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Abstract. Multiscale methods have proved to be successful tools in image de-
noising, edge enhancement and shape recovery. They are based on the numerical
solution of a nonlinear diffusion problem where a noisy or damaged image which
has to be smoothed or restorated is considered as initial data. Here a novel ap-
proach is presented which will soon be capable to ensure real time performance
of these methods. It is based on an implementation of a corresponding finite el-
ement scheme in texture hardware of modern graphics engines. The method re-
gards vectors as textures and represents linear algebra operations as texture pro-
cessing operations. Thus, the resulting performance can profit from the superior
bandwidth and the build in parallelism of the graphics hardware. Here the con-
cept of this approach is introduced and perspectives are outlined picking up the
basic Perona Malik model on 2D images.

1 Introduction

Nonlinear diffusion in multiscale image processing attracts growing interest in the last
decade. Methods based on this approach are frequently used tools in image denoising,
edge enhancement and shape recovery [1, 10, 12, 9]. Therein the image is considered as
initial data of a suitable evolution problem. Time in the evolution represents the scale
parameter which leads from noisy, fine scale to smoothed and enhanced, coarse scale
representation of the data. The same kind of diffusion models can also be used for the
visualization of flow fields through the construction of streamline type patterns [4].

Here our focus is on the efficient implementation of finite element schemes for the
solution of the nonlinear diffusion problem. We pick up the regularized Perona and Ma-
lik model and rewrite the corresponding linear algebra operations as image processing
operations supported by graphics hardware. Thus they act on vectors which are regarded
as images. Before we describe the approach in detail let us argue why this unusual ap-
proach is expected to ensure superior performance over a standard implementation in
software although nowadays CPU performance is superior compared to the computing
performance of single operations on a graphics unit.

Memory bandwidth has become a major limiting factor in many scientific compu-
tations. Nowadays performance highly depends on the implementation’s beneficial use
of the hierarchy of caching levels. But automation fails here and the task of optimal use
of the memory hierarchy for a given application is very complex. On the other hand PC
graphics hardware has undergone a rapid development boosting its performance and
functionality and thus releasing the CPU from many computations. Particularly in vol-
ume graphics, texture hardware is extensively exploited for a significant performance
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increase leading to interactive applications [3, 14, 13]. As an example which goes be-
yond basic graphics operations we cite here Hopf et al. who discussed Gaussian filtering
and wavelet transformations in hardware [5, 6].

We proceed along this line and further widen the range of applications even by
demonstrating that the functionality of modern graphics cards has reached a state,
where the graphics processor unit may be regarded as a programmable parallel fixed-
point coprocessor for certain scientific computing purposes. Observing the precision
restrictions, it may be used for numerical computations where ultimate precision is not
required. Then we benefit from the much higher memory bandwidth and the parallel
execution of commands on large data blocks. Partial differential equations in image
processing are exactly of this type. They involve large image data and our aim is not to
compute exact solutions but to model numerically properties which are known for the
continuous model. In case of the nonlinear diffusion these are the decreasing diffusiv-
ity in areas of large gradients and the smoothing in image regions which are expected
to be apart from edges. Furthermore a maximum principle is regarded as an important
property.

We will first review the nonlinear diffusion model and then concentrate on the adap-
tion of the numerical scheme to this graphics oriented setting.

2 Nonlinear Diffusion

We briefly review the model and the discretization of the nonlinear diffusion in image
processing, based on a modification of the Perona-Malik [9] model proposed by Catt´e,
Lions, Morel, and Coll [2]. We consider the domain
 := [0; 1]d, d = 2; 3 and ask for
solution of the following nonlinear parabolic, boundary and initial value problem: Find
u : R+ �
 ! R such that

@
@t
u� div (g(ru�)ru) = 0 ; in R+ �
 ;

u(0; �) = u0 ; on
 ;

@
@�
u = 0 ; onR+ � @
:

where in the basic modelg is a non negative monotone decreasing functiong : R
+
0 !

R+ satisfyinglims!1 g(s) = 0, e. g.g(s) = (1 + s2)�1, andu� is a mollification of
u with some smoothing kernel. The solutionu : R+ � 
 ! R can be regarded as a
multiscale of successively diffused imagesu(t); t 2 R+. With respect to the shape of
the diffusion coefficient functiong, the diffusion is of regularized “backward” type [7]
in regions of high image gradients, and of linear type in homogeneous regions.

We discretize the problem with bilinear, respectively trilinear conforming finite ele-
ments on a uniform quadrilateral, respectively hexahedral grid. In time a semi-implicit
first order Euler scheme is used, as purely explicit schemes pose very restrictive condi-
tions on the timestep width. In variational formulation with respect to the FE spaceVh

we obtain: �
Uk+1 � Uk
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for all � 2 Vh. Here(�; �) denotes theL2 product on the domain
, (�; �)h is the lumped
masses product [11], which approximates theL2 product, and� the current timestep
width. The discrete solutionUk is expected to approximateu(�k). Thus in thekth
timestep we have to solve the linear system

(Mh + �L(Uk
� ))

�Uk+1
= Mh

�Uk (1)

where �Uk is the solution vector consisting of the nodal values,Mh:= ((��; ��)h)��
the lumped mass matrix,L(Uk

� ):=
�
(g(rUk

� )r��;r��)
�
��

the weighted stiffness
matrix and�� the “hat shaped” multilinear basis functions. In the concrete algorithm
we replaceg(rUk

� ) on elements by the value at the elements’ center point.
As the graphics hardware offers only a fixed-point number format, it is important

that we separate the small, grid specific element diameterh from the dimensionless
diffusion coefficients. Thus both the coefficients and the factor�

h2
are close to1. For an

equidistant grid we may rescale the above equation and get�
I +

�

h2
L̂(Uk

� )

�
| {z } �Uk+1 = �Uk|{z}

Ak( �Uk) �Uk+1 = �Rk( �Uk);

with the rescaled stiffness matrix̂L(Uk
� ):=

�
(g(rUk

� )r�̂�;r�̂�)
�
��

defined by ref-

erence multilinear basis functionŝ�� with support[�1; 1]d.
Any implementation, also that in graphics hardware has to solve the above linear

system of equations. In the following section we will therefore first consider the opera-
tions involved in solving a general linear system of equations and describe how they can
be split into more basic algebraic operations, which are directly supported by graphics
hardware.

3 Operations in Linear Iterative Solvers

In fact, many discretizations of partial differential equations lead to a sparse linear sys-
tem of equationsA( �Uk) �Uk+1 = �R( �Uk); where the matrixA 2 R

n+1;n+1 and the right
hand side�R depend on the solution vector�Uk of the preceding timestep. Frequently
an iterative solver is applied to approximate the solution, i.e. we consider an iteration
�X l+1 = F ( �X l) with �X0 = �R: Typical smoothers are the Jacobi iteration

F ( �X) = D�1( �R� (A�D) �X); D:= diag(A) (2)

and the conjugate gradient iteration

F ( �X l) = �X l +
�rl � �pl

A�pl � �pl
�pl; �pl = �rl +

�rl � �rl

�rl�1 � �rl�1
�pl�1; �rl = �R�A �X l (3)

In the above formulas we can easily identify the required operations: matrix vector prod-
uct, scalar product, componentwise linear combination, componentwise multiplication,
application of a componentwise function, vector norm.



The first two of these operations are not directly supported by graphics hardware.
Therefore we must split them into more primitive ones. The scalar product may be
reformulated using the componentwise multiplication (denoted by ’�’) and a vector
norm �V � �W = k �V � �Wk1 :

The matrix vector product may be expressed in terms of componentwise products
with the matrix’ subdiagonals�A
 := (A��
;�)� which are vectors, and subsequent in-
dex shift operationsT
 on vectors, defined byT
 Æ �V := (V�+
)�:

(A �X)� =
X
�

A�;�X� =
X
j
j<n

( �A

)�+
X�+


A �X =
X
j
j<n

T
 Æ ( �A


� �X): (4)

Above,� = 0; : : : ; n; � = 0; : : : ; n range over the matrix’ lines or columns respec-
tively, and
:= � � � = �n; : : : ; 0; : : : ; n indexes the subdiagonals. Elements of the
subdiagonal vectors�A
 indexing matrix elements outside of the matrixA are supposed
to be zero, e.g. the first element of the vector�A1 is (A1)0 = A�1;0 = 0. If most sub-
diagonals ofA are zero, which is always true for FE schemes, then
 ranges only over
few nontrivial subdiagonals.

Thus we have successfully split the operations for the linear iterative solvers (2) and
(3) into hardware supported functions. Table 1 lists these operations together with their
counterparts in graphics hardware.

Table 1. Basic operations in linear iterative solvers.

operation formula graphics operation

linear combination a �V + b �W image blending

multiplication �V � �W image blending

general function f Æ �V lookup table

index shift T
 Æ
�V change of coordinates

vector norms k �V kk; k = 1; : : : ;1 image histogram

4 Rewriting the FE Scheme

Now we return to the FE scheme for the nonlinear diffusion introduced in section 2.
The general approach to the decomposition of the matrix vector product given in the
previous section, is feasible in this case. The matrixAk consists of only3d nontrivial
subdiagonals.

Since in this application the vectors�Uk = (Uk
�)� represent images, it is appropriate

to let � be a 2 or 3 dimensional multi-index, enumerating the nodes of the 2 or 3 di-
mensional grid respectively. Then the index offset
:= � � � is the spatial offset from



Fig. 1. On the left a 2D grid enumerated by a multi-index, on the right the neighboring elements
and the local multi-index offset to neighboring nodes.

node� to node�. Figure 1 shows the enumeration for a 2D grid, and all the32 offsets

 and the neighboring elementsE


� for a given node�.
To perform the decomposed matrix vector product (cp. (4)) we need to identify

the elements of the subdiagonal vectors�A
 , which now can themselves be regarded
as images. For this task it suffices to consider the subdiagonal�L
 of L̂(Uk

� ), since
�A
 = Æ
�1 + �

h2
�L
 , whereÆ
 is the Kronecker symbol. In fact the identity indicated by

Æ
�1 deserves no further attention. By definition we have

�L
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�
g(rUk
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�
:

Since we evaluateg(rUk
� ) by the midpoint rule on elements we may rewrite the

matrix element for the node� as a weighted sum over contributions on the neighboring
elements

�L
� =
X

E2E(�)

Gk
EC
;E ;

whereE(�):= fE

�jj
j = dg is defined as the set of elements around the node� (Fig.

1),Gk
E := g(rUk

� )
��
E

is the constant value of the diffusion coefficient at the element’s

center of mass andC
;E :=

�
r�̂��
 jE ;r�̂�jE

�
a local stiffness matrix entry. On an

equidistant grid the valuesC
;E depend only on
. Since
 takes only3d different
values, they can be precomputed.

As we have seen, we do not have to store the matrixAk for the computation of the
matrix vector product. Instead we precompute the valuesGk

E - again interpreted as an
image - only once for every timestep and then split the matrix vector product in the
linear solver into few (3d) products with the subdiagonals�L
 (cp. (4)):

L̂(Uk
� )

�X =
X
j
j�d

T
 Æ (�L


� �X):

In all these calculations we take care of the natural boundary condition by duplicating
the borders of the image�Uk.



5 Implementation

Graphics cards are customized in a big variety of designs, but operationally they consist
of only two main components: the graphics processor unit (GPU) and the graphics
memory. (Strictly speaking, the GPU splits into a geometry and raster engine and not
every graphics card has its own memory.) The GPU processes data from the graphics
memory very much like the CPU does from the main memory. The most significant
difference is the unified processing of data blocks by the GPU. For example, where the
CPU needs to run over all nodes of a grid to perform an addition of two nodal vectors,
the GPU takes only a few commands for the same task. If we stick to the analogy then
the so-called framebuffers serve the same purpose in numerical computations for the
GPU, as the registers do for the CPU. Usually there are at least two such framebuffers:
the front buffer which is displayed on the screen and the back buffer where we can
perform the calculations invisibly.

An important issue with graphics boards are the number formats supported by the
GPU. Resulting from the inherent use, only the range[0; 1] suitable for the representa-
tion of intensities is supported (Some GPUs offer extended formats during calculations).
In any case we have to encode our numbers to cover a wider range, say[��0; �1]. By
nonlinear transformations, also unbounded intervals could be covered, but it is doubtful
whether the low precision of the numbers may resolve these intervals sufficiently. Fur-
thermore linear encoding has the advantage that there are many stages in the graphics
pipeline where linear transformations can be applied, saving multiple processing of the
same operand.

Table 2. Correspondence of operations in numbers and intensities.

Numbers Intensities

r : x! 1
2�

(x+ �)

a 2 [��; �] r(a) 2 [0; 1]

a+ b 2

�
r(a)+r(b)

2

�
�

1
2

ab
1+�

2
� � (r(a)(1� r(b)) + r(b)(1� r(a)))

�a+ � �r(a) + (
�

2�
+ 1��

2
)

f(a) (r Æ f Æ r
�1

)(r(a))

P
�
�a�

P
�
�r(a�) +

1
2
(1�

P
�
�)

�(2y � 1) y : r�1

In Table 2 we list which operations on the intensities (the encoded values in the im-
ages) correspond to the desired operations on numbers (the represented values). The left
column shows the operation to be performed, whereas the right column shows which
operation must be performed on the encoded operands to obtain the equivalent encoded



result. Obviously no other operations than those already discussed are needed to per-
form these transformed calculations.

By choosing� sufficiently large such that any intermediate computations in num-
bers do not transcend the range[��; �], we assure that the corresponding computations
in intensities will not transcend the range[0; 1] either. On the other hand a large� de-
creases the resolution of numbers, therefore it should be chosen application dependent
as small as possible. The symmetric choice of the interval covers the typical number
range of FE schemes and has the advantage of simpler encoded operations on intensi-
ties (Table 2).

Below we have outlined the control structures of the algorithm in pseudo code no-
tation.

nonlinear diffusion f
load the original image and the parameters;
initialize graphics hardware;
encode the original image in graphics memory �U0;
for each timestep k f

store the right hand side image �Rk = �Uk;
calculate the image consisting of diffusion coefficients �Gk =

�
g(rUk

� )
��
E

�
E

;
initialize the solver �X0 = �Rk;
for each iteration l

calculate a step of the iterative solver �X l+1 = F ( �X l);
store the solution �Uk+1 = �X l+1

decode the solution and display it;
g

g

Now, considering an implementation in OpenGL [8], the basic operations from Ta-
ble 1 are more or less directly mapped onto OpenGL functionality. The addition and
multiplication are achieved by selecting the proper source and destination factors for the
blending function (glBlendFunc). Concerning the implementation of a general function
of one variable we should keep in mind that the intensities are discretized bym bits,
with m � 12. A general function can thus be represented by2m entries in a table.
OpenGL can use such a table to automatically output the values indexed by the intensi-
ties of an image (glPixelMap), thus applying the designated function to the image. For
the index-shift one simply has to change the drawing position for the image. Concern-
ing the vector norms there is a slight difference in implementation, since the OpenGL’s
histogram extension does not calculate them directly in the GPU, as the other OpenGL
methods do, but returns a histogram of pixel intensities (glGetHistogram) from which
the CPU has to compute the norm. LetH : f0; : : : ; 2m � 1g ! N be such a histogram
assigning the number of appearances to every intensity of the image�V , then

k �V kk =

 
2
m

�1X
y=0

�
r�1(y)

�k
�H(y)

! 1
k

;



Fig. 2. Comparison of hardware implemented linear (upper row) and nonlinear diffusion (lower
row).

for k = 1; 2; : : : , and fork =1 we simply pick up the largestjr�1(y)j withH(y) > 0,
wherer�1 is the inverse transformation from intensities to numbers. However apart
from the overall control structure of the programm, this is the only computation done
by the CPU while using the conjugate gradient solver. For the Jacobi solver no CPU
calculation at all is required.

6 Results

The computations have been performed on a SGI Onyx2 4x195MHz R10000, with
InfiniteReality2 graphics, using 12 bit per color component and the number interval
[�2; 2], i.e. � = 2. Convolution with a Gaussian kernel, which is equivalent to the
application of a linear diffusion model is compared to the results from the nonlinear
model in Fig. 2. This test strongly underlines the edge conservation of the nonlinear
diffusion model.

Figure 3 shows computations with graphics hardware using the Jacobi and the cg-
solver and compares them to computations in software. The precision used in the GPU
obviously sufficies for the task of denoising pictures by nonlinear diffusion. Although
the images produced by hardware and software differ, the visual effect is very compa-
rable, and this is the decisive criterion in such applications.

Currently,100 iterations of the Jacobi, cg-solver for2562 images take about 17 sec
and 42 sec respectively, which is still slower than the software solution. The reason for
this surprisingly weak performance is easily identified in the unbalanced performance
of data transfer between the framebuffer and graphics memory. Before, we have already
mentioned that the back buffer serves as a register, where auxiliary results are computed
before they are stored in a variable in graphics memory. Because nearly all operations
effect the back buffer, its access times are highly relevant for the overall performance.



Fig. 3. Comparison of nonlinear diffusion solvers, first row: adaptive software preconditioned cg;
second row: jacobi sover in graphics hardware; third row: cg-solver in graphics hardware.

But compared to a computation in software where the reading and writing of a register
in the CPU takes the same time, because the operations are supposed to be needed just
as often, the graphics of the Onyx2, in contrary, is writing an image from the graph-
ics memory to the framebuffer about60 times faster than reading it back, because the
reading back from the framebuffer to graphics memory is not a very common opera-
tion in graphics applications. The histogram extension used for the computation of the
scalar products in the cg-solver is even less common, and being even slower than the
reading, it further reduces performance. However, the growing use of such extensions
in different areas of visualization and image processing will certainly lead to an opti-
mization. There are already graphics cards with less discrepant read/write operations
between the framebuffer and the graphics memory and we are working on a respective
porting which, however, incorporates some additional difficulties.

7 Conclusions

We have introduced a framework which facilitates the use of modern graphics boards as
fixed-point coprocessors for image processing. By showing how common PDE solvers
can be split into basic operations, which are directly supported by graphics hardware,
we have demonstrated that a wide range of applications could benefit from the large



memory bandwidth, which usually is the bottleneck in many scientific calculations.
The implementation of nonlinear diffusion has underlined how existing algorithms can
quickly be adapted to this graphics oriented setting and that the low precision of num-
bers does not do any harm to many applications aiming at visual results. The visual-
ization of flow fields based on this approach, for example, is one of our future goals.
Finally we have discussed the issue of performance which could not fully unfold itsself
yet. But we are very confident that in the near future the application of new graphics
cards and drivers will overcome this difficulty, raising the speed of such implementa-
tions far beyond pure software solutions.
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