
EUROGRAPHICS 2009/ D. Ebert and J. Krüger Areas Paper

A Hybrid GPU Rendering Pipeline
for Alias-Free Hard Shadows

Stefan Hertel1 Kai Hormann2 and Rüdiger Westermann1

1Technische Universität München
2Technische Universität Clausthal

Abstract

We present a new GPU pipeline for rendering per-pixel exact shadows that are cast by point lights and parallel
lights. Our approach is hybrid in that it uses kD-tree accelerated ray-tracing to determine shadow-ray intersec-
tions, and rasterization to effectively reduce both the number of shadow rays to be traversed and the number of
sub-spaces to be considered along each of these rays. To achieve this we introduce conservative shadow maps,
which store a conservative estimate of the first intersection with the scene for each possible shadow ray. A novel
approach to build such a map is presented, which uses rasterization to compute for every shadow-map pixel the
triangles intersecting this pixel. By exploiting the rasterization capacities of recent GPUs in combination with
accurate ray-triangle intersection tests, we are able to efficiently compute alias-free shadows in high-resolution
and spatially extended scenes where classical shadow mapping techniques have severe difficulties.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Raytracing—Computer
Graphics [I.3.7]: Color, shading, shadowing, and texture—

1. Introduction

Shadow maps as introduced by Williams [Wil98] provide an
efficient and elegant means to simulate hard shadows that are
cast by point light sources or parallel lights. Unfortunately,
classical shadow maps face the problem of aliasing, mean-
ing that geometry features cannot be captured adequately in
the underlying discrete sampling grid. As a result, shadows
caused by small features can be missed and light falling be-
tween two nearby occluders can be blocked. These limita-
tions are rooted in the point-sampling process that is used
to generate a shadow map. They can only be eliminated by
correctly identifying the features inside a shadow map pixel
and computing exact pixel coverage for them.

With ray-tracing, on the other hand, it is conceptually sim-
ple to compute accurate hard shadows by casting at every
visible surface point—the view samples—a shadow ray to-
wards the light source. Since shadow rays are not subject
to a particular sampling regime and can be tested analyti-
cally against potential occluders, they can effectively avoid

the aliasing artifacts that are inherent to shadow maps. With
respect to performance, however, shadow-ray tracing is still
not a real competitor to shadow mapping using rasterization
hardware. Especially if hierarchical space-partitions in com-
bination with advanced rendering pipelines are employed
[BWPP04], the creation of shadow maps can be performed
on the GPU in a much shorter period of time than it takes to
simulate shadows with ray-tracing.

In this work we present a novel GPU rendering pipeline
for simulating hard shadows, which addresses the aforemen-
tioned issues by providing unlimited shadow map resolution.
It is similar in spirit to alias-free shadow maps proposed by
Aila and Laine [AL04] and Johnson et al. [JMC04] in that
it evaluates light-space visibility at projected view-samples.
Thus, an irregular and view-adaptive sampling grid is em-
ployed.

In contrast to the work by Aila and Laine, however, our
method uses ray-tracing for accurate visibility determina-
tion and rasterization for accelerating the ray-tracing pro-

c© The Eurographics Association 2009.

http://www.eg.org
http://diglib.eg.org

S. Hertel & K. Hormann & R. Westermann / A Hybrid GPU Rendering Pipeline for Alias-Free Hard Shadows

Figure 1: (from left to right) A tree rendered with a 1K × 1K shadow map at 42 fps (upper left) and using alias-free shadow
maps as proposed in this work at 3 fps (bottom right). The yard scene rendered with a 1K × 1K shadow map at 60 fps and
with alias-free shadows at 4 fps. The village scene rendered at 7 fps with alias free shadows. The kitchen scene rendered with
alias-free shadows at 9 fps. In all three examples the resolution of the conservative shadow map was 1K × 1K.

cess. GPU ray-tracing is performed using a kD-tree accel-
eration structure as proposed in [FS05]. In addition, a con-
servative shadow map is utilized to reduce the number of
shadow rays to be cast and sub-spaces to be traversed by
these rays. The shadow map is built using conservative tri-
angle rasterization, meaning that a triangle is rasterized into
a shadow map pixel once the triangle’s light-space projection
has a non-empty intersection with this pixel. Every triangle
that is rasterized into the conservative shadow map leaves a
unique triangle ID as well as the minimum distance of the
triangle subarea covering the shadow map pixel to the light
source.

The conservative shadow map can be used to determine
view-samples that might have been incorrectly classified as
“in-shade” or “illuminated” by standard shadow mapping,
and, therefore, allows reducing the number of shadow rays
to be traced. Furthermore, the depth values stored in the con-
servative shadow map provide conservative estimates of the
first possible intersections along the shadow-rays. This in-
formation can be used in turn in the ray-tracing procedure to
skip large parts of the domain.

Our paper makes the following specific contributions:

• A conservative rasterization method for triangles that
avoids construction and rendering of additional geometry.

• A method to efficiently determine view-samples that
might be incorrectly classified by standard shadow map-
ping.

• The use of a conservative shadow map as an acceleration
structure for shadow-ray tracing.

Compared to the GPU implementation of alias-free
shadow maps proposed by Sintorn et al. [SEA08], our
method differs in a number of aspects. Firstly, the construc-
tion of a dynamic list structure on the GPU, which is used to
assign projected view-samples to shadow map entries, can
entirely be avoided. Secondly, since we use a conservative
shadow map to aggressively reduce the number of shadow
rays to be traced as well as the number of triangles these

rays have to be tested with, we end up with considerably
fewer intersection tests on the GPU. Especially for complex
scenes having high depth complexity, the assumed logarith-
mic complexity of ray-tracing in the number of polygons can
deploy its full potential and results in faster rendering times.

The remainder of this paper is organized as follows: In the
next chapter we review previous work that is related to ours.
Then, we introduce conservative shadow maps, discuss their
construction, and show how to use them for view-sample
classification. Next, we briefly describe the GPU ray-tracer
we use in the current work. We conclude the paper with a
detailed performance analysis of the different stages of our
approach, and we show a number of examples.

2. Related Work

Interactive shadow rendering techniques have been at the
core of computer graphics research for many years, and to-
day there exists an extensive amount of literature on this sub-
ject which we cannot attempt to review in detail here. Woo
et al. [WPF90], Haines et al. [HMM01] and Hasenfartz et
al. [HLHS03] discuss a number of previous and current al-
gorithms and provide many useful references on this subject.

Interactive rendering algorithms for hard shadows can
roughly be grouped into three different categories: geometry-
based techniques, image-based techniques and ray-tracing.
Into the first category falls research on shadow volumes
[Cro77] and its variants [CD04,HHLH05,Lai05,LWGM04],
an object-space approach that is based on computing a
boundary representation of the region occluded from a light
source. The shadow volume technique renders accurate per-
pixel shadows, but it requires the creation of the shadow ge-
ometry as well as some rasterization overhead to render this
geometry, and its efficiency thus strongly depends on the ge-
ometric complexity of the shadowing object.

In the second category, research is mainly pursued on
the improvement of shadow mapping [Wil98], which is cur-

c© The Eurographics Association 2009.

60

S. Hertel & K. Hormann & R. Westermann / A Hybrid GPU Rendering Pipeline for Alias-Free Hard Shadows

rently the most used shadowing technique in real-time sce-
narios. Shadow mapping rasterizes the scene into a depth
map as seen from the light source and then uses this map to
test whether the light is visible from a view sample or oc-
cluded. Since shadow map construction only involves ren-
dering the scene from the light source, it is reasonably fast
and does not depend on the model’s geometric complexity.

Shadow mapping, on the other hand, suffers from dis-
cretization artifacts due to limited shadow map resolu-
tion causing loss of shadow details and temporal coher-
ence. To avoid this, some efforts have been undertaken
to improve the virtual shadow map’s resolution according
to the viewer’s perspective, for instance by using warped
projection schemes [SD02, WSP04] and adaptively refined
shadow maps [FFBG01]. Alias-free shadow maps [AL04],
on the other hand, provide a solution to the aliasing problem
by avoiding the regular sampling grid underlying classical
shadow mapping. It uses projected view-samples as irregu-
larly distributed sampling points and can thus simulate pixel-
exact hard shadows. Conceptually similar approaches utiliz-
ing more advanced GPU features to speed up the irregular
sampling process were proposed in [JMC04,Arv07,SEA08].

Another concern in shadow mapping is shadow map fil-
tering to provide screen-space anti-aliasing for both hard
and soft shadows. Percentage closer filtering [RSC87] sam-
ples the result of the light-view depth test at multiple po-
sitions around the projected view-samples, and then aver-
ages these samples to compute a fractional view-sample oc-
clusion. Variance shadow maps [DL06, LM08] calculate an
upper bound for the probability of a receiver fragment to
be shadowed by samples around some point in a shadow
map. A Fourier series expansion of the visibility step func-
tion at shadow boundaries is used in convolution shadow
maps [AMB∗07] to blur the visibility along such bound-
aries. Recently, exponential shadow maps [AMS∗08] have
been proposed, which replace the hard shadow ramp by an
approximate exponential decay.

In the third category, methods have been developed to
simulate shadows using classical ray-tracing [Whi80]. Ray-
tracing provides the most intuitive method for simulating
hard shadows in that it simply spawns at each view-sample
an additional shadow ray towards the light source. Ray-
tracing, on the other hand, is in general too slow to be used
in interactive environments. However, over the last few years
considerable effort has been put into the implementation of
ray tracing on programmable graphics hardware. Inspired
by the early work of Purcell et al. [PBMH02] and Carr et
al. [CHH02], in a number of succeeding implementations it
was shown that the capabilities of recent GPU stream archi-
tectures can effectively be used for ray tracing. Foley and
Sugerman [FS05] and Popov et al. [PGSS07] independently
examined stack operations—a feature not well supported by
the GPU—and they reported a significant performance gain
by using a stackless traversal algorithm for kD-trees. Most

recently, Günther et al. [GPSS07] introduced so-called ropes
to avoid re-starting the tree traversal from the root node in
case no hit was found in a sub-space.

3. Hybrid GPU Shadow Rendering

The idea behind our method is to combine a fast but low-
resolution shadow map with a pixel-wise exact shadow test.
In addition, the shadow map is used to reduce the number
of shadow rays to be tested and to effectively restrict the ray
intervals that have to be considered.

The method can be split into two stages: Firstly, a shadow
map is constructed, which, as will be explained later, stores
additional information about the triangles rasterized into
this map. Secondly, the scene is rendered as seen from the
camera, and every visible view-sample is tested against the
shadow map for being in one of the following three regions:

• lit
• shadowed
• uncertain

If a view-sample is categorized as “uncertain”, it cannot di-
rectly be classified as being in light or in shadow with only
the information stored in the shadow map. Then, an exact
visibility test has to be performed.

4. Conservative Shadow Maps

To perform the classification of view-samples into “lit”,
“shadowed”, and “uncertain”, a particular kind of shadow
map is employed—a so-called conservative shadow map.
Such a map stores for every pixel the minimum light-space
depth of all triangle subareas overlapping this pixel after
the light-space projection. Therefore, we utilize the graphics
API’s functionality, i.e., using the slope scaled depth-bias,
to shift the triangles towards the light such that the depth
value at covered pixel centers are less than the aforemen-
tioned minimum depth. By using the resulting depth infor-
mation, a simple comparison between the light-space depth
of a view sample and the depth stored in the shadow map
can be used to classify lit view samples. If the stored depth
is greater than the sample’s depth or if no depth is stored,
then the sample is illuminated.

4.1. Construction

To generate a conservative shadow map we use conservative
rasterization, which works by rasterizing a triangle into a
shadow-map pixel once the triangle’s light-space projection
has a non-empty intersection with this pixel. This method
enlarges the triangles’ projections in view-space in such a
way as to cover the centers of all shadow-map pixels that
are touched by the projection. This is in contrast to classical
shadow mapping, where fragments are only generated for

c© The Eurographics Association 2009.

61

S. Hertel & K. Hormann & R. Westermann / A Hybrid GPU Rendering Pipeline for Alias-Free Hard Shadows

Figure 2: Left: The expansion of a triangle (blue) to a poly-
gon (red) as suggested by [HAMO05], with one possible tri-
angulation (dotted) Right: The expansion of a triangle by
moving the edges along their normal (blue). The light red
shape shows the area a distance smaller than l to the trian-
gle (l is the length of a pixels diagonal.)

those triangles that cover a shadow-map pixel center. Hassel-
gren et al. [HAMO05] proposed a conservative triangle ras-
terization method that expands projected triangles to poly-
gons with up to nine vertices. The positions of the new ver-
tices are computed from the positions of the corners of those
pixels containing the original triangle vertices (see figure 2).

On Shader Model 4.0 capable graphics hardware the con-
struction of the enlarged polygon can be performed using
the geometry shader. However, as it was already pointed out
by Sintorn et al. [SEA08], geometry amplification in the
shader can lead to severe performance limitations. Due to
this reason we developed an alternative approach that only
resizes the initial triangle in the geometry shader by mov-
ing the edges about the length of a pixel’s diagonal l in
the direction of the edges normals but—in contrast to the
suggestion in [HAMO05]—avoids intersecting the enlarged
triangle with the shadow-map pixels that are overlapped by
the triangle. Instead, a fragment shader is used to discard all
fragments with a distance to the triangle that is larger than
the length of the pixel’s diagonal l (see figure 2).

The distance is the minimum of the perpendicular dis-
tances to the triangle edges and the three corners. It can be
calculated by using the barycentric coordinates of a gener-
ated fragment with respect to the triangle that this fragment
originates from. For a planar triangle T with vertices v0, v1,
v2 we let ni be the outward pointing unit normal vectors of
the edges ei = vi+1−vi (with indices considered modulo 3).
The enlarged triangle T ′ is now constructed by intersecting
the lines that are parallel and at (positive) distance l to the
edges of T (where l is the length of the pixel diagonal). Sim-
ple geometric reasoning shows that the vertices v′i of T ′ can
be computed as

v′i = vi + l
(

ei−1
ei−1 ·ni

+
ei

ei ·ni−1

)
,

where ‘·’ denotes the standard dot product.

Since the edges are moved by the length of the pixel di-
agonal, we have an over-conservative rasterization. Render-

ing the enlarged triangle T ′ will cause the generation of
more fragments than needed for a conservative rasteriza-
tion. Especially at sharp angles the vertices will be moved
far away from the original position and the enlarged triangle
will cover a lot of pixels.

For all fragments of T ′ we let the shader calculate the
distance d(w,T) of the pixel center w to the triangle T and
discard it whenever it is larger than the length l of the pixel
diagonal. In order to calculate d(w,T) efficiently, we resort
to some tricks that are based on the concept of barycentric
coordinates. The barycentric coordinates λi(u) of a point u
with respect to the triangle [v0,v1,v2] in the plane are defined
as the ratios of triangle areas,

λi(u) =
area[u,vi+1,vi+2]

area[v0,v1,v2]
.

These three values sum up to 1 and allow us to write u as an
affine combination of the vertices vi,

u = λ0(u)v0 +λ1(u)v1 +λ2(u)v2,

hence their name. An important property of barycentric co-
ordinates is that they are linear in u. Thus, if we compute
the barycentric coordinates of the vertices v′i in the geome-
try shader and pass them on as vertex attributes, we can let
the rasterizer do the linear interpolation so as to provide the
barycentric coordinates λi = λi(w) of the pixel center to the
fragment shader.

Due to the properties of barycentric coordinates we have

w− vi = λi−1vi−1 +λivi +λi+1vi+1− vi

= λi−1vi−1 +(1−λi−1−λi+1)vi +λi+1vi+1− vi

= λi−1(vi−1− vi)+λi(vi+1− vi)

=−λi−1ei−1 +λi+1ei,

so that the squared distance between w and some vertex vi of
T is

d(w,vi)
2 = ‖w− vi‖2

= λ
2
i−1‖ei−1‖2 +λ

2
i+1‖ei‖2−

2λi−1λi+1(ei−1 · ei).

(1)

Note that the three squared lengths ‖ei‖2 and the three dot
products ei−1 · ei are constant for each triangle and can thus
be pre-computed and stored as face attributes. Moreover,
since (1) involves only scalar values, all three squared ver-
tex distances can be computed efficiently in parallel in the
fragment shader. Barycentric coordinates can also be used
to compute the (signed) distances of w to the edges ei of T ,
because

d(w,ei) = λi−1d(vi−1,ei),

and as before, the (signed) distances d(vi−1,ei) = ni · ei+1
can be pre-computed and stored as face attributes. Note that
by this definition of signed distances, the points contained in
T are exactly those for which all edge distances are negative.

c© The Eurographics Association 2009.

62

S. Hertel & K. Hormann & R. Westermann / A Hybrid GPU Rendering Pipeline for Alias-Free Hard Shadows

Finally, the distance d(w,T) of the pixel center to the tri-
angle is the minimum of the three vertex distances d(w,vi)
and the three absolute edge distances |d(w,ei)|. Hence, if all
squared vertex distances are larger than l2 and all edge dis-
tances exceed l, we conclude that the pixel w does not over-
lap T and discard it. On the other hand, if all edge distances
are smaller than−l, then we can be sure that the whole pixel
is covered by T (note that in this case the vertex distances do
not need to be considered as they are always larger than the
absolute edge distances).

4.2. Classification

By comparing a view-sample’s light-space depth to the depth
value stored in the conservative shadow map, many samples
can be classified as “lit.” In addition, shadow-map pixels can
be marked as “fully covered” based on the distances of the
pixel’s center to the edges of the triangle that was raster-
ized into it. In the previous section we described how to ef-
ficiently perform this computation using barycentric coordi-
nates. We can now refine the classification further by using
this information. If a view-sample is projected into a fully
covered pixel and the stored depth is greater (or smaller) than
its own depth, then the sample can be classified as “lit” (or
“shadowed”). If the pixel was partially covered, an exact test
between the shadow ray originating from the view sample
and the triangle touching the pixel is necessary.

We accommodate this by storing at every shadow map
pixel the unique ID of the triangle being captured at this
pixel. Once a view-sample has been projected into the con-
servative shadow map, it first reads the stored ID via near-
est neighbor texture lookup and then reads the three vertices
corresponding to this ID. By projecting the view sample into
the plane spanned by the triangle, it can be efficiently deter-
mined whether the view sample is covered by this triangle.
If this is not the case, the sample is classified as “uncertain”
and some further tests have to be carried out.

The triangle ID can also be used to avoid another well
known problem of shadow maps—self shadowing. By sim-
ply comparing the ID that was read from the shadow map
with the ID of the triangle the view sample belongs to, self
shadowing can be detected and pixels with false shadowing
can be eliminated. A depth bias as it is typically used to avoid
this problem is not necessary.

5. GPU Ray-Tracing

For every view sample that is labeled “uncertain”, a shadow
ray is traced on the GPU. Since the ray-tracer is used to trace
shadow rays, it only has to search for any intersection, and
it can terminate the ray traversal once an intersection has
been found. The exact position of this intersection does not
need to be computed. GPU ray-tracing is performed using a
kD-tree acceleration structure and a special traversal routine
that avoids the need for a stack as in classical recursive tree

traversal. For a detailed description of this approach let us
refer to [FS05] and [HSHH07].

The ray-tracing approach takes advantage of the informa-
tion that is stored in the conservative shadow map to speed
up ray traversal. Specifically, the depth values stored in this
map can effectively be used to restrict the ray intervals that
have to be considered. At first glance, this kind of acceler-
ation seems to be redundant because the kD-tree should al-
ready provide an effective means to skip empty space. How-
ever, by letting the shadow rays start at the stored light-space
depth and by traversing them towards the view sample where
they were spawned from, an intersection point will most
likely be found after a few steps along the ray, i.e., by only
traversing a few sub-spaces, because in many cases an inter-
section point is close to the stored depth estimate. Further-
more, depending on the built kD-tree, generated sub-spaces
do not always provide very tight bounds to the enclosed ge-
ometry. In this case, many sub-spaces will be tested with-
out finding any intersection. By using the depth information
stored in the conservative shadow map, the number of sub-
spaces to be tested can be reduced to some extent.

To initiate shadow-rays tracing on the GPU, a full-screen
quad is rendered and a pixel shader is employed to discard
those view-samples which are back-facing the light source
or can securely be classified as “lit” or “shadowed” as de-
scribed before. Otherwise, a shadow ray is spawned and tra-
versed through the kD-tree acceleration structure until the
first intersection is found or the ray leaves the domain. In
these cases the sample is classified as “shadowed” and “lit”,
respectively.

6. Results

To validate the efficiency and accuracy or the proposed
method, we have tested the proposed GPU technique for
rendering alias-free hard shadows in a number of different
scenarios consisting of several thousands up to hundreds of
thousands of triangles. Resulting images are given in Fig-
ure 1 and the color plate at the end of the manuscript.

All of our tests were run on an Intel Core 2 Quad PC,
equipped with 2 GB RAM and an Nvidia Gefore 8800 GTS
graphics card. The proposed shadow algorithm was imple-
mented as part of a viewer for spatially extended city mod-
els, which uses occlusion culling as described in [BWPP04]
for both the generation of view samples and the conservative
shadow map. The kD-tree structure is constructed in a pre-
process step on the CPU using the SAH heuristics [GS87].
All tests were rendered into a 1280×1024 view port using a
conservative shadow map of size 1K×1K.

Our first test demonstrates the efficiency of conserva-
tive rasterization as proposed in this paper compared to
the approach by Hasselgren et al. [HAMO05]. For differ-
ent scenes, Table 1 shows timings in milliseconds for con-
structing the shadow map on the GPU. As it can be seen,

c© The Eurographics Association 2009.

63

S. Hertel & K. Hormann & R. Westermann / A Hybrid GPU Rendering Pipeline for Alias-Free Hard Shadows

our method clearly outperforms previous approaches inde-
pendently of the scene complexity. We attribute this to the
fact that our method requires a significantly lower geometry
throughput on the GPU, and instead exploits the computing
and memory access capacities in the fragment units.

rpolygon rdiscard speedup
Village 21 13 40%
(247432 tris)
Kitchen 19 13 21%
(103351 tris)
Tree on Snow 8 7 21%
(78646 tris)

Table 1: Rendering time (ms) for conservative rasterization
by expanding the triangles to polygons (rpolygon) as pro-
posed by Hasselgren et al. [HAMO05] and our approch by
discarding fragments with larger distances to the triangle
than a pixel’s diagonal (rdiscard).

Table 2 gives representative timings for the rendering of
alias-free hard shadows using classical GPU ray-tracing and
the improved method proposed in this work. The first col-
umn shows the time (ms) it took to render accurate shadows
in various scenes using GPU ray-tracing. Timings in the sec-
ond column refer to the rendering of shadows using GPU
ray-tracing, but only for those view samples that were clas-
sified as “uncertain.” The third column shows the time it took
to render the scenes if the ray intervals were restricted with
respect to the depth values stored in the conservative shadow
map. The last two columns give the number of shadow rays
that were cast without and with the proposed classification
scheme.

RTclass RTinsec RTopt # rays # insec.
rays

4 Buildings 158 114 95 32079 55294
(11154 tris)
Village 422 288 217 236350 905290
(247432 tris)
Tree on Snow 3115 2670 2585 342105 623890
(78646 tris)
Kitchen 956 641 610 198576 967655
(103351 tris)

Table 2: Rendering times (ms) for hard shadows in different
scenes using GPU ray tracing (RTclass), GPU ray tracing of
only the “uncertain” shadow rays (RTinsec), and GPU ray
tracing of only the “uncertain” shadow rays with reduced
ray lengths (RTopt). The last two columns give the number of
shadow rays cast without and with the proposed classifica-
tion scheme. Timings include the construction of the conser-
vative shadow map.

As can be seen, by means of the proposed acceleration
schemes our technique can simulate hard shadows in a sig-
nificantly shorter period of time than classical GPU ray trac-
ing, while at the same time providing the same accuracy (see
the comparison in Figure 5). Compared to classical shadow
mapping, on the other hand, the quality can be improved

to some extent (see Figure 3). In particular the tree scene
demonstrates the strength of our method. In this scene, the
kD-tree acceleration structure cannot deploy its full poten-
tial due to the relatively small empty sub-spaces and the fine
granularity of the branches. This prohibits early-ray termina-
tion for most of the shadow rays, meaning that many of them
have to traverse the entire space interval towards the light
source. Our method, on the other hand, can effectively clas-
sify many view samples as “lit” and “shadowed” and can,
therefore, greatly reduce the number of shadow rays. More-
over, as the statistics in Table 2 shows, many shadow rays
can effectively benefit from interval reduction as described.

7. Conclusion and future work

In this work we have described a technique for GPU ren-
dering of alias-free hard shadows. By exploiting the strength
of rasterization-based shadow mapping and GPU ray-tracing
in combination with a novel shadow map type, we have
demonstrated a considerable improvement in rendering per-
formance over classical GPU ray-tracing. At the same time,
typical discretization artifacts as they are paramount to
shadow mapping can entirely be avoided. As our timings in-
dicate, the proposed technique enables interactive rendering
of pixel-accurate hard-shadows in complex scenes. Since we
use a view-independent scene representation based on a kD-
tree, the method is independent of both the viewing position
and the light position.

In the future we want to investigate the extension of the
current approach towards the use for shadow filtering. One
possibility might be to directly use the barycentric coordi-
nates to estimate sub-pixel coverage of projected triangles.
Since we have already utilized barycentric coordinates to de-
termine whether a pixel is fully covered by a triangle, the
next step is to investigate whether these coordinates can al-
ready provide an estimate of the per-pixel coverage. Another
possibility is to use cones of rays or simply multiple rays to
estimate the coverage.

References

[AL04] AILA T., LAINE S.: Alias-free shadow maps. In Pro-
ceedings of Eurographics Symposium on Rendering 2004 (2004),
Eurographics Association, pp. 161–166.

[AMB∗07] ANNEN T., MERTENS T., BEKAERT P., SEIDEL H.-
P., KAUTZ J.: Convolution shadow maps. In Rendering Tech-
niques 2007: Eurographics Symposium on Rendering (Grenoble,
France, June 2007), Kautz J., Pattanaik S., (Eds.), vol. 18 of Eu-
rographics / ACM SIGGRAPH Symposium Proceedings, Euro-
graphics, pp. 51–60.

[AMS∗08] ANNEN T., MERTENS T., SEIDEL H.-P., FLER-
ACKERS E., KAUTZ J.: Exponential shadow maps. In GI
’08: Proceedings of graphics interface 2008 (Toronto, Ont.,
Canada, Canada, 2008), Canadian Information Processing Soci-
ety, pp. 155–161.

[Arv07] ARVO J.: Alias-free shadow maps using graphics hard-
ware. journal of graphics tools 12, 1 (2007), 47–59.

c© The Eurographics Association 2009.

64

S. Hertel & K. Hormann & R. Westermann / A Hybrid GPU Rendering Pipeline for Alias-Free Hard Shadows

[BWPP04] BITTNER J., WIMMER M., PIRINGER H., PUR-
GATHOFER W.: Coherent hierarchical culling: Hardware occlu-
sion queries made useful. Computer Graphics Forum 23, 3 (Sept.
2004), 615–624.

[CD04] CHAN E., DURAND F.: An efficient hybrid shadow ren-
dering algorithm. In Proceedings of the Eurographics Symposium
on Rendering (2004), Eurographics Association, pp. 185–195.

[CHH02] CARR N. A., HALL J. D., HART J. C.: The
ray engine. In HWWS ’02: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware
(Aire-la-Ville, Switzerland, Switzerland, 2002), Eurographics
Association, pp. 37–46.

[Cro77] CROW F. C.: Shadow algorithms for computer graphics.
SIGGRAPH Comput. Graph. 11, 2 (1977), 242–248.

[DL06] DONNELLY W., LAURITZEN A.: Variance shadow maps.
In I3D ’06: Proceedings of the 2006 symposium on Interactive
3D graphics and games (New York, NY, USA, 2006), ACM,
pp. 161–165.

[FFBG01] FERNANDO R., FERNANDEZ S., BALA K., GREEN-
BERG D. P.: Adaptive shadow maps. In SIGGRAPH ’01: Pro-
ceedings of the 28th annual conference on Computer graphics
and interactive techniques (New York, NY, USA, 2001), ACM,
pp. 387–390.

[FS05] FOLEY T., SUGERMAN J.: Kd-tree acceleration structures
for a gpu raytracer. In HWWS ’05: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware
(New York, NY, USA, 2005), ACM, pp. 15–22.

[GPSS07] GÜNTHER J., POPOV S., SEIDEL H.-P., SLUSALLEK
P.: Realtime ray tracing on GPU with BVH-based packet traver-
sal. In Proceedings of the IEEE/Eurographics Symposium on In-
teractive Ray Tracing 2007 (Sept. 2007), pp. 113–118.

[GS87] GOLDSMITH J., SALMON J.: Automatic creation of ob-
ject hierarchies for ray tracing. IEEE Comput. Graph. Appl. 7, 5
(1987), 14–20.

[HAMO05] HASSELGREN J., AKENINE-MÖLLER T. E., OHLS-
SON L.: Conservative rasterization on the gpu. GPU Gems 2
(2005), 677–701.

[HHLH05] HORNUS S., HOBEROCK J., LEFEBVRE S., HART
J. C.: Zp+: correct z-pass stencil shadows. In ACM Sympo-
sium on Interactive 3D Graphics and Games (April 2005), ACM,
ACM Press.

[HLHS03] HASENFRATZ J.-M., LAPIERRE M., HOLZSCHUCH
N., SILLION F.: A survey of real-time soft shadows algorithms.
Computer Graphics Forum 22, 4 (dec 2003), 753–774.

[HMM01] HAINES E., MÖLLER T., MÖLLER T.: Real-time
shadows. In Proceeding of Game Developers Conference (2001),
pp. 335–352.

[HSHH07] HORN D. R., SUGERMAN J., HOUSTON M., HAN-
RAHAN P.: Interactive k-d tree gpu raytracing. In I3D ’07: Pro-
ceedings of the 2007 symposium on Interactive 3D graphics and
games (New York, NY, USA, 2007), ACM, pp. 167–174.

[JMC04] JOHNSON G., MARK W., CHRISTOPHER B.: The ir-
regular z-buffer and its application to shadow mapping, March
2004.

[Lai05] LAINE S.: Split-plane shadow volumes. In HWWS ’05:
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS confer-
ence on Graphics hardware (New York, NY, USA, 2005), ACM,
pp. 23–32.

[LM08] LAURITZEN A., MCCOOL M.: Layered variance
shadow maps. In GI ’08: Proceedings of graphics interface 2008
(Toronto, Ont., Canada, Canada, 2008), Canadian Information
Processing Society, pp. 139–146.

[LWGM04] LLOYD B., WENDT J., GOVINDARAJU N.,
MANOCHA D.: Cc shadow volumes. In SIGGRAPH ’04: ACM
SIGGRAPH 2004 Sketches (New York, NY, USA, 2004), ACM,
p. 146.

[PBMH02] PURCELL T. J., BUCK I., MARK W. R., HANRA-
HAN P.: Ray tracing on programmable graphics hardware. ACM
Transactions on Graphics 21, 3 (July 2002), 703–712. ISSN
0730-0301 (Proceedings of ACM SIGGRAPH 2002).

[PGSS07] POPOV S., GÜNTHER J., SEIDEL H.-P., SLUSALLEK
P.: Stackless kd-tree traversal for high performance gpu ray trac-
ing. Computer Graphics Forum 26, 3 (September 2007), 415–
424.

[RSC87] REEVES W. T., SALESIN D. H., COOK R. L.: Ren-
dering antialiased shadows with depth maps. In SIGGRAPH
’87: Proceedings of the 14th annual conference on Computer
graphics and interactive techniques (New York, NY, USA, 1987),
ACM, pp. 283–291.

[SD02] STAMMINGER M., DRETTAKIS G.: Perspective shadow
maps. In SIGGRAPH ’02: Proceedings of the 29th annual con-
ference on Computer graphics and interactive techniques (New
York, NY, USA, 2002), ACM, pp. 557–562.

[SEA08] SINTORN E., EISEMANN E., ASSARSSON U.: Sample-
based visibility for soft shadows using alias-free shadow maps.
Computer Graphics Forum (Proceedings of the Eurographics
Symposium on Rendering 2008) 27, 4 (June 2008), 1285–1292.

[Whi80] WHITTED T.: An improved illumination model for
shaded display. Commun. ACM 23, 6 (1980), 343–349.

[Wil98] WILLIAMS L.: Casting curved shadows on curved sur-
faces. Seminal graphics: poineering efforts that shaped the field
(1998), 51–55.

[WPF90] WOO A., POULIN P., FOURNIER A.: A survey of
shadow algorithms. IEEE Comput. Graph. Appl. 10, 6 (1990),
13–32.

[WSP04] WIMMER M., SCHERZER D., PURGATHOFER W.:
Light space perspective shadow maps. In Rendering Tech-
niques 2004 (Proceedings Eurographics Symposium on Render-
ing) (June 2004), Keller A., Jensen H. W., (Eds.), Eurographics,
Eurographics Association, pp. 143–151.

c© The Eurographics Association 2009.

65

S. Hertel & K. Hormann & R. Westermann / A Hybrid GPU Rendering Pipeline for Alias-Free Hard Shadows

Figure 3: Comparison between a ray traced shadow rendered at 2 fps (left) and our method using a 1K x 1K conservativ
shadow map rendered at 7 fps (right).

Figure 4: Visualization of the efficiency of our acceleration. Color coding of the number of triangle intersection tests (the
brighter the color the more test were made, red color shows a view sample in shadow, green samples are lit). Left: The rendered
image; center: standard GPU ray tracing; right: our method

Figure 5: (from left to right) For the left image a 1K × 1K shadow map was used. Note the gap between the faces in the left
two pictures is missed completely by the map. The same picture rendered with a 1K × 1K conservative shadow map. The gap
is clearly visible in the shadow. The tree rendered with a 1K × 1K shadow map at 45 fps. The same scene rendered with a
conservative shadow map at 3 fps.

c© The Eurographics Association 2009.

66

