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Abstract

A survey of free-form deformation tools where the deformation is controlled by manipulating a 0-D to 3-D tool.
Characteristics of a model that includes all these and generalises the concept will be presented.

1. Introduction

In this state of the art, we propose a survey of free-form
deformation techniques where the deformation is controlled
by manipulating a user-defined deformation tool. Recent re-
searchs have provided deformation tools of any topological
dimensions : 0-D (points), 1-D (lines), 2-D (surfaces) or 3-D
(volumes).

The most famous of these models (see section 2) is cer-
tainely the one using 3-D parallelepipedical lattices26 and
all its extensions10; 16; 12; 18; 19; 5; 22. The latest invented15 is
using 2-D rectangular surfaces as deformation tool (see sec-
tion 3). Axial deformation20; 14; 23 are specifying the defor-
mation through the modification of a 1-D line (see section 3).
Finally, with models such as7; 17; 8; 21; 1; 25 the deformation is
simply defined by several user-defined point displacements
i.e. 0-D constraints (see section 4).

These deformation techniques are all independent of the
underlying object representation. It can be proved4 that
the underlying mathematical formalism for several of these
models is just the same. The fact that they fall into a unique
mathematical formalism involving a mapping establishes the
links between these models. Thus, we will study the differ-
ences and the links from one formulation to the other.

However for the interactive modeling, the important ques-
tions are more : what kind of deformation can be easily
achieved with these techniques ? Are they highly interactive
and intuitive ? Thus, to answer these questions, we will ex-
plain, for each class of models, how to control the resulting
deformation by manipulating the deformation tool. In partic-
ular, we will precise the position, the size and the boundary
of the deformed area as well as the shape of the deforma-

tion. So a formal comparison as well as a practical one will
be done (see section 5).

Finally, we will introduce the caracteristics of a free-form
deformation model that would generalize and include all
these deformation models using a multidimensional defor-
mation tool (see section 6).

2. 3-D deformation tools

Deformation models requiring a 3-dimensional deformation
tool such as a parallelepipedical volume called lattice are
presented in this section. Using these techniques the defor-
mation of an object is computed from the deformation ap-
plied to the 3-dimensional deformation tool.

2.1. FFD

The deformation tool used for the free-form deformation
technique called FFD26 is a trivariate volume defined by an
array of(p1+1)(p2+1)(p3+1) control pointsPi; j;k.

To deform an object the user deforms the lattice by mov-
ing its control points. Any point lying inside the lattice is
deformed accordingly to the lattice deformation. In particu-
lar, the deformation of an object inside the lattice follows the
displacement of the lattice control points.

Before deforming the lattice, each point of the object
should be associated to the lattice. LetU = (u1;u2;u3)
be the cartesian co-ordinates of a point in the global co-
ordinate system(O;X;Y;Z), andU = (u01;u02;u03) be its
co-ordinates in the lattice co-ordinate system(U0;R;S;T).
The transformation ofU from its global co-ordinates to its
lattice co-ordinates is obtained from :

u01 =
Ŝ T(U�U0)

Ŝ T:R u02 =
Ŝ T(U�U0)

Ŝ T:R u03 =
Ŝ T(U�U0)

Ŝ T:R
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where^ represents the vectorial product and: the scalar
product. The lattice co-ordinates of a point lying inside the
lattice are such that : 0� u01 � 1;0� u02 � 1;0 � u03 �
1. The cartesian co-ordinates of any point lying inside the
lattice can be expressed as :

U = ∑p1
i=0 ∑p2

j=0 ∑p3
k=0Pi; j;kBp1

i (u01)B
p2
j (u02)B

p3
k (u03)

where thePi; j;k are the(p1+1)(p2+1)(p3+1) control
points with 0� i � p1;0� j � p2;0� k� p3 andBp1

i , Bp2
j ,

Bp3
k are polynomials of degreep1, p2, p3 respectively. Seder-

berg and Parry use the Bernstein polynomials to define the
functionsBp1

i , Bp2
j , Bp3

k .

Once the lattice is associated to the object, the user moves
its control points. Finally, the cartesian co-ordinates of a
point U after the deformation are computed from the new
control pointsP0i; j;k :

D(U) = ∑p1
i=0 ∑p2

j=0 ∑p3
k=0P0i; j;kBp1

i (u01)B
p2
j (u02)B

p3
k (u03)

Due to the Bernstein polynomials properties, the displace-
ment of one control point influences the whole space inside
the lattice. Thus, the lattice exactly corresponds to the de-
formed area. However, the deformation is applied only to
the points of the object lying inside the lattice.

Global deformations are obtained when the whole object
lies inside the lattice since the displacement of a unique con-
trol point modifies the whole object. To localize the defor-
mation, the technique consists in shrinking the size of the
lattice. Local deformations are obtained when only a lim-
ited part of the object lies inside the lattice. In that case, the
lattice intersects with the object. To preserve the continuity
of the object’s surface, the control points lying on the face
of the initial lattice intersecting the object should not move.
To preserve the continuity of the tangent or the curvature,
stronger constraints are imposed on the lattice control points.

The deformation of the object (or its part included inside
the lattice) "follows" the displacement of the control points
of the lattice. Thus, it is not easy to get a precise displace-
ment of a given point of the object. The user proceeds using
a trial and error process to obtain the desired deformation.
The shape of the polynomials defines the shape of the defor-
mation inside the lattice.

To summarize, the deformed area is the volume embedded
in the interior of the lattice. To modify its size or its position
the user modifies the lattice. The boundary of the deformed
area is a parallelepiped since the initial lattice is limited to
a parallelepipedical volume. This technique is particularly
well suited to global deformation. On the contrary, a given
displacement of a point of an object is hard to obtain.

2.2. Extended FFD

Extended free-form deformation or shorter EFFD12, extends
the FFD technique to allow non-parallelepipedical lattices.
In particular, elementary or composite prismatic lattices are

defined. Elementary prismatic lattices are obtained by mov-
ing or merging control points of a parallelepipedical lat-
tice. For example, the cylindrical lattice is obtained by weld-
ing two opposite faces of a parallelepipedical lattice and by
merging all control points of the cylinder axis. Composite
prismatic lattices are defined as several elementary lattices
welded together. The welding operation is realised by merg-
ing the control points of each lattice. Some continuity prob-
lems may occur specially when several control points are
merged together. In12 one can see on the figure 10b page
196 that the continuity of the surface in the center of the lat-
tice can not be checked. However in this example the fold
effect was expected, and gives a visually satisfaying result.
As continuity constraints would be penalizing for this tech-
nique, the authors insure lattice continuity only for the sim-
plest cases. Non prismatic lattices can also be used. However
the use of complex lattices can lead to unpredictable results.

In addition, elementary lattices are composed by several
"chunks" where a chunk is a trivariate volume represented by
a tensor product of Bernstein polynomials of degree three.
Such a chunk is defined by 4�4�4 control points.

To compute the deformation due to an elementary lattice,
the co-ordinates of the object points in the lattice parameter
space are computed. First, the chunk where the point is sup-
posed to lie is determined. Then, the co-ordinates inside the
chunk are computed using Newton approximation. Finally,
the deformation of a point inside a given chunk is defined by

D(U) = ∑3
i=0 ∑3

j=0 ∑3
k=0 P0i; j;kB3

i (u01)B
3
j (u02)B

3
k(u03)

where theB3, B3
j , B3

k are Bernstein polynomials of degree
three and theP0i; j;k are the 4�4�4 control points with 0�
i� 3, 0� j � 3, 0� k� 3. When a composite lattice is used,
the deformations due to each elementary lattice are applied
successively.

The definition of elementary lattices in chunks provides
a local control of the deformation. Indeed, the displacement
of a given control point modifies only the points lying inside
the corresponding chunk. It is possible to localize a deforma-
tion by modifying the number of subdivisions of the lattice.
However, the subdivision process is not easy to understand
for a user not familiar with the Bernstein polynomials. Un-
fortunately, no intuitive tools are provided to control the de-
formed area : its size, its position and its boundary.

The deformed area corresponds exactly to the volume of
the lattice only when every chunk is modified. Then, the user
controls the deformed area by editing the position, the size
and the boundary of the lattice. As with parallelepipedical
lattices, the deformation could also be local when only a lim-
ited part of the object lies inside the lattice.

To conclude, the deformed area corresponds to the vol-
ume embedding the interior of the modified chunks but no
intuitive tools are provided to control it. So, this technique
is recommended for global deformation obtained when ev-
ery chunk is modified through the deformation. Only in that
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case, the user controls the deformed area by manipulating
the lattice. Due to that, for the user, local deformation ob-
tained by moving a few control points seems hard to predict.

2.3. Rational FFD

Rational free-form deformation18 is an other extension of
FFD. It allows incorporation of weights defined at each con-
trol point of the parallelepipedical lattice. However, when
the weights at each control point are unity, the deformations
are equivalent to the FFD. To control the deformation, the
user either moves the lattice control points or modifies their
associated weights. The co-ordinates of a point are computed
in the lattice parameter space before editing the lattice of
control points. Then, the deformed point is computed from:

D(U) =
∑p1

i=0 ∑p2
j=0 ∑p3

k=0 P0i; j ;kWi; j ;kB
p1
i (u01)B

p2
j (u02)B

p3
k (u03)

∑p1
i=0 ∑p2

j=0 ∑p3
k=0Wi; j ;kB

p1
i (u01)B

p2
j (u02)B

p3
k (u03)

whereWi; j;k represents the weight associated to the con-
trol point P0

i; j;k with 0� i � p1;0� j � p2;0� k� p3 and

where theBp1
i , Bp2

j , Bp3
k are the polynomials of degreep1,

p2, p3.

The deformed area and the shape of the deformation both
depend on the polynomial basis. The implementation of Ra-
tional FFD is presented with Bernstein polynomials of de-
greep1, p2, p3 respectively. Thus, the deformed area corre-
sponds to the lattice. The difference with FFD lies in the fact
that a weight associated at each control point provides one
more degree of freedom to define the deformation. However
the unpredictability of the deformation obtained by chang-
ing the weight at a control point could be a limitation of this
technique for the uninitiated user.

2.4. Others FFD techniques

Actually others extensions of the classical FFD model called
NURBS-based FFD16; 19 adopted a trivariate B-Spline vol-
ume as deformation tool. The principle is the same but, due
to the B-Spline properties, local deformations can be easily
defined. Indeed, by moving one control point of the lattice,
only a limited area of space defined by some chunks of the
lattice is deformed.

In order to obtain a deformation tool which can describe
any 3D space subdivision, and to permit an easy control of
the continuity of an object embedded in these lattices, defor-
mation models5; 22 based on the same principles as the ones
of FFD are defined.

With the first one called Continuous FFD5 by the au-
thors, the deformation tool is a set of tetrahedral Bézier vol-
umes. Initial lattices are made only of regular Bézier tetra-
hedrons, i.e. tetrahedrons which control points are regularly
distributed with respect to the four vertices. This permits to
directly compute the local coordinates of the object points in
the lattices, without using a Newton algorithm. This model
which can describe any subdivision of the tridimensional

space also permits to control theC1 continuity of the de-
formation of an object embedded in these lattices.

The other one22 uses a lattice of artitrary topology that is
subdivided with the Catmull-Clark subdivison method. Af-
ter the first subdivision all cells of the resulting lattice have
an hexahedral structure. After a few subdivisions, all cells
are arranged in a regular pattern except at a finite number
of points. Finally the initial lattice of arbitrary topology is
refinedn times until the largest cell of the lattice has a vol-
ume less than a specified size. The local co-ordinates of each
point of the object in the subdivided lattice is computed. To
deform the object the control points of the initial lattice are
moved. Then the deformed lattice is once again subdivided
n times. The new position of each point is easily obtained
since its local co-ordinates according to a cell are invariant
through the subdivision process.

Since the user only manipulates the initial lattice of arbi-
trary topology and not the refined one, the link between the
displacement of control points and the deformation of the
object might be quite hard to predict. Some problems also
come from the subdivision process itself : very small cells
together with very large ones can be obtained in the result-
ing lattice. The resulting deformation may suffer from such
configuration. In addition, the deformed area is arbitrarily
constrained by the lattice topology.

3. 2-D deformation tools

In this section, the object is controlled through the manip-
ulation of a two-dimensional deformation tool. A model15

where a so-called shape surface is used to control the defor-
mation of an object is introduced.

The shape surface is defined by a B-Spline tensor product
surfaceS(u;v), initially forming a rectangular planar grid on
the X0Y-plane. To deform an object, the user deforms the
associated shape surface by moving its control pointsPi; j .

First, for each pointU = (u1;u2;u3) of the object, its pro-
jectionUP on the shape surface and along its normal is com-
puted. Let(u01;u02) be the parametric co-ordinate ofUP such
thatUP = S(u01;u02) andu03 be the distance betweenU and
UP. So we have :

U = S(u01;u02)+u03N(u01;u02)

whereN(u;v) is the vector normal to the shape surface.

The deformation model is defined such that the co-
ordinate(u01;u02;u03) of any pointU relatively to the shape
surface are invariant. This property allows to compute the
new positionD(U) of U :

D(U) = S0(u01;u02)+u03N0(u01;u02)

whereS0(u;v) is the modified shape surface obtained after
moving its control points andN0(u;v) is the vector normal
of the modified shape surface.
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Through the control of a shape surface, it is quite easy to
bent or to twist any object. However to obtain, for exemple, a
tapered object, the user should be able to modify through the
deformation, the distanceu03 between a point and its projec-
tion on the shape surface.

The authors15 propose to use thez component of a so-
called height surfaceH(u;v) as an additional parameter such
that :

D(U) = S0(u01;u02)+Hz(u01;u02)u03N0(u01;u02)

Initially, the height surface is a B-Spline tensor product
surface forming the same rectangular planar grid than the
shape surface, but on the planez= 1.

The user controls the deformation by moving the control
points of the shape surface and of the height surface. The
shape of the deformation is strongly linked with the modified
shape surface. Precise displacements of the object are hardly
obtained.

The deformed area is not explicitly defined. Indeed, the
deformation is global if the projection of the object lies to-
tally on the shape surface. Then, global deformations3 such
as bending, tapering and twisting can be accomplished.

Otherwise, the deformation of the object is local and, to
insure the continuity of the surface of the deformed object,
the user should not move some control points of the shape
surface.

4. 1-D deformation tools

Deformation models where the object deformation is con-
trolled by a one-dimensional deformation tool i.e. an axis are
presented in this section. The object deformation is linked to
the axis deformation.

4.1. AxDf

Axial deformation called AxDf20 is explained here. The first
step is to attach the axis to the object. To each pointU =
(u1;u2;u3) of the object a pointAU on the axis is associated.
A local co-ordinate system is defined around each pointAU
of the axis. Then, the co-ordinatesU = (u01;u02;u03) of the
object point in the local co-ordinate system associated toAU
are calculated using the matrixR1. The axis is deformed and
to a pointAU on the initial axis corresponds a pointA0U on
the deformed axis. The co-ordinatesD(U) of the deformed
point in the local co-ordinate system associated toA0U are
equal to the co-ordinate ofU = (u01;u02;u03) in the local co-
ordinate system associated toAU . The co-ordinate ofD(U)
in the global co-ordinate system are calculated using matrix
R2 as follows :

D(U) = T2R2(T1R1)
�1U

whereT1 is the translation matrix of vectorOAU andT2 is
the translation matrix of vectorOA0U .

The shape of the deformation is linked to the axis defor-
mation. The only deformations that can be obtained are spec-
ified by bending or stretching the axis. In addition, scaling
and twisting operations are possible by associating to each
point of the axis a scale and a twist factors before and after
the deformation. Finally, the axial deformation of a point is
defined by :

D(U) = T2S2W2R2(T1S1W1R1)
�1U

where the matrixW1 of twisting angleq1 and the matrixS1
of scaling factorθ1 are specified at each pointAU of the axis,
and the matrixW2 of angleq2 and the matrixS2 of factorθ2
are applied to the deformed object points associated toA0U .

Axial deformation influences the whole three-
dimensional space although it is applied only to the
point representing an object. In order to localize the de-
formed area, a zone of influence is introduced to defined
the portion of the three-dimensional space to be deformed.
A general cylinder around the axis is proposed to define
the deformed area. It defines the size, the position and the
boundary of the deformed area.

4.2. Deformation using De Casteljau algorithm

An other deformation model14 using 1-dimensional defor-
mation tool is introduced here. The 1-dimensional deforma-
tion tool is a Bézier curve.

A Bézier curve is defined by a set of control points form-
ing the control polygon. The De Casteljau algorithm trans-
forms a segment of the polygon of control into a segment of
the curve by an iterative process.

Initially, the object to deform is mapped by an affine trans-
formation on each segment of the control polygon. Then
by applying the De Casteljau algorithm, the resulting object
takes the shape of the Bézier curve.

Only global deformation such as streching, bending,
twisting, tapering can be obtained with this model. To ob-
tain local deformation the authors suggest to use De Boor
algorithm23 instead of De Casteljau.

5. 0-D deformation tools

For the models presented in this section the deformation tool
is reduced to points such that the deformation of the object
follows the displacement of these points.

5.1. DOGME

The deformation model called DOGME7; 8 is summarized in
this section. The deformation of an object is defined by the
displacement of points called constraint points. In particular,
a constraint point can be an object point. Then, it is trivial
to achieve exact placement of object points. The model can
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satisfy as many constraints as the user enters unless two op-
posite constraints are applied to a unique point in space. In
that case, the system computes the best approximation to the
solution.

The deformation is expressed as the composition of an ex-
trusion functionf and a matrixM computed so as to achieve
the constraints :

D(U) =U + M
|{z}

(n�m)

f (U)
| {z }

(m�1)

The resolution method is based on pseudo-inverses. The
dimensions of the matrixM and of the functionf are written
underneath the system.

The shape of the deformation around each constraint point
depends on the so-called extrusion functionf .

Local deformation around the constraint point is obtained
using B-Splines polynomials for example. Due to the local
support of the B-Splines polynomials only a limited area of
space is deformed. Furthermore, the shape of the extrusion
function is imprinted on the deformed area. Using B-Splines
of degree greater or equal to two, the shape of the resulting
deformation is very intuitive and smooth. Arbitrary shaped
bumps can easily be designed using this technique.

A bounding box centred at each constraint point visualizes
the extent of the deformation. The user interactively manip-
ulates it to localize the deformation or to modify its shape.
The size of the bounding box is linked to the support of the
extrusion function. The boundary of the bounding box de-
pends on the formulation of the extrusion function. In the ini-
tial model7 the bounding box around each constraint point
is a parallelepiped. A simplified version proposes a spheri-
cal deformed area8. An extension of the model6 allows to
define a different polyhedral bounding box around each con-
straint point.

On the contrary, the whole space can be influenced by
a constraint using power basis polynomials. In that case,
global deformation is obtained. The user could either choose
the function f among a predefined set of functions or inter-
actively build the appropriate one.

Cylindrical deformation are also defined2 by using cylin-
drical co-ordinates instead of cartesian coordinates. In order
to preserve the volume1 of the object through the deforma-
tion, additional constraints also can be added.

5.2. Direct FFD and Multiple levels FFD

As the techniques reviewed in section 2, direct free-form de-
formation (Direct FFD)17 also consists in embedding the
object that has to be deformed inside a trivariate lattice de-
fined by an array of control points. The object deformation
follows the lattice deformation but the displacements of the
lattice control points are computed from actions such that

: "move this point of the object to there". Points displace-
ments called constraints in the previous deformation model
correspond to a 0-dimensional deformation tool.

Using Direct FFD it is trivial to achieve exact placement
of object points. The computation of the deformed lattice
satisfying the displacement of object points is transparent to
the user. However, the displacement of a given object point
drags the surrounding points.

Recall that the lattice is defined by trivariate B-Splines
polynomials. Due to their local properties, the displacement
of one control point influences a limited space area. The
shape of the B-Splines polynomials is imprinted in the area
surrounding a given displaced point. The size, the position
and the boundary of the deformed area are strongly linked to
the distribution of the control points of the lattice. Thus, to
control the locality of the deformation, the user has to mod-
ify the initial lattice. No tools are offered to the user to con-
trol the deformed area. Due to that, part of the advantages of
the direct manipulation are lost.

Multiple levels FFD is introduced21 to solve problems
that may occurs when several constraints influences the same
control point of the lattice. The lattice is recursively refined
by inserting control points. The resulting deformation tool is
a multi-level lattice where each lattice is contributing to the
displacement of only one constraint point.

5.3. Dirichlet FFD

A very interesting deformation model called Dirichlet free-
form deformation25 is presented in this section. This defor-
mation model uses a 0-dimensional deformation tool since
the deformation of the object follows the displacement of a
set of points.

A set of points called here control points is initially po-
sitionned in space. The convex hull of this set of control
points is considered. The Delaunay triangulation and the as-
sociated Voronoi diagram of this set of control points are
computed. For a given pointP, its natural neighbors can be
defined as the control points with whichP would share an
edge in the Delaunay triangulation. ThenP is linearly de-
fined by its Sibson or natural co-ordinates defined over the
set of natural neighbors in terms of areas in 2 dimensions
or volumes in 3 dimensions. The region defined byP and
its natural neighbors is the region of influence ofP. Then, a
multivariate Bézier simplex is built over the set of its Sibson
neighbors such that the Bernstein polynomials value is tend-
ing to 1 when approchingP and tending to 0 when approach-
ing the border of the region of influence. Such a surface is
called a Dirichlet surface.

Any point U in space so in particular points of an object
can be expressed in term of the Dirichlet surface associated
to its region of influence :

U = ∑I=0 PI Bm
I (U 0)
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whereI = (i1; i2; : : : ; in) represents a multi-index,PI are
the control points,U 0= (u01;u02; : : : ;u0n) are the Sibson co-
ordinates ofU andBm

I the n-variate Bernstein polynomials
of degreem.

This expression is invariant through the displacement of
the constraint points, so the deformationD(U) of a pointU
is defined as follows :

D(U) = ∑I=0 P0I Bm
I (U 0)

The author also explains24 how to integrate various exten-
sions to this deformation model. A weight can be associated
to each control points in the same way as in Rational FFD.
Exact displacement of an object point is obtained by identi-
fying it with a control point.

Finally, Dirichlet FFD seems very convenient for local de-
formations. Indeed its application to hand modeling and an-
imation needs a precise control of the deformed area. For
each control point the deformed area is the region of influ-
ence defined by its natural neighbors. So the deformed area
can be of any shape. The shape of the deformation in the de-
formed area is given by the Bernstein polynomials. Global
deformation are also possible by moving control points in a
group.

6. Comparison between multidimensional deformation
techniques

To compare these deformation models it is important to es-
tablish the links between their mathematical formalism. But
it is also crucial to compare them in terms of capabilities to
deform objects.

All these models involve a mapping represented by the
deformation functionD : R3 �! R3 (except7 in Rn) that as-
sociates with each pointU its new positionD(U). In addi-
tion, it can be prooved4 that the mathematical model defin-
ing techniques using 3-D deformation tools such as FFD
26 and using 0-D deformation tools such as DOGME7 is
the same. Unfortunately, models using 1-dimensional or 2-
dimensional tools are hardly included in the same formalism.

Eventhough, all these techniques involve a mapping rep-
resented by the deformation function, the interactive tech-
niques they involve to define the deformation using the de-
formation tool are quite different.

Table 1 shows for which kind of deformations the dif-
ferent models are appropriate. For example, it is much
easier to obtain exact displacement of object points us-
ing 0-dimensional deformation tool than by manipulating
a 3-dimensional lattice. Deformation techniques using 0-
dimensional deformation tool are particularly well suited to
imprint arbitrary shaped bumps. Axial deformation is well
adapted to bending or stretching. A surfacic deformation tool
allows to define global deformations such as bending, taper-
ing and twisting. Deformation with a 3-D lattice seems to be
appropriate if it involves a regular set of control points.

The shape of the deformation is the same when using
3-dimensional or 0-dimensional deformation tools since it
is simply linked to the polynomials (Bernstein, B-Splines,
etc). However, the extrusion function of DOGME that de-
fines the shape of the deformation is not restricted to poly-
nomials. Thus, although these models are meant to provide
free-form deformation, physical properties on the deformed
object can be obtained with an appropriate choice for the ex-
trusion function.

The extent of the deformation is predictable in all these
methods. However, to control the position, the size and the
boundary of the deformed area, DOGME provides a more
flexible tool than others. For each implementation of the de-
formation models (first and second columns), Table 2 indi-
cates which entity defines the deformed area (third column)
and also indicates if the deformed area is visualized (fourth
column).

Indeed, within DOGME only the points lying inside the
bounding box move. The bounding box allows to control the
extent of the deformation. It corresponds exactly to the de-
formed area.

Two techniques using a 1-dimensional deformation tool
were presented. Deformation using De Casteljau algorithm
is applied to the whole object so only global deformations
are provided for now. The authors mention that local defor-
mations can be achivied using De Boor’s algorithm. AxDf
also influences the whole space but the authors explain that
it could be limited to a generalized cylinder.

When a shape surface controls the deformation, every
point projecting on it is inside the deformed area. Initially
the shape surface is planar, forming a regular grid, so the
deformed area is simply a parallelepiped infinite in the di-
rection perpendicular to the shape surface.

Using FFD techniques although only the portion of space
inside the lattice is considered, no mention is made of the
deformed area. Actually, when the lattice is defined by a
trivariate Bernstein polynomial, its volume defines the de-
formed area. However with a different polynomial basis such
as B-Splines, the size and the boundary of the deformed area
when moving one control point depends on various parame-
ters such as the number of control points of the lattice, their
distribution through space and the degree of the polynomi-
als. Thus, it is hardly predictable for a user not familiar with
the effect of control point displacements. The Direct FFD
model relying on FFD techniques has the same characteris-
tics.

The function D defines the deformation of the whole
space since it expresses the transformation of any point in
R3. Although the whole space is deformed, the deformation
can be applied to a selected set of points only. Consider an
object represented by a set of points with topological rela-
tions. The deformation modifies the position of the points
independently of their topology. This property of indepen-
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Global deformation Local deformation Precise displacement

3-D FFD, EFFD, RFFD yes continuity problems no
3-D NURBS-based FFD yes yes no
3-D Continuous FFD yes yes no
3-D Arbitrary topology FFD yes yes no

2-D Surface yes (bend, twist, taper, etc.) possible no

1-D AxDf yes possible no
1-D Curve yes (De Casteljau) yes (De Boor) no

0-D DOGME yes yes yes
0-D Direct FFD yes yes yes
0-D Dirichlet FFD yes yes yes

Table 1: Which kind of deformations for which deformation model ?

Deformed aera Visualized ?

3-D FFD, RFFD parallelepipedical lattice yes
3-D EFFD some prismatic or any shape chunks of the lattice no
3-D NURBS-based FFD some parallelepipedical volumes no
3-D Continuous FFD some tetrahedral volumes no
3-D Arbitrary topology FFD some hexahedral volumes no

2-D Surface the space projecting on the shape surface no

1-D AxDf the whole space or a generalized cylinder no
1-D De Casteljau the whole object -
1-D De Boor part of the object -

0-D DOGME bounding box (various shape) around constraint point yes
0-D Direct FFD some parallelepipedical volumes no
0-D Dirichlet FFD some voronoi convex cells no

Table 2: Possible shapes of the deformed area

dence from the underlying representation of the object is
common to all deformation methods presented here. Due to
this independence, these methods can easily be integrated
into most existing modelers or animation systems.

7. Discussion

The characteristics of a deformation model that includes all
these and generalises the concept are discussed in this sec-
tion.

First of all, the model should allow a large variety of de-
formation : global deformation such as bending, tapering,
twisting, etc. and local deformation with a precise control of
the deformed area and the deformation itself.

In term of interactive tools used to deform objects, it
should be of any dimension or even of various dimension.

More precisely the deformation tool could be a skeleton of
any shape and any dimension.

The ideal model would be a mathematical generalisa-
tion of the various existing formulations. In fact it could
be a multi-model that would use one existing model or the
other depending on the skeleton. A skeleton reduced to a 1-
dimensional tool could simply use AxDf for example. While
a multi-dimensional skeleton could use a different model for
each part.

Finally, such a model would be helpfull for animation
since some animation models13; 6; 2; 9 are already founded on
these free-form deformation models.
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