detailed in Figure 5.8; we will describe each

discriminator one-by-one below.

Figure 5.8: Network architecture of the adversaries. Left: Phase, motion, and dis-
placement discriminators. Right: Minibatch discriminator. All discriminators applied
input transformation via a standard densely connected NN layer. (The minibatch layer
applied Equation 5.3 before the input transformation.) Dropout was applied subse-
quently, followed by a recurrent unit (left) or another densely connected NN layer

(right). The output layer applied a sigmoid activation.

5.5.1 Phase structure discriminator

The phase discriminator’s job was to determine whether the generator’s output follows a

realistic gesture phase structure. This discriminator therefore only received phase labels

as input rather than joint positions. We additionally provided the phase discriminator

with the pitch value at each time-step as an indicator of speech emphasis. The network

architecture of the phase discriminator is detailed in Figure 5.8a.

Phase labels were always determined by the phase classifier; that is, we never used the

ground truth annotation during adversarial training. This ensured that any differences
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in the phase structure of real and generated data was not due to potentially noisy au-

tomatic classification. As the phase labels were automatically determined by the phase

classifier, we wanted to ensure somewhat sensible input to the classifier, i.e. input resem-

bling human motion, and we therefore pre-trained the generator with a standard MSE,

allowing fast convergence to a skeleton structure (see Section 5.4.2). Before adversarial

training, we similarly prepared the phase discriminator, essentially letting it “catch up”

to the pre-trained generator. For this, we utilized the training history of the generator’s

pre-training: The generator’s network weights saved periodically during its pre-training.

For pre-training the phase discriminator we used this history as follows: The phase dis-

criminator received the classified phase labelling of an untrained generator (i.e. noise

input); when the phase discriminator achieved an accuracy score of at least 70% for three

batches in a row, the generator got ‘upgraded’ with the next set of weights from the

training history. This was repeated until the phase discriminator had reached the level

of the fully pre-trained generator (last saved set of network weights). This step-by-step

upgrading of the generator’s weights served to not overwhelm the discriminator during

pre-training.

5.5.2 Motion realism discriminator

Adversarial training between the generator and the phase discriminator alone would

quickly lead to divergence from the skeleton structure due to the phase discriminator

only judging the automatically classified phase labels. As described in Section 5.4.2,

the phase classifier may assign a realistic phase structure to unrealistic input; when the

generator is judged solely on this phase structure, it may receive positive discriminator

feedback for entirely unrealistic output and we found this to lead to increasing diver-

gence from skeleton-like joint positions. To address this problem, we employed a second

discriminator that judges the output of the generator directly by receiving the raw gen-

erated joint positions, as well as the corresponding audio features. This discriminator

received as input the 63 joint values (x, y, z of 21 joints) and 27 speech features. Its

network architecture is detailed in Figure 5.8a.

The motion realism discriminator was pre-trained in a classic adversarial training setting

with a new generator in order to learn to detect unrealistic point clouds not resembling
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a skeleton. This was necessary in order to not allow the already pre-trained generator

to regress to non-humanoid point clouds.

5.5.3 Minibatch discriminator

Adversarial training is prone to suffering from mode collapse, where the generator pro-

duces repetitive patterns of output. While the discriminator can immediately learn that

this specific pattern comes from the generator, the generator only needs to shift its

repetitive output slightly to fool the discriminator. This may be repeated in an infinite

cat and mouse game. One reason for this mode collapse is that a standard discriminator

only judges one output sequence at a time, rather than in the context of a whole batch

of data. A minibatch layer can be added to allow the discriminator to see this context

and ensure that the generator cannot get away with even novel patterns when they are

repetitive throughout the data batch [157].

Instead of integrating minibatch discrimination into the motion realism discriminator, we

achieved better performance when outsourcing the task to a separate discriminator. This

discriminator received the 63 joint values (x,y,z of 21 joints) generated by the generator

or taken from the ground truth and calculated a minibatch similarity measure:

sim(X) = L1(W ·X), (5.3)

where L1 denotes the L1 norm and W is a 300-dimensional (trainable) weight tensor.

The detailed architecture of the minibatch discriminator is shown in Figure 5.8b.

5.5.4 Displacement discriminator

The generator’s output at the beginning of adversarial training was the damped motion

learned from the MSE pre-training. To encourage the generator towards less damped

motion, we introduced a displacement discriminator that received the same motion input

as the phase classifier, namely the per-frame x, y, and z offset of the 16 arm joints (48

values). That is, the displacement discriminator explicitly saw how much each joint has

moved at each time-step; it could penalize a generator that produces very slow (or very

fast) motion. In effect, the displacement discriminator judged the directional velocity

of the generated joint positions. The displacement discriminator also served to reduce
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jitter in the motion (offset in one direction always followed by some offset to opposite

direction).

The error from this discriminator received a lesser weight and serves as a minor side

objective of the generator training, helping to stabilize and speed up convergence and

smooth output motion. The architecture of the displacement discriminator followed that

of the motion realism discriminator and is visualized in Figure 5.8a.

5.6 Training process

During adversarial training, the generator’s output was judged by all discriminators and

an averaged error was computed, as detailed in Section 5.6.1 below. This was followed

by a training step of objective numerical errors. The objective error functions sped up

convergence and enabled continuous prediction, as described in Section 5.6.2.

5.6.1 Adversarial training

The adversarial training is visualized in Figure 5.9 and summarized below:

• The generator receives 27 prosodic speech features as input and generates corre-

sponding 3D positions of 21 joints.

• The phase classifier first converts the joint positions to frame offsets and sub-

sequently predicts a sequence of gesture phase labels. The phase classifier also

receives as input the F0 (pitch) value of each frame. The classifier’s weights are

fixed during adversarial training.

• The produced phase label sequence of the classifier, plus the F0 value, serve as

input for the phase structure discriminator.

• The motion realism discriminator receives the joint positions directly, as well

as all corresponding 27 speech features.

• The displacement discriminator receives the same motion input as the phase

classifier, the per-frame joint offsets of the 16 arm and hand joints.

• The minibatch discriminator only receives the joint positions as input.



Chapter 5. Adversarial Network Training 83

All three discriminators were trained with a binary cross-entropy loss to determine

whether a motion sequence is real or generated. The discriminators learn independently

from each other, sharing no weights and receiving individual training loss feedback. The

loss of the generator with respect to the three discriminators was weighted and com-

bined into a single value for the generator’s training step. All models worked with input

sequences of 5 seconds, at 20 fps, resulting in 100 time-steps.

During adversarial training steps, the generator optimized the binary cross-entropy of

the discriminators’ output. The generator’s training error with respect to the four

discriminators was averaged for each optimization step in the following manner:

LGAN (G) =
wpL(G,Dp) + wrL(G,Dr) + wmL(G,Dm) + wdL(G,Dd)

wp + wr + wm + wd
,

with wp = 2, wr = 4, wm = 4, and wd = 1,

where wp is the weight assigned to the phase discriminator’s loss, wr the weight for

the motion realism discriminator, wm the weight for the minibatch discriminator, and

wd the weight for the displacement discriminator. L(G,D) represents the generator’s

objective with respect to one discriminator. The weighting of 2:4:4:1 was chosen by

empirically finding values that led to stable training with respect to all discriminator

objectives, without the generator collapsing with respect to one or more objectives.

The adversarial training of the generator is visualized in Figure 5.9, representing a more

detailed version of the previously presented Figure 5.2. We used the RMSprop optimizer

during adversarial training.

5.6.2 Objective loss penalties

In addition to the adversarial updates of the generator, one MSE correction was per-

formed per two adversarial steps. The MSE avoids major deviations of the generator’s

output from a realistic skeleton structure that would produce nonsensical phase label

output and slow down the training overall. An alternative, similar approach would be

to restrict joint positions to realistic ranges.
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Figure 5.9: Adversarial training. The generator produced joint positions based on
input speech features. Its output was judged by four discriminators with separate
objectives, and a weighted error was computed with respect to all four evaluations.
Each discriminator optimized the binary cross-entropy objective, deciding if a given

data sample is real or generated.

The generator was trained to predict gesture motion for 5 seconds of speech input

at a time rather than for continuous input. Gesture motion was therefore continuous

within 5 second prediction intervals, but could be visibly discontinuous between intervals.

To avoid having to compute smooth transitions in post-processing, we introduced a

penalty for the generator for discontinuous sequences within a training batch. The

discontinuation penalty was computed as the mean squared distance between the start

position of a sequence and the end position of the preceding sequence. The penalty for

first sequence within a batch was always set to zero and otherwise:

Lcont(G) =
1

T

T∑
t=1

(G(x)(t)−G(x)(t− 1)))2 . (5.4)

We observed during adversarial training that the predicted finger positions often moved

far from the hand. To speed up the training process, we added a simple finger distance
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penalty restricting the predictions to realistic ranges. We computed the distance of each

finger marker to the respective hand marker and calculated the MSE with respect to the

real distances:

Lfingers(G) =
1

n

n∑
i=1

(Dfingers(G(x))−Dfingers(Y (x)))2 (5.5)

with Y (x) denoting the ground truth for sample x, and Dfingers computed as the con-

catenation of each finger marker’s x, y, and z distance from the respective hand.

5.7 Results

We conducted a series of qualitative evaluations to clarify the roles of each discriminator

and their benefits for generator training, and quantitative evaluations of the resulting

generator output. For our qualitative evaluation, we assess the output visually and

discuss the subjective performance. We will below refer to an illustrative video at

https://youtu.be/tHKqDPy8vHU.

5.7.1 Qualitative evaluation

5.7.1.1 Phase structure discriminator

The phase structure discriminator allowed us to capture important gesture dynamics

without having to rely on implicit learning from a larger dataset (such as in Ginosar

et al. [124]). During the pre-training described in Section 5.5.1, this discriminator easily

learned to distinguish the (noisy) classified phase structures of real motion and motion

produced by the pre-trained generator. During adversarial training, the phase discrim-

inator’s accuracy remained balanced with the generator’s while the generator’s output

was improving in quality. We visualize the benefits of the phase discriminator for encour-

aging better gesture motion dynamics in a video at https://youtu.be/tHKqDPy8vHU;

without the phase discriminator, the motion showed no clear holds or accelerations char-

acteristic of the stroke phase. The motion appeared to correspond less with the speech

prosody.

https://youtu.be/tHKqDPy8vHU
https://youtu.be/tHKqDPy8vHU
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5.7.1.2 Motion realism discriminator

The phase discriminator’s judgment alone was not a sufficient constraint for the gen-

erator’s output. As described in Section 5.5.2, the automatic phase label classification

of the generator’s output and the phase classifier’s naivety with respect to non-human

point clouds provided too much room for the generator to produce unrealistic data. The

motion discriminator presented a better constraint for maintaining a skeleton structure

as it saw the generator’s output directly and successfully constrained the generator to

data points resembling a skeleton structure. Figure 5.7e visualizes the output distribu-

tion produced by a generator unconstrained by a motion discriminator. The video at

https://youtu.be/tHKqDPy8vHU also shows a sample of the motion produced without a

motion realism discriminator; the joint positions move away from the skeleton structure,

producing output not resembling human motion.

5.7.1.3 Minibatch discriminator

As a vanilla discriminator only judges output sequences in isolation, without taking

the context of the data batch into consideration, the generator can suffer from mode

collapse, as described in 5.5.3, and visualized by the plotted data distribution in Figure

5.7c. Our minibatch discriminator successfully forced the generator to produce more

diverse output. The video at https://youtu.be/tHKqDPy8vHU shows the repetitive

motion generated under mode collapse, as well as the improved, more diverse output

with minibatch discrimination. We considered two alternative integrations of minibatch

discrimination into our model, namely as part of the motion realism discriminator and

as part of a separate discriminator. In practice, we found adversarial training to be more

stable when outsourcing the minibatch discrimination to a separate discriminator only

receiving motion input. Generator training was less likely to collapse with respect to

one discriminator when the adversarial objective was more distributed. The benefit of

employing multiple discriminators has also been discussed in previous works [158, 159].

5.7.1.4 Displacement discriminator

Learning from the phase discriminator’s feedback would potentially be difficult for the

generator due to the hidden layers between the generator and phase discriminator (i.e.,

https://youtu.be/tHKqDPy8vHU
https://youtu.be/tHKqDPy8vHU
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the phase classifier’s computations that are inaccessible to the generator). The genera-

tor’s motion output was first converted to per-frame offsets of the joints and then passed

to the classifier for higher level feature extraction. Introducing a discriminator receiving

the same processed motion as the classifier can provide more direct feedback. In practice,

we found that the addition of such a displacement discriminator sped up learning and

moved predictions away faster from the damped baseline motion produced by the pre-

trained generator. We visualize this by plotting an example data distribution in Figure

5.7d. The slow departure from the mean pose when training the model without the dis-

placement discriminator is also shown in the video at https://youtu.be/tHKqDPy8vHU.

We also illustrate the smoothing benefit of the displacement discriminator in the video:

When training the generator without any discriminator receiving the joint offsets (i.e.

with neither the displacement discriminator nor the phase classifier and discriminator),

the motion output displayed a great amount of jitter. We show that adding the dis-

placement discriminator reduced jitter to a large degree. This discriminator received

the smallest weighting in the generator’s objective.

5.7.1.5 Adversarial error weighting

We found a weighting of 2:4:4:1 for the error of the phase discriminator, motion re-

alism discriminator, minibatch discriminator, and the displacement discriminator, re-

spectively, to achieve the most stable training, measured by the accuracy of the binary

cross-entropy objective for each discriminator. This weighting allowed us to see sta-

ble accuracy improvements for the generator across all adversarial objectives without

collapse with regard to one or more objectives.

5.7.1.6 Objective losses

The discontinuation penalty was largely successful in reducing the positional jumps

between predicted motion sequences, making the model more applicable for continuous

gesture generation for long sequences of speech input. The finger distance penalty proved

a simple measure to avoid unrealistic finger positions without strongly constraining the

generator in its predictions.

https://youtu.be/tHKqDPy8vHU
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Figure 5.10: Quantitative gesture generation evaluation. Top: Wrist velocity for each
predicted time step, median across 150 sequences (see Equations 5.6 and 5.7). Bottom:
Maximum distance of the wrists from mean pose for 50 randomly selected sequences.

5.7.2 Quantitative evaluation

We provide a quantitative evaluation of our generation results based on the wrist motion

in Figure 5.10. We present these results in an ablation manner, as in Figure 5.7, evalu-

ating how removal of a specific discriminator in training affects the generation result.

The top graph plots the wrist velocity per predicted time step, each representing the
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median over 150 predicted gesture sequences. This 1-dimensional velocity of the 3-

dimensional x, y, z joint coordinates of a time step t and a sequence i is more specifically

calculated as follows:

velocity(ti) = |xti − xti−1 |+ |yti − yti−1 | − |zti − zti−1 | (5.6)

velocity(t) = median(t0, t1, ...ti, ...tn) (5.7)

We can see that one of the closest matches of real motion (red) are achieved by our

model (purple) and the system configuration removing the motion discriminator (green).

However, the latter configuration generated joint positions that heavily violated human

skeleton constraints. Removing the minibatch discriminator (brown) produced faster

than real motion, as well as resulting in highly repetitive output. The output under

removal of the displacement discriminator (blue) as well as the output the generator

trained solely with a mean squared error loss (yellow) exhibited very slow motion, much

below realistic levels.

The bottom graph in Figure 5.10 plots the maximum distance travelled away from the

mean pose, for 50 example sequences. The closest match to real wrist position ranges

was achieved by our model, though it does not reach the wide ranges of real motion.

The MSE-trained generator and the no-displacement-discriminator condition showed a

comparable level of variation to real motion, but the gestures were overall closer to the

body both than real motion and than for our model. The no-motion-discriminator condi-

tion similarly produced lower ranges than real motion. The no-minibatch-discriminator

condition produced very stable ranges, indicative of the repetitive gesture sequences

generated.

5.8 Discussion

We explored generative adversarial networks for speech-to-gesture translation with higher

level feature extraction. Gesture motion is marked by distinct dynamics, including

phases of acceleration and effort, of pause, and of relaxation. These higher-level dy-

namics can be difficult to capture implicitly. To enforce these dynamics more explicitly

in a top-down manner, we train a classifier to detect gesture phases automatically, and



Chapter 5. Adversarial Network Training 90

then train a phase structure discriminator to detect realistic versus non-realistic phase

sequences.

To train the phase classifier, we hand-annotated the phases of an over 3.7 hour long

subset of dataset 2 using 9 different phase labels. We validated our results on a different

speaker, for whom we annotate an additional small sample of gesture sequences. We

compared three models of phase classification with different levels of detail (1-, 4-, and

6-class classification). We achieved good results, and we conclude that our error rate

may, to a relatively large extent, be due to inter-coder inconsistencies. This leads to

the dilemma of weighing data quantity against data quality; the large time requirement

of hand-annotation (1 hour or more work for 1 minute of data) tempts distributing the

work load across a number of people, but this may lead to increased problems with

annotation consistency. When motion capture is available, we suggest that automati-

cally pre-annotating all sections with close to zero velocity as ‘hold’ could speed up the

annotation process as well as increase inter-coder agreement in future work.

Our 1-class stroke classifier performed similarly well on both the training and the valida-

tion speaker. 4- and 6-class classification reached equal scores for the training speaker;

for the validation speaker, the 4-class model achieved a significantly higher score. One

reason for the drop in performance on the validation speaker for the multi-phase models

may be differences in speaker style, leading to different expressions of gesture phase.

The higher the level of detail, the larger are the expected inter-speaker differences. Ideal

phase classification may therefore always be speaker-specific.

For training the gesture generator, instead of using a standard regression loss, we con-

structed a generative adversarial setting with multiple discriminators. We observed a

clear advantage of adversarial training over using a standard regression loss; the pro-

duced motion had a larger positional range, more realistic velocity, and appears much

less damped.

By using multiple discriminators, we could phrase the speech-to-gesture generation prob-

lem as a series of sub-problems. We used our automatic phase labelling to enforce a more

realistic gesture phase structure in our output; this was the task of the phase structure

discriminator. The phase structure discriminator enabled the enforcement of higher level

dynamic characteristics in the output without having to rely on implicit learning from

a large amount of data.
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Because an automatic phase classifier would always assign some phase label to even ran-

dom point clouds, we constrained the motion output with a second discriminator judging

the generated joint positions as real or fake; this was the task of the motion realism dis-

criminator. Because the motion realism discriminator’s task was to judge one generated

motion sequence at a time, it could allow for the same sequence to be generated repeat-

edly. A minibatch discriminator detected such repetitive patterns, ensuring diversity

in the output. Lastly, generated motion can often look jittery; we addressed this by

including a the training objective of realistic joint displacement per frame, monitored

by the displacement discriminator.

To our knowledge, this is the first work using adversarial training for generating 3D

gesture motion from natural speech, and the first work exploring the use of multiple

discriminators for the purpose. We observed a benefit of using multiple discriminators

to stabilize adversarial training, and we reported how each discriminator addresses a

distinct sub-problem in the gesture generation task. We employed explicit modelling of

the dynamics of gesture motion to allow learning of these higher level features from a

smaller dataset. We see our work as a further step towards enabling automatic animation

of realistic conversational agents.

Our results are limited to gesture generation for the single speaker we utilized and

more data of various speakers would be necessary to make generalizations. Due to the

high variance of gesture behavior across speakers, this is a very difficult task. Because

we generated gesture motion from prosodic speech features, semantically meaningful

gestures can hardly be inferred without explicitly employing speech recognition methods.

Speech recognition, however, would likely only yield a benefit when using a much larger

dataset, ensuring a number of examples of the same phrases.

While generated motion improved greatly with respect to standard regression loss train-

ing, the produced motion still lacked desirable levels of realism. As we have discussed

previously in this thesis, gesture motion and its relationship to speech is quite complex,

and generating realistic gesture based on speech is therefore a difficult task to train

requiring guiding feedback to the generator. While in the previous chapter we have

discussed that a standard training function such as the mean squared error on joint

positions or angles is too strict and constraining for the generator, the very simple feed-

back of a discriminator’s believe/ don’t believe judgment may be too little information



Chapter 5. Adversarial Network Training 92

for the generator to find a good solution, more “teacher guidance” may be beneficial.

Looking forward, in the next chapter, we will evaluate other measures of gesture appro-

priateness. Using the gesture phase extraction of this chapter, we will conduct a deeper

analysis of the relationship between gesture characteristics and accompanying speech

by investigating more specific descriptors of a gesture that may be used for assessing a

gesture model output.



Chapter 6

Gesture Parameters from Speech

In this chapter, we explore gesture representation through higher level motion param-

eters.1 We propose five gesture parameters and assess how well they may be modelled

from speech as well as their impact on perceived speech-gesture match.

6.1 Introduction

We have discussed that a major difficulty in modelling the speech-to-gesture relation-

ship is the highly non-deterministic input-to-output relation. There are a multitude of

possible gestures for each utterance, varying not only between speakers but also within.

Therefore modelling gestures as sequences of joint positions or angles can fail to cap-

ture the natural variety of gesture motion. We have explored the use of a generative

adversarial training paradigm avoiding any explicit feedback with regard to joint pose,

however, this appeared to lack learning information for the generating network. In this

chapter, we explore alternative representations of gesture that do not rely on explicit

joint positions or angles while allowing more specific modelling of the gesture motion.

We investigate a number of gesture descriptors for their usability in this task, specifi-

cally, by assessing their computability from a speech signal as well as their impact on

perceived gesture performance.

1The contents of this chapter were published at the ACM International Conference on Intelligent
Virtual Agents 2020 (IVA’20) (Listed Publication 4). The second author, Michael Neff, acted as an
additional advisor, contributing to the study design, and provided the animation engine.
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In light of the discussed difficulties designing a speech-to-gesture system, we want to

determine, if not through explicit joint poses, how can we infer gesture information

from speech? The Growth Point theory of McNeill [15] suggests that rather than speech

directly informing the gestures to be produced, speech and gesture are both expressions

of the same cognitive process, two channels expressing the same idea. Therefore, speech

may give us an indication of the underlying intention that inspired a gesture, but may

never fully predict the gesture expression. Often however, we want to rely solely on

the speech signal for generating gesture behavior due the ease of obtaining such speech

in real applications. For generating gestures from a speech signal, we are interested to

what extent we can predict the expressive qualities of gesture from speech; specifically,

which characteristics of gesture correlate well with the speech signal, can be predicted

successfully and are perceptually important. To this aim, we first need to determine a

number of gesture parameters, that describe the expressiveness of a gesture.

The previous work presented on parameter representation of gestures in Section 2.6.2

shows that we can reliably influence perceptions of personality by applying simple mod-

ifications, and gives some evidence that matching measures of gesture expressivity to

speech can increase appeal. While tackling the speech-to-gesture problem, we are in-

terested in which gesture parameters are related to the speech expression. On the one

hand, we would like to know which gesture parameters can be successfully predicted

from speech. On the other hand, we want to understand which of these parameters

are important for perceived plausible gesture synthesis. In this chapter, we build upon

both previous work on modelling the speech to gesture relationship, as well as work on

gesture representation through parametrization of the motion expressivity. The previ-

ously discussed work by Hartmann et al. [94] (see Section 2.6.2) reported evidence that

matching expressive motion parameters, such as scale, fluidity, and dynamic power, to

the communicative intent makes the gesture behavior more appealing.

Firstly, by training multiple recurrent networks to model the speech to gesture parame-

ter relationship, we could assess how well a particular gesture parameter may be inferred

from a speech signal. Secondly, we determined the perceptual relevance of the gesture

parameters in an empirical study. Examining the perceptual saliency of attributes of ges-

ture motion provides guidance on what features must be accurately modeled to produce

satisfying results.
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6.2 Data processing

We used the two datasets presented in Chapter 3, combined representing over 10 hours

of synchronized high-quality speech and motion recordings. In the sections below, we

describe how speech and motion data was processed to extract feature sets.

6.2.1 Speech processing

We tested the suitability of three different feature sets for speech processing. The first

set consists of the 12 Mel-frequency cepstral coefficients (MFCCs), common in speech

recognition as well as previous speech-gesture work [119, 160]. Secondly, we tested

Geneva Minimalistic Acoustic Parameter Set (GeMAPS), both the 18 features of the

compact version, as well as an extended set of 23 features presented in Eyben et al.

[161]. The GeMAPS has been specifically developed for affect recognition. Finally,

we tested a three feature set simply consisting of the pitch (F0), plus its first and

second derivative to describe change over time. We extracted all speech features using

openSMILE [151]. After training a number of speech-to-gesture-parameter models in

an exploratory manner with each of the three feature sets, we found GeMAPS to work

best overall, as measured by the numeric loss during training, with the compact and

the extended feature set performing similarly. MFCCs performed well but slightly worse

than GeMAPS, and the feature set of pitch plus derivatives greatly underperformed. We

will therefore report results using the GeMAPS input representation.

6.2.2 Gesture processing

We aimed to find a number of gesture characteristics that could describe the expression

of a gesture. We define these characteristics based on the central part of a gesture,

the stroke phase, which represents the expressive phase of a gesture and carries its

meaning [15]. The stroke phase was determined following the approach of Chapter

5, using the hand-annotation where available, and the automatic stroke classification

otherwise. We extracted gesture characteristics with a custom animation tool using

motion parametrization similar to Neff and Kim [162] and based on DANCE [163] to

automatically calculate the features of interest. Input is given as a motion capture file
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and a list of timestamps indicating the location of the stroke phases. The five chose

gesture characteristics are listed below and detailed in Equations 6.1-6.5.

1. velocity

2. initial acceleration

3. gesture size

4. arm swivel

5. hand opening

Velocity and initial acceleration both describe the kinematics of the gesture, represented

by the maximum stroke velocity (1), and by the mean acceleration to the first major

velocity peak (2). Velocity captures a character’s tempo and relates to the amount of

energy they are using. Initial acceleration may be useful to model an emphatic gesture

start. This is akin to the type of tangent adjustment between keys in hand animation.

With (3), gesture size described the spatial extent of the gesture. We measured this in

two ways: The total path length of the gesture stroke, and length between the minimum

and maximum point of the stroke, which we will subsequently refer to as major axis

length.

Parameter (4), arm swivel, describes the elbow angle, the distance between the elbows

and the torso. This angle modifies the amount of space taken up by the gesture and can

change the perceived personality [81] and has been postulated to relate to humility and

arrogance [164].

The last parameter, (5), describes the hand shape during a gesture, specifically, how

open or closed the hand is. We calculated this as the mean distance of the the finger

tips (excluding thumb) from the base of the wrist. Such variation in hand flexion has

been shown to impact the perception of character personality [83].

Based on previous work, we expected gesture velocity and acceleration to be well pre-

dictable from speech (e.g. [165, 166]), whereas more uncertainty surrounded speech

correspondence to arm swivel and hand opening.

The average values for these gesture parameters are listed in Table 6.1, separated by

speaker. We can see clear differences between the two speakers; for example, speaker

1 shows a higher maximum stroke velocity as well as much higher initial acceleration.



Chapter 6. Gesture Parameters from Speech 97

For modelling gesture parameters from speech in the next section, we did not explicitly

include speaker identity, however, speaker identity was implicitly given through prosodic

speech features.

Equations 6.1 - 6.5: Calculations of gesture parameters

velocitymax = max(
∆x

∆t
+

∆y

∆t
+

∆z

∆t
) (6.1)

initial acceleration = mean(velocity[0 : peaks[0]) , (6.2)

where peaks = maxlocal(velocity)

and min. peak distance =
duration

3

path length = ∆x+ ∆y + ∆z (6.3.1)

major axis length = pmax − pmin , (6.3.2)

where point pmin = argmin(px + py + pz)

and point pmax = argmax(px + py + pz)

arm swivel = α(planearm, planeshoulder,wrist) , (6.4)

where planearm is the plane passing through shoulder, elbow, and wrist,

and planeshoulder,wrist is a vertically aligned plane passing through shoulder and wrist

hand opening =

∑5
i=2 fixyz − handbasexyz

4
(6.5)

Table 6.1: Average gesture parameter values for the 2 speakers. Note that for arm
swivel, increasing the swivel angle (moving the elbow further out) means higher positive

values for the left arm, but increasingly negative values for the right arm.

Left hand Right hand
speaker 1 speaker 2 speaker 1 speaker 2

velocity 0.81 0.43 0.90 0.55
initial acceleration 0.40 0.06 0.49 0.07
path length 0.33 0.21 0.38 0.29
major axis length 0.18 0.13 0.2 0.18
arm swivel 17.51 12.85 -22.10 -20.75
hand opening 19.10 14.75 19.17 14.90
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6.3 Gesture parameter prediction

The first part of our work focused on the problem of predicting gesture characteristics

from a speech signal. Our aim hereby was to assess which gesture descriptors can be

predicted from speech with the current machine learning techniques. In an exploratory

manner, we trained a large number of input-output combinations, empirically determin-

ing suitable model parameters.

We utilized recurrent neural networks due to their strength in modelling sequential

time-series data. All models took an input sequence of speech features, extracted over

the period of the corresponding gesture’s stroke phase plus a context of 1 second in each

direction. Sequence-based models require a constant input length, we therefore defined

a maximum input length of 5.5 seconds, based on the maximum stroke duration found

in the datasets, including context windows. All shorter sequences were zero-padded to

fulfill the constant input length requirement.

The general network structure that performed best overall is shown in Figure 6.1.

Using more recurrent layers or a larger recurrent layer size led to frequent over-fitting;

using smaller recurrent layer size or a uni-directional recurrent layer led to under-fitting.

The model applied batch normalization to the input and input transformation

through a feed-forward layer of size 64. The transformed input was passed through

one or two recurrent network layers, followed by batch normalization and a dropout

Figure 6.1: Network structure of the speech-to-gesture-parameter models. Speech
input was batch-normalized, then passed through a linear feed-forward layer of size 64.
The core of the model was a bidirectional LSTM cell of size 64 (25% input dropout).
The output of the recurrent cell was batch-normalized and 25% dropout was applied

before the final output layer with sigmoid activation.
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Table 6.2: Performance evaluation of the speech-to-gesture-parameter models. In

brackets are the random sampling error, computed using a randomly drawn a parameter

sample from all true values as prediction value. We report mean (ē)and median (ẽ)
errors for the left (L) and right (R) hand, as well as the % reduction in error

between random sampling and our models.

ē L red. ē R red. ẽ L red. ẽ R red.

velocity 0.32 (0.44) 28% 0.35 (0.49) 30% 0.26 (0.33) 23% 0.29 (0.38) 24%
initial acc. 0.28 (0.42) 34% 0.34 (0.48) 29% 0.12 (0.19) 38% 0.14 (0.23) 40%
path length 0.14 (0.28) 50% 0.15 (0.33) 55% 0.08 (0.17) 53% 0.09 (0.21) 57%
maj. ax. len. 0.09 (0.14) 35% 0.09 (0.16) 46% 0.05 (0.10) 47% 0.05 (0.12) 57%
arm swivel 11.44 (16.78) 32% 9.57 (14.72) 35% 8.54 (12.29) 31% 6.96 (11.3) 38%
hand opening 1.45 (2.30) 37% 1.38 (1.88) 27% 0.96 (1.51) 36% 0.99 (1.27) 22%

layer for regularization purposes. The outputs of a model were the values of the gesture

parameter under investigation (e.g., velocity, initial acceleration, etc.), normalized to the

range of 0-1 for each given stroke, either a single value for both hands or one for each,

as described below. The output nodes had a sigmoid activation. Training minimized

the mean squared error between predicted and true value.

To generate output, it is necessary to resolve a potential ambiguity between the

predicted behavior of each hand. The stroke label does not include the handedness,

i.e. whether the right, the left, or both hands are performing a stroke. Therefore, the

predictive model must make some assumptions about the active hand(s). We considered

modelling a single output value defined as the maximum of both hands instead of making

predictions for each hand, but did not find this to improve results. The second option

is outputting two values, representing the two hands. The difficulty in predicting two

values can be that the model has to infer the gesture handedness for accurate prediction.

The model can learn general statistics regarding differences between the two hands (e.g.

left hand generally slower), but will not be able to predict diverging values indicating

gesture handedness (e.g. high velocity for right hand and zero velocity for left hand,

indicating a right-handed gesture).

6.3.1 Model training

Using the stroke phases as our segmentation, our training data consisted of a total of

almost 23,700 gesture stroke samples, with approximately 42% from the dataset 1 (see

3.1) and 58% stemming from dataset 2 (see 3.2). We held back about 5% of the samples
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for validation, chosen randomly. The velocity and acceleration models reached best

performance after 70 epochs, all other models were trained for about 140 epochs.

For each model input, we tested the compact GeMAPS with 18 speech features

versus the extended GeMAPS of 23 features performed. The compact and the extended

set performed very similarly, and we will report best model results in each case. The

reported models used the compact set in the case of gesture size, and the extended set

in all other cases.

6.3.2 Results

Below, we will report prediction results for all gesture parameter models. In order to

evaluate the model performances, we compare prediction errors to random sampling

errors in Table 6.2. In each case, we computed the error as the difference between

the predicted and actual value for each gesture in our test data, and then averaged

over all gestures. Random sampling errors were computed by using randomly drawn

samples from the entire true data set as prediction values. This ensured that the random

samples follow the true distribution of the dataset. We also drew the samples in a

database-specific manner, i.e. we always used the correct database to draw from for

each sample, to ensure that simple speaker-detection by the model would not be the

reason for its superior performance. We computed the random sampling error three

times for each gesture parameter and report the average values. The random sampling

error represented our error baseline; models that performed better than this baseline

detected some relationship between input speech and output gesture value.

6.3.2.1 Gesture kinematics

We found the gesture kinematics, as described by the maximum velocity and the initial

acceleration mean, relatively difficult to model, and compare below the use of a predic-

tion for each hand or a combined prediction, as described in the previous section. The

maximum velocity across both hands averaged 0.80 m/s (std = 0.52 m/s) and the

best model resulted in a mean error of 0.35 m/s (median = 0.27 m/s) when compared

to the ground truth gesture data. The model avoided very low velocity predictions, as
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well as to some degree high velocity predictions (visible in Figure 6.2 (top)). For mod-

elling two hands, the velocity measure averaged 0.60 m/s (std = 0.46 m/s) for the left,

and 0.70 m/s (std = 0.49 m/s) for the right hand, and our model produced mean errors

of 0.32 m/s and 0.35 m/s respectively, with the median at 0.26 m/s and 0.29 m/s.

Referring to Table 6.2, we see 28% mean error reduction for the left, and 30% for the

right hand, compared to random sampling, and 23% and 24% median error reduction.

In the case of modelling the maximum value across both hands, initial accelera-

tion averaged 0.36 m/s2 (std = 0.72 m/s2) and the model produced a mean error of 0.36

m/s2 (median = 0.15 m/s2). Modelling hands individually, the acceleration measure

averaged 0.13 m/s2 (std = 0.54 m/s2) for the left, and 0.27 m/s2 (std = 0.66 m/s2) for

the right hand, and our model produced mean errors of 0.28 m/s2 (median = 0.12 m/s2)

and 0.34 m/s2 (median = 0.14 m/s2), respectively. The model again avoided very high

acceleration predictions, however, high acceleration is often correctly identified though

the predicted value tended to be lower than the true value (see plotted prediction results

in Figure 6.2 (bottom)). Compared to our baseline random sampling error, we achieved

a mean error reduction of 34% and 29% for the left and right hand, respectively, and

38% and 40% median error reduction (see Table 6.2).

6.3.2.2 Gesture size

Our first measure of gesture size was path length. We found that gesture path length

was highly correlated with the length of the corresponding input speech segment; a

longer speech input was associated with a longer stroke. Hence, in addition to comparing

prediction results to the random sampling error (see Table 6.2), we employed a second

test taking into account speech length. We trained a control model only on speech length,

that is, the single input speech feature has the value 1 for all input time steps before the

zero-padding. This input processing meant that the model could base predictions solely

on the length of the input signal.

Using only speech length versus GeMAPS input yielded very similar errors: With

mean path lengths of 0.26 m (std = 0.30 m) and 0.33 m (std = 0.35 m) for the left and

right hand path length, respectively, using only speech length input yielded mean errors

of 0.14 m (median = 0.07 m) and 0.16 m (median = 0.07 m) for the left and right hand,

while using GeMAPS resulted in mean errors of 0.14 m (median = 0.08 m) and 0.15
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m (median = 0.09 m), respectively. However, relying only on the correlation between

input and output length failed to predict larger path lengths (for visual comparison

refer to Figure 6.3). Paired t-tests showed that our model using GeMAPS predicted

path length for the right hand significantly better (p < .001, left: p = 0.13).

Our second measure of gesture size was the major axis length, defined as the

length of the axis between the minimum and maximum point of the gesture. The average

major axis lengths for the left and right hand were 0.16 m (std = 0.15) and 0.18 m

(std = 0.14), respectively, and our model produced mean errors of 0.09 (median = 0.05)

and 0.09 (median = 0.05) for the left and right hand, respectively (see also Figure 6.4).

We critically evaluated the results for the major axis length in the same manner as for the

path length, using only speech length as input. Similarly as with path length, when using

solely speech length information, the model often failed to predict particularly large axis

lengths, as well as very short axis lengths. The model error also yielded slightly higher

errors with means of 0.10 m for each hand (medianleft = 0.08, medianright = 0.09), and

paired t-test showed speech input to yield significantly better performance (left hand:

p < .05, right hand: p < .001) .

6.3.2.3 Arm swivel

Arm swivel measures the angle of rotation around the axis between shoulder and wrist.

Increasing swivel angle for the left arm (moving the elbow out) means a higher positive

value, whereas increasing the right arm’s swivel means increasingly negative values. For

the left arm, we found a mean angle of 14.55 degrees (std = 15.79), and our model yielded

a mean error of 11.44 (median = 8.54) . For the right arm, the mean swivel angle was

-21.27 (std = 13.29) and our model yielded a mean error of 9.57 (median = 6.96). (see

also Figure 6.5 (top)). The mean error reductions with respect to random sampling were

32% (left hand) and 27% (right hand), and median reductions were 36% (left hand) and

22% (right hand) (see Table 6.2).

6.3.2.4 Hand opening

Hand opening averaged 16.74 cm (std = 4.20) and 16.89 cm (std = 4.15) for the left and

right hand, respectively, and the corresponding mean model errors were 1.45 (median =
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0.96) and 1.38 (median = 0.99) (see also Figure 6.5 (bottom)). As noted in Table 6.2,

this meant mean error reductions, with respect to random sampling, of 37% and 27%

for the left and right hand, respectively, and median reductions of 36% and 22%.

6.3.2.5 Statistical error evaluation

Paired t-tests showed that all error reduction with respect to random sampling were sta-

tistically significant (all p < .001). Wilcoxon tests revealed that path length prediction

errors were lower than for all other parameters except arm swivel (p < .001 for all but

left acceleration (p < .05)). Arm swivel errors were lower compared to all parameters

except path length (p < .001 for all but left acceleration (p < .05)). Initial acceleration

as well as hand opening yielded lower errors than velocity (all p < .001).

6.3.3 Discussion

In this first part of our work, we sought to examine which gesture parameters may be

predicted well from a speech signal and may therefore be well accounted for by a speech-

to-gesture generation model. For this, we explored five different gesture parameters.

Firstly, we explored gesture velocity which has been used in previous work on ges-

ture generation from speech [4, 120]. However, interestingly, we found this to be a

difficult parameter to model from speech. While there does appear to be an underlying

relationship between the speech as represented by the GeMAPS, it proved to be difficult

to capture velocities farther from the mean, i.e. we could not capture the full variability

of velocities. We explored an additional measure of the gesture kinematics, the accel-

eration to the first major velocity peak. Acceleration was predicted more accurately

than velocity. We found that the model often successfully detects high initial accel-

eration; common errors are failing to capture high initial acceleration of the left hand

(non-dominant hand) and instead only capturing this for the right hand, as well as not

modelling very high values. Avoidance of high value predictions can be expected due

to the low frequency of these values overall; the model would be penalized strongly for

wrongly predicting large values, and rewarded only in the infrequent cases of true high

values. Oversampling high values or employing data augmentation to increase frequency

of high values may encourage more diverse predictions.
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For modelling gesture size, we explored two alternative measures, path length and

major axis length. Path length captures the total accumulated distance travelled by the

hand during a gesture. We reasoned that gestures with larger lengths take more time to

complete, i.e. a gesture stroke with large path length would be associated with a longer

speech segment. Therefore, in order to assess how well we can model path length from

speech-inherent information, we first ran a baseline prediction model conditioned on only

the length of the speech signal. We found that the length of the speech signal is highly

correlated with gesture path length. Indeed, comparing this to using GeMAPS speech

features as model input, we saw no obvious error change. However, when qualitatively

assessing the model predictions, we could see that the model using only speech length

failed to predict long path lengths much more frequently (see Figure 6.3), and a statistical

test confirmed this improved performance.

Our second measure for gesture size was the major axis length, defined as the

distance between the minimum and maximum point of the gesture stroke. We found

relatively good prediction results, but some model weakness in predicting large values.

Based on our prediction results for path length and major axis length, with our control

conditions using only speech length as input, we conclude gesture size may be inferred

from the speech signal to some extent.

Our modelling results also emphasize the difficulty of the speech-to-gesture genera-

tion problem. Even with a highly-reduced data complexity of just one gesture descriptor

rather than many skeleton joints, accurate modelling was difficult. Furthermore, we un-

expectedly found that we could model all parameters similarly well. Performance for

arm swivel and hand opening was on par or better than performance for gesture kine-

matics (velocity and acceleration). Arm swivel angle prediction accuracy was surpassed

only by path length.

Next, we will assess the perceptual importance of these gesture parameters for

producing speech-gesture coherence.
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Figure 6.2: Gesture kinematics. Arrows indicate the size and direction of the predic-
tion error. Top: Maximum velocity, bottom: initial acceleration. Plotted are the true
values for 100 gesture stroke samples and lines indicate the respective prediction error.
It is visible that very high true values yielded the largest prediction errors; the model
avoided prediction of extreme values. The model generally predicted closely correlating

values for the right and left hand, with slightly higher values for the right.
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Figure 6.3: Path length prediction errors. Top: Predictions for model using GeMAPS
speech features. Bottom: Prediction for model only using speech length encoding.

Using only speech length fails to predict longer path lengths.



Chapter 6. Gesture Parameters from Speech 107

Figure 6.4: Major axis length prediction errors. Top: Predictions for model using
GeMAPS speech features. Bottom: Prediction for model only using speech length
encoding. Using only speech length yields axis length predictions closer around the

average values.
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Figure 6.5: Arm swivel and hand opening. For hand opening, we can see an apparent
division into two classes; this is due to speaker differences of the two datasets we trained
on, with the speaker of dataset 1 representing the higher values. However, the model
was trained on data normalized within each dataset, hence this division is only visible

due to output-denorming for plotting.
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6.4 Gesture parameter evaluation

We designed an empirical evaluation of the impact of the gesture parameters on percep-

tion. We assessed people’s judgment of the gesture expression regarding its suitability

for the expressed speech. This is important for gesture synthesis, telling us which param-

eters are most important in achieving a natural-looking gesture expression. We tested

the perceptual impact of our gesture parameters by creating variations that increase or

decrease them, as described below.

6.4.1 Stimuli creation

Artificial stimuli were created through a three step process. First, the variation in the

source data was measured. Second, clips were selected that best represent high and low

variations within this. Third, these clips were algorithmically modified to fully match

the desired high and low performance.

The process began by computing the natural variation of each of our parameters

within the gesture database. For this, we calculated the 25th percentile marker as a

lower bound, and the 75th percentile marker as the upper bound. Samples below the

lower bound were defined as having a low expression, and samples above the upper

bound were defined as having a high expression of a given parameter. The bounds of

this parameter segmentation are visualized in the data distribution plots in Figure 6.6.

In a second step, we randomly selected short gesture sequences of about 10 seconds,

similar to previous work in expressive motion perception [81, 93]. A 10-second timeframe

has been reported to be sufficient for participants to make judgements about conversing

agents [9]. For low sequences, we chose sequences that contain low parameter expres-

sions. However, as there are practically no 10 second sections in the database of only low

expression, we allowed the sequences to contain some medium expression (values below

the upper bound), but gave preference to gesture sequences with the highest percentage

of low samples. Equivalently, for high sequences, we chose sequences containing mainly

high expression, allowing some medium expression samples. This biased selection en-

sured that the edited clips were as different as possible from the source clips (i.e. error

maximizing).
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In the third step, we created the parameter manipulations. For low sequences, we

increased the parameter expression to high but keeping within the found natural limits.

For high sequences, we decreased the parameter expression to low. We selected 5 samples

each for the low and the high manipulations of each parameter. As baseline samples,

we randomly selected 10 sequences that remained un-manipulated.

All samples were generated with custom animation software that uses a motion

parametrization similar to Neff and Kim [162] and IK tools to generate variations of

the input motion capture data. The software takes as input the motion data and the

corresponding stroke labels and synthesizes preparation (bringing the hands into position

for the gesture) and retraction (returning the hands to a rest position) phases for the

strokes, proportionally matching the stroke speed. By using this software to determine

preparations and retractions, we avoided problems of e.g. two lengthened gestures not

leaving time for an originally present retraction between them. If a manipulation was

applied, it was applied to the stroke phase.

We restricted our data selection to the hand-annotated sections of dataset 2. In-

cluding dataset 1 in this step would have require manually correcting automatically

determined stroke labels to ensure correct boundaries and a controlled study.

All stimuli can be viewed at

https://youtube.com/playlist?list=PLLrShDUC_FZzhemzr0g1ekt1jz45-y_u3.

6.4.2 Experiment

The experiment was designed with the Unity3D game engine and the Virtual Human

Toolkit (VHTK) [167]. The displayed character was Brad from the VHTK, (see Figure

6.7), producing regular eye blinks, lip synchronisation, as well as an idle motion for the

body excluding the arms and hands. We chose this character for its low enough level

of realism to match somewhat synthetic motion while still being a reasonable choice

for real world applications. In each experiment trial, participants first watched a ∼10

second clip of the character acting out one of the gesture sequences. Following the clip,

participants were asked the following question:

“How well did the expressive quality of the gestures match the expressive quality of

the speech?”

https://youtube.com/playlist?list=PLLrShDUC_FZzhemzr0g1ekt1jz45-y_u3
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Figure 6.6: Distribution of the gesture parameter values for dataset 2 (3.2). The
boxplots indicate the 25th and 75th percentile, the bounds we defined for low and high

parameter expression. Red markings indicate outlier values.

This question was specifically designed to motivate participants to focus on the ex-

pression of the gestures; we did not want participants to judge the semantic entropy of

the gesture sequence. A 7-point Likert scale was provided as a rating scheme. Partici-

pants first completed 5 example trials for which responses were not recorded. This was

in order to establish an expectation of the gesture quality variation in the experiment

and to familiarize the participants with the rating scale. Following the example trials,

participants completed 60 experiment trials (5 samples for each of the 5 parameters,

with 2 expression manipulations each, plus 10 baseline samples), presented in random

order.

The online experiment was distributed via university mailing lists and social media.

We collected data from 60 participants (23 females, 36 males, 1 other gender, ages 18-

59 years, M = 26.4, SD = 9.1), all of whom gave informed consent regarding their

participation. All participants reported sufficient English proficiency (35 “native”, 20

“fluent”, 3 “very good”, 2 “good”).
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Figure 6.7: Visualization for the perceptual experiment. On the left is the recorded
actor from database A; on the right is the character used in the perceptual experiment.

6.4.3 Results

The study consisted of two factors, the parameter that was modified and the direction

of the modification. The first factor had 11 conditions, with mean ratings summarized

in Figure 6.8, and the rating score distribution further explored in Figure 6.9. The

second factor had two levels, increase and decrease. There was a main effect of modifi-

cation parameter (p < .001) and a significant interaction of modification parameter and

modification direction (increase versus decrease) (p < .001).

We analyzed the data further by treating the rating scores as ordinal data and fitting

a cumulative link model, using clm from the R ordinal package [168]. All modification

conditions were rated significantly lower than the no modification condition (all p <

0.001). Decreasing gesture size was rated significantly worse than increasing gesture

size (p < .001). Decreasing hand opening was preferred over increasing (p < .001).

Increasing hand opening received the lowest rating compared to all other conditions

(p < .01 for velocity manipulations and gesture size decrease, p < .001 for all others).

The complete results are detailed in Table 6.3.

6.4.4 Discussion

We found that all our gesture modification had a significant perceptual effect. Unmodi-

fied gestures were preferred over all modification conditions, indicating some perceptual

relevance for each of the five gesture parameters.
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Figure 6.8: Mean rating scores for all experimental manipulations. Unmodified ges-
tures received the highest average rating, and increased hand opening the lowest.

Figure 6.9: Stacked bar chart of all given ratings. The no-modification condition is
scaled by 50%. Plotted is the frequency of responses for the 7 rating scores. (The y-axis

represents the frequency of responses).

Altered gesture kinematics, as described by gesture velocity and initial accelera-

tion, significantly worsened speech-gesture match, with the slowing-down modification

yielding similar ratings as the sped-up modification.

For modified gestures, we found that enlarged gesture size was preferred over re-

duced size gestures. Enlarged gesture size was further preferred over a number of other
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Table 6.3: All results for the perceptual experiment. Indicated are both significant
and non-significant condition differences (plotted in Figure 6.8 and Figure 6.9). +
means the row condition was rated higher, - means lower rating. n.s.=not significant,

marg.=marginal significance of p = .06.

no mod. vel.↓ vel.↑ init.acc.↓ init.acc.↑ size↓ size↑ swivel↓ swivel↑ hand↓ hand↑

no mod. - ∗ ∗ ∗+ ∗ ∗ ∗+ ∗ ∗ ∗+ ∗ ∗ ∗+ ∗ ∗ ∗+ ∗ ∗ ∗+ ∗ ∗ ∗+ ∗ ∗ ∗+ ∗ ∗ ∗+ ∗ ∗ ∗+
velocity ↓ ∗ ∗ ∗− - n.s. n.s. n.s. ∗+ n.s. ∗+ marg. ∗∗− ∗ ∗ ∗+
velocity ↑ ∗ ∗ ∗− n.s. - ∗− n.s. n.s ∗− n.s. n.s. ∗ ∗ ∗− ∗ ∗ ∗+
init. acc. ↓ ∗ ∗ ∗− n.s. ∗+ - n.s. ∗ ∗ ∗+ n.s. ∗ ∗ ∗+ ∗ ∗ ∗+ n.s. ∗ ∗ ∗+
init. acc. ↑ ∗ ∗ ∗− n.s. n.s. n.s. - ∗+ n.s. ∗∗− ∗− ∗∗− ∗ ∗ ∗+
size ↓ ∗ ∗ ∗− ∗− n.s. ∗ ∗ ∗− ∗− - ∗ ∗ ∗− n.s. n.s. ∗ ∗ ∗− ∗∗+
size ↑ ∗ ∗ ∗− n.s. ∗+ n.s. n.s. ∗ ∗ ∗+ - ∗ ∗ ∗+ ∗ ∗ ∗+ n.s. ∗ ∗ ∗+
swivel ↓ ∗ ∗ ∗− ∗− n.s. ∗ ∗ ∗− ∗∗− n.s. ∗ ∗ ∗− - n.s. ∗ ∗ ∗− ∗∗+
swivel ↑ ∗ ∗ ∗− marg. n.s. ∗ ∗ ∗− ∗− n.s. ∗ ∗ ∗− n.s. - ∗ ∗ ∗− ∗∗+
hand open ↓ ∗ ∗ ∗− ∗∗+ ∗ ∗ ∗+ n.s. ∗∗+ ∗ ∗ ∗+ n.s. ∗ ∗ ∗+ ∗ ∗ ∗+ - ∗ ∗ ∗+
hand open ↑ ∗ ∗ ∗− ∗ ∗ ∗− ∗ ∗ ∗− ∗ ∗ ∗− ∗ ∗ ∗− ∗∗− ∗ ∗ ∗− ∗∗− ∗∗− ∗ ∗ ∗− -

modifications, while reduced gesture size showed the opposite trend. Machine learn-

ing models for gesture generation are often trained with a mean-squared error loss

[4, 120, 169], commonly leading to smaller than natural gestures due to convergence

to the mean pose. Our perceptual results give further motivation to move away from

such traditional model training approaches. Recent works have proposed alternative

approaches [124, 127, 160].

There was a large effect of hand opening, with the open, flat hand rated significantly

lower than all other modifications. Gesture sequences with decreased hand opening

were preferred over most other modifications. In line with the strong effect we found

for manipulating hand shape, Wang et al. [83] have reported large effects of hand pose

on personality perceptions. Modelling finger motion is a complex problem due to the

high dimensionality of the hand skeleton; when accurate hand shape prediction is not

possible, based on our results, we suggest animating slightly flexed fingers rather than

straightened fingers.

Modifying arm swivel angle in either direction elicited relatively low preference

ratings, indicating this to be an important factor in believable gesture synthesis.

6.5 General Discussion

In this chapter, we investigated the relationship between speech and gesture expressiv-

ity. Gesture generation approaches often assume some underlying connection between
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modalities by training black-box type models, feeding speech data and outputting high-

dimensional and complex skeleton motion data. Due to the limited success, we here

aimed to assess in more detail how speech relates to gesture motion. Based on a litera-

ture review, we first determined a number of parameters to describe a gesture. We then

assessed the speech-gesture parameter relationship in two ways.

First, we used machine learning, specifically recurrent neural networks, to phrase

the question as a prediction problem of speech to gesture. We trained separate models

for each gesture parameter, each working solely on the audio speech signal as input.

By judging the successes or failures of the model predictions, we gained a measure

of how well the speech signal relates to a given gesture parameter. Results indicated

that all gesture parameters were predicted above chance, but there was variance in

how well they were predicted. For example, size and initial acceleration of a gesture

were predicted better than its velocity. Arm swivel predictions, surprisingly, surpassed

all other measures but path length. Our results also indicate the remaining difficulty

in modelling the speech to gesture relation. Previous work on gesture generation has

reported good adherence of their model to the acceleration distribution of a dataset

[119, 120], however, our results indicate that the correct acceleration and the correct

time matters, and generated gestures should hence be assessed in a gesture-specific

rather than output-general manner.

Second, we conducted a perceptual study to assess the relevance of each gesture pa-

rameter for gesture synthesis. For this, we manipulated the expression of each parameter

and tested the impact on the perceived match of speech and gesture. Observers were

sensitive to all variations in parameters away from the original performance, indicating

that each of our chosen parameters is important in realistic gesture synthesis. Hand

pose showed to be particularly important, with flat, open hands being viewed especially

negatively, and more flexed fingers being preferred. Regarding gesture size, we found

enlarged gestures being preferred over reduced gestures.

For gesture parameter prediction, we saw an expected preference of the models

to keep predictions somewhat around the mean for all parameter values, infrequently

predicting extreme values. Based on our perceptual results, speech-to-gesture training

data could be augmented for better results: for example, due to participants’ preference

for enlarged versus reduced size gestures, and the common problem of reduced-size
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gesture output in machine learning models, we could increase the frequency of large

gestures within the training dataset. This could be done in three ways: by oversampling

large gestures selectively, by oversampling and augmenting large gestures by applying

perceptually less salient modifications (e.g. slight acceleration warps), or by applying

data augmentation of smaller gestures (artificially enlarging). Additionally, rather than

tackling high-dimensional finger motion modelling, simply using slightly flexed fingers

is a perceptually reasonable choice.

With this work, we hope to provide better insights into which aspects of gesture

may be modelled from speech. We suggest a step toward better evaluation of gesture

generation models by providing numeric gesture descriptors that impact the perceived

match of the generated gesture, as shown by our perceptual study.

We have previously discussed differences in phase expression (see Chapter 5) and

in this chapter have provided an initial assessment of how gesture performance varies

between speakers by comparing stroke parameter values between speaker 1 and 2. It

would be interesting to include a larger variety of speakers and speaker style. We propose

the use of the here used gesture parameters to investigate how gesture expression can,

or cannot, be compared across speakers.

While this work focused on performance variation, it is also important to correctly

match the semantics of the gesture with the spoken text. Systems that generate gesture

from speech signals will ultimately need to match both style and content.

In the following chapter, we will draw upon the insights gained here on how gesture

expression relates to the concurrent speech signal to design a novel gesture generation

system. By using the gesture parametrization presented here, we can avoid the prob-

lem of training a model on explicit, high-dimensional skeleton data while ensuring that

the produced gestures adhere to perceptually relevant constraints of the speech-gesture

relationship.



Chapter 7

Gesture Matching System

In this chapter, we present a gesture generation system based on the expressive parametriza-

tion of gesture motion proposed in the previous chapter.1 We evaluated our system in

three perceptual studies, comparing our output to a number of baseline models as well

as to state-of-the-art machine learning models.

7.1 Introduction

We propose a novel speech-to-gesture system based on matching expressive gesture pa-

rameters to prosodic speech information. Instead of modelling an implicit relation-

ship between high–dimensional, exact joint poses and the speech signal, we utilize a

higher level representation of the gesture motion through expressive parameters that

were shown in the previous chapter to be associated with the speech signal as well as

being perceptually important to the quality of the speech-gesture match. These gesture

parameters include gesture velocity, acceleration, size, arm swivel angle and extent of

hand opening.

We present a merged approach of machine learning and database sampling to pro-

duce realistic gesture form. Specifically the machine learned models from the previous

1The contents of this chapter are being published at the International Conference on Autonomous
Agents and Multiagent Systems 2021 (AAMAS’20) (Listed Publication 5) and is currently under review
for the International Conference on Computer Animation and Social Agents (CASA’21) (Listed Under
Review 1). The second author, Michael Neff, contributed to the study design and provided the animation
engine.
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chapter are used offline to establish the speech-gesture relationship by encoding the re-

lationship between acoustic speech features and expressive gesture parameters. Online,

given a new speech input, the models estimate gesture parameters that are then used to

search a large gesture database for the gesture best matching the predicted expressive

parameters. We built the database of gestures by segmenting our datasets from Chap-

ter 3 into individual gestures, resulting in a set of over 23,000 individual high-quality

motion-captured gestures.

We evaluated our method with three perceptual experiments. In the first experi-

ment (Section 7.3), we assessed the appropriateness of our gesture selection method by

comparing it to two two baseline conditions. The first baseline used the same gesture

timings but selects gestures without considering expressive gesture parameters. This al-

lowed us to assess the validity of gesture selection method with respect to speech match.

The second baseline disregarded both parameter match as well as speech-coherent ges-

ture timing. This let us assess the relative importance of gesture timing. In the second

experiment (Section 7.4.2), we combined our method with predicting gesture timing from

speech and compare our results to a baseline condition of random gesture selection. In

the third experiment (Section 7.4.3), we compared our method to five current generative

machine learning models, namely the entries to the GENEA gesture generation challenge

[132].

7.2 Synthesizing a gesture sequence

For synthesizing new gesture behavior, we took as input an arbitrary-length speech

segment with associated desired gesture timings. We defined the desired gesture timings

as the stroke timings of the associated motion data, as estimated by the stroke classifier,

but we will provide a speech-based method in Section 7.4. By using the true stroke

timings for a gesture, we could compare our method of gesture selection directly to the

ground truth gesture sequence; using different gesture timings would conflate perceptual

effects of timing and gesture form.

The gesture timing provides a sequence of empty motion slots with associated speech

data, each to be filled with a gesture stroke from the database (see Figure 7.1). The first

step in determining the gesture choice is computing a set of desired gesture parameters.
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Figure 7.1: Gesture timing from motion segmentation. Within the continuous motion
signal, the original gesture stroke timings were determined with the method of Chapter
5. The resulting timings provide a sequence of empty motion slots, each to be filled
with a gesture stroke from the database. Each gesture slot is associated with an original

speech segment.

Theoretically, we can use any parameter automatically computable for a motion segment,

but chose to use the five gesture parameters shown in Chapter 6 to be associated with the

speech signal as well as significantly impacting perceptions of the quality of the speech-

gesture match. As before, these five parameters are (1) the gesture velocity, (2) the size

of the initial acceleration peak, (3) the gesture size measures by the total completed

path length, (4) the arm swivel (the rotation around the axis between shoulder and

the wrist, bringing the elbow closer or further from the body), and (5) hand opening,

describing how open or closed the hand shape is (calculated as the mean distance of the

finger tips from the base of the wrist). For the computation of these parameters from

the speech signal, the GeMAPS prosodic features [161] were computed automatically

using openSMILE [151]. The process of parameter prediction from prosodic feature

is described in detail in Chapter 6. The distribution of the five parameters for both

datasets is visualized in Figure 7.7.

Given this set of desired gesture parameters for a speech segment, we searched

the database for the best match. First, each gesture in the database was assigned a

rank number with respect to each of the five parameters; e.g. the gesture with the

closest-matching velocity would receive velocity rank 1, and the gesture sample with

the worst-matching velocity received velocity rank 23,700. Each gesture hence had

5 rank values, one for each parameter. For selecting a gesture, each rank value was

weighted to decide the importance of a parameter, before combining all 5 rank values

into a total match rank. We determined the parameter weights based on how well a

parameter can be predicted from speech and its perceptual importance for speech-gesture

match. For example, gesture size was predicted best from the speech signal, followed
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Figure 7.2: Overview of our gesture generation system. (1) Gesture timings are
determined through motion segmentation (later replaced by speech analysis in Section
7.4). (2) The system receives as input the speech audio for a gesture segment. (3)
Prosodic speech features in the form of GeMAPS are extracted automatically. (4) From
the prosodic features, the desired values for the five gesture parameters are estimated.
(5) The database is searched for the gesture with the closest matching parameter values.
(6) The best matching gesture is inserted at the desired gesture position. (7) Synthetic
preparation and retraction phases are generated to link the gestures in the sequence.

by arm swivel, and acceleration was predicted better than velocity; hand shape had a

strong perceptual impact on the perceived gesture match (see results Chapter 6). We

defined the following parameter weights: weightvelocity = 0.6, weightacceleration = 0.8,

weightsize = 2, weightswivel = 1.5, weighthand = 1.

The complete gesture synthesis process is visualized in Figure 7.10 and the gesture

matching algorithm is detailed below in pseudo-code:

Offline, before first use:

for each gesture g in gesture database:

for each parameter p in gesture parameters:

calculate p(g)

Online, to synthesize a new sequence:

for each gesture slot s in gesture sequence:

return max(rowsum(W*(P(s)-P(G))) )

Where P(G) denotes the array containing all parameter values of all gestures G in

the database, W is the array of the 5 parameter weights, and P(s) are the estimated

parameters of a speech segment s. All parameter values are normalized to the range of

0-1. The online computation component has a time complexity of O(s∗ (3np+n)), with

s as the number of gesture slots in an input speech segment, n the number of gestures

in the database, and p the number of gesture parameters.
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In order to improve the smoothness of gesture transitions, we returned the top 10

gestures in the match rank algorithm and then chose a gesture that allowed a reasonable

transition. This was done by calculating the distances of the top 10 gestures’ starting

wrist positions from the previous gesture’s end positions and, taking into account the

available time for transition, selecting a gesture that allows for a realistic transition

speed.

As we used pre-determined stroke durations from the labelled stroke phase input,

we also constrained gesture selection to gestures with similar duration, resulting in

an average number of about 1200 gesture samples to search for the best match rank.

Without this constraint, a selected gesture could overlap with the next stroke slot,

resulting in different gesture timings than the ground truth sequence we wanted to

compare to.

7.3 Experiment I - Gesture selection validation

In order to evaluate the success of our method in creating gesture sequences that match

the speech expression, we performed a perceptual experiment comparing our method in

an ablation manner to two baseline methods, as well as to the ground truth gestures.

7.3.1 Experiment conditions

Our first baseline comparison used the same stroke timing but selected gestures agnostic

to the desired parameter values, i.e. the first baseline method (unmatched) was equiva-

lent to our method without calculating the match rank, the pseudocode noted in Section

7.2.

The second baseline method did not use the same stroke timing (unmatched & un-

timed); it scrambled the order of all the timings within our test dataset, resulting in

the same realistic stroke and between-stroke durations, without preserving the speech-

gesture synchrony. Specifically, to reorder the timings for baseline 2, we took the se-

quence of ground truth stroke timings, containing both duration and amount of time to

the next stroke, and randomize their order. This ensured realistic gesture timings while
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breaking the speech-gesture synchrony. As in the first baseline condition, these stroke

slots were filled without calculating the rank match.

Finally, the ground truth condition selected the true stroke for each gesture slot.

This therefore reflected the true gesture behavior, but using synthetic preparation and

retraction. All conditions are visualized in Figure 7.3.

For all methods, the selected gestures were combined into coherent sequences using

animation software based on the open-source animation environment DANCE [163], tak-

ing as input motion data and corresponding stroke labels and synthesizing preparation

and retraction phases for the strokes by using splines. The preparation phase brings the

hands into position for the stroke phase, and the retraction returns the hands to a rest

position. Preparation and retraction proportionally matched the stroke speed. If there

was not enough time for a retraction before the beginning of the next gesture, only a

transitional preparation was synthesized instead.

Figure 7.3: Experiment conditions. We created gesture sequences with four different
methods. Dashed lines indicate the ground truth stroke boundaries. The ground truth
gesture sequence produced the ground truth stroke at the ground truth time. The
matching condition searched among strokes with similar duration and found the can-
didate with the best predicted parameter match. For example, to fill stroke slot 55, we
used the co-occurring speech to compute the 5 gesture parameters; stroke #5981 was
detected to have the best matching parameters among all strokes with similar duration
and is hence inserted into the sequence. For baseline 1, we searched for a stroke with
similar duration and insert it at the correct time. Baseline 1 did not respect desired
gesture parameters, stroke #255 followingly does not match the predicted parameters.
Baseline 2, did not respect the ground truth gesture timing and picked any strokes from

the database to populate the gesture sequence.
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Figure 7.4: Example of a generated gesture sequence. After performing the first
gesture (1), the arms and hands are moved to a predefined rest position through spline
interpolation (2). When there is not enough time to move through the rest pose,
interpolation instead just creates a trajectory from a stroke end position (3) to the

next stroke’s start position (4).

7.3.2 Perceptual study

We distributed an online experiment was via university mailing lists with an incentive of

a 50 Euro raffle voucher. A total of 109 participants completed the experiment, 54 in the

experimental and 55 in the control group. (33 females, 74 males, 2 other, ages - years,

M = 21.4, SD = 5.6), all of whom gave informed consent regarding their participation.

For creating our experiment stimuli, we animated gesture sequences on the Brad

character from the open-source Virtual Human Toolkit (VHTK) [167] (see Figure 7.4),

using the Unity3D game engine (as in the perceptual study of the previous Chapter 6).

In addition to the arm gesture motion, the character displayed some idle lower body

motion, head movements, regular eye blinks, and lip synchronisation. In each trial, the

participant first watched a video clip of about 10 seconds, a time frame previously shown

to be sufficient for making judgements about conversing agents [9]. The participant then

answered the same question as used in the previous Chapter 6 on a 7-point Likert scale:

“How well did the expressive quality of the gestures match the expressive quality of the

speech?”.

Participants first completed 4 example trials, followed by 48 experiment trials (6

clips for each of the 2 speakers, for 4 conditions), presented in random order. Each clip

contained a different speech segment.

For assessing if between-condition differences are caused by the variance in gesture

timing or speech rather than gesture form, we ran a separate control condition that used
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the same 48 speech segments, but always presented the ground truth gesture animation.

With this, we sought to ensure that the variation in gesture timing, which is used in

synthesis, and the spoken utterance alone was not the driving factor behind variation

in participants’ ratings of clips, but rather the relation of speech utterance and gesture

motion. The control condition was completed by a separate set of participants.

All stimuli can be viewed at

https://youtube.com/playlist?list=PL04OYHqbFqt07NKOl3Qua81JJcJ0WNttZ

7.3.3 Results

Statistical analysis of the results of the perceptual experiment was performed by treating

the Likert rating scores as ordinal data and fitting a cumulative link model, using clm

from the R ordinal package [168].

An ANOVA of the estimated model revealed a main effect of condition (p < .001),

with an effect size measured by Wald Chi Square χ2 = 190.1. The ground truth condition

was rated significantly higher than all other conditions (all p < .001), indicating that

the ground truth gestures were preferred over any alternative, as expected (rating score

mean = 5.35). The gesture matching condition (our method) was rated significantly

higher (mean = 4.67) than both baseline methods (both p < .001, baseline 1 mean =

4.32, baseline 2 mean = 4.41), indicating that matching gestures to speech-predicted

parameters indeed increases perceived appropriateness of the selected gesture, in line

with our hypothesis. The two baseline conditions were not rated significantly different

from each other, suggesting, somewhat surprisingly, that correct gesture timing alone

did not improve perceived speech-gesture match.

An ANOVA of the model for the control condition yielded a main effect of condition

(p < .01) with an effect size of χ2 = 11.74. In the control group, the clips associated

with the ground truth condition (rating score mean = 4.95) were not rated significantly

different from the clips of the matching condition (mean = 4.86) or baseline condition 1

(mean = 4.82), and there was no significant difference between the clips of the matching

condition or baseline condition 1. Interpreting the lower ratings for the clips used in

baseline condition 2 (mean = 4.66) is not straightforward as not only gesture selection

but also gesture timing differed between experimental and control group. We sought to

https://youtube.com/playlist?list=PL04OYHqbFqt07NKOl3Qua81JJcJ0WNttZ
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establish that the natural variation in the performed gesture timing of the original input

clips was not a potential source of the observed variation in our main experiment, and

this appeared to be the case for the three conditions that used this information (ground

truth, matching and baseline 1). Results are visualized in Figures 7.5 and 7.6.

Figure 7.5: Boxplots for both experiment conditions visualizing the distribution of
rating responses. Red lines indicate the median (most common) rating for each con-
dition, box boundaries illustrate 25th and 75th percentiles, and red crosses indicate

outlier responses.

Figure 7.6: Stacked bar chart of perceptual ratings for experiment I. Plotted is the
frequency of responses for each of the 7 rating scores. (The y-axis is the frequency of

responses)
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7.3.4 Discussion

Here, we proposed a gesture selection method based on expressive parameter matching.

We evaluated our gesture selection method with a perceptual study comparing it to two

baseline conditions in an ablation manner, as well as to the ground truth gestures. The

first baseline condition selected gestures with the same timing but without respecting

desired expressive gesture parameters. By comparing our method to this first baseline,

we could evaluate the perceptual validity of our gesture selection method. The second

baseline condition disregarded timing synchrony with speech as well as the desired ges-

ture parameters. By assessing the performance of this second baseline, we could evaluate

the relative importance of correct gesture timing.

Our results show that our gesture selection method of matching expressive gesture

parameters to speech did indeed perform better than the baselines which disregard pa-

rameter match, indicating that matching the chosen gesture parameters to the speech

significantly improves perceived speech-gesture match. This confirms the proposition of

Chapter 6 of the importance of matching expressive gesture parameters to co-occurring

speech, as well as asserting the validity of the here proposed avenue for gesture genera-

tion.

Interestingly, our second baseline condition, which did not use any timing or speech

prosody information, still received relatively high ratings and did not differ significantly

from baseline 1, which used correct timing. One potential reason for this is that the

speakers in the used datasets produce continuous speech without any significant periods

of silence, therefore even untimed gesture is almost always accompanied by speech.

In cases without continuous speech, untimed gestures may stand out more negatively.

Another potential reason for the insignificant effect of timing in this study could be due

to realistic gesture form being enough for reasonably well-liked gesture performance.

A number of participants in our perceptual experiment noted a dislike for the used

rest pose between gestures (see Figure 7.4 (step 2)), seeing it as relatively stiff and

unnatural. We amend this pose for the next part of this chapter, changing it to the

hands hanging by the sides with extended arms (see Figure ?? (2)).

In this first part of the chapter, we used the gesture stroke locations determined

by automatic motion segmentation for synthesizing gesture sequences. While is not
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practical for a real application, it allowed us to perceptually validate our gesture selection

method in a controlled manner. To extend our method to an end-to-end speech-driven

gesture generation pipeline in the next part, we combine the proposed method with

stroke location prediction from speech. We then evaluate the final speech-to-gesture

system against current state-of-the-art machine learning models.
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Figure 7.7: Distributions of the five gesture parameters in both datasets we used.
Note that for arm swivel, increasing the swivel angle (moving the elbow further out)
means higher positive values for the left arm, but increasingly negative values for the

right arm.
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7.4 Gesture timing from speech

For a fully speech-based gesture system, we need to determine when to generate a

gesture based only on speech prosody. Through analyzing prosody, we detected points

of emphasized speech; we then defined gesture timings to align with speech emphasis.

Specifically, we designed a method using the speech pitch the place gestures. We first

extracted the pitch tier using Praat. From the pitch tier, we determined the relevant

pitch peaks by setting desired prominence and minimum peak distance. These values can

be chosen to result in the desired gesture frequency. As we could determine the actual

gesture frequency of the speakers within the used datasets through motion analysis, we

here set the pitch sensitivity to result in a similar gesture frequency. Both speakers

(dataset A and B) present a gesture frequency averaging roughly one gesture every 1.5

seconds. Using an equivalent gesture frequency allows for better comparison to ground

truth gesture performance in this study, however, this is a parameter that can be tuned

as desired. For example, using a higher gesture frequency elicits higher user ratings of

extraversion of a robot [170]. Figure 7.8 given an example of a sequence of detected

Figure 7.8: Detected pitch peaks (marked in red) over a example window of about 11
seconds. Peaks are marked based on their relative prominence under a minimum peak
distance constraint. A pitch peak marked the timing of a gesture peak, around which

we defined a gesture slot (to be filled later with a gesture from the database).
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Figure 7.9: Comparison of gesture peaks determined by motion segmentation versus
by speech pitch analysis. Peak prediction from speech yields plausible rather than exact
results. Plotted are two examples of 60 second sequences for each of the two speakers.

Figure 7.10: Overview of our gesture generation system. (1) The system receives as
input speech audio. (2) Gesture timings are determined through pitch analysis. (3)
GeMAPS prosodic speech features are extracted automatically. (4) From the prosodic
features, the desired values for the five gesture parameters are estimated. (5) The
database is searched for the gesture with the closest matching parameter values. (6)
The best matching gesture is inserted at the desired gesture position. (7) Synthetic
preparation and retraction phases are generated to link the gestures in the sequence.

pitch peaks and Figure 7.2 shows the integration of speech-based gesture timing into the

system pipeline.

Following the rule that gesture peaks either precede or coincide with the associated

speech peak [171], we set gesture timing as follows: Gesture strokes are 55% complete

at the determined pitch peaks. A visualization of predicted and true gesture peaks is

given in Figure 7.9. We defined the maximum time for a predicted stroke as twice the

time to the nearest peak. This time window also defined the speech segment to be used

in the following Sec. 7.2 for computing associated gesture parameters and selecting a

matching gesture. If the selected gesture was shorter than the time window, we re-

aligned the gesture forward to be 55% complete at the pitch peak.

We chose this gesture timing approach for its simplicity and easy reproducibility,

however, our gesture generation system allows for combination with any other method
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of determining stroke timing.

In Chapter 6, we have seen that gesture size is correlated with duration. When

predicting gesture peaks from speech rather than gesture boundaries through motion

segmentation, we have less information available to predict gesture size. We there-

fore amended the parameter weighting from Section 7.2 to reduce the impact of ges-

ture size prediction: weightvelocity = 0.6, weightacceleration = 0.8, weightsize = 1.1,

weightswivel = 1.3, weighthand = 1.

We evaluated the performance of our speech-to-gesture generation system with two

perceptual studies. First, we assessed our method of gesture placement and selection

with respect to randomized gestures as well as to the ground truth placement and

selection. Next, we compared the performance of our system to state-of-the-art machine

learning models.

7.4.1 Perceptual study design

For creating the experiment stimuli, we animated gesture sequences on the GENEA

model [132] (see Figure 7.11), using the Unity3D game engine. We chose this model for

better comparison to the GENEA results.

For both studies, we distributed an online experiment via the participant-sourcing

service Prolific. Participants first read the study instructions and completed a training

(detailed in the respective sections below). Following this, each experiment trial con-

sisted of watching a 15 second video clip followed by the question, “How appropriate

were the gestures for the speech?”, presented with a 7-point Likert scale ranging from

“Very bad match” (1) to “Very good match” (7). The phrasing of the rating question

was taken from the GENEA gesture generation challenge [132].

Study completion time was approximately 15 minutes. Participants’ attention was

assessed through content questions: At a random trial number within each quartile of

the experiment, a video clip was followed by a multiple choice question about what the

speaker said instead of the gesture rating question. Participants achieving less than 50%

correct were rejected.
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Figure 7.11: Example of a generated gesture sequence on the GENEA model.

7.4.2 Experiment II - Baseline

We ran a baseline experiment comparing our method against ground truth (upper

bound) and random gesture selection (lower bound).

7.4.2.1 Experiment conditions

Our baseline experiment consisted of three gesture conditions: (1) The ground truth

gesture strokes with synthesized preparations, retractions, and transitions, preserving

gesture timing (GT-S), (2) random gesture selection with the same overall gesture fre-

quency but not timed to the speech, (3) our method of gesture placement and selection.

In addition to the arm gesture motion, the character displayed some idle torso body

swaying and head movements.

7.4.2.2 Perceptual study

Participants first completed a guided training. In the first part of the training, par-

ticipants were informed that they will watch 2 examples of well-matching speech and

gesture, and they were instructed to rate these as such. They were then presented

with two ground truth training trials (one for each speaker). Next, in the second part

of the training, participants were informed they would now see 2 examples of badly

matched speech and gesture, and they were instructed to rate these accordingly. They

were then presented with two unmatched (random) training clips (one for each speaker).
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Finally, participants were informed about attention checks throughout the experiment

and presented with one example.

Participants then completed 30 experiment trials (5 clips for each of the 2 speakers,

for the 3 conditions), presented in random order. Each clip contained a different speech

segment. For each condition and each participant, the 5 clips for each speaker were

selected randomly from a pool of 10-15 clips in order to get a representative sample of

generated gesture sequences while minimizing participant fatigue.

A total of 25 participants completed the experiment (12 females, ages - years, M

= 29.9, SD = 10.1), all of whom gave informed consent regarding their participation.

Participants represented a wide population sample: 13 different countries were reported

as location of residence.

All stimuli can be viewed at

https://youtube.com/playlist?list=PL04OYHqbFqt0NXC8S0Bkb5Yy1nhKGjCdh.

7.4.2.3 Results

Statistical analysis of the results of the perceptual experiment was performed by treating

the Likert rating scores as ordinal data and fitting a cumulative link model, using clm

from the R ordinal package [168].

An ANOVA of the estimated model showed a main effect of condition (p < .001),

with an effect size measured by Wald Chi Square χ2 = 133.0.

The ground truth gesture sequence condition was rated significantly higher than

both other conditions (both p < .001), as expected with a mean rating score of 5.20. Ges-

ture sequences generated with our method were rated significantly higher than random

gesture sequences (p < .01), with a mean rating score of 3.94 (random: mean = 3.58).

Results are plotted in Figure 7.12.

7.4.2.4 Discussion

Our method showed better performance than our mismatched random condition. This

is notable as such a baseline is notoriously hard to beat for automatic gesture generation

https://youtube.com/playlist?list=PL04OYHqbFqt0NXC8S0Bkb5Yy1nhKGjCdh
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Figure 7.12: Stacked bar chart of perceptual ratings for experiment II. Plotted is the
frequency of responses for each of the 7 rating scores. (The y-axis is the frequency of

responses)

(see the recent state-of-the-art evaluation study GENEA [132], as well as Section 7.4.3

below).

While directly comparing our method to the random condition conflates effects of

gesture selection and of timing, this was addressed in the previous perceptual experiment

in Section 7.3. There, we compared our method to two baselines, one preserving gesture

timing but disregarding expressive parameter match, and one disregarding both timing

and match. Our method outperformed both baseline conditions (indeed, preserving

gesture timing showed no advantage), suggesting that gesture timing alone was not the

reason we here found our method to perform better than the baseline random condition.

7.4.3 Experiment III - Comparative performance evaluation

We compared the performance of our method to current state-of-the-art machine learning

models.

7.4.3.1 Experiment conditions

The comparative performance experiment consisted of 9 gesture conditions: (1) The

ground truth motion (GT), (2) the ground truth gesture strokes with synthesized prepa-

rations, retractions, and transitions (GT-S), (3) mismatched motion, belonging to an-

other speech segment (MM), (4-8) motion generated by the GENEA gesture generation

challenge entries (SA-SE) (9) our method.
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For conditions GT-S as well as for our method, the character displayed some idle

torso body swaying and head movements in addition to the arm gesture motions. All

other conditions already contained motion data for these joints.

7.4.3.2 Perceptual study

Participants completed a guided training before starting the experiment. First, partici-

pants were informed they would see an example of a very good speech and gesture match

and instructed to rate it as such. They were then presented with a ground truth (GT)

example trial. Next, instructions informed that they would see an example of badly

matching speech and gesture, and they were instructed to rate it as such. An example

of mismatched motion (MM) was presented. Participants were then informed that some

motions may appear more synthetic while still matching the speech well, followed by an

example clip of ground truth gesture strokes with synthetic transitions (GT-S). Next,

participants were informed that synthetic motions may show a very bad gesture-speech

match, followed by an example clip of mismatched gestures with synthetic transitions.

After the training, participants completed 36 experiment trials (4 clips for each of

the 9 conditions), presented in random order. For each condition and each participant,

the 4 clips were selected randomly from a large pool of clips, ensuring adequate repre-

sentation of the variation for each condition while allowing to keep experiment duration

short and hence minimizing participant fatigue. Within participant, each clip contained

a different speech segment. Because the GENEA challenge included only dataset B, all

experiment stimuli were restricted to speech from this dataset.

A total of 30 participants completed the experiment (15 females, ages - years, M =

26.5, SD = 6.9), all of whom gave informed consent regarding their participation. 10

different countries were reported as location of residence.

All stimuli can be viewed at

https://youtube.com/playlist?list=PL04OYHqbFqt2ArlWTVaOXh7e9WqWlaJZ7.

7.4.3.3 Results

An ANOVA of the estimated model showed a main effect of condition (p < .001), with

an effect size measured by Wald Chi Square χ2 = 234.8. Both GT and GT-SM were

https://youtube.com/playlist?list=PL04OYHqbFqt2ArlWTVaOXh7e9WqWlaJZ7
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rated significantly higher than all other conditions (all p < .001), interestingly, there

was no significant difference between the two. SA was rated significantly lower than all

other conditions (all p < .001, except p < .01 w.r.t. SB). This is comparable to the

results reported in Kucherenko et al. [132]. SC was rated significantly higher than SB

(p < .05), as in Kucherenko et al. [132]. No other differences were significant. Results

are visualized in Figure 7.13.

Figure 7.13: Stacked bar chart of the frequency of perceptual rating scores for exper-
iment III. Plotted are the 9 conditions in the comparative performance evaluation.

7.4.3.4 Discussion

The results of our third experiment showed that our method produced competitive re-

sults to state-of-the-art machine learning approaches with respect to perceived appropri-

ateness. Notably, our method could be distinguished fairly easily from other generated

motion through its obvious synthetic transitions between gestures, but was still rated

on-par with the more continuous motion of the compared generative approaches.
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The speaker in dataset B used in this experiment shows a very animated speaking

style, engaging his whole body rather than producing isolated arm gesture motion. Due

to the our approach of focusing on generating arm gesture motion with only some aux-

iliary idle animation for the torso and head, we produced motion closer to the speaking

style in dataset 2, in which the speaker remains fairly firmly stanced and producing

more isolated arm gesture motion. We therefore think our method produced particu-

larly suitable results for speaker 2. Due to the fact that the model from [132] were not

trained on dataset 2, we could not compare stimuli from this data.

Interestingly, the ground truth gestures with synthetic transitions were rated to

match the speech equally well as the full motion capture, indicating that matching

individual gestures to the speech produces valid results even when this greatly changes

the motion style of the speaker.

While we did not compare these conditions directly, The MM condition in this exper-

iment appears to perform better than the random condition in Sec. 7.4.2. Notably, these

conditions differed in that MM represented mismatched full motion-capture, whereas

the random condition showed synthetic motion blending between gesture strokes. The

continuous, fluid motion in MM may have appeared less obviously mismatched to the

speech.

7.5 Discussion

We proposed a method for automatic gesture generation from speech audio with realistic

gesture form. Previous works on automatic gesture generation from speech often pro-

duce motion smoother than natural with poorly defined gesture form, as well as relying

on an assumed and implicit speech-gesture relationship. In this work, we generated ges-

tures based on expressive gesture parameters shown to be related to the speech prosody.

By selecting gestures from a motion-captured database based on these expressive pa-

rameters, we always produced natural and well defined gesture form. Most machine

learning approaches generate continuous motion; due to our gesture-by-gesture synthe-

sis approach, our method may be easier to integrate into existing state-based frameworks

used by game developers.
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7.5.1 Summary

We evaluated our gesture generation system with three perceptual experiments. First,

we evaluated our method of gesture selection using expressive parameter matching. For

this, we replaced the ground truth gestures either with matched gestures or a random

selection. Our results indicated that selecting gestures with our matching method sig-

nificantly improved perceived speech-gesture match.

In this first experiment, we also investigated the effect of gesture timing and found

no significant effect of mismatched gesture timing. This may have been due to the

almost continuous speech and frequent gesturing in the used datasets. In cases with

longer periods of speech silence, untimed gestures may be perceived worse. This is also

supported by the findings of Nirme et al. [96] who report no significant perceptual effect

of delaying or advancing gesture timing by 0.5 seconds unless gesture strokes overlapped

with speech pauses. Future work could investigate the use of untimed gestures for real-

time applications, as no pre-computation is required for gesture selection. This could

also be combined with real-time stroke timing prediction methods such as in Levine

et al. [111], who set the gestures to begin at syllable peaks. Notably, Fernández-Baena

et al. [110] have also reported greater importance of matching gesture quality (measured

by stroke intensity) than matching speech timing.

Next, we devised a method for predicting gesture timing from speech and evaluated

this in a second perceptual experiment. There, we compared our method to a baseline

method selecting random gestures at the same frequency but agnostic to speech empha-

sis, as well as to the ground truth gestures. Our method of generating gesture sequences

for speech proved to outperform unmatched gesture animation.

Finally, in our third perceptual experiment, we compared our method to five cur-

rent generative machine learning models, as well as to ground truth motion capture,

mismatched motion capture, and ground truth gestures with synthetic transitions. The

results showed that our method was comparative in performance to the best of the tested

generative models, asserting the validity of our proposed approach of gesture generation.
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7.5.2 Style control

An advantage of our method of generating and linking individual gestures over contin-

uous generative machine learning models is the possibility of modifying the expression

of individual gestures. For example, in a recent work, Sonlu et al. [59] propose a frame-

work for personality expression of virtual agents. The authors modify the Laban Effort

and Shape parameters of individual gestures given just their start and end frame, which

are known variables within our system. Our method also allows for tuning of gesture

frequency, which can be used to modulate perceptions of extraversion [12, 170].

Our method allows for tuning gesture preference by scaling gesture parameters. This

could be used for creating gesture behavior specific to a personality, for example, for an

extroverted speaker, scaling predicted gesture size up, in order to retain predicted size

variation but creating gesture sequences with overall larger gestures. In this study we do

not adjust for speaker style or personality other than what may be implicitly expressed

through the five gesture parameters. For generating new sequences for one input speaker,

we allowed gesture selection from either speaker, resulting in a mix of gestures from both

speakers within a sequence. This could potentially create style-mismatches both between

gestures, and between gesture and speech. Speaker-specific gesture retrieval is possible

with the downside of reducing the amount of available gestures.

7.5.3 Options for system improvement

The motion blending and merging techniques discussed in Section 2.8.2 could be used

for more realistic transitions as well as rest pose motion. One alternative technique

to combine motion segments into continuous motion are motion graphs, as used in

Yang et al. [3] for dyadic conversation gestures. However, building a motion graph for

very large datasets can potentially become problematic; Yang et al. [3] note that the

motion variety of conversational gesture behavior requires a much larger graph than, for

example, was previously used for locomotion. While they build a graph from 30 minutes

of motion data, our work uses 20 times that amount. Constructing and searching a

motion graph in our case would require questionable computing power. Instead, the

appearance of our system’s output motion may be improved by creating different rest

poses and adding idle motions to the arms and hands between gestures. In our current
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motion merging implementation we do not model holds, which are important for gesture

co-articulation and emphasis. Moving forward, integrating methods of placing holds is

an essential step.

To improve our gesture selection method, the number of gesture parameters used

for finding a match could be increased. Any automatically extractable motion measure

would be readily integratable in our system. To improve the speech-gesture match,

a relationship has to be established between the speech prosody and the new gesture

parameter. If the parameter is not computable from speech, it may still be used for

biased gesture selection after determining a number of suitable gestures from speech-

based parameters, for example in order to achieve a specific gesture style. An avenue

for future work is also the classification of gesture types, as in Sadoughi and Busso

[172], and association with semantic markers. Using the annotated stroke labels of the

datasets used in this work, wrist trajectories could be analyzed to determine simple

gesture shapes, such as wiping gestures. Combined with automatic lexical analysis,

such as negation tagging, we are interested in exploring the potential for integrating

semantically meaningful gesture parameters.

The lack of lexical matching in our current implementation is also one potential

reason for disliked gestures within generated sequences. Many of the gestures in the

database are iconic gestures: gestures visualizing physical properties and describing the

semantic content of the verbalisation. When searching the database for a matching

gesture, we only take into account qualitative measures of the gesture (the five gesture

parameters), without considering semantic content. Therefore, we sometimes find a

gesture match that produces a clear semantic mismatch with the speech. This is different

from many machine learning gesture generation models which largely focus on generating

beat gestures, gestures without specific meaning but linked to the rhythm and pace of

the speech.

7.5.4 Extensibility

Through searching for appropriate gestures by matching motion parameters, we can

extend our gesture database with new motion that does not have any audio recordings

associated with it, such as the released 20 hours of the Talking With Hands 16.2M

conversational dataset. This only requires automatic stroke segmentation as utilized
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here and presented in Chapter 5, and automatic labelling of the gesture parameters. In

this regard, our method differs from Yang et al. [3], who base motion selection on the

associated audio segment and therefore require every addition to the database to contain

synchronized speech audio annotated with segmentation timings.





Chapter 8

Conclusion

This chapter first provides a summary of this thesis, followed by a discussion of the

contributions to current research. We then discuss some limitations of this work.

8.1 Summary

In this thesis, we investigated methods of automatically generating gesture motion solely

from speech audio. Through a series of studies, we explored a number of machine learning

approaches and their suitability for the speech to gesture training task. We showed that

modelling either domain is not sufficient for satisfactory results, rather, the key problem

is the mapping between the two domains. We have explored the non-deterministic nature

of the speech-gesture relationship and developed a gesture generation system based on

expressive motion characteristics rather than explicit joint angles or positions as an

alternative to current standard approaches in gesture generation research.

First, we created a multimodal dataset of speech and gesture (Chapter 3). We

selected two speakers who produce naturally frequent gesture behavior in order to be

able to capture significant amounts of suitable data while leaving the actors unaware of

the purpose of the recording. We recorded over 10 hours of spontaneous and natural

gesture motion, combined from two speakers with differing gesture style.

We analyzed the benefits of prior modelling of the two domains of speech and

motion and concluded that this does not make up for the shortcoming of standard

143
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regression training in the problem of modelling the complex relationship between speech

and gesture (Chapter 4). Even plausible generated gestures may be penalized heavily

when they are numerically far from the ground truth pose sequence, encouraging a

convergence to the mean pose, minimizing error across all possibilities, and resulting in

lethargic, overly smooth motion around the mean pose.

We addressed this problem in two ways in Chapter 5. First, we tackled the problem

of assessing realistic gesture dynamics in order to avoid averaged motion smoothing over

accelerations and pauses. Instead, we wanted to model the natural gesture dynamics

of periods of emphasis and acceleration, and periods of stillness or pauses: The phases

of gesture. Assessing gesture dynamics during model training requires fully automatic

gesture phase classification. We therefore hand-annotated large portions of dataset 2

and trained a phase classifier network for the task.

Secondly, we addressed the problems of explicit joint angle error feedback by design-

ing an adversarial training paradigm replacing this error with implicit feedback through

a second network deciding how “believable” the gesture output is. Specifically, we de-

fine the gesture believability through a series of sub-tasks: Plausible gesture dynamics,

as measured through the phase classifier, realistic joint configuration, and smooth and

diverse motion. With this, we were the first to use generative adversarial networks for

generating 3D gesture motion, and the first to propose a training paradigm with multiple

objectives for this task.

We found a clear advantage of using adversarial training over the standard and ex-

plicit regression loss, however, we did not find the level of realism satisfactory. Consid-

ering the difficulty of modelling gesture motion from speech, we explicitly investigated

which gesture characteristics may be captured from speech audio alone (Chapter 6).

We chose the gesture characteristics to be assessed by drawing from previous research

in gesture perception. We determined five motion parameters that have been shown

to influence perceptions of gesture in some manner, as well as being automatically ex-

tractable from the motion signal, to ensure scalability and re-usability. We trained one

model for each gesture parameter and through prediction performance gained a measure

of how well the speech signal relates to a given gesture parameter. With a perceptual

study, we confirmed that these gesture parameters impact the perceived match of speech

and gesture.
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Informed by these findings, we proposed a novel gesture generation method based

on matching expressive gesture parameters to the speech (Chapter 7). Specifically, our

proposed method first estimates matching gesture parameters from speech and then

searches our database of gestures for the closest match. We first evaluate the validity

of this approach in a perceptual study comparing our method in an ablation manner

to two baselines. We showed that selecting gestures based on the estimated parameters

significantly improves speech-gesture match. We also showed that correct gesture timing

alone is not sufficient for improved appearance. We then extended the proposed approach

to a fully speech-based, end-to-end gesture generation pipeline by integrating a method of

determining gesture timing from speech. We compared this system against current state-

of-the art machine learning approached to gesture generation and found our method to

perform competitively.

8.2 Contribution

In general terms, this work contributes a full pipeline for gesture generation from speech

audio in a novel hybrid approach of machine learning and database sampling. This work

is distinct from other machine learning approaches in several ways. Firstly, our method

guarantees defined gesture form through its direct use of motion-captured gestures. Sec-

ondly, through the gesture-by-gesture generation approach, gestures can be manipulated

individually rather than overall, allowing integration with works on gesture stylization

(such as Sonlu et al. [59]). On a more basic level, our approach also allows for tuning

of the gesture rate, for example to modulate perceptions of extraversion of the virtual

agent [12, 170]. We also believe that through our state machine-like gesture-by-gesture

generation manner, our system may be easier to integrate into existing frameworks used

by game developers.

In developing a gesture generation system, we have assessed a number of different

machine learning approaches and have provided a discussion on their merits. We tested

the use of motion as well as language modelling and found no significant benefit for the

speech-to-gesture generation problem. We were the first to investigate the use of gener-

ative adversarial training for 3D gesture motion and discussed its benefits over standard

regression loss for gesture modelling. We reframed the gesture modelling problem in a
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new way by training a number of separate networks, each estimating a different expres-

sive gesture parameter, and assessed how well each gesture parameter can be modelled

from speech audio.

Another contribution of this work is our method for segmenting gesture motion into

its distinct phases. We released our trained classifiers, allowing other researchers to

segment new motion recordings. Segmenting gesture motion allows for a deeper, more

detailed analysis: Rather than only computing general motion statistics, this allows

individual gestures to be assessed for speed, shape, and more. This is useful both for

studying the relationship of speech and gesture, as well as assessing gesture generation

output: As we have shown in Chapter 6, speech-gesture match is affected by individual

gestures’ expressive parameters, such as speed and acceleration, and generated gestures

should therefore be assessed in a gesture-specific manner rather than assessing general

distributions (as in [119, 120]). Segmenting generated output into individual gestures

allows computation of per-gesture performance.

Finally, we contribute the to our knowledge largest dataset of speech with synchro-

nized 3D motion. This has already had a major impact on gesture generation research,

having been used in numerous works by other researchers, including a recent gesture

generation challenge [132]. This dataset has also found use in text-to-speech research,

contributing to more natural synthesized speech audio [173, 174]. Additionally, we pro-

vide our segmentation of the motion data into individual gestures, making this a unique

database for many areas of gesture research.

8.3 Limitations

This work leaves several avenues for improvement. Our results and models are limited

to two speakers due to data availability. It is unclear how well the findings generalize

to other speakers with different styles of voice and gesture. Additionally, our speakers

are both males; male and female motion are perceptually distinct and gesture per-

formance differs between genders (discussed in Section 2.6.3). In this work, we only

model upper body motion to reduce complexity, though stance and stepping motions

are important in communication, too. Our final solution merges individual gestures into
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sequences, however, the transitional motions as well as the rest positions between ges-

tures could be improved for increased realism. Furthermore, when merging individual

gesture motions with the simple interpolations used here, we do not achieve naturally

diverse co-articulation motions of gesture. If there is time for it, our system retracts

the hands to rest between gestures; however, in some cases, a more natural choice is

a post-stroke hold plus preparation to the next gesture, or a preparation to the next

gesture followed by a pre-stroke hold. We currently do not model such more choices

of gesture transitions, but this is necessary for realistic gesture modelling. We did not

address real-time gesture generation due to the difficulty of both honoring the gesture-

before-speech rule in natural speech and generating speech-matched gestures. We focus

our work on monologue-style speaking in order to be able to hone in on one speaker’s

speech-gesture relationship, however, for a truly communicative agent, dyadic dynamics

such as turn-taking need to be addressed. Finally, with current data availability it is

difficult to address modelling of semantically meaningful gestures, but these can add

greatly to the perceived realism and appropriateness of the gesture behavior, making it

an important issue for future work.





Chapter 9

Future Work

There are a number of open problems in the speech-to-gesture mapping task that we did

not address due to constraints of time and resources. In this final chapter, we discuss

some aspects to be addressed in future work.

One main avenue for future work is the modelling of semantic meaning. One problem

hereby is the relatively limited availability of datasets to train this task. Most current

machine learning models for automatic gesture generation rely completely on implicit

learning of adequate gesturing from training examples. Machine learning models, how-

ever, are highly dependent on training set size, requiring many examples to learn a

specific “rule”. In order to learn to produce semantically meaningful gestures, the train-

ing set should contain many examples of a specific gesture co-occurring with the same

utterance. This is unlikely unless the speaker purposefully repeats a speech-gesture com-

bination, or a very large dataset is obtained for training. We hope to contribute to the

work on this problem with our gesture segmentation in two ways: Firstly, by segmenting

individual gestures, automatic shape analysis may become more achievable. If we can,

for example, tag all “wipe” gesture in a dataset, modelling when this gesture occurs

becomes an easier task. Secondly, even without further shape analysis, we propose that

a speech-window-to-gesture rather than the common continuous-speech-to-continuous-

motion approach may be a fruitful avenue in future work as this relies to a lesser degree

on the implicit learning.

149
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Another area of future work is capturing speaking style. While we recorded two

speakers with distinctly different style, we have only quantitatively compared their re-

spective gesture motion to a very limited degree, and we have not used speaking style

explicitly in the gesture generation task. Future work could use the desired speaker

style as an additional input to the gesture generation system. An open question is the

extent and type of cross-speaker gesture comparability, relevant for generalizability and

transferability of gesture generation models.

For future investigation of speaking style differences, it will also be essential to

include data from more speakers. With the availability of more such data, many inter-

esting areas of gesture research are open, such as personality-based gesture generation

and emotion-based gesture modulation. Both of these aspects have been shown in previ-

ous work to affect gesture expression, but truly capturing personality or emotion likely

requires modelling the modulating impact on gesture content too. This also emphasized

the importance of the first point, the modelling of semantic meaning as an integral part

of gesture behavior. Ultimately, we need to first detect and categorize semantic gestures

before attempting to model their complex relationship with speaker style, personality,

emotion, and context.

With regard to context, we have here focused on a single speaker in conversational

monologue-style, leaving many speaking contexts unaddressed. Firstly, true conversa-

tion involves multiple parties, with complex dynamics of taking turns in speaking and

listening, using interruptions, responding, and addressing. Future work may include

some or all of these dynamics in the modelling of gesture behavior. Secondly, we pur-

posefully focused on relaxed, spontaneous, conversational speech, however, as virtual

agents enter a variety of different domains, their behavior has to be adjusted accord-

ingly. For example, a personal companion agent should behave differently than a health

care advisor or a virtual teacher. This difference in (gesture) behavior is important not

only for eliciting the desired perception of the agent (friendly, knowledgeable, calm, ...)

but also for understanding, as a teacher agent for example should be well able to produce

helpful deictic gestures, whereas modelling of a companion agent may better focus on

interpersonal gestures to prompt responses or show listening and understanding.
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[112] Elif Bozkurt, Yücel Yemez, and Engin Erzin. Multimodal analysis of speech and

arm motion for prosody-driven synthesis of beat gestures. Speech Communication,

85:29–42, 2016.
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