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Abstract 

3D applications using hardware depth buffers for visibility testing 
are confronted with multiple choices of buffer types, sizes and 
formats. Some of the options are not exposed through 3D API or 
may be used by the driver without application’s knowledge. As a 
result, it becomes increasingly diffkult to select depth buffer 
optimal for desired balance between performance and precision. 

In this paper we provide comparative evaluation of depth 
precision for main depth buffer types with different size and 
format combinations. Results indicate that integer storage is 
preferred for some buffer types, while others achieve maximal 
depth resolution with floating-point format optimized for known 
scene parameters. We propose to give 3D applications full control 
of the depth buffer optimization by supporting multiple storage 
formats with the same buffer size and exposing them in 3D API. 

In the search for a unified depth buffer solution, we describe new 
type of the depth buffer and compare it with other options. 
Complementary floating-point Z buffer is a combination of a 
reversed-direction Z buffer and an optimal floating-point storage 
format. Non-linear mapping and storage format compensate each 
other’s effect on the depth precision; as a result, depth errors 
become significantly less dependent on the eye-space distance, 
improving depth resolution by the orders of magnitude in 
comparison with standard Z buffer. Results show that 
complementary Z buffer is also superior to inverse W buffer at 
any storage size. At 16 and 24 bits/pixel, average depth errors of 
complementary Z buffer remain 2 times larger than for true W 
buffer utilizing expensive high-precision per-pixel division. 
However, it provides absolutely best precision at 32 bits/pixel, 
when errors are limited by floating-point per-vertex input. 

Results suggest that complementary floating-point Z buffer can be 
considered as a candidate for replacement of both screen Z and 
inverse W buffers, at the same time making hardware investment 
in the true W buffer support less attractive. 
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Graphics]: Hardware Architecture - raster display devices; 1.3.3 
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algorithms; 1.3.7 [Computer Graphics]: Three-Dimensional 
Graphics and Realism - visible surface algorithms. 
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1 INTRODUCTION 

Depth buffer algorithms are used for visibility testing by the vast 
majority of modern 3D graphics accelerators. Depth buffer 
architecture is shaped by the conflicting requirements of 
precision, buffer size, memory bandwidth and complexity of per- 
pixel conversion to and f?om storage format. High-end graphics 
accelerators usually support depth buffers with 32 or 24 
bits/pixel[l,2,3]; low-cost 3D hardware may store depth values at 
16, 20 or 24 bits/pixel[4]. Other depth formats such as 26-bit 
floating-point value with 6-bit exponent, are also proposed[S]. 

To balance precision and performance, the same 3D accelerator 
may support multiple combinations of per-pixel depth and buffer 
type, using hardware-specific storage formats. 

As a result of available hardware options, driver and an 
application (to the extent of exposure through 3D API) are 
contionted with multiple choices that affect performance and 
quality of the depth buffer. 

Best-defined options are per-pixel buffer size (usually 16, 24 or 
32 bits) and standard Z buffer type, storing result of the projective 
normalized device coordinates. Constraints of such transformation 
are usually normalization to [O,l] range; preservation of lines and 
planes; preservation of the sign of distance. change[6]. Non-linear 
mapping under these conditions results in a loss of roughly log*(r) 
bits of the depth precision for a given ratio r of the distances to the 
far and near clipping planes[7]. This precision decrease causes 
severe visual artifacts in the open environments with large 
dynamic range r, typical for the flight simulators and games[S]. 

Better depth precision at the same buffer size is achieved if 
normalized eye-object distance is stored instead of the screen- 
space depth[9]. Projective transformation to homogeneous 
coordinates usually produces value W proportional to the eye- 
object distance; inverse of this value is interpolated for 
perspective-correct texture mapping. If W value, normalized to 
the distance to the far plane, is computed with depth-buffer 
precision and stored in the integer format, it guarantees linear 
mapping of the eye-object distance to the depth buffer (W buffer). 
However, this operation requires costly high-precision per-pixel 
division, with more bits that are needed for perspective correction. 
Also, resolution of the W buffer drops for scenes with ratios of the 
distances to the far and near planes close to 1, because most of the 
depth range becomes unused. 

To avoid additional hardware cost or performance penalty, depth 
buffer may store interpolated value of rhW (l/W) computed with 
high precision before per-pixel perspective division. Inverse W 
buffer, also known as l/Z buffer, is already supported by at least 
one family of 3D graphics accele.rators[lO]. To authors 
knowledge, no 3D API currently allows to make a distinction 
between true and inverse W buffer. 
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Least exposed feature of the depth buffer is the storage format. 
Most popular options are integer and variations of the floating- 
point format: 16 bits/pixel with 12 bits of mantissa and 4 bits of 
exponent; 24 bits/pixel storing IEEE float without 8 last bits of 
mantissa; 32 bits/pixel storing full-precision IEEE float. 

Selection of the depth buffer type can be done by an application 
(to the extent supported by 3D API) or by the driver[l 11; selection 
of the storage format is usually defined by the choice of graphics 
hardware. 

Imprecise characteristics of these multiple options provide no 
guarantee that selected depth buffer has good 
precision/performance balance for the current application. To 
find actual depth error distribution in the view volume, application 
has to rely on the run-time tests or previously collected data for 
different driver-hardware combinations. 

In this paper we propose to simplify available options by using 
optimal depth buffer with known set of formats. To qualify, such 
buffer has to work with current 3D APIs and majority of graphics 
hardware, providing superior precision at the low implementation 
cost. 

Next section contains comparative evaluation of depth precision 
for popular depth buffers with multiple size and format options. 
After that, we describe new depth buffer type and compare it with 
others as a candidate for an optimal solution. 

2 DEPTH PRECISION EVALUATION 

2.1 Methodology 

Main factors affecting depth resolution in the eye space are 
mapping of the eye-object distance (Ze) to the depth in the 
normalized device coordinates (D) and precision of the format 
used to represent D: 

sZe(Ze) = 
dZe 
- *6D(D) 
dD 0) 

D = If internal hardware operations are performed with 
sufficient precision, error of D representation can be 

estimated as largest of 2 factors: 

1. Per-vertex error of D representation after computation of 
normalized device coordinates. Most popular input format for 
vertex coordinates is IEEE float; increasing its size may cause 
performance and bandwidth problems. 

2. Per-pixel error of D representation in the depth buffer, 
dependent on its size and format. 

For per-pixel D representation, we evaluate floating-point format 
with n bits of exponent (e) and m bits of mantissa(f): 

1 
2”-*” * 1 .f.. .(2” > e > 0) 

2l-*” * 0.f.. .(e = 0) (2) 

In tinther analysis we assume that all values stored in the depth 
buffer have the same sign. Sign bit, if present, doesn’t affect 
precision but decreases total number of bits for mantissa and 
exponent at the same per-pixel buffer size. Handling of corner 
cases can depend on implementation without significant effect on 
estimated precision. Description also covers integer format (n = 0, 
e = 0), which by definition (2) is equivalent to floating-point 
format with 1 bit of exponent (n = 1). 

Normalized mapping functions D(Ze) are different for 3 types of 
depth buffers and depend on the values of the distance to the far 
(t) and near (d) clipping planes in the eye space: 

Z buffer: D= _f*,l-$) (3) 
f-d 

W buffer: D=Ze (4) 
f 

Inverse W buffer: D=$ (5) 

Average depth precision in the eye space depends on the buffer 
type, representation error and sampling distribution. Because 
representation error is discrete, we computed average normalized 
depth error for a finite number of samples: 

Ze=f 

__ CsZe(Ze) * S(Ze) 
ae = ze=d 

Ze=f 

(f - 4 * z wm 
Ze=d 

(6) 

where s(Ze) is a number of samples taken at the distance Ze, and 
dZe(Ze) is a current depth error dependent on mapping function 
(3..5) and maximum of per-vertex (dDv) and per-pixel (dDp) 
representation errors: 

iZe(Ze) = 

[Ze(D + max[dDv,dDp]) - Ze(D)] 

(7) 

Results are obtained for uniform (S(d) = S(f)) and linearly 
increasing (S(d) = 0) sampling distributions, 16, 24, and 32 
bits/pixel. 

2.2 Results 

Before comparing different types of depth buffers, we evaluate 
optimal storage format for each type and storage size. 
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For realistic sampling distributions, integer storage is always the 
best choice for Z- and W buffer; Fig. 1, 2 show examples for 16- 
bit buffer with uniform sampiing. Legend indicates number of 
mantissa and exponent bits for each data set (1Qbit mantissa 
corresponds to integer format). The same trend is valid for 24 
bits/pixel storage. 
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Floating-point storage is optimal for inverse W buffer; Fig. 3,4 
show results for 16 and 24 bits/pixel storage sizes. Absolute 
floating-point error for small D compensates increased non-linear 
mapping at large eye-object distance, improving precision in 
comparison with Z buffer. Increase of the sampling frequency in 
the direction of the far clipping plane increases average error by 
20..45% (Fig.S), but relation between different data formats 
remains unchanged. 
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Results show that floating-point format with 8 bits of exponent9 
routinely used with 24-bit depth buffers, is far Corn optimal for 
inverse W buffer; best precision is achieved with only 2..4 bits of 
exponent, dependent on the sampling distribution and fld ratio. 

If only one storage format can be used for the buffer of each size, 
3 or 4 bits of exponent are the best for inverse W buffer at 16 and 
24 bits/pixel. To achieve maximal precision improvement, we 
propose to provide hardware support for a set of floating-point 
storage formats with different sizes of exponent. Driver or an 
application will select best format based on the dynamic range of 
the scene and area of interest. As shown on Fig.3-5, 4 bits of 
exponent can be selected for scenes with E/d > 200; 3 bits of 
exponent are optimal for 200 > f/d > 20. Sharp anomalies in 
sampling distribution may change optimal selection: for instance, 
if area of interest is very close to the near plane, integer format 
may be the best even for large ratios Eld 

Flexible selection of storage format increases average depth 
precision of inverse W buffer and decreases it’s dependency on 
the Bd ratio. However, our results show that minimal average 
errors for IBbit and 24-bit inverse W buffer remain 
approximately 6 times larger than for the true W buffer. As in 
case of the true W buffer, inverse W buffer can’t be used if W 
isn’t available or isn’t proportional to the eye-space distance. 
Therefore, inverse W buffer may not be precise enough to be used 
instead of the true W buffer, and may not always be used to 
replace standard Z buffer. 

3 COMPLEMENTARY Z BUFFER 

Optimal depth buffer has to support linear mapping from eye- 
space distance to the storage, providing precision similar to the 
true W buffer without associated hardware complexity and 
software limitations. 

Best precision achieved by the true W buffer is a result of the 
linear mapping from the eye-space distance to the integer storage 
format. Both factors in the equation (1) are kept constant: 
mapping from the eye-space to the screen is linear due to the 
format detinition (4); integer format guarantees that precision is 
independent Tom the stored value. 

We propose to maintain quasi-linear mapping by using a 
combination of simple mapping and format precision 
functions that compensate each other’s non-linearity, 
instead of requiring both of them to be linear. To achieve 
this goal, new depth buffer type combines linear 
transformation of standard Z values and floating-point 
storage. 

Screen depth D is computed using all Z buffer mapping 
constraints except distance change sign; result is complementary 
to the screen Z in the same range [0, I]: 

To account for the different sign of distance change, we reverse 
depth test function, sign of Z bias and polygon offset. Depth value 
is stored in the floating-point format [2]. 

As in the case of standard Z buEer (3), non-linear mapping error 
is largest when Ze close to f. At the same time, floating-point 
format precision error is smallest when D is close to 0. Because 
fhnction (8) maps far clipping plane (Ze = f) to D-0, these 2 
factors compensate each other in the areas distant horn the 
camera, which contribute most to the average error. 

Such compensation is effective enough to make depth error 
almost independent of the distance to the camera, making it orders 
of magnitude smaller than for a standard Z buffer of the same size 
(Fig.6). 

(Ze-near)/(far-near) 

Figure 6 

As in case of inverse W buffer, there is a set of optimal floating- 
point formats minimizing average error of the complementary Z 
buffer for different ranges of ffd ratio; results for 16 bits/pixel and 
uniform sampling are presented on Fig.7. 
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a b 
Figure 8 

As an example of precision improvement, Fig.8 shows the same 
character in the scene with ratio Bd=lOOO, rendered using 2 
different types of depth buffers. 16-bit Z buffer causes visible 
body-cloth intersections and depth-sorting errors of the elements 
of character’s head (Fig.Sa); 16-bit complementary floating-point 
Z buffer resolves the same scene without any depth-related visual 
artifacts (Fig.Sb). 

Fig.9 shows comparison of minimal depth errors of all types of 
depth buffers described above, computed for optimal data formats 
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Figure 9 

at 16 bits/pixel, constant and increasing sampling distributions. 
Data for 24 bits/pixel are presented on Fig.10. Results for W 
buffer are shown once because they don’t depend on sampling 
mode. 

Presented data show that complementary floating point Z buffer is 
up to 3..4 times more precise than inverse W but still has 2 times 
larger average error than true W buffer. Results for 
complementary Z buffer are also significantly less dependent on 
the sampling distribution than in the cases of Z and inverse W 
buffers. In general, 16- and 24-bit complementary Z buffer is 
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always as good or better than both Z and inverse W buffers, 
closing the distance with true W buffer. 

Main reason for complementary Z advantage over inverse W is 
better utilization of the area close to D = 0. Inverse W buffer (5) 
maps Ze = f to D = ffd, preventing floating-point storage from 
compensating non-linear distribution as effectively as it does for 
complementary Z at D = 0. Inverse W isn’t mapped to the area 
close to D = 0 to avoid affecting precision of the divide during 
perspective-correct texturing. Per-pixel offset -d/f may increase 
depth precision of inverse W with additional hardware support, 
but it will still remain lower than for complementary Z at small E/d 
ratios. 

Relationship between different buffer types changes with further 
increase of the storage size; Fig. 11 shows results for 32 bits/pixel. 
First, results for 32-bit Z buffer at t7d > 2 are within 1% margin of 
difference f?om the results for 24-bit Z buffer. Second, results for 
the true and inverse W buffers become almost identical even if 
one is in 32-bit integer format, while other has 8-bit exponent. 
Third, complementary Z buffer demonstrates the best precision - 
3 times better than W buffer. 

.-,, Comparison of 32-bit buffers 

10 far/near loo 

Figure 11 

These changes are caused by the IEEE floating-point precision of 
the input per-vertex data that starts to provide main contribution to 
the average depth error with increase of the per-pixel storage size. 
As our results show, Z buffer precision depends mainly on the 
size of mantissa and is the best for integer formats. Therefore, 32- 
bit format with 23 bits of mantissa isn’t better for Z than 24-bit 
integer. Floating-point input also decreases precision of W buffer, 
making it non-linear. Complementary Z buffer takes best 
advantage of the floating-point format because it uses it to 
compensate non-linearity of projection mapping. IEEE floating- 
point isn’t optimal for complementary Z; our results show that the 
same precision can be achieved with 24.4 28-bit format. However, 
this increase is enough to make complementary Z the best buffer 
for high depth resolutions. 

4 DISCUSSION AND CONCLUSIONS 

As shown by our results, both inverse W and complementary Z 
buffers will benefit horn support for multiple storage formats with 
0..4 bits of exponent. Floating-point storage with 4 bits of 
exponent and 12 bits of mantissa is already supported by popular 
family of 3D accelerators6. While designed for inverse W buffer, 
this and other hardware with similar features can provide 
improved depth precision by using the same floating-point storage 
for Z values (after conversion to 1-Z). Set of different storage 
formats will be implemented in the future hardware designs. 

When multiple storage formats for the same buffer size become 
available, driver will be able to select best format based on known 
f7d ratio and guessed sampling distribution. However, it may also 
be useful to expose multiple depth storage formats in the new 
versions of 3D APIs. It would allow application to make a choice 
of the depth buffer format based on it’s better knowledge of the 
area of interest (however, it is less important for complementary Z 
buffer because it’s less dependent on the sampling distribution). 
Additional benefit of such exposure would be a well-defined set 
of storage formats for compliance testing and mixed 
software/hardware access. 

In comparison with inverse W, complementary floating-point Z 
buffer is significantly easier to use: it does not require W values to 
be proportional to the eye-space distance; doesn’t need f and d 
values for normalization; doesn’t loose precision for very small 
Bd ratios. It also can be utilized without additional support from 
3D API, just by changing projection matrix. For instance, it can be 
done by using OpenGL function glDepthRange to set zNear = 1, 
zFar = 0. If projection matrix isn’t available, operation Z = 1 -Z 
can be performed by the driver or in the graphics hardware. 

Because complementary Z buffer is always as good or better than 
Z or inverse W, it can be always enabled even if storage format 
isn’t optimal or unknown. 

Below is the summary of main advantages of the complementary 
floating-point Z buffer: 

1. The same or better precision than for Z and inverse W 
buffers at all storage sixes; better precision than for all types 
of depth buffers, including true W buffer, at 32 bit/pixel 
storage. 

2. Simple implementations do not require additional support by 
3D API and can use existing 3D hardware. 

3. Optimal storage format is less dependent on the sampling 
distribution and therefore easier to select than in the case of 
inverse W buffer. 

Our main conclusion is that complementary floating-point Z 
buffer may be a good candidate for replacement of both screen Z 
and inverse W buffers, at the same time making hardware 
investment in true W buffer support less attractive. It is also more 
suitable for next-generation hardware, providing better precision 
than W buffer when per-pixel depth storage exceeds 24 bits. 

We consider major contributions of the paper to be following: 
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Comparative precision analysis for popular types, sizes and 
formats of the depth buffers. 

Development of the new type of the depth buffer - 
complementary floating-point Z buffer - proposed as a 
candidate for a unified depth buffer solution 

Demonstration of depth precision improvement when 
multiple floating-point formats are supported for the depth 
buffer of the same size and optimal format is selected based 
on known scene parameters. 

Analysis of the maximal depth buffer precision limited by 
per-vertex data format. 
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