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Abstract

Today a widespread deployment of Augmented Reality (AR) systems is only possible
by means of computer vision frameworks like ARKit and ARCore, which abstract
from specific devices, yet restrict the set of devices to the respective vendor. This
thesis therefore investigates how to allow deploying AR systems to any device
with an attached camera.

One crucial part of an AR system is the detection of arbitrary objects in the
camera frame and naturally accompanying the estimation of their 6D-pose. This
increases the degree of scene understanding that AR applications require for placing
augmentations in the real world. Currently, this is limited by a coarse segmentation
of the scene into planes as provided by the aforementioned frameworks. Being able
to reliably detect individual objects, allows attaching specific augmentations as
required by e.g. AR maintenance applications. For this, we employ convolutional
neural networks (CNNs) to estimate the 6D-pose of all visible objects from a
single RGB image. Here, the addressed challenge is the automated training of the
respective CNN models, given only the CAD geometry of the target object. First,
we look at reconstructing the missing surface data in real-time before we turn to the
more general problem of bridging the domain gap between the non-photorealistic
representation and the real world appearance. To this end, we build upon generative
adversarial network (GAN) models to formulate the domain gap as an unsupervised
learning problem. Our evaluation shows an improvement in model performance,
while providing a simplified handling compared to alternative solutions.

Furthermore, the calibration data of the used camera must be known for precise
pose estimation. This data, again, is only available for the restricted set of devices,
that the proprietary frameworks support. To lift this restriction, we propose a
web-based camera calibration service that not only aggregates calibration data, but
also guides users in the calibration of new cameras. Here, we first present a novel
calibration-pose selection framework that reduces the number of required calibration
images by 30% compared to existing solutions, while ensuring a repeatable and
reliable calibration outcome. Then, we present an evaluation of different user-
guidance strategies, which allows choosing a setting suitable for most users. This
enables even novice users to perform a precise camera calibration in about 2

minutes. Finally, we propose an efficient client-server architecture to deploy the



aforementioned guidance on the web, making it available to the widest possible
range of devices. This service is not restricted to AR systems, but allows the
general deployment of computer vision algorithms on the web that rely on camera
calibration data, which was previously not possible.

These elements combined, allow a semi-automatic deployment of AR systems

with any camera to detect any object.



Zusammenfassung

Heutzutage ist eine allgemeine Bereitstellung von Augmented Reality (AR) Systemen
nur mithilfe Computer Vision Frameworks wie ARKit und ARCore moglich, welche
von spezifischen Endgeriten abstrahieren, allerdings gleichzeitig die Auswahl auf
den jeweiligen Hersteller einschrinken. In dieser Arbeit wird daher untersucht,
wie die Bereitstellung von AR-Systemen auf jedem Gerdt mit angeschlossener
Kamera ermoglicht werden kann.

Ein entscheidender Teil eines AR-Systems ist die Detektion von beliebigen
Objekten im Kamerabild und damit einhergehend die Schatzung ihrer 6D-Pose.
Dies ist notwendig, um das Versténdnis der Szene zu verbessern, welches AR-
Anwendungen erfordern, um Augmentierungen in der realen Welt zu platzieren.
Derzeit ist dies durch eine grobe Segmentierung der Szene in Ebenen begrenzt,
welche durch die oben genannten Frameworks bereitgestellt wird. Einzelne Objekte
zuverlassig erkennen zu kénnen, ermoglicht es spezifische Augmentierungen anzubrin-
gen, was z.B. bei AR-Wartungsanwendungen notwendig ist. Hierzu verwenden wir
Convolutional Neural Networks (CNNs), um die 6D-Pose aller sichtbaren Objekte
aus einem einzigen RGB-Bild abzuleiten. Hierbei behandeln wir das Problem des
automatisierten Trainings der jeweiligen CNN-Modelle, nur ausgehend von der
CAD-Geometrie des Zielobjekts. Zunéchst betrachten wir die Rekonstruktion der
fehlenden Oberflachendaten in Echtzeit, bevor wir uns dem allgemeineren Problem
der Uberbriickung der ,,Doménen-Diskrepanz* zwischen der nicht fotorealistischen
Darstellung und dem Erscheinungsbild in der realen Welt zuwenden. Zu diesem
Zweck bauen wir auf generativen CNN-Modellen (Generative Adversarial Net-
work) auf, um die ,Doménen-Diskrepanz* als unbeaufsichtigtes Lernproblem zu
formulieren. Unsere Auswertung zeigt eine Verbesserung der Modellleistung bei
vereinfachter Handhabung gegeniiber vergleichbaren Loésungen.

Weiterhin miissen die Kalibrierungsdaten der verwendeten Kamera bekannt sein,
um eine genaue Posenschétzung zu erzielen. Diese Daten sind aber wiederum nur
fiir die firmeneigenen Geréten der jeweiligen Frameworks verfiighar. Um diese Ein-
schrankung aufzuheben, schlagen wir einen webbasierten Kamerakalibrierungsdienst

vor, welcher nicht nur Kalibrierungsdaten aggregiert, sondern auch Benutzer bei der



Kalibrierung neuer Kameras unterstiitzt. Hierfiir stellen wir zunachst ein neuartiges
Framework fiir die Auswahl von Kalibrierungsposen vor, welches die Anzahl der
erforderlichen Kalibrierungsbilder im Vergleich zu vorhandenen Loésungen um 30%
reduziert und gleichzeitig ein wiederholbares und zuverléssiges Kalibrierungsergeb-
nis gewahrleistet. Anschlieend prasentieren wir eine Auswertung verschiedener
Benutzerfiihrungsstrategien, anhand derer eine fiir die meisten Benutzer geeignete
Einstellung ausgewéhlt werden kann. Auf diese Weise konnen auch unerfahrene
Benutzer in ca. 2 Minuten eine prazise Kamerakalibrierung durchfithren. SchliefSlich
schlagen wir eine effiziente Client-Server-Architektur vor, um die oben genannten
Benutzerfiihrung im Web bereitzustellen und sie einer moglichst breiten Palette von
Geraten zur Verfugung zu stellen. Dieser Dienst ist nicht auf AR-Systeme beschrankt,
sondern erméglicht die allgemeine Bereitstellung von Computer-Vision-Algorithmen
im Web, welche Kamerakalibrierungsdaten benétigen, was bisher nicht moglich war.

Diese Elemente zusammen ermoglichen eine halbautomatische Bereitstellung von

AR-Systemen welche auf beliebigen Kameras, beliebige Objekte erkennen kénnen.
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Introduction

Use the webcam attached to your PC to get an augmented-reality repair guide for
your cellphone; use your cellphone camera to get instructions on how to change the
oil in your car; enable a robot to manipulate and inspect objects at a production
line by attaching a webcam to it — do all of this without a tedious and complicated
setup phase only using the virtual 3D models of the respective objects: these are
some scenarios that can benefit from the results in this work.

The goal of this dissertation is to detect known objects and their 3D position
relative to the viewer only using a single image and the 3D model of the objects as
provided by computer aided design (CAD) tools. Here, one should be able to focus
on the task at hand, while the camera capturing the image is interchangeable. The
required piece of information specific to the actual camera should be retrieved
automatically as needed.

The outlined environment restricts the means that we can use for this to the
camera obsucra as shown in Figure 1.1 — a drawing aid used since at least 500
BC. That is, we want to achieve the goal mentioned above by merely looking at
the back-facing wall of a dark chamber. There are two main challenges to derive

an object distance and orientation from that image.

o First, we must be able to separate the object from the surroundings in the
image and recall the true object size. Knowing the true size is crucial as a toy
car can appear to be of the size of a real car in the image, given it is much

closer to the camera. This problem is generally referred to as object detection.
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Figure 1.1: The geometry of a camera obscural. Our goal is to recognize the soldier
and estimate his distance, by only considering the image on the wall in the dark chamber.

o Second, we must know the "depth" of the dark chamber. The image size grows
proportionally with the depth and the imaged size of the object together
with its true size is our only means to derive the distance. Measuring, the

properties of the dark chamber is generally referred to as camera calibration.

Object detection is a rather generic problem and there are several possible
approaches. In this thesis we will focus on object detection from RGB images only.
Here, we will mainly rely on Convolutional Neural Network (CNN) based models to
perform this task. Only recent advances in this area make it possible to get reliable
results, without the need of additional sensors. CNNs are a family of machine
learning models, that are particularly well suited to analyze image data. They are
characterized by a hierarchy of layers that extract and aggregate information of
increasing complexity. The convolutional connectivity pattern is biologically inspired
by the animal visual cortex. Furthermore, it is possible to perform the required
computations in parallel on the graphics processor (GPU) leading to a very efficient
implementation. CNN-based models are responsible for breakthroughs in the areas
of object classification and detection. The performance of state-of-the art networks
is currently limited by the error-rate of the human annotator of the training data.
We are interested in methods to avoid the tedious and expensive labeling step by a
human annotator. In fact, we want to get around requiring real training data at all.

To estimate an absolute 3D position and 3D orientation (6D pose) from a CNN-
based detection, camera specific calibration data is required. Most notably, such

calibration data describes the "zoom level" (focal length) and optical aberrations

Yrom https://en.wikipedia.org/wiki/Camera_obscura
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(a) Guided camera calibration: Compute the optimal set of calibration views relative to a
suitable pattern (left) and guide the user towards them, using an overlay (right)

(b) CNN training with CAD geometry: Given the CAD geometry of an object (left) detect
the object and its pose in real images (right)

Figure 1.2: The main tasks addressed in this work

of the used lens (distortion coefficients). Without knowing the camera calibration
data, a single image is not sufficient to distinguish whether we are looking at a toy
car or a real one — even if the distance to the camera is given. However, without
manual calibration, such calibration data is currently only available for devices
known by the ARKit and ARCore computer vision frameworks. Effectively, this
limits the device range to mobile devices produced by the vendor of the respective
framework. We are however interested in using any camera and more specifically,
in being able to retrieve the calibration data on-the-fly.

More precisely, we are addressing the following tasks in this work, which are

also illustrated in Figure 1.2:

Reliable acquisition of calibration data Currently, calibration data is only

readily available for the very limited set of devices supported by the ARKit and
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ARCore frameworks. For other devices, one has to resort to calibrating the camera
manually. For this, typically a checkerboard is photographed from several views.
However, special care is required to select a correct set of views to obtain a reliable
calibration. Therefore, the user should be explicitly guided towards suitable views
to ensure a correct calibration set. Here, the task is to measure the quality of the
captured calibration data and to select additional views as appropriate.
However, ideally the system should be able to transparently retrieve the correct
calibration from an open database of known devices — resembling the behavior of the
aforementioned computer vision frameworks. Here, the task is to design a scalable
service that covers a wide range of applications and different devices. Furthermore,

the system should be extendable and allow capturing new data on-the-fly.

CNN training from CAD geometry Given the dependency of current CNN
architectures on a large training set, the possibility of using synthetic data is alluring
as it would allow generating a virtually infinite training set. Especially, assembling
a training set for a specific domain is an expensive, error prone and time-consuming
process that can easily take hundreds of hours [40]. Here, not only the initial
capturing and labeling should be considered, but also an additional correction step
of the manual annotations to ensure a high label quality. The problem is even
amplified in the case of 6D object poses where the 3D data cannot be easily guessed
by a human annotator and needs to be provided by custom acquisition setups e.g.
by markers [38] or a turntable setup [15]. Therefore, it is desirable to use synthetic
data generation to obtain annotated training samples. This is however a non-trivial
task as current CNN architectures optimize exactly for the data they received during
the training phase. It was shown that cross-validation is not sufficient to correctly
assess CNN models[95]; their performance degrades significantly, when evaluated
on a different dataset than used for training. This problem is emphasized when
using synthetic, CAD-based data, which exhibits a domain gap to real data, a much

larger difference than two real-world datasets exhibit to each other.

1.1 Motivation

Most products are nowadays created based on CAD models, which either serve as
reference for assembly or are directly fed into a 3D printing process. Automatically
aligning these models to 2D images allows transferring the information from the
CAD tools, such as the geometric data, the model category or handling and assembly

instructions, directly onto the images. This enables a wide range of applications
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(b) Automated quality control in the production line: aligning the 3D model in multiple views
allows inspecting the object surface

Figure 1.3: Possible applications of the methods developed in this work

in the production line and beyond by sourcing from the existing CAD product
databases. Figure 1.3 shows some examples of leveraging the 3D CAD data in

images, which furthermore include:

Augmented Reality Today Augmented Reality (AR) systems begin to be
ubiquitously available through computer vision frameworks like ARKit and ARCore,
which provide a precise view-pose. However, AR applications also require a certain
degree of scene understanding to place the augmentations inside the real world.
To this end the aforementioned frameworks provide a coarse segmentation of the
scene into planes and an estimation of their size. While this allows for a certain
class of applications, like placing virtual furniture, it is not possible to attach
information to specific real-world objects. This is, however, a common use-case
in the industrial context, where assembly and maintenance instructions aim at

specific objects or object-parts.

Product handling During production different parts are typically grouped by
their material and then produced in a batch. This batch has then to be sorted into

the different parts again, which either requires the resulting parts to appear at the
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exact same location or a human worker to perform the task. Think of a 3D-printing
process where different parts are created at once. The main objective here is to
optimally exploit the printing volume, therefore the printing algorithm arranges
the parts in arbitrary locations to achieve a tight packing. If the source CAD
geometry could be aligned to the printed objects, the sorting could be performed
automatically by a robot. This use-case poses an additional challenge as different
printing materials lead to different appearances of the same CAD model. One can

think of similar cases during stamping and cutting from metal.

Quality control After production the parts need to pass a quality control. This
can happen before they are shipped to the customer or during a larger assembly.
This is a crucial step as integrating a faulty part can cause the destruction of
the final product which can increase the loss by an order of magnitude. Think
of mounting a polluted plate into an electric motor that is afterwards sealed.
Leveraging the CAD data here, one could automatically inspect the plates and

remove the faulty ones from the pipeline.

1.2 Challenges

Solving tasks addressed in this thesis imposes the following underlying challenges:

Reproducible, guided camera calibration The quality of a camera calibration
depends on the used set of calibration poses. Certain pose configurations can lead
to unreliable results and it is possible to capture redundant views. That is, distinct
viewpoints which do not add any information to the calibration set. Therefore, the
challenge is to find a set of poses that neither includes unreliable configurations
nor redundant poses. Additionally, it should be possible for an inexperienced user
to perform the calibration. This means, the process should be tolerant to poses
that are not matched exactly and dynamically adapt the pose sequence, given
the data captured so far. Finally, the calibration results should be reproducible;
i.e. repeated calibration of the same device should result in comparable output
— even when repeated by a different user.

The calibration results should be aggregated by an online calibration service, such
that no calibration needs to be performed for devices where a reliable calibration is
already available. This service should scale to a wide range of scenarios — including
web-based applications. These are particularly challenging, as they can be executed

on virtually any device — ranging from a smartphone to an embedded Linux board
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with a browser and a camera. To manage the volatile set of capturing devices, the
service must be dynamically extensible and fall back to guided calibration when
encountering an unknown device. Consequently, the guidance must be executable
in a web-browser environment and therefore the implementation must settle for
web technologies. This imposes limitations on computation and requires and an

efficient client/server separation.

Domain Gap between synthetic and real images There is a considerable
domain gap between synthetic renderings and real world images which prohibits the
generalization of networks trained on synthetic data to the real world. Typically,
rendered images produce clear edges with only approximate shading, while real
images exhibit various sources of noise, like optical aberrations, sensor noise or
compression artifacts. One approach to overcome the domain gap is to generate
photorealistic quality images, by a more sophisticated shading simulation and the
incorporation of the aforementioned imaging artifacts. However, increasing the
photo-realism requires either an artist to carefully model the specific environments
in detail or a specialized acquisition setup to capture the reflectance properties.
This in turn increases the cost of generating the data thus negating the primary
selling point of using synthetic images in the first place.

Therefore, surface capturing should be straightforward, with no additional setup.
Ideally, the CNN training itself should be adapted, to produce a model that is
general enough to handle real images just as well as the synthetic images used for
training. Here, the challenge is not to degrade the general model performance by
removing essential cues. For instance, a model trained to detect cars should be
able to exploit the fact that they are usually located on a ground plane. Using
random backgrounds during training removes this cue and the model will be forced

to handle flying cars as well.

1.3 Contributions and Outline

This thesis focuses on reducing the deployment overhead for 6D object detection in
RGB images by increasing the automation of the associated tasks. Particularly, we
consider the acquisition of camera calibration data and the automated generation
of labeled training data for 6D pose estimation.

Here, we first turn to the semi-automatic acquisition and automatic distribution
of camera calibration data, which is a prerequisite for 3D vision. Having the

calibration data available, we then continue with training a model for the task



8 1.3. Contributions and Outline

of 6D pose estimation from RGB images only, while only relying on non photo-
realistic CAD geometry. For this, we explicitly address the domain gap between
real and synthetic data.

In Chapter 2, we review the basic concepts and formalize the addressed tasks,
including the definition of the notation used for the remains of this work. Here,
we introduce the pinhole camera model and the closely related problem of pose
estimation, including suitable metrics for evaluating the estimates. We also review
the general machine learning framework and give an overview over related work
on architectures for object detection and object pose estimation. At this, we
also discuss the domain gap as a general form of the dataset bias and review
existing approaches for approaching this problem, including domain randomization
and domain adaptation.

Chapter 3 presents an algorithm for efficiently selecting camera calibration
poses, based on already captured calibration frames. This allows interactively
guiding a user through the calibration process, while ensuring repeatability and
high quality of the results. Here, we also evaluate different calibration settings
and visualizations for user-guidance by performing a quantitative user survey. We
then extend the system by aggregation capabilities and describe the deployment
of the complete system as a web-service, which makes camera calibration data
as well as the pose selection algorithm ubiquitously available. The results of this

chapter are based on the following publications

» Rojtberg, Pavel, and Kuijper, Arjan. "Efficient pose selection for interactive
camera calibration." 2018 IEEE International Symposium on Mixed and
Augmented Reality (ISMAR). IEEE, 2018. — [83]

» Rojtberg, Pavel "User Guidance for Interactive Camera Calibration." 2019 Pro-
ceedings of the 21st International Conference on Human-Computer Interaction.
Springer, 2019. — [80]

» Rojtberg, Pavel, and Gorschliiter, Felix "calibDB: enabling web-based com-
puter vision through on-the-fly camera calibration." 2019 Proceedings of the
24th International Conference on 3D Web Technology. ACM, 2019. Best
Short Paper Award. — [82]

In chapter 4, we present approaches to bridge the domain gap between training
data generated from abstract CAD geometry and real-world images, focusing on
the challenging task of 6D object pose estimation. We first approach this task by

recovering the true object appearance, which is absent in CAD data, thus increasing
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the realism of the training data. Here, a real-time method is presented, that
operates without the need of a sophisticated capturing setup. The captured data
is then used to extend a classical object detection algorithm on-the-fly to allow
object instance identification.

Then, we turn to the training step of the CNN to enforce a more general model,
which is able to cover the domain gap. For this, we formulate the domain gap as a
style-transfer problem. This turns the domain gap itself into a learn-able task and
allows employing off-the shelf generative adversarial networks (GANs) to solve it.
Here, we consider both supervised and unsupervised training setups and show that
our formulation results in a considerable performance improvement, while requiring
only little effort to set up when compared to other methods. This ultimately allows
training a pose estimation network from synthetic CAD data only. The results

of this chapter are based on the following publications

o Rojtberg, Pavel, and Arjan Kuijper. "Real-time texturing for 6D object
instance detection from RGB Images" 2019 IEEE International Symposium
on Mized and Augmented Reality (ISMAR). IEEE, 2019. — [84]

» Rojtberg, Pavel, and Thomas Péllabauer "Style-transfer GANs for bridging
the domain gap in synthetic pose estimator training" Proceedings of the 25th
International Conference on Pattern Recognition (AIVR2020) IEEE, 2020. —
[85]

Finally, chapter 5 concludes this thesis giving a summary of our results and
discussing the limitations of the approaches. We also describe directions that

seem worthwhile to follow in the future.
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Background

In this chapter we present the basic concepts and the notation that will be used
throughout this thesis.

We start with the pinhole camera model, which describes the fundamental
relation between the 3D world points and the 2D image points that we observe
and use to identify the object and its pose. We go on to the closely related task
of pose estimation. In this context we discuss different evaluation metrics and the
implications they have on judging the estimated pose.

Next, we review the machine learning framework that will be used for the task
of object pose estimation. Specifically, we focus on deep convolution architectures.
Here, we also consider the training phase where we discuss the problem of over-
fitting that leads to the dataset bias and ultimately to the domain gap that we are
confronted with when using CAD geometry to generate the training data. In this
context, we discuss related work on conditioning the training for generalization via
domain randomization and domain adaptation. We also present data augmentation
as a simple domain randomization technique. We then turn to specific network
architectures used in the later sections of this work. Specifically, we introduce
generative adversarial networks for style transfer and single-stage detector architec-
tures. At this, we start by reviewing general learning-based detection architectures
which lead to more specific 6D pose estimation models. In this context, we also
discuss classical approaches for object pose estimation and their limitations to

motivate our use of deep convolutional models.

11
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2.1 Camera model

We will use the pinhole camera model that, given the camera orientation R,
position t and the parameter vector C, maps a 3D world point P = [X|Y, 7]
to a 2D image point p = [z,y]:

7 (P;R,t,C) = KA(Z1 R t|P). (2.1)

C

where [R t] is a 3 x 4 affine transformation, Z. denotes the depth of P after affine

transformation and K is the camera calibration matrix:

f: 0 ¢
0 fy ¢ (2.2)
0 0 1

K encodes the focal lengths [f,, f,] and the principal point [c,, ¢,]. Zhang [112]
also includes a skew parameter v — however, for CCD-sensor based cameras it
is safe to assume 7 to be zero [91, 35].

The largest limitation of the pinhole model is that optical effects introduced by
the camera lens are not considered. In order to model them, the projected points
are usually warped using non-linear distortion equations. The most commonly
modelled effects [91] are the radial (2.3a) and tangential (2.3b) lens distortions.

Following Heikkila and Silvén [36] we formulate them as

Ap)=p (1 + Ekir? + kort + k3r6) (2.3a)

<2p1xy +po (r? + 2x2)>

2.3b
p1 (72 + 2y?) + 2pary ( )

where r = /22 +y2.

Therefore C = [f, fy, €, Cy, k1, ko, k3, p1, 2.

Additionally, Web-based computer vision should not be restricted to pinhole
camera imagery, therefore we have to allow for additional camera models. Here, we
consider the DNG image format [1] where eq. (2.3a) is specified as WarpRectilinear
for processing images from interchangeable-lens cameras.

Furthermore, the DNG format includes a separate distortion model for fish-

eye lenses [47]|, WarpFisheye:

S|

Ap(p) = P (0 +ki6® + kot + kst (2.4)
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where ¢ = atan(r). This model is required as fisheye lenses can expose a field of
view > 180° which cannot be represented using a rectilinear projection.

The OpenCV library supports both A and Ag as well as more sophisticated
models for e.g. spherical 360° cameras [32] as employed by the street-view cars

or spherical video.

2.1.1 Estimation and error analysis

Given M images each containing N point correspondences, the underlying calibration

method [112] minimizes the geometric error

€res = ZZ | pij — 7 (Pi;; Ry, t5,C) |17, (2.5)

where p;; is an observed (n01sy) 2D point in image j and P; is the corresponding
3D object point.

Eq. (2.5) is also referred to as the reprojection error and often used to assess the
quality of a calibration. Yet, it only measures the residual error and is subject to
over-fitting. Particularly €,..s = 0 if exactly N = 10.5 point correspondences
are used [35, §7.1].

The actual objective for calibration however, is the estimation error €., i.e.
the distance between the solution and the (unknown) ground truth. Richardson
et al. [79] propose the Max ERE as an alternative metric that correlates with
the estimation error and also has a similar value range (pixels). However, it
requires sampling and re-projecting the current solution. Yet for user guidance
and monitoring of convergence only the relative error of the parameters is needed.
Therefore, we directly use the variance o2 of the estimated parameters. More
precisely, we normalize the value ranges using the index of dispersion (IOD) ¢2/C;
to ensure comparability among different parameters.

Given the covariance of the image points 3, the backward transport of covariance
[35, §5.2.3] is used to obtain

= ("%, 1J) (2.6)
=dm/ov
where J is the Jacobian matrix, v = [C,Ry,ty,..., Ry, ty] is the vector of

unknowns and (-)* denotes the pseudo inverse. For simplicity and because of the
lack of prior knowledge, we assume a standard deviation of 1px in each coordinate
direction for the image points thus simplifying 3, = L

The diagonal entries of 3, contain the variance of the estimated C. Note, that

J is readily available through the Levenberg-Marquardt step of [112].
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(a) Fiducial marker grid "Tsai Grid" (b) Chessboard

(c) ChArUco pattern (d) Gradient bias

Figure 2.1: Planar calibration patterns

2.2 Calibration patterns

To perform the calibration, we need to detect points with known (local) 3D
coordinates in the camera image. Basically an arbitrary, yet known, 3D geometry
can be used for this — however, any imprecisions in the provided 3D coordinates
result in an increased error of the calibration [91]. Therefore, it is preferable to use
a planar target as it is easy to manufacture at high precision by simply printing an
image and fixing it to a planar surface (e.g. glass). While one could use arbitrary
images in combination with a 2D feature detector, typically squared black and
white patterns are used. These have strong gradients that can be detected even
under difficult lighting conditions. Additionally, the 2D points can be located with
sub-pixel accuracy by searching for a maximum along the local gradient, thereby
further improving the precision of the calibration.

A widely used checkerboard pattern is the "Tsai Grid" [99] that resembles Figure
2.1a, apart from the marker coding. It is used for instance in [112, 90, 35].

However, the image gradient at the corners of the used squares is biased towards

the outside which impedes sub-pixel refinement. Therefore, the "Tsai Grid" was
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superseded by the chessboard pattern (Figure 2.1b). With the latter only points
at joints of two squares are used, which do not exhibit the gradient bias. Figure
2.1d shows the top-left region of Figure 2.1c overlaid with the results of a bilateral
Sobel filter. Note the maxima are outside the isolated marker but at the joint
of two chessboard squares.

The main disadvantage of the chessboard pattern is that the entire board needs
to be visible for the corner identification to work. Furthermore, the detection
process usually involves the time-consuming task of ordering the detected rectangles
to a canonical topology. This slows down board localization below 30Hz and
impedes the interactivity of the method.

Approaches based on fiducial marker boards [102, 26, 79] (Figure 2.1a) overcome
both of the above limitations. Marker detection is fast and one individual marker
allows the direct computation of board coordinates using its unique ID. However,
marker boards have the same structure as the "Tsai-Grid" and hence also suffer
from corner bias.

Therefore, the ChArUco pattern [29] was recently introduced. It interleaves
ArUco markers [30] with the chessboard pattern (Figure 2.1c). The markers are
then used for detection and localization, while the chessboard corners provide
bias-free points with sub-pixel accuracy.

Our approach works with any of the mentioned planar calibration target.
However, for interactive user guidance a fast board detection is crucial. Therefore,
we settle on the ChArUco pattern as implemented in OpenCV. Alternatively, one
could use any of the recently developed self-identifying targets [3, 6, 26] here.

The pattern size is set to 9 x 6 squares resulting in up to 40 measurements at
the chessboard joints per captured frame. This allows to successfully complete the

initialization even if not all markers are detected as discussed in section 3.3.5.

2.3 Pose estimation

Assuming the pinhole camera model, we want to recover a 3 x 4 affine transformation
E = [R t] between the camera and the object, given the camera calibration matrix
K and several 2D-3D correspondences of 3D world points P; = [X| Y] Z] and 2D
image points p; = [z,y]. Asin eq. (2.1), we are exploiting their relation by

1

=K

[R t] P;. (2.7)

Note that compared to eq. (2.1), we just swap the known and unknowns and
drop the non-linear distortion function — assuming all 2D points are undistorted

before pose estimation.
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The 3 x 4 affine transformation [R t] contains only 6 degrees of freedom as the
3 x 3 rotation transform is part of the special orthogonal group R € SO(3) and thus
only has 3 degrees-of-freedom. Therefore, 3 point correspondencies are sufficient to
obtain a solution. The general problem is known as "Perspective-n-point" (PnP),
where n refers to the number of known correspondencies. There is a large base on
research for the special cases of n = 3 and n = 4 [28] as well as arbitrary values of
n [56, 52] providing direct and iterative solutions. Additionally, there is research
on the particular configuration where all points are co-planar [19].

Generally, all cases can be handled, if a check for the degenerate configurations
is performed to dispatch to an optimal implementation. For the remains of the

work, we therefore do not address the degenerate configurations explicitly.

2.3.1 Evaluation metrics

Evaluation of 6D object pose estimates is not straightforward [41]. There are
multiple popular metrics for measuring the distance between an estimated pose E

and a ground truth pose E which we will briefly present in the following.

Reprojection error By generating 2D image points p using the ground truth
pose, one can use the re-projection error as defined by eq. (2.5) in camera calibration.
This metric measures the distance in the image space which is most significant for
AR applications. The disadvantage is that due to the projection, the weight of the
depth error is decreased as the distance to camera increases. Therefore, the metric
depends on the used camera lens. Additionally, the error must be normalized to
be comparable between different image resolutions. A popular variant introduced
by [10] is to accept an estimated pose if the average reprojection error is below

S5px at an image resolution of 640 x 480.

Intersection over Union The IoU metric (also called Jaccard index J) is
computed by comparing the areas fl, A covered by the 2D projection of an object
using the estimated pose and the ground truth pose respectively, as
AN A|

AU Al

J(A,A) = (2.8)
Measuring the distance in image space, the same advantages and disadvantages
as with the reprojection error apply. The main benefit is resolution independence.
A popular variant [10] is to accept an estimated pose if the IoU score is above
0.5. Some variants use the 2D bounding box of an object to approximate the

true area covered by its projection.
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Average distance between model points This metric measures the average
distance between the points in 3D of the object model M transformed with the

pose estimate B and the ground truth pose E respectively:

Ly jep-EP|, 2.9
PeM

where n = |[M]|. It was introduced by [38] and is often abbreviated as ADD.
Measuring an absolute 3D distance it is favorable for robotic applications that
require the full pose. However, the pivot point of the object is required to be
at the center of mass for the metric to be comparable between different objects.
A popular variant is to accept an estimated pose if the ADD distance is below
10% of the diameter of the 3D bounding box.

Rotational and translational error This metric consists of two separate
measures for rotation and translation. For the translational error the 3D distance
is used. For rotational error, the rotation between the estimated and the ground
truth rotation R’ = RR7 is converted into the angle-axis representation, where
angle of rotation # is used as the measure

6 = arccos (Tr(Rz)_l> . (2.10)

A popular variant introduced by [88] is to accept an estimated pose if the trans-

lational error is below 5cm and the rotational error is below 5°.

2.3.2 Indistinguishable poses

For some objects there are sets of poses that cannot be distinguished under projection.
This can be due to a symmetry inherent in the object geometry. Think of a glass —
rotating it around its symmetry axis results in an infinite set of poses having an
identical projection. The poses can also be only indistinguishable in some views
of the object. For instance, the pose of a cup can be uniquely determined as long
as the handle is visible. If it is occluded by another object or not visible due to
self-occlusion the poses become indistinguishable as well (see Figure 2.2).

Of the metrics presented above, only the Jaccard index is invariant to indis-
tinguishable poses. That is, there is no penalty if E and E are different, yet are
indistinguishable under projection. To further overcome the limitations of measuring
in image space, [41] propose the Visual Surface Discrepancy (VSD) metric that
computes the distance of visible surface points in 3D.

For the remains of the work, however, we assume poses to be distinguishable

under projection and do not address this issue explicitly unless stated otherwise.
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(a) Object symmetries (b) Self-occlusion (c) Occlusion

Figure 2.2: Causes of pose ambiguities (Image from [92])

2.4 Machine learning framework

In this section we will introduce the machine learning framework® that we will use

in this work. Here, we focus on single-stage convolutional neural networks.

2.4.1 Machine learning

First, let us formalize a general mathematical framework for learning. We are

given a set of training examples
D = {Z(),...,Zn_l},

where each z; is a sample from an unknown distribution P(Z). Additionally, we
are given a loss function L that takes the decision function f, a sample z; and

outputs a real-valued error score
L(f, Z) e RT.
We want to minimize the value of L(f,Z) by optimizing for f.
Unsupervised Learning In the unsupervised learning setting, the function f is
used to characterize the distribution P(Z). For instance if f is gaussian, we are

estimating the density of P(Z). f could also create a different representation of

Z. The Principal Component Analysis would be an example for this.

Supervised Learning In the supervised setting, each sample is an (input, target)
pair: Z = (X,Y), where X is the domain of f and Y is the co-domain of f.

We can now further subdivide the supervised learning setting into

!Based on http://deeplearning.net/tutorial/contents.html
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Regression If the set Y consists of continuous quantity Y C R”, the setting is

called regression. A typical choice for the loss function here is the squared error

L(f,(X,Y) =] f(X) =Y ||*.

Classification If the set Y consists of finite integers Y C 7Z that can be interpreted
as a class index, the setting is called classification. Here, we are minimizing

the negative log likelihood

L(f,(X,Y)) = —log fy(X),

where f;(X) is interpreted as the likelihood that estimates the conditional probability
P(Y =i|X). Note that when assuming f;(X) to be Gaussian, the negative log

likelihood simplifies to the squared error as in regression.

This work will focus on supervised regression and classification.

2.4.2 Gradient-based learning

Lets consider we want to find the parameters 0 of function f that minimize the loss

L given the training set D. To this end we compute the average loss over D
1 n
)= > L(fo, 2),

where C' is referred to as cost function or objective function.
Searching the @ that minimizes the loss L, can now be formalized as arg min, C(6).

If we are able to compute the derivative of C' and solve the equation

aw) _,
de ’

we can directly obtain the respective . However, typically there is no closed form

solution for f and consequently we cannot solve the equation above.

Assuming that C is locally linear and given some initial value §°, we can resort
to numerical optimization. The general idea is to iteratively update 6° to decrease
C(0) until convergence i.e. until we cannot decrease C'() any further.

To linearize C' for a vector valued # we compute its gradient, which is the
row-vector Jacobian
6C(0) [60 60]

60 T%””’E
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The simplest gradient-based numerical optimization method is the gradient
descent, where we follow the objective function into the direction of its most rapid
decrease at iteration k to obtain 6**! from 6% as
5C(0%)

56k

09k+1 — ek o >\l~c

where A\, is a scalar that controls the length of the step in gradient direction.
Therefore, it is commonly referred to as step-size. However, in the context of
neural-networks it is referred to as the learning-rate. If Ay is too large we might
skip over the minimum, while if )\ is too small, it might take a long time until we
reach convergence. There are various schedules to set \;, ranging from a fixed value

to gradually decreasing step size with increasing iteration count.

2.4.3 Stochastic gradient descent

C' computes an average over generally independently and identically distributed
samples z;. Taking advantage of that, one can update 6 while only using parts of D —

in the extreme case using only one sample z € D. In this case the update simplifies to

(SL(fgk, Z) '

k+1 _ gk
o = 0 — N o

(2.11)

This variant is called stochastic gradient descent (SGD). Using this formulation,
the gradient direction itself is considered a random variable, whose expectation is
the true gradient of the unknown distribution P(Z). Notably, it allows an online
learning scenario where the training set D is not fixed, but rather a stream of
samples from the training distribution.

However, the commonly used variant of SGD is the minibatch stochastic gradient
descent, that uses small batches of B samples. This is a compromise between the
ordinary (batch) gradient descent that is using the whole dataset D and thus
results in a better estimate of the gradient and the pure SGD that uses only one
sample and tends to reach convergence faster.

The main reason behind using minibatch SGD is that one can replace B vector x
matrix products by one matrix X matrix product which can be implemented more
efficiently. The optimal choice of B, therefore, depends on the used hardware
(memory-size, parallelism).

Nowadays, all neural-network based learning tasks are using minibatch SGD.
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Figure 2.3: Flow graph for the expression y = sin (a® + a/b)

2.4.4 Deep neural networks

A mathematical expression that produces an output from some inputs can be
expressed as a flow graph that follows the computation. Here, each node represents
a primitive operation (e.g. +, sin) and the resulting value.

Figure 2.3 shows the flow graph for the expression y = sin (a® + a/b). A key
property of the flow graph is its depth; the longest path from any input to any
output node. The depth, together with the number and type of nodes defines
a family of functions. The preceding example has a depth of three. Support
Vector Machines have a depth of two (one for the feature space and one for the
output summing up the features). Feed-forward neural networks have a depth
that corresponds to their number of layers.

Neural networks are a family of functions whose flow graph has a specific
hierarchical structure. It is composed of a series of linear functions followed by
non-linearities. This structure was first introduced with the perceptron algorithm
[86] in 1958, which we briefly introduce in the following.

The basic single-layer perceptron algorithm can be formalized as
f(z)=s(Wax+b), (2.12)

where W is the weight matrix connecting the inputs to the output, b is a bias
vector and s is the activation function.

This simple model is using the input features x as is and thus only has the
capacity to classify linearly separable data. To make it more powerful we extend
it to the multi-layer perceptron (MLP) or neural-network. To this end, we chain

the perceptron (2.12) with itself as

f(&?) = S9 (Wg (51(W1 x -+ bl)) + b2) s
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Figure 2.4: Example of a two-layer perceptron with 4 inputs, one hidden layer and a
real valued output.

where the inner invocation h(x) = s; (Wi x + by) forms the hidden layer. See
Figure 2.4 for a graphical representation.

The introduction of the hidden layer is sufficient to make the MLP an universal
approximator [20, 42]. This means it can approximate any continuous function
over a compact subset of R", as long as a non-polynomial activation function s
is used. Typical choices for s are tanh(-) or sigmoid(-).

We can add more hidden layers by iteratively applying eq. (2.12) to increase the
depth of the neural network. Even though a single hidden-layer network is already
a universal approximator, later research [5, 61] has shown that certain families of
functions can be represented efficiently with O(n) hidden nodes with depth d, where
n is the number of inputs. However, when limiting the depth to d — 1, the number
of required nodes grows exponentially as O(2"). The required amount of memory
and processing power to evaluate the network grows with the number of internal
nodes. Therefore, it is beneficial to build deep neural network architectures.

As a convention, we will call the block of all but the last layer the feature
extractor. In the example used above the inner invocation h(z) is the feature
extractor which transforms the input features x to the hidden feature space. The
outer invocation f (h(x)), that operates on that feature space is just a linear model
that generates the final output.

Typically, neural networks are non-convex with no closed form solution. There-
fore, we have to resort to gradient-based learning as described in section 2.4.2

to find optimal weights W, and biases b,.
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Figure 2.5: Example of a CNN with a receptive field of 2, operating on 1D input.
Weights of the same color are shared.

One can see the neural network as a factorization of some target function.
The existence of a deep and compact representation indicates some structure
of this function. If there was no such structure, it would not be possible to

generalize from training data.

2.4.5 Convolutional neural networks

In the context of image processing, typically MLP variants with limited connectivity
are used which are referred to as convolutional neural networks (CNN). These are
biologically inspired models that resemble the visual cortex. The visual cortex is a
complex arrangement of cells, where each cell is only sensitive to a small sub-region
of the visual field. This region is called the receptive field [44]. The cells act as
a filter over the input space and exploit the spatially local correlation present in
images. Furthermore, complex cells in the visual cortex have been found to be
locally invariant regarding the exact position of the pattern.

In conventional neural networks all nodes in one layer are densely connected
with all nodes of the following layer. For instance all input nodes z in Figure 2.4 are
connected to all hidden nodes h. This connectivity results in quadratic growth O(n?)
of the weight matrix W, which can already become a bottleneck with RGB images of
the size 256 x 256 (38 billion connections, given a hidden layer of the same size). The
dense connectivity results in giving all image regions the same influence on the output

and thus not modeling any spatially local correlation between input and output.
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Figure 2.6: Architecture of the LENET-5 CNN for digit classification (Figure from [55])

Transferring the receptive field concept to neural networks is done by the
introduction of limited connectivity. This means that nodes from one layer are
only connected to neighboring nodes of the previous layer. This neighborhood is
then the receptive field of the node in analogy to the biological cell and acts as
a signal-processing filter. Additionally, it is enforced that the weights that are
connecting a node to its receptive field are the same for all nodes in a layer. This
scheme is called weight-sharing and ensures that the learned filters are spatially

invariant (see Figure 2.5).

Convolutional layer Mathematically this concept is modeled by convolutions,
where the receptive field is equivalent to the kernel size. Typical kernel sizes are
in the range [0;11]. The hierarchical structure then exploits the spatially local
correlation of pixels in the lower layers, while still allowing the aggregation of the
extracted information at the higher levels. The output of the convolution of a
preceding layer with a learned kernel produces a feature-map in the current layer. To
allow a rich representation of the data, there can be multiple feature-maps per layer
which in turn means that multiple kernels are learned. This allows a layer to spatially

vary the used filter by sourcing a different feature-map, based on the node location.

Pooling layer Another concept that is frequently used with CNNs is pooling,
which is employed for non-linear down-sampling of the data. Pooling layers partition
the image into a set of non-overlapping regions and for each sub-region apply a
pooling operator. Typically, pooling is implemented as the maximum over a 2 x 2
region. Pooling is not just useful to reduce the dimensionality of the data and thus
make processing more efficient, it also provides some translation invariance. This
is achieved as the pooling operator effectively discards the exact source location

within the pooling region.
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These two layer types together with the fully connected MLP form the LENET
[55] family of models (c.f. Figure 2.6). They are characterized by an alternation of
convolutional and pooling layers at the bottom which are used for feature extraction

and fully connected upper layers that are responsible for classification.

2.4.6 Backpropagation

The backpropagation algorithm allows computing the weight updates required in
one gradient descent step as in eq. (2.11) efficiently. To this end it takes advantage
of the hierarchical structure of the flow-graph (section 2.4.4) and the chain-rule
to obtain a recursive formulation.

The algorithm proceeds as follows?. First, forward propagation is performed
to evaluate the network of depth d and compute its outputs y. Then, the error
signal 6 at the output layer d is computed, which is the gradient of the loss
function L with respect to the outputs

5t = Ok
" by
Next, we can descend one layer and compute the error signal for node 7 at layer

d — 1 using the error signal at the output layer as
ot = (Suktt)

d . is the weight connecting node i to output m and s/ is the derivative

mi

of the scalar activation function.

where w

More generally, using matrix notation, one can obtain the error signal §'~! at

layer [ — 1 from its parent layer [ and the weight matrix W connecting them as
- l
St =W,

Finally, we can compute the partial derivatives of the loss function L at layer [

by multiplying the error signal by its inputs. E.g. for the input layer we have

oL
W,

This allows us updating the weights at the respective layer.

= %',

Here, the backpropagation algorithm actively re-uses the partial derivatives
computed at the higher network layers to compute the partial derivative of lower
layers. Furthermore, all required computations can be expressed as matrix x vector

operations which allow for an efficient implementation.

2Based on https://medium.com/@erikhallstrm/backpropagation-from-the-beginning-77356edf427d
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2.5 Training deep networks

The amount of nodes in a neural network can be related to its modeling capacity.
The major problem during training a neural network is to avoid over-fitting to the
training dataset, which is more likely to happen with a high modeling capacity.
Over-fitting results in bad generalization and therefore bad performance on unseen
data. As usual in machine-learning the complete dataset is divided into a training
and testing set. The separate testing set allows drawing conclusions on how the
model will perform on unseen data, as it is not used during training.

However, for training a neural-network an additional validation set becomes
necessary. This set is neither part of the training nor of the testing set. Instead the
validation samples are used to predict the performance of the model on a future
testing set. This allows to monitor convergence and optimizing hyper-parameters
of the model. These are the parameters one has to choose a priori and which
are not optimized during training.

The simplest of those and one that always exists when training a neural network
is the number of training epochs, i.e. the number of times we feed the whole
dataset to the network. As with the parameters optimized during training, we
want to avoid over-fitting to the training set — but we are also not allowed to
set the optimal value for our testing set, so we still make valid conclusion on
the generalization performance.

Therefore, during training we evaluate our model with a fixed frequency (e.g.
after each epoch) on the validation set. If we see that the performance on the
validation set decreases we terminate the training process as the model is likely
over-fitting to the training data. This criterion is called early-stopping.

However, due to the statistic nature of stochastic gradient descent, the validation
error can slightly increase only to decrease again in the next epoch. Therefore, the
stopping criterion is only a heuristic. Here, we will use a patience value that increases

geometrically with the iteration count when a new best validation error is found.

2.5.1 Dataset bias

Large, labeled datasets are the integral part of the performance achieved by
contemporary CNN architectures as the deep models require massive amounts
of labeled data. At the same time, datasets are means of measuring and comparing
performance of different algorithms. Therefore, modern datasets [22, 25, 58] try
to be a representation of the real world — both, to provide a representative

measure of algorithm performance and a source for general algorithm models.
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However, it was shown [95] that despite the best efforts, the datasets exhibit a
strong built-in bias. Consequently, todays state-of-the art algorithms have poor
cross-dataset generalization properties, e.g. training on IMAGENET [22], but testing
on PASCAL VOC [25] results in a considerably degraded performance compared
to testing on IMAGENET itself. The dataset bias can be attributed to different
goals of the datasets: some capture more urban scenes, while others focus on
rural landscapes; some use professional photographs, while others use amateur
photos from the Internet; some focus on single objects, while others focus on
entire scenes. Even though all modern datasets are Internet-mined, this is not a
sufficient condition to remove the bias, e.g. IMAGENET contains a high amount of
racing-cars from canonical views. More generally, the dataset bias was attributed

by [95] to the following main factors.

Selection bias If a dataset defines a "car" by the rear-view of a racing-car, no
algorithm will generalize to a side-view of a sedan. In correspondence, keyword-
based image search on the internet only returns particular types of images —
especially if user specific search customization is enabled. Ideally data should be
obtained from multiple search engines to alleviate the selection bias. On the other
hand, the selection might be biased on purpose, e.g. when tackling the problem

of detecting texture-less industrial objects.

Capture bias Professionally captured photographs typically have well tuned
contrast and illumination. However, they almost always show the object of interest
in the center — similarly to the results of keyword-based image search on the
internet. Furthermore, searching for "mug"' on Google Image Search shows a
more subtle capture bias; most of the retrieved image will show the mug with

a right-facing handle.

Negative set bias A dataset does not only define an object by what it is (positive
samples) but also by what it is not (negative samples). For instance, a classifier
supposed to find "boats" might not focus on the boat itself, but rather on the water
below or a distant shore if the dataset exhibits this correlation. Therefore, it is
important that there is a sufficient negative set including rivers, seas etc. without

boats.

Additionally, the bias might be intrinsic due to the construction of the dataset. A

notable example is when the dataset consists of synthetic images only and one wants
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to apply the results to real images. Exhibiting such an intrinsic difference, the dataset
is considered to come from a specific domain while the real images come from another.

The systematic difference between datasets is therefore called the domain gap.

2.5.2 Bridging the reality gap

It is desirable to adapt the training procedure to learn features, that not only are
discriminative in the target domain, but also invariant to the change of domains
[27]. At this, training should still result in a high amount of precision as required
by the regression problem of 6D pose estimation.

Nowadays there are two main directions to achieve this goal, namely

Domain randomization Here, the parts of the domain are randomized to which
the algorithm should not be sensitive to. For example [96] vary rendering parameters,
like lights, object pose and object texture. This way the neural network is forced
to learn the essential features — that is, the features that are not affected by
randomization. More generally, the goal is to increase the domain space such
that real images merely become only one of many domain instances. The core
advantage of domain randomization approaches is that they do not require any data
from the target domain. However, the drawback is that the amount of data grows
exponentially with each parameter that is randomized and therefore extends the
amount of training time. Furthermore, one has to pay attention not to randomize
core cues for the task at hand to achieve the best performance possible. For
instance, the camera pose should be restricted to the upper hemisphere for a

tabletop detection setting instead of being fully randomized.

Domain adaptation When some data from the target domain is available,
adaptation is possible. Here, fine-tuning is the most prominent and simple approach
where a network trained on one domain is adapted to a new one by feeding according
samples at a low learning rate [70]. However, this requires labeled data from the
target domain (supervised adaptation) and can lead to severe overfitting if the
target domain dataset is small. Conversely, the approach of [39] is to pre-train a
network on real data and then to "fine-tune" on synthetic data. To avoid overfitting
of the network to synthetic data they freeze the feature extraction layers.

Ganin et al. [27] use a more integrated method by extending the task network
by a domain classifier that shares the deep feature extractor with the task network.

During training, an additional step is introduced where the error of the classifier is
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Figure 2.7: A standard data augmentation pipeline: given (a) an image with
segmentation mask and (b) a random background, (¢) a new training sample is generated
by composition while also varying hue and scaling

maximized to eliminate any domain information from the feature extractor.

Recent work [111] also shows promising results in combining both approaches as
guided domain randomization. Here, the augmentations are not chosen randomly
but rather by an adversarial guide network that explicitly applies a family of

pixel-level perturbations to ensure domain invariance.

2.5.3 Data augmentation

A simple domain randomization method to avoid overfitting is data augmenta-
tion. Here, no new data is generated, but instead the original training data
is randomly perturbed to better model the expected data variation. Typical
steps [50, 76, 59, 75, 93] are:

o If segmentation masks are available, replace the background with random
images from the PASCAL VOC [25] dataset to avoid overfitting to the
background.

o Randomly adjust the exposure and saturation in the HSV color space by a
factor of 1.5 and add random Gaussian noise to generalize to different lighting

conditions.
o Randomly scale and translate the image by up to a factor of 20%.

See Figure 2.7 for an example of data augmentation applied by [93].
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Figure 2.8: Conditional generative adversarial network architecture for image coloriza-
tion. The discriminator (right) acts as an error function to guide the generator (bottom).

2.6 Generative adversarial networks

Think of the image colorization task, where a colored image has to be generated
based on a gray-scale input®. One can easily formulate an according supervised
regression problem by creating pairs of colored and gray-scale images and using
the squared error loss. However, the ambiguity of the task poses a problem here;
when given a gray-scale image of e.g. a red shirt, reconstructing a green shirt will
produce a large loss according to the squared error. Assuming all shirt colors
are equally likely, the network will then rather keep the image gray-scaled as it
results on the minimal loss on average.

This means that rather than predicting the original image, we want the network
to predict a plausible image i.e. one that "looks good". Therefore, we have to
select a different loss function that takes human perception into account while still
being differentiable. While there are loss functions that are constructed to take
perception into account, we can also use an additional neural network to act as
an error function. The task of this discriminative network is to classify whether a
given image is the original or a prediction from gray-scale. By back-propagating
the error signal of a predicted image, given the "original" class, it then allows us
to obtain a pixel-level error that can be further back-propagated to the generative
colorization network (see Figure 2.8).

This two-model architecture was introduced by [34] and is generally referred
to as the generative adversarial network (GAN) as the generative model G and

the discrimative model D have adversarial goals. The architecture corresponds

3Based on https://pjreddie.com/courses/computer-vision/
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to a two-player minimax game and extends the machine-learning framework by
making the loss function learnable as well.
More formally, we define the GAN loss as

LGAN(G, D, }/, Z) :Ey [log D(y)] +
E. [log (1 - D(G(2)))], (2.13)

where G : 2z — y maps a random noise vector z to an output image domain Y,
while D : y — R models the probability that y comes from data, instead of being
generated by G. The training objective is then

arg min max L .
g jnma GAN

Note that this formulation does not yet consider the input image, but rather
generates arbitrary output based on noise z.

The joint training of the two-model architecture becomes more challenging as
one must avoid over-fitting of either of the models as it would stop the learning
of the other. Early in learning, G is poor and can easily be rejected by D [34].
Conversely, as learning progresses, G must not win the game either so D still can
provide useful gradient information [13]. Failure to stabilize the process can lead to
mode collapse in GG, that is all input is mapped to only one output that is accepted
by D. In the colorization example above this would correspond to assigning the
same shirt color to all input images. There is a plethora of training heuristics to
ensure stability of GAN training like balancing learning rates or to only progressively

grow the image size [48] such that the problem is more tractable at the start.

2.6.1 Image-conditional GANs

Depending on the networking architecture G is not only able to modify the pixel
values, but can also change the image structure — e.g. with an encoder-decoder
architecture as shown in Figure 2.8. However, in many cases like colorization
it is desirable to enforce the generated image to structurally resemble the input
image. A straightforward solution is to extend the loss (2.13) by the L2 distance
to the ground truth as

Lia =By [y = G(2) 2]

This leads to a more average grayish color as motivated above. Alternatively,
one can feed the input image directly to the generator and the discriminator,

leading to the extended loss function
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Figure 2.9: R-CNN based object detection pipeline: each hypothesized bounding box is
resized and fed into a classification network. (Figure from [33])

Legan(G, D, XY, 7Z) =R, , [log D(z,y)] +
E,.[log(1 — D (z,G(z,2)))]. (2.14)

This variant is called conditional GAN as both D and G are given the input
image x. Here, the discriminator D can easily avoid structural deviations of samples
from G by comparing with z. Note, that the random noise vector z still must be
passed to G as it would otherwise produce deterministic outputs and therefore

fail to generalize from the actual training data.

2.7 Deep learning based object detection

For object detection in images, there are two established classes of methods; one
sliding-window based and the other based on region proposal classification. While
sliding-window based methods exhaustively search over the whole image at a fixed
step size, region proposal methods first generate potential bounding boxes in the
image and then run a classifier on the proposals. There are various methods to
generate potential bounding boxes — e.g. a simple approach based on the color
consistency heuristic would use color-based clustering. As the number of potential
locations is much lower than in the sliding window approach, the cost of evaluation
at each location may be higher. Before the advent of deep CNN architectures, the
state of the art of both approaches had comparable performance [59].

The breakthrough of deep CNN architectures was initially achieved in the classifi-
cation setting [53]. Furthermore, the deep architectures incur a high evaluation cost
which makes sliding-window approaches intractable. Therefore, the first CNN-based
detection architecture built upon region proposal methods and re-purposed the
classifier of [53] for object detection by R-CNN [33] (see Figure 2.9).

However, the resulting pipeline is still slow, taking about 40 seconds per image,

and hard to optimize as each part has to be trained separately. The original
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Figure 2.10: The YOLO output space discretization; each cell predicts B bounding
boxes with a confidence value and C' conditional class probabilities, resulting in a .S x
S x (B x 5+ C) tensor. (Figure from [76])

pipeline has been improved for both faster execution and better detection quality by
replacing the region proposal step by a trained CNN that shares the feature-maps
with the classifier network [78]. This results in both better region proposals and a
reduced number of total computations required which could increase performance
to about 142 milliseconds per image.

An alternative approach to object detection is to train a single network to
directly output a set of bounding boxes and their respective class labels. With
this approach one must reformulate the training objective as neural networks are
only able to map a fixed size input to a fixed sized output. In the R-CNN pipeline
the network operates in the classification setting; mapping fixed size image crops
to a fixed number of class labels. However, to handle detection in only one step,
the output must vary with the number of visible objects.

The solution introduced in YOLO [76] is to reverse the scene sampling strategy.
In the R-CNN pipeline the input image is discretized by region proposals, where
each proposal is associated with a continuous bounding box. Instead, YOLO
discretizes the output space into a fixed number of overlapping bounding boxes,
while operating densely on the whole input image. Here, the image is divided into
a grid of 7 x 7 cells (see Figure 2.10), where each cell predicts C' conditional class
probabilities, and 2 bounding boxes. Each bounding box consists of 5 predictions;

x, y, w, h and the probability of containing an object (confidence). For PASCAL
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VOC, which contains C' = 20 classes, the output of the network is consequently
a 7 x 7 x 30 tensor of predictions, corresponding to 98 bounding boxes. This
formulation combines the classification and regression settings as it regresses the
bounding box corners and simultaneously classifies the bounding box content. The
per-box confidence is then used to discard predictions with low probability during
inference as well as to steer training.

The single stage architecture results in a much higher performance, only
requiring 22 milliseconds per image or processing a real-time video stream at
45 fps. Furthermore, the network sees the whole image during training and test
time which allows it to implicitly encode context information. For instance, it can
reason about spatial co-occurrence of objects instead of only using their appearance.
However, the output discretization imposes spatial constraints on object proximity
as each cell only predicts 2 bounding boxes and can only have one class. Therefore,
the model fails for small objects that appear in groups, like a flock of birds. YOLO
uses a fully-convolutional CNN architecture that is inspired by GOOGLENET, that
itself is inspired by the original LENET architecture (see Figure 2.6).

The conceptually similar SSD [59] single stage detector uses an implicit dis-
cretization of the output space. Instead of using one fully-connected layer at the
end like YOLO, the network explicitly models object scale by using multiple output
layers at different feature-map scales that are placed after the feature extractor. As
the feature-maps differ in resolution, the bounding boxes are predicted by different
3 X 3 x ¢ kernels, where c is the depth of the respective feature-map and kernels
at different scales differ in number of predicted bounding boxes. SSD uses the
last 6 convolutional layers (up to 1 x 1) to produce predictions, which results

in a total of 8732 generated boxes.

2.8 6D object pose estimation

For many real-world applications like augmented-reality and robot manipulation
the 2D bounding box as estimated by an object detector is not enough and the
estimation of the 6D pose [R t] is needed. Therefore, the problem of 6D object pose
estimation extends the object detection problem outlined above, to simultaneously
estimate the object pose as described in section 2.3. Current 6D pose estimation

methods can be separated into three classes, as follows:
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(a) Viewpoints on the icosphere (b) The LINEMOD template

Figure 2.11: (a) LINEMOD computes a set of templates from different viewpoints. (b)
Each template contains a fixed number of discretized contour orientations (red) and
normal orientations (green) (Figure from [38])

2.8.1 Sparse feature-based methods

Classic object pose estimation is based on sparse keypoint detection and feature
matching. The keypoints are computed from a local pixel neighborhood, typically
at multiple levels of the image pyramid. Appropriately, the feature descriptors
are chosen to be scale invariant as well as robust to rotation, affine transform
and illumination [60, 67]. After matching the detected keypoints to a canonical
template-view of the object, the pose can be recovered with a PnP algorithm. These
methods are robust to occlusion and scale to many objects that need to be separated
[18]. However, the objects must be exhibiting a sufficient surface texturing for the
methods to work reliably. In many practical — especially industrial — applications,
texture-less objects are quite common. Therefore, research has shifted towards

more general methods in recent years.

2.8.2 Contour orientation templates

With texture-less objects the whole object is used as a reference template. The
simplest approach here is using a histogram of oriented gradients [21]. A more
efficient and real-time capable approach are the dominant orientation templates
(DOT) [38]. These store the discretized orientation of the image gradient along
the object contour as the template.

By employing a very efficient matching scheme, a high number of templates can
be used to encode individual views of the object. These are then associated with
6D poses and thus provide the object identity as well as a rough (quantized) pose
estimate. DOT templates were later extended by a depth modality (LINEMOD) that
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(9x2+1+C)

Figure 2.12: The YOLOG6D tensor; each cell predicts B 3D bounding boxes corners,
the center, one confidence value and C' conditional class probabilities, resulting in a
SxSx(Bx(9x2+4+1+C)) tensor. (Figure from [93])

allows incorporating RGBD data as provided by depth cameras. This significantly
boosts the performance of the algorithm as surface-normals on the inside of the
objects provide a complementary cue to the object contour as captured in RGB
images. However, active depth cameras demand a higher power budget and therefore
are less suitable for mobile devices. Furthermore, depth sensors typically operate

in the infra-red spectrum and therefore do not work in sunlight.

2.8.3 CNN-based methods

Initial attempts to solve the 6D object pose estimation problem using a CNN
architecture directly regressed the pose [51]. However, pose-estimation has inherent
non-linearities and degenerate configurations (as discussed in section 2.3) which
requires a higher network capacity and thus complicates training. Later work [9] has
shown that predicting intermediate results in the 2D image and then recovering the
pose using a PnP algorithm allows improving precision by an order of magnitude.

This idea was first transferred to the single stage detectors by SSD-6D [50]
which extend the SSD architecture to also predict a rough estimate of the objects’
orientation. Here, a classification setting similar to LINEMOD [38] was used, where
the pose-space is discretized into individual viewpoints and the networks predict
the most likely viewpoint and in-plane rotation. The translation is then estimated
from the size of the measured 2D-bounding box. This only allows for a very rough
pose estimate and requires an involved local refinement step to be useful, which
reduces the runtime of the pipeline to 10fps.

In contrast, the YOLOGD [93] architecture (see Figure 2.12) regresses the 2D
projections of the corners of the objects’ 3D bounding box. From these projections
the pose can be recovered using a standard PnP algorithm instead of the rather
ad-hoc solution in SSD-6D. Here, the YOLO network was extended to predict the
projections of the 8 bounding box corners instead of simply the 2D width and
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height. Furthermore, using the YOLOv2 architecture each of the class conditional
probabilities are predicted per box instead of per cell which allows detecting multiple
objects occluding each other. The regression setting results in a high precision of the
predicted pose without the need of an additional local refinement step. Therefore,

the YOLOG6D pipeline is capable of running at 50fps.
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Camera calibration

In this chapter we present an algorithm for efficiently selecting camera calibration
poses, based on already captured calibration frames. We use this property to
interactively guide a user through the calibration process and aggregate the resulting

calibration data by deploying the whole system on the web.

3.1 Introduction

Camera calibration in the context of 3D computer vision is the process of determining
the internal camera geometric and optical characteristics (intrinsic parameters) and
optionally the position and orientation of the camera frame in the world coordinate
system (extrinsic parameters) [99]. The performance of many 3D computer vision
and image processing algorithms directly depends on the quality of this calibration.
For instance, camera localization as provided by AR systems requires the intrinsic
parameters to be known for determining the extrinsic parameters from a single
image. Similarly, the intrinsic parameters are required for panoramic stitching to
remove any optical distortions present in the input.

Furthermore, calibration is a recurring task that has to be performed each time
the setup is changed. Even if a camera is replaced by an equivalent from the same
series, the intrinsic parameters may vary due to build inaccuracies. The prevalent
approach to camera calibration [112] is based on acquiring multiple images of a
planar pattern of known size. It is implemented in many popular computer vision
toolboxes like Matlab [7] and OpenCV [11].

However, there are degenerate pose configurations [90] that lead to unreliable

solutions. Therefore, the task of calibration cannot be performed by inexperienced
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users — even researchers working in the field often struggle to quantify what
constitutes good calibration images.

In this chapter we use the pinhole camera model with radial and tangential optical
distortions as described in section 2.1 and determine the according parameters
using the ChArUco calibration pattern presented in section 2.2. The chapter is
structured as follows: in Section 3.2 existing methods related to pose selection for
camera calibration and their shortcomings are presented.

Section 3.3 introduces a pose selection method that finds a compact and robust
set of calibration poses and is suitable for interactive calibration. Consequently,
singular poses that would lead to an unreliable solution are avoided explicitly,
while poses reducing the uncertainty of the calibration are favoured. For this, we
use uncertainty propagation. Our method takes advantage of a self-identifying
calibration pattern to track the camera pose in real-time. This allows to iteratively
guide the user to target poses, until the desired quality level is reached. Therefore,
only a sparse set of key-frames is needed for calibration.

In Section 3.4, we then discuss different visualization methods for user guidance
and evaluate them by performing a user survey. By combining our pose selection
method with a suitable visualization, we enable even novel users to perform a
precise camera calibration in about 2 minutes.

Next, we propose a web-based calibration service in Section 3.5, that not only
aggregates calibration data, but also allows calibrating new cameras on-the-fly. This
allows general deployment of computer vision algorithms on the web, which was
previously not possible due to lack of calibration data.

We conclude with Section 3.6 by giving a summary of our results and discussing

the limitations.

3.2 Related Work

Camera calibration is influenced most by the choice of camera-to-pattern poses. Here,
most existing works only consider individual pinhole camera parameters and do not
address the optical distortion parameters. Specifically, there exists research adressing

the effect of the angle between image plane and pattern on the estimation error.

o Triggs [98] related the angular spread to the error in focal length. He found a

spread of more than 5° necessary.
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o Sturm and Maybank [90] further investiagated this effect, while evaluating the
principal point and focal length indifidually. More importantly, they discussed
possible singularities when using one and two planes for calibration and related
them to the individual pinhole parameters; e.g. if the pattern is parallel to

the image plane in every frame, the focal length cannot be determined.

The results of both were later replicated by [112]. However, the effect of poses
on the estimation of the distortion parameters or general camera-to-board poses
have not been considered so far.

Another aspect is the quality and quantity of calibration data. Sun and
Cooperstock [91] evaluated the sensitivity of camera models to noise, training data
quantity and the calibration accuracy in respect to model complexity. However, they
only measured the reprojection error on the respective training set, which is subject
to over-fitting as was discussed in section 2.1. To overcome this, Richardson et al.
[79] introduce the Max Expected Reprojection Error (Max ERE) metric that instead
correlates with the testing error and thus allows a meaningful test for convergence.

Furthermore, they automatically compute a "best next pose' and use it for
user guidance as an overlaid projection of the pattern. The poses are selected
by performing an exhaustive search in a fixed set of about 60 candidate poses.
For each pose a hypothetical calibration including this pose is performed and the
pose that minimizes the Max ERE is selected. Therefore, searching for the next
candidate pose becomes increasingly involved as the size of the calibration set grows,
significantly slowing down the calibration process. Additionally, the candidate
poses are uniformly distributed in the field of view and do not explicitly consider
the angular spread and degenerate cases [90].

In the broader context of user assistance for AR calibration tasks, intrinsic
camera calibration was not specifically considered yet. Most closely related is
the work of [71], which only describes a guidance system for camera-extrinsic

and hand-eye calibration.
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3.3 Efficient pose selection

Our key idea is to analytically generate optimal pattern poses while explicitly
avoiding the degenerate pose configurations. For this, we relate constraints on
individual parameters to specific camera to board poses while considering the data
captured so far. This allows us to generate an dynamically adapting sequence of
poses, that constrains all intrinsic parameters and ensures an accurate calibration.
The analytic approach reduces the computation time from seconds to milliseconds
compared to the exhaustive search of [79].

On a high level, our approach works as follows. We assess the uncertainty of
the calibration parameters using the covariance of the current solution. Here, we
establish key pose configurations that reduce variance of parameters groups. For
selecting the next pose, we determine the group which the most uncertain parameter
belongs to and generate a pose that adds constraints specific to this group. This
successively constrains all parameters, resulting in a reliable calibration. Here,
we show that the parameter covariance can be used as a convergence criterion,
as it correlates with the testing error. Our method explicitly specifies individual
key-frames which are used with the calibration method of Zhang [112]. This is
opposed to using consecutive frames of a video sequence which leads to many
similar poses and thus can bias the calibration.

Based on the above, our key contributions are;
1. Empirical evidence for the need of two distinct pose selection strategies and
2. an efficient pose selection scheme for implementing both of them.

In the following, first the relation of intrinsic parameters and board poses is
discussed to motivate our split of the parameter vector into two groups of pinhole
and distortion parameters. For each parameter group we then establish a set of rules
to generate an optimal pose while explicitly avoiding degenerate configurations.

Subsections 3.3.1 - 3.3.3 motivate and describe our novel pose selection method,
while Subsection 3.3.5 describes the full calibration pipeline. In Subsections 3.3.6
and 3.3.7 the method is evaluated on real and synthetic data and compared with
OpenCV [11] and AprilCal [79] calibration methods. Furthermore, the compactness

of the resulting calibration is analyzed.
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Figure 3.1: Distortion map showing the magnitude of A(p) for each pixel. To find the
target pose we apply thresholding and fit an axis aligned bounding box. (see supplemental
material at https://youtu.be/aDzUNgVihdQ)

3.3.1 Splitting pinhole and distortion parameters

Looking at eq. (2.1), which we repeat here for clarity, we see that both K and A(-)
are applied at post-projection and thus merely represent 2D-to-2D mappings;

1
Z.

Therefore, one might consider estimating C just from one board pose that

p=KA(= [Rt]P).

uniformly samples the image. However, both intrinsic and extrinsic parameters are
estimated simultaneously by [112], which results in ambiguities.
For instance, assume R = I and the distortion parameters to be zero. By

multiplying out (2.1) we get

fo(X + )

p=| 2+t
LY +t)

Z+t,

+ ¢,
(3.1)
+ ¢y

for all pattern points P. In this case there are two ambiguities between
1. the focal length f and the distance to camera ¢, and
2. the in-plane translation [t,,?,] and principal point [c,, ¢;].

These ambiguities can be resolved by requiring the pattern to be tilted towards the
image plane such that there is only one t that satisfies eq. (2.1) for all pattern points.

Considering the distortion parameters of A(-) on the other hand, there are no
similar ambiguities due to the non-linearity of the mapping. The parameters are
rather determined by the maximal distortion strength evident in the image. Here, it

is more important to accurately measure the distortion in the corresponding image
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regions (see Figure 3.1a). Note that when only considering radial distortion, one
could take advantage of the radial symmetry around the principal point. However,
in our case this is not applicable as we are estimating both radial and tangential
distortion simultaneously.

To account for the different pose requirements, we split the parameter vec-
tor C into Cx = [fs, fy,Cay ¢y and Ca = [ky, ko, k3, p1,p2] and consider each

group separately.

3.3.2 Avoiding pinhole singularities

While optimizing parameters in Cg, singular poses must be avoided. In addition
to the case discussed above, we incorporate the cases identified in [90]. Particularly,

we restrict the 3D configuration of the calibration pattern as follows:
o The pattern must not be parallel to the image plane.
o The pattern must not be parallel to one of the image axes.

« Given two patterns, the "reflection constraint” must be fulfilled. This means
that the vanishing lines of the two planes are not reflections of each other

along both a horizontal and a vertical line in the image.

These restrictions ensure that each pose adds information that further constrains

the pinhole parameters.

3.3.3 Pose generation

As described in Section 3.3.1, each parameter group requires a different strategy
to generate an optimal calibration pose.

For the intrinsic parameters Cx we follow [98, 112] and aim at maximizing
the angular spread between image plane and calibration pattern. Accordingly,

poses are generated as follows:

1. We choose a distance such that the whole pattern is visible, maximizing the

amount of observed 2D points.

2. Depending on the principal axis (e.g. « for f,) the pattern is tilted in the
range of (—70°;70°) around that axis. The actual angle is interpolated using
the sequence [0.25,0.75,0.125,0.375,...] which corresponds to the binary
subdivision of the (0;1) range (see Figure 3.2). This strategy, as desired,

maximizes the angular spread.
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Figure 3.2: Exemplary pose selection state. Top: Index of dispersion. Left: Intrinsic
calibration position candidates after one (magenta) and two ( ) subdivision steps .
Right: Distortion map with already visited regions masked out.

3. The resulting pose would still be parallel to one of the image axes which
prevents the estimation of the principal point along that axis [90]. Therefore,
the resulting view is rotated by 22.5° which implements this requirement while

keeping the principal orientation.

4. When determining [c,, ¢,| the view is further shifted along the respective
image axis by 5% of the image size. This increases the spread along that axis

and reduced the number of frames needed for convergence in our experiments.

For the distortion parameters Cx the goal is to increase sampling accuracy in
image regions exhibiting strong distortions. For this, we generate a distortion map
based on the current calibration estimate that encodes the displacement for each

pixel. Using this map, we search for the distorted regions as follows:

1. Threshold the distortion map (Figure 3.1a) to find the region with the strongest

distortion.

2. Given the threshold image, an axis aligned bounding box (AABB) is fitted to
the region, corresponding to a parallel view on the pattern. Note that the

constraints for Cx do not apply here.

3. The area covered by the AABB is excluded from subsequent searches (see
Figure 3.2). Effectively, the distorted regions are thereby visited in order of

distortion strength.
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4. The pattern is aligned with the top-left corner of the AABB and positioned
at a depth s.t. its projection covers 33% of the image width.

The angular range and width limits mentioned above were set such that the

calibration pattern could be reliably detected using the Logitech C525 camera.

3.3.4 Initialization

The underlying calibration method [112] requires at least two views of the pattern

for an initial solution which we select as follows:

 For the parameters Cg a pose tilted by 45° around x is selected (see Section
3.3.3). This particular angle was suggested by [112] and lies in between the
extrema of 0° where the focal length cannot be determined and 90° where the

aspect ratio and principal point cannot be determined.

o Without any prior knowledge we aim at an uniform sampling for estimating
Ca. To this end we compute a pose such that the pattern is parallel to the
image plane and covers the whole view. While this violates the axis alignment
requirements for Cg poses, it still provides extra information as it is not

co-planar to the first pose [112]. Furthermore, the reflection constraint is
fulfilled.

To render an accurate overlay for the first pose without prior knowledge of the
used camera, we employ a bootstrapping strategy similar to [79]; if the pattern can
be detected, we perform a single frame calibration estimating the focal length only

— the principal point is fixed at the center and Cp, is set to zero.

3.3.5 Calibration process

In the following we present the parameter refinement and user guidance parts
as well as any employed heuristics. This completes the calibration pipeline as

used for the real data experiments.

Parameter refinement After obtaining an initial solution using two key-frames,
the goal is to minimize the cumulated variance Y°; 6?7 | 67 € o2 of the estimated
parameters C. We approach this problem by targeting the variance of a single
parameter C; € C at a time. Here we pick the parameter with the highest index of
dispersion (MaxIOD) ¢?/C; (o

a pose is then generated as described in Section 3.3.3.

2 iff C; = 0). Depending on the parameter group,

)
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Convergence For determining convergence, we use a ratio test of the parameter
variance r = o;,,,/07,. If the reduction 1 — r is below a given threshold, we
assume the parameter to be converged and exclude it from further refinement.
Here, we only consider parameters from the same group as there is typically only
little reduction in the complementary group. The calibration terminates once

all parameters C have converged.

Heuristics Throughout the process, we enforce the common heuristic [35, §7.2]
that the number of constraints should exceed the number of unknowns by a factor of
five. The used calibration method [112] not only estimates the intrinsic parameters
C, but also the relative pose of model plane and image plane i.e. the parameters
R, a 3D rotation, and t, a 3D translation. When using M calibration images
we thus have d = 9 4+ 6 M unknowns and each point correspondence provides two
constraints. For initialization (M = 2) we thus have 21 unknowns, meaning 52.5
point correspondences are needed in total or 27 correspondences per frame. For
any subsequent frame only 15 points are required.

To prevent inaccurate measurements due to motion blur and rolling shutter
artifacts the pattern should be still. To ensure this we require all points to be
re-detected in the consecutive frame and the mean motion of the points to be

smaller than 1.5px (determined empirically).

3.3.6 Evaluation

The presented method was evaluated on both synthetic and real data. The synthetic
experiments aimed at validating the parameter splitting and pose generation rules
presented in Section 3.3, while the real data was used for comparison with other
methods. Furthermore, the compactness of the results with real data was estimated.
For this, we compared the number of frames selected by our algorithm to an offline

method that tried to find a subset with an equivalent testing error.

Synthetic data We performed multiple calibrations, each using 20 synthetic
images. The first two camera poses were chosen as described in section 3.3.4 to
allow a rough initial solution. The next 8 poses were chosen to optimize Ca while
the last 10 poses were optimizing Cx (and vice versa).

The camera parameters were based on the calibration parameters of a Logitech

C525 camera C,.,. However, the actual parameters were sampled around C,..4
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Figure 3.3: Correlation of pose selection strategies and calibration parameter uncertainty
expressed using the standard deviation o (thus the error bars mean "variance of o").
The first two poses are selected according to the initialization method. Poses 2-10 and
11-20 are selected by complementary strategies. Evaluated with synthetic images on 20
camera models sampled around the estimate of the Logitech C525 camera.

using a covariance matrix that allowed 10% deviation for each of the parameters
¥ = diag(0.1 - C,eqr) as

C ~N(Cea, X). (3.2)

Therefore, each synthetic calibration corresponds to using a different camera C with
known ground truth parameters. To allow generalization to different camera models,
we kept the above pose generation sequence, but used 20 different cameras C.
Figure 3.3 shows the mean standard deviation o¢ of the parameters. Notably,
there is a significant drop in o iff a pose matching the parameter group is used.
We also evaluated the usage of MaxIOD as an error metric by comparing it
to MaxERE [79] and a known estimation error €.y. Just as the MaxERE, the
MaxIOD correlates with €.s (see Figure 3.4a). Additionally, as Figure 3.4b indicates,
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Figure 3.4: (a) Comparing error metrics on synthetic data: both MaxERE and the
proposed Max IOD correlate with estimation error e.s. (standard deviation over 20
samples) (b) Required number of frames M and €.s in respect to the variance reduction
threshold

’ Method \ mean €qq \ frames used \ mean €. ‘
Pose selection 0.518 9.4 0.470
OpenCV [11] 1.465 10 0.345
AprilCal [79] 0.815 13.4 1.540

Compactness test 0.514 7 0.476

Table 3.1: Our method compared to AprilCal and OpenCV on real data. Showing the
average over five runs. Training on the testing set results in €.q = 0.479.

the IOD reduction is suitable for balancing calibration quality and the number

of required calibration frames.

Real data For evaluating our method with real images, we recorded a separate
testing set consisting of 50 images at various distances and angles covering the
whole field of view. All images were captured using a Logitech C525 webcam at a
resolution of 1280x720px. The autofocus was fixed throughout the whole evaluation,
while exposure was fixed per sequence. Our method was compared to AprilCal [79]
and calibrating without any pose restrictions using OpenCV.

We used the pattern described in section 2.2 that provides 40 measurements
per frame for OpenCV as well as for our method. With AprilCal, we used the 5x7
AprilTag target that generates approximately the same amount of measurements.

The convergence threshold was set to 10% for our method and the stopping
accuracy parameter of AprilCal was set to 2.0. As the OpenCV method does not

provide convergence monitoring, we stopped calibration after 10 frames here.
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Table 3.1 shows the mean results over 5 calibration runs for each method,
measuring the required number of frames, €. and €,.s. Here, our method requires
only 70% of the frames required by AprilCal while arriving at a 36% lower €.
(64% compared to OpenCV).

3.3.7 Analyzing the calibration compactness

The results in the previous section show that our method is able to provide the
lowest calibration error €. while using fewer calibration frames then comparable
approaches. However, it is not clear whether the solution is using the minimal
amount of frames or whether it is possible to use a subset of frames while arriving
at the same calibration error.

Therefore, we further tested the compactness of our calibration result. We
used a greedy algorithm that, given a set of frames captured by our method, tries
to find a smaller subset. It optimizes for the testing set, directly minimizing
the estimation error.

The algorithm is computed as follows; given a set of training images (the
calibration sequence)

1. the initialization frames as described in Section 3.3.4 are added uncondition-

ally;

2. each of the remaining frames is now individually added to the key-frame set

and a calibration is computed.

3. For each calibration the estimation error €. is computed using the testing

frames.

4. The frame that minimizes €. is incorporated into the key-frame set. Continue

at step 2.

5. Terminate if €.y cannot be further reduced or all frames have been used.

The greedy optimal solution requires 75% of the frames compared to the proposed
method while keeping the same estimation error (see Table 3.1). This indicates
that, while a significant improvement over [79], our method is not yet optimal
in the compactness sense. The greedy algorithm requires an a priori recorded
testing set and only finds a minimal subset of an existing calibration sequence,

but cannot generate any calibration poses.
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(a) The ROS toolbox showing the variance in(b) OpenCV showing the current screen coverage
position and size.

Figure 3.5: User interfaces of popular, non-interactive, systems.

(a) Target pose wireframe and real-board over- (b) Target pose projection as used by [83]
paint as used by [79]

Figure 3.6: User guidance overlays used by interactive calibration systems

3.4 User guidance

Popular calibration toolboxes like ROS! or OpenCV ? impose some heuristics on
pose variance or screen space coverage to alleviate the problem (see figure 3.5).
As these systems are not capable of generating pose suggestions, their user
interfaces only visualize statistics about the data captured so far. The user is
responsible to reason about an optimal next pose that would improve on the
imposed heuristics. Furthermore the unreliable pose configurations are not explicitly

addressed — therefore degraded performance is still possible.

http://wiki.ros.org/camera_calibration/Tutorials/MonocularCalibration
2https://docs.opencv.org/master/d7/d21/tutorial_interactive_calibration.html


http://wiki.ros.org/camera_calibration/Tutorials/MonocularCalibration
https://docs.opencv.org/master/d7/d21/tutorial_interactive_calibration.html
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In contrast, new calibration systems [79, 83] are capable to guide users to
specific target poses by displaying an overlay (see figure 3.6). This explicitly
avoids unreliable configurations and reduces intrinsic cognitive load [17]. While
both [79, 83| performed user surveys, they merely showed operability of their
methods by novice users.

To guide the user, the targeted camera pose is projected using the current
estimate of the intrinsic parameters. This projection is then displayed as an overlay
on top of the live video stream.

To verify whether the user is sufficiently close to the target pose we use the
Jaccard index (2.8) computed from the area covered by the projection of pattern
from the target pose T" and the area covered by the projection from the current pose
estimate E. We assume that the user has reached the desired pose if J(T, E) > 0.8.

Comparing the projection overlap instead of using the estimated pose di-
rectly is more robust since the pose estimate is often unreliable — especially
during initialization.

Yet the user interfaces implemented by each method are very different. [83]
only display highlighted projection of the real pattern to tag the target pose, while
[79] display an abstractly colored, wireframe of the board at the target pose and
additionally overpaint the real board with squares of matching color (see Figure 3.6).

Therefore, this work focuses on the question which user interface is best suited
to guide users to specific calibration poses. At this we take the specific geometric

properties of the calibration problem into account, namely:
e Only the relative pose between camera and pattern matters
o The pattern can be arbitrarily flipped horizontally and vertically.

Indeed, these properties make the calibration guidance significantly different

from typical AR guidance use-cases where a pose needs to be matched exactly.

3.4.1 Calibration poses

In general a rigid pose has six degrees of freedom (DOF); yaw, pitch, roll for the
orientation and the three-dimensional position. However, the underlying algorithm
[83] generates more restricted poses, based on the calibration objective. These

fall in the following two categories:
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(a) Intrinsic calibration pose (b) Distortion calibration pose

Figure 3.7: Exemplary view from the two pose categories

Intrinsic calibration pose To estimate the intrinsic camera parameters, the
goal is to maximize the angular spread of the measurement points. Here the pattern
is placed in the central image region and tilted along one primary axis. Additionally,
the board needs to be tilted and rotated along the remaining axes to avoid ambiguous

configurations (see Figure 3.7a). Therefore there are only three rotational DOF.

Distortion calibration pose To estimate the lens distortion parameters, the
pattern must be placed in regions with highest distortion which are typically the
corners. Here a parallel view is used and the distance and relative position changes
(see Figure 3.7b). Therefore, there are only three positional DOF.

Therefore, a user only ever has to change 3 DOF when starting from a central,

parallel view on the pattern.

3.4.2 Method

To evaluate different user guidance options, we performed two user surveys, measur-
ing the time the users required to match a series of target poses. The participants
were students and co-workers at our lab. Most of them had never performed a
camera calibration before and all users were using the tool for the first time. The
pose sequence was given by our system [83].

The only instruction given was that the calibration pattern should be matched
with the displayed overlay.

We triggered the time measurement only after the first target pose was reached.
This explicitly discards the time the users needed to accommodate to the calibration

scenario and the system setup.
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(a) The default "chessboard" pattern (b) The "quadrille paper" pattern

Figure 3.8: The two overlay patterns we evaluated in our second user survey. Note that
we now do overpaint the real board in the video stream.

For each question a separate survey was performed. The surveys were several
months apart time-wise. Hence, there is no overlap of participants and the pose

setup varies slightly.

3.4.3 Relative motion survey

The goal of the first survey was to determine whether moving the camera or moving
the calibration pattern is preferable. This takes advantage of the fact that only the
relative orientation and translation between camera and pattern matters. Therefore,

we evaluated the following two scenarios:

1. Fixing the camera position at the screen and let the user move the pattern

like in front of a virtual mirror.

2. Fixing the pattern position and let the user move the camera in a first-person-

view like fashion.

There were 5 participants in this survey which successively tried both options.
To exclude the effect of familiarization we randomized the order of the options.
The user guidance consisted only of the target pose overlay as shown in Figure
3.7. There were 9 target poses that had to be matched.
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| | t (first-person view) | t (virtual mirror) |

User 1 1:39 min 1:44 min
User 2 3:17 min 1:08 min
User 3 2:46 min 1:55 min
User 4 7:22 min 1:36 min
User 5 2:22 min 1:25 min
’ Mean ‘ 3:29 min 1:33 min

Table 3.2: time the users required to reach 9 given target poses.

3.4.4 Pattern appearance survey

Complementing the first survey, the second survey determined whether one can take
advantage of the geometric property that the pattern can be flipped horizontally
and vertically. To this end we chosen two different visualization of the calibration

pattern as follows:

1. The asymmetric chessboard as in used for the preceding survey.

2. A quadrille paper visualization, which is fully symmetric yet still contains the

necessary perspective cues.

To keep the connection between the target pose overlay and the physical
calibration board when using the new visualization, we overpaint the actual
calibration target in the video stream - similarly to [79]. We also apply the
over-painting to the first option (see figure 3.8) to exclude the effect of tracking
imprecision from the survey.

There were 7 Participants in this survey which had to reach 10 target poses. As
with the preceding survey the order of the options was randomized so 3 participants
started with option 1 and 3 participants started with option 2.

We only used the "virtual mirror" setup based on the results from the first survey.

3.4.5 Results

In the following the results of our user surveys are shown. First we discuss the
quantitative timings of each experiment. Then we also present some qualitative

observations made during the trials.
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| | t (chessboard) | t (quadrille paper) |

User 1 2:14 min 1:00 min
User 2 2:07 min 1:20 min
User 3 3:06 min 2:11 min
User 4 3:43 min 3:20 min
User 5 1:21 min 1:44 min
User 6 1:52 min 2:00 min
’ Mean ‘ 2:24 min 1:56 min

Table 3.3: time the users required to reach 10 given target poses with different
visualizations

Quantitative results Table 3.2 shows the quantitative results of the first survey,
giving the per-user times as well as the overall average.

The average calibration time of 1:33 min to complete the calibration show a
strong advantage of the virtual mirror scenario over the first-person view approach
with an average time of 3:29 min. Looking at the individual results we see that
only User 1 is slightly faster using the first-person view, while all other Users were
considerably faster using the virtual mirror approach. User 4 even struggles to
complete the calibration using in the first-person view. Therefore, we conclude
that the virtual mirror approach is preferable.

Table 3.3 shows the results of the second survey, again giving the average as
well as the per user times. There are only 6 results given as one participant failed
to match the first intrinsic pose within 3 min with any method. Therefore, we
aborted the trial and no results are given.

The average time of 1:56 min to complete the calibration using the quadrille
paper visualization shows a slight advantage over the chessboard visualization with
2:24 min. However, looking at the individual results there are 2 participants being
faster using the chessboard visualization. Furthermore, there is strong variation
between the individual users. Consequently, a larger number of participants will

be needed to draw a clear conclusion here.

Qualitative results Additionally, to the times presented above we made the

following qualitative observations:

o It took the participants much longer to match the intrinsic pose then the

distortion pose.

o With the "quadrille paper" pattern, some users did not rotate the pattern to

match the distortion calibration pose, but rather moved it out of view.
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o The users reached a target pose faster if it was from the same category as the
previous one; e.g. if a distortion pose followed a distortion pose. Conversely,

the needed to re-orient if e.g. a distortion pose followed a intrinsic pose.

o When asked about the experience users preferred the "quadrille paper" visual-

ization - even if their calibration time was higher in this mode.

Here, the time it took the participants to match the intrinsic pose was the

determining factor in overall calibration time.
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(a) Calibrated camera matrix only (b) Fully calibrated camera

Figure 3.9: Effect of camera calibration on an augmented reality scene: Although a
calibrated camera matrix is used in (a), the misalignment is clearly visible. Using a
complete distortion model allows rectifying the image. Together with an adapted camera
matrix, this results in a fully aligned augmentation (b).

3.5 Building a calibration database

In this section we describe our calibration service "calibDB" in detail. First we
discuss the high-level architecture and internal protocol of the service. Then we
describe the external API and data format used for calibration data retrieval and
acquisition. Finally, we discuss how the current WebXR, API should be extended to
seamlessly provide calibration data to computer vision applications. A live version
of the presented service is available at https://www.calibdb.net/.

Lens distortion is currently not handled by the WebXR API, which only exposes
the camera matrix. While the effect of lens distortion can be neglected on simple
webcams which resemble the pinhole optics, this does not hold generally.

Figure 3.9a shows an image captured with the Computar E3Z4518CS lens with
an AR-overlay rendered with a matching camera matrix. As can be seen the
AR-overlay diverges from the image towards the image edges. Rectifying the image
by inverting eq. (3.3) and adapting K accordingly, we can make the overlay fit

the image as can be seen in Figure 3.9b.

3.5.1 Common lens distortion models

The camera parameters recovered during calibration (see section 2.1) are typically
the camera matrix K € R3*3 and a set of lens distortion coefficients d = [k, . . . , ky).

The lens distortion function A(-) then typically models a radial distortion as
Ar(p)=p (1 + kar? + kor + kg?“ﬁ) - (3.3)

Web-based computer vision should not be restricted to webcam imagery, therefore

we have to expect all kinds of cameras. Eq. (3.3) is also specified in the DNG image


https://www.calibdb.net/
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format [1] as WarpRectilinear for processing images from interchangeable-lens cam-
eras.

Additionally, the DNG format includes a specialized distortion model for fisheye
lenses [47], WarpF'isheye:

1
Ap(p) = P (0+ ka6 + kot + k07 (3.4)

where 6 = atan(r). This model is required as fisheye lenses can expose a field of
view > 180° which cannot be represented using a rectilinear projection.

The OpenCV library supports both Ar and Ar as well as more sophisticated
models for e.g. spherical 360° cameras [32] as employed by the street-view cars
or spherical video.

To accommodate for the different calibration models our database therefore not
only stores the distortion coefficients d, but the full calibration data to be able
to fit a new camera model on demand — without requiring a user to capture

new calibration data.

3.5.2 Efficient client/server separation

To bring our existing OpenCV based implementation to the Web, we utilize
the OpenCV.js bindings, that wrap the C++ code with Emscripten [110] into
a WebAssembly library. Here, we do not fully port our existing code to javascript
to be executed in the browser. Instead, we introduce a client/server split as the
captured 2D measurements, and the final calibration parameters will be transferred

to the server anyway. Our architecture is split as follows:

» A web-based acquisition client, that captures video using WebRTC [14] and
performs low-level image processing directly on the device. This reduces

latency and offloads the computation heavy image processing from the server.

e The calibDB server component that receives the captured key-points and
provides new target poses to the clients. This allows re-using most of our
control logic and keeps the architecture extendable for multiple clients, as is

useful with e.g stereo camera calibration.

Figure 3.10 shows a sequence diagram of the REST based communication between
browser and calibDB. As we want to provide our calibration service publicly on the
internet we employ API tokens to prevent abuse. After the client was authorized
by calibDB, a session ID is returned that is used to track the calibration session

and for further authentication. The client then asks for a new target pose which
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Figure 3.10: The REST protocol of our web-based camera calibration system

is returned as a jpeg image that is composited with the video stream using the
"color" blend mode. Our underlying method compares the projected pattern images
to check whether the user is sufficiently close to the target pose, therefore we can
just use the non-black pixels of the overlay image to extract this information. Once
the target pose was reached the client sends the acquired 2D keypoint positions
to calibDB, which returns a JSON-message [12] containing the calibration results
or a state indicating that further measurements are needed.

Our client was tested with Google Chrome and Mozilla Firefox. Here, Chrome is
preferable as it also provides the USB-ID of the device, which allows differentiating

devices of one series that use different hardware (same name, but different sensor).

3.5.3 Calibration database

The service can be queried for calibration data using a combination of userAgent,
MediaStream Track and MediaTrackSettings [107] as the key:

Listing 3.1: Example calibration-data request

"camera": "C922 Pro, Stream  Webcam  (046d:085¢c)",
"host": "Linux,,x86_ 64",

"image width": 1280,

"image height": 720,

"zoom": 0
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Here the camera property is used for differentiating multiple cameras attached to
the PC or the front and back camera on mobile devices. The host property is
mainly used to differentiate mobile devices where camera would only contain "front'
or "back". The "zoom" property translates to the currently set focal length of the
camera or zero if the focal length cannot be determined.

If no reliable calibration data is available the server responds with the HTTP /307
status code, redirecting to the calibration-guidance landing page as described
in Section 3.5.1.

To verify whether calibration data is reliable, we collect at least 5 different
calibrations and compute the variance of the intrinsic parameters. Only if the
variance is small compared to the parameter values, we consider the calibration data
reliable. Here, we aim to enforce re-calibration for interchangeable lens cameras.
These identify using the same name, but have largely varying intrinsic properties.

Notably, this also covers the use of manually operated lenses where the "zoom'"
property cannot be read automatically.

If reliable calibration data is available it is returned in JSON encoding as:

Listing 3.2: Example calibration-data response

"image width": 1280,

"image height": 720,

"camera_matrix": [[1.43e+03, 0.0, 9.52e+402],
(0.0, 1.43e+03, 5.05e+02],
(0.0, 0.0, 1.0]],

"distortion__coefficients": [ ... |,

"distortion model": "rectilinear",

"avg_ reprojection_error': 0.72

}

The message contains the parameters K and d as discussed in Section 3.5.1.
Additionally, it provides the resolution at which the calibrated was performed.
This is useful when the exact requested resolution is not available. In this case the
calibration for closest resolution is returned. The client is now able to either adapt
the capturing or redirect to the guidance page, if a specific resolution is crucial.
The client is also able to explicitly specify the desired distortion__model, by
adding it to the request (Listing 3.1), if only a specific model is supported. In
case no calibration using the requested model is available for the specified camera,
the server can transparently perform a new parameter fitting on-the-fly. This is
made possible by storing the 2D key-points alongside the calibration results. For

instance if Ag is requested, but only calibrations for Ap are available, the server
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can repeat the parameter fitting using the existing data. However, this is not always
valid. In the example above the rectilinear model is not capable of explaining all
measurements as produced by a fisheye lens. Therefore, the response also includes the
avq__reprojection__error, which is the residual error on the measurements. The client
is now again able to redirect to the guidance page to force a more precise calibration.

Our prototype implementation supports the "rectilinear" and "fisheye" distortion
models and stores the calibration results as well as the key-points in a schema-
less database [66]. This allows to easily extend the system to new distortion

models as needed.

3.5.4 Extending the WebXR API

To provide the relevant calibration information through the WEBXR, API, it needs
to be extended in several ways. We propose to extend the XRView interface, as it
already contains the related projectionMatriz attribute. To this end, we suggest
extending the WEBXR matrix notion to 9 element 3x3 matrices to accommodate
the K matrix. Although it duplicates some information, it can be passed to
computer vision algorithms without conversion — similarly to how projectionMatriz
can be directly passed to WEBGL. Furthermore, an attribute storing d and the
distortion model must be added.

The distortion model attribute should also be added to XRRenderState for
allowing applications to request a specific model as discussed in the section above
— similarly to how developers request a specific depthNear.

This would enable browsers to transparently provide calibration data as provided
by our service through the WEBXR, API. Alternatively browser vendors could opt
to bundle a set of calibrations for popular cameras directly with the browser.

However, additional support is be needed to allow matching AR visualization.
One possibility is to support image remapping through the WEBXR API to allow
rectification as shown in Figure 3.9. Alternatively, the WEBGL API could be
extended to support the reverse direction, namely distorted rendering. For this,
actual usage patterns should be analyzed to decide whether this is beneficial or

whether it is sufficient to offload these tasks to client libraries like OpenCV js.
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3.6 Conclusion

In this chapter, we have presented improvements to state of the art regarding

camera calibration in the following areas:

o We have introduced a calibration method, that generates a compact set of
calibration frames and is suitable for interactive user guidance. Singular
pose configurations are avoided such that capturing about 9 key-frames is
sufficient for a precise calibration. This is 30% less than comparable solutions.
Calibration precision can be weighted against the required calibration time
using the convergence threshold. The camera parameter uncertainty is
monitored throughout the processes, ensuring that a given confidence level can
be reached repeatedly. Combined with the provided user guidance, this allows

even inexperienced users to perform the calibration in less than 2 minutes.

o We have evaluated different user guidance methods for camera calibration.
This allows us to give a recommendation that the "virtual mirror" setup is
preferable for camera calibration. However, the results of our second survey
only hint that using the simplified "quadrille paper" overlay is of advantage.
While the user feedback was generally positive, and we measured a slight
advantage in the average calibration time, there was a strong variation between
the individual participants. Therefore, a larger scale survey is necessary to

give a definitive answer here.

o The presented calibration aggregation service allows the general deployment
of web-based computer vision algorithms. Previously these would have been
limited to systems where WebXR back-ends like ARKit or ARCore were
available. The service also guides end-users through the task of calibration,
enabling them to use cameras that were not considered by the developers of
a particular computer vision algorithm. This property is beneficial for both
users and developers of computer vision on the web. We have evaluated the
shortcomings of the current WebXR, API draft end suggested extensions that
can make the whole process transparent for the end-user. Here, it needs to
be evaluated whether our calibration key is sufficient to identify the various

cameras and devices or if we have to use more sophisticated fingerprinting.
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Synthetic training from CAD geometry

In this chapter we present methods for training a CNN model from abstract CAD
geometry. Here, we focus on domain-adaptation. First, we rapidly acquire the true
object appearance by extracting a 2D texture map from camera images, which
we then use to improve the realism of sythetic renderings. Then we approach the
problem more generally, by employing image-conditional GANs to turn the task

of bridging the domain gap into a learnable problem.

4.1 Introduction

A common belief is that CNN architectures promote the aggregation of information
from lower levels, where e.g. edges are detected, to higher levels where those are
combined to semantic higher-order arrangements, like houses or windows, which are
of high expressiveness. Therefore, the last layer, which is responsible for generating
the outputs, receives the most semantically meaningful feature-maps and thus
should be be invariant against slight variations in the underlying data.
However, as discussed in Section 2.5.1, current CNN architectures are biased
towards the dataset they are trained on, which results in degraded performance
when training and testing data exhibit systematic differences. More specifically,
Geirhos et al. [31] have shown, that even when using large datesets like IMAGENET
[22] the resulting CNN models are biased towards texture (See Figure 4.1), which
is a rather low-level feature. Still, the models are able to reach top detection
performance on these datasets. This means that a large amount of data alone, is
not sufficient to force architectures to learn an expressive object representation,

which in turn can explain the bias towards the source dataset.
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(a) Texture image (b) Content image (c) Texture-shape cue conflict

Figure 4.1: Predictions of a classifier trained on IMAGENET in presence of cue-conflicts:
(a) indian elephant (81.4%) (b) tabby cat (71.1%) and (c) indian elephant (63.9%).
Human observers, however, would still classify (c) as a cat due to a bias towards shape.
(Figure from [31])

In their analysis, [31] artificially limited the receptive-field of the model, such
that even on the higher layers the model "received" only the local pixel neighborhood
i.e. the texture. However, the model performance degraded only marginally. This
means that even though the dataset consists of more than 14 millions different
images of over 20 thousand categories, it seems sufficient to merely learn the texture
of the target objects to solve it i.e. to reach a high detection performance.

Furthermore, they performed a user study to find out whether texture is similarly
relevant for human observers. To this end, they generated images with cue-conflicts,
that is images with the shape of one category and the texture of another (See
Figure 4.1). The results showed that, contrary to neural networks, humans are
biased towards shape. This is not an issue per se, as neural networks are able
to outperform human observers on IMAGENET.

Therefore, they applied data augmentation to remove most of the texture cues
from IMAGENET thus forcing the network to focus on the object shape as the
main remaining cue. While this slightly degraded performance when doing cross-
validation on IMAGENET, it significantly increased performance when applying
the learned model to Pascal VOC [25] without any adaptation. This shows that
the human bias towards object shape is indeed beneficial for high generalization
performance. Returning to our task of training a model on abstract CAD data
and generalizing to real images, it leads us to the conclusion that biasing the
CNN model towards shape is crucial.

As the industrial objects, that we focus on in this thesis, are intrinsically texture-
less one might believe that the problem of texture-bias is alleviated. However,

there is still a surface structure specific to certain objects, which the model can
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adapt to. Indeed, we will show in section 4.3 that knowing the true surface
properties significantly improves detection rates when compared to a rough color
approximation. Furthermore, when only using CAD geometry for synthetic training,
not even approximate surface information is available. The parts are typically
colored by semantics (e.g. engine, wheel) instead of material appearance (e.g. metal,
rubber). Therefore, one cannot rely on surface color or texture. In the context
of 3D printing, this is even true for 3D-scanned models, as a manifold of different
materials can be used to represent the same CAD geometry. To a certain extent,
this also applies to more traditional production lines, where an object runs through
multiple processing stages. These can involve polish or coating, which severely
alters the object appearance.

The shape information on the other hand, exhibits very high precision. Therefore,
it is crucial to prime the network for shape in this scenario, as the shape is the
only cue that transfers to real images.

To evaluate the trained CNN models, we focus on the task of object pose
estimation as described in Section 2.3, which not only requires correctly detecting
and classifying an object in the 2D image, but also involves estimating its 6D-pose.
For this, we employ single-stage CNN models as introduced in Section 2.8 for
real-time operation. Here, we focus on the domain-adaptation aspect to close the
domain gap between training and testing stages. First, we present a straightforward
method to explicitly capture the true object surface in real time, which in turn
improves the realism of the rendered data. In this context, we also show that this
is beneficial with classical, contour-based methods. Then, we turn to implicitly
modeling the domain-gap by employing off-the-shelf style-transfer GAN models.

The chapter is structured as follows: Section 4.2 reviews existing methods for
bridging the domain gap, including domain adaptation and domain randomization.

In Section 4.3, we present a method for capturing the object surface as a texture-
map from image sequences in real-time. The method relies on 6 degree-of-freedom
poses and a 3D-model being available. In contrast to previous works this allows
interleaving detection and texturing on-the-fly for upgrading the detector. Our
evaluation shows that the acquired texture-map significantly improves detection
rates using the LINEMOD [38] detector on RGB images only. Additionally, we use
the texture-map to differentiate instances of the same object by surface color.

Section 4.4 formulates the domain gap as a style-transfer problem between
real and synthetic images. This allows adopting general-purpose GAN models for
pixel-level image translation, thus making domain adaptation itself a learn-able task.

Here, we consider both supervised and unsupervised training setups and show that
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our formulation results in a considerable performance improvement, while requiring
only little effort to set up when compared to other methods. For evaluation, we
focus on training the single-stage YOLOGD [93] object pose estimator on synthetic,
CAD-based, geometry. When employing supervised GAN models, we use an edge-
based intermediate domain and introduce different mappings to represent the
unknown surface properties. Our results show a considerable improvement in model
performance when compared to a model trained with the same degree of domain

randomization, while requiring only very little additional effort.

4.2 Related work

Recent advances with deep convolutional models such as SSD-6D [50], PoseCNN
[108] and YOLOG6D [93] allow solving the pose estimation problem in real-time.
Combined with a successive local refinement method [65, 87], it is now possible
to obtain a precise object pose from a single RGB image only.

However, to achieve state-of-the-art performance these models require a large
amount of labeled training data. The assembly of such a training-set is an expensive,
error-prone and time-consuming process [40], making it cumbersome and often times
inapplicable for use with custom applications. In some cases, it is possible to use
high-fidelity 3D scans of the target objects to generate training data. The 3D
scans not only provide geometry but also surface information. Although scans are
reasonably easy to acquire [68], the need to perform a 3D scan for each object
does not scale to many objects.

In industrial environments, models created with computer aided design (CAD)
software are often available. Here, one can resort to synthetically generated training
data by rendering, which allows to create a virtually infinite training set in an
automated fashion. However, it was shown that deep CNN models, even when
applying cross-validation, tend to over-fit to the specific data-set [95] and show
a significantly degraded performance when presented with data from a different
domain [27]. Particularly, there is a strong domain gap between real and synthesized
images, which typically prevents the use of synthetic images for training. In these
cases depth-only variants of some algorithms [10, 37] can be used — however at
the cost of degraded performance.

To overcome this limitation, existing approaches apply domain randomization
(DR) to enforce domain invariance by saturating the model with variation [96, 94],

requiring the network to learn deeper, more abstract, features that are invariant
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across domains. An alternative direction is to reduce the gap by employing photo-
realistic rendering [100] and structurally correct context generation [73]. Notably,
Tremblay et al. [97] apply both for the task of object pose estimation. However,
designing a randomization method for a specific domain requires a domain expert
to define which parts must stay invariant. Conversely, increasing photo-realism
requires an artist to carefully model the specific environments in detail. This in
turn increases the cost of generating the data thus negating the primary selling
point of using synthetic images in the first place.

When some real images are available, transfer learning can be exploited, e.g.
by fine-tuning a synthetically trained model with real images [70]. Alternatively,
[39] propose to pre-train a network on real data and fine-tune on synthetic data.
Furthermore, it is possible to use the real data to enforce domain invariance
during training [27]. Recent work [111] extend this approach to guide domain-
randomization, thus introducing some benefits of learning-based domain adaptation.
However, it is still required to correctly select and design randomization modules.

Recent advances on generative adversarial networks (GANs) [34, 48, 13] have
shown great improvements regarding image quality and plausibility, training stability
and variation of output. Of particular interest in the task of closing the domain
gap are conditional GANs [45]. These are networks that, unlike traditional GANs,
pass additional input to both, the generator and the discriminator, to condition
the generator output. Here, the image-conditional GANs form a general-purpose
framework for image-to-image translation problems, like semantic segmentation,
colorization and other style transfer tasks. Existing solutions can be split into
paired models [45, 103] and unpaired models [114]. The former are trained to
adapt source to target images, paired in a supervised fashion, while the latter do
not require supervision and instead directly learn to transfer the distribution of

image features between two unstructured data-sets.
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Figure 4.2: Our extension of LINEMOD [38] is able to correctly detect multiple instances
of the same object based on surface color. The corresponding 6D poses are visualized using
the textured mesh. (see supplemental material at https://youtu.be/IB19rTXUOt8)

4.3 Real-time texturing for domain adaptation

This section focuses on the real-time acquisition of surface texture data and dynamic
detection-model augmentation. This allows capturing and using the surface color
information on-the-fly.

In the context of real-time surface reconstruction there is notably the work by
Whelan et al. [105], who extend the KINECTFUSION [68] algorithm to colors. For
this, an additional 3D color volume of the same size as the geometry voxel grid
is used. This means that the color resolution is tied to the geometry resolution
and the memory consumption has cubic complexity. Furthermore, RGB-D data is
required. The mentioned 3D scans are typically acquired by variations of [68] and
consequently store surface information as vertex colors. Here, [113] improve surface
resolution by subdividing the scanned geometry. This is similar to using texture
maps but results in inhomogeneous sampling and inefficient storage.

On the other hand, in the context of 3D scanning [16], 2D textures are often
used which only have quadratic storage complexity and allow decoupling surface
resolution from geometric resolution. More specifically, structure-from-motion based
methods [101] only require RGB images to reconstruct both color and geometry.

However, these methods operate on a-priori recorded data-sets which prevents
real-time operation. Notably, the global optimization step alone, as employed by
those methods, takes up to several hours. Our method in contrast operates in
real-time while only requiring RGB frames to incrementally generate a 2D texture.
To this end, we assume all geometry as fixed and given and only optimize locally

for color consistency. The closest method to our work is by Magnenat et al. [63],
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who also map a 2D camera image to texture in real-time. However, their work
specifically only addresses a single view and focuses on the in-painting aspect.

To employ our texturing method for object detection, we build upon the
LINEMOD detection framework by [38]. They employ a two-stage, handcrafted
feature descriptor, specifically tuned for texture-less object detection. In the first
step gradient templates (DOT), which capture the contour of an object, are matched
to the input image in a sliding window fashion. In a successive outlier-rejection
step, surface color is used to filter implausible matches, based on the interior color.

Even though this no longer provides state-of-the-art detection performance
[93, 50], the internal separation allows computing the DOT features on CAD
geometry only and add the surface color at run-time. This is generally not possible
with deep learning based approaches, which rely on surface color being available
during training. Efforts to train on an abstract representation [74] to allow for
different object appearances, typically result in a degraded performance compared to
training on real images. In contrast, our extension of [38] improves its performance,
while allowing to differentiate several instances of the same geometric object by
their surface properties.

Based on the above, our key contributions are;
1. an incremental, real-time texture-map extraction pipeline and
2. efficient integration of texture-maps for object instance recognition.

This section is structured as follows: in Sections 4.3.1-4.3.4 we present our
texture extraction algorithm in detail. Section 4.3.5 then describes the application
of the texture-maps for object instance recognition, while in Section 4.3.6 the use

of texture-maps for object detection is evaluated using the LINEMOD dataset [38].

4.3.1 Texture extraction

In rendering, the process of "texture mapping" consists of the following two steps
1. creating a mapping from a texture to the surface of a 3D model and
2. projecting the model and simultaneously mapping the texture into a 2D image.

The first step is also called "texture atlas creation" and is typically performed by
an artist during mesh creation. In contrast, our focus lies on the reverse direction,
namely mapping from a 2D image of a projected 3D model back to the surface

image as specified by the texture atlas (see Figure 4.3).
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(a) Image space (b) Texture space

Figure 4.3: We are mapping from image to texture space, which is the reverse direction
compared to rendering. Texture coordinates are encoded as red-green.

Generally texture atlas coordinates are not included in CAD data and therefore
have to be generated. However, automatic texture atlas generation is still an active
area of research [57] and outside the scope of this work. Here, we just use the angle-
based "Smart UV Project" algorithm implemented in the Blender toolset (v2.79b) to
generate the texture atlas and instead focus on the second step of texture-mapping.

In the remainder of this section we first discuss a simple exposure normalization
scheme, before we present our texture extraction method in detail and finally turn to

merging multiple views into one texture. The full pipeline is illustrated in Figure 4.4.

4.3.2 Exposure normalization

As our method does not explicitly compensate for different exposure times and
lighting conditions we preprocess the image stream to homogenize the brightness.
For this we use the first captured frame as reference and modify the successive
frames to match its brightness and contrast levels.

Here we follow the idea of Reinhard et al. [77] of adapting an input image

I to match a reference image as

Ore
Inzif'(:[_,ul)‘kﬂrw“ (4.1)
ar

'https://www.blender.org/download/releases/2-79/
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rendered depth discontinuities

oy __
final texture

3D model

A

Figure 4.4: Our texture extraction pipeline. Given a 3D model and its pose in a RGB
frame, we first render the depth to determine visibility. Image regions around depth
discontinuities are discarded as they are unreliable. Next a texture-increment is extracted
and a per-pixel score is computed to decide whether to merge the visible pixels into
the final texture. Only the following buffers are required on the GPU; "final texture",
"increment” and "discontinuities’.

RGB image ) Bbox crop accumulate

where pr, o7 and fiyef, 0rcp are the mean and variance of the input image and
the reference image, respectively.

However, whereas [77] apply the transfer for all channels in the Lab color space,
we only apply it to the luma component Y in the YUV color space as we explicitly
want to preserve the chrominance information.

This step is omitted if the exposure can be fixed during capturing.

4.3.3 Texture-space to image-space mapping

Texture mapping can be formalized as follows: given a triangulated mesh, each
vertex v; = [X, Y, Z, 1] with an associated texture coordinate t; = [u, v| is projected
into the current view by a world-to-image transform P as p; = P - v;. Here
p = [z,y,1] is a normalized pixel location in the image I.

On the interior of the triangle formed by (t;,t;,t)), a texture coordinate t is

interpolated and used for lookup in texture T as

I(p) = T(b). (4.2)

This mapping is continuous in texture space and therefore allows for bi-linear
interpolation to avoid aliasing artifacts.

For texture extraction however we are interested in the reverse mapping, namely

T(t) = 1(p). (4.3)
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Texture visibility lookup

\ | Unbiased

Biased

Depth buffer

(a) Depth test aliasing (b) Slope biased depth

Figure 4.5: We store slope-scaled biased depth values to avoid aliasing errors during
the visibility test.

Instead of iterating over the mesh topology as defined by v; in 3D, we now iterate
over t; as defined by the texture-atlas in 2D. Conversely, we now require a continuous
value of p in image space for lookup. This is computed by interpolating in the
triangle formed by (p;, P;, Px), of which each point is obtained as above by p; = P-v;.

Here, visibility must be explicitly computed; with equation (4.2), we implicitly
assumed overlapping points to be resolved by a depth-test, only retaining the
points closest to the camera. This can no longer be exploited, as points do not
overlap in the texture space.

To handle visibility we therefore introduce an additional depth buffer and
render depth from the camera view. This allows comparing the depth of an
interpolated coordinate p to the actually visible depth value. However, this leads
to aliasing; with non-planar objects the view resolution cannot be adapted to
match the texture space resolution.

To remedy the aliasing artifacts we apply techniques from the shadow mapping
domain [8] where the same problem occurs when a scene is rendered from a shadow

camera and an observer camera view. Particularly, we

1. focus the camera on the object bounding box to increase the sampling rate in

image space and

2. apply a slope-scale depth-bias to account for the remaining differences in

sampling rates during visibility testing.
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The latter is especially important; as the texture atlas has a higher sampling rate
than the depth buffer, several points p , interpolated in the texture space, map to
the same point p in the image depth-buffer. At steep angles p has a strong depth
variation and thus neighboring points alternatively fail and pass the visibility test
when compared to a single reference value (see Figure 4.5b).

To account for this we store a biased depth that allows for a sampling offset
of 1px in image space. The bias b depends on the depth slope dz per pixel dz

and the minimal depth buffer resolution r as:

b= ZZ + 7. (4.4)
The bias is large in steep regions while minimal for faces parallel to the camera.
This computation can be implemented efficiently on the GPU by using e.g. glPoly-
gonOffset. The effect can be observed by comparing Figure 4.5a and Figure 4.3b.
This allows us to map each visible pixel from a single image into the texture to
record the object surface. The resulting reconstruction can already be applied for

detecting the object in similar views (see Section 4.3.5).

4.3.4 Merging multiple views

Generally, the object surface is only partially visible from a single view and therefore
multiple images are needed to reconstruct the full texture.

Assuming that the same texture point t will be observed in different images as
Co, - --,cN where ¢; = I;(p;), we discard edge-pixels at object boundaries or strong
depth discontinuities. These measurements are unreliable as they might come from
different surfaces due to pose imprecisions and limited camera resolution. Instead,
we aim for a view where t is not at an observed edge. A pixel is considered to be
part of an edge if the depth change is larger than 10% of the object diameter. All
points in a 5px neighborhood of an edge-pixel are discarded as well (see Figure 4.7a).

To combine multiple valid observations c; of t, we define score s that, inspired
by [16], weighs each observation by the distance to camera d and the angle «

between surface normal and view direction as
s=cosa-(l—d), (4.5)

where d is assumed in normalized device coordinates ranged [0; 1] and « is computed
based on the interpolated surface normal, which can be defined per vertex v; (e.g.
for a sphere) and therefore is not required to be constant for a single face.

Using s we implemented two merging strategies; a weighted arithmetic mean



76 4.3. Real-time texturing for domain adaptation

(a) Vertex colors  (b) Weighted mean  (c) Best score (d) Best score with
as in Eq. (4.6) as in Eq. (4.7) blending

Figure 4.6: Exemplary surface color reconstructions of the "Driller" object Texture
merging strategies using (a) KINECTFUSION and (b, ¢, d) variations of our algorithm.

t:SO'cO—i_-”_'—Sn'cn’ (4.6)
So+ ...+ S,

and only retaining the best view

t = argmax {sg,...,Sn}. (4.7)

Ci

Both equations can be efficiently implemented on the GPU using a single RGBA
buffer for accumulation, as RGBA = |[c,s].

Figure 4.6 shows exemplary results. Eq. (4.6) produces a smooth surface, while
retaining more detail than vertex coloring. However, the averaging over slightly
inaccurate object poses results in a loss of fine detail when compared to Eq. (4.7).

Using Eq. (4.7) on the other hand retains all details, but emphasizes incon-
sistencies in exposure or object pose as seams between neighboring increment
texture-patches.

To alleviate this problem we blend increment-patches at their boundaries into
the existing texture during accumulation. Instead of simply overwriting the texture
content with the new maximum, we compute the distance transform to the patch
boundaries over a 5x5px support using the L2 norm. Using the distance we then
linearly interpolate between the old and the new color value ¢ and pixel score s.

Figure 4.7b shows an increment-patch for Figure 4.7a, projected onto the object.
Note the gradient at the edges, which is linear in texture space.

The blending not only produces visually more pleasing results (compare Figures
4.6¢ and 4.6d), but is crucial for computing the LINEMOD descriptor which relies

on local gradient orientation.
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(a) Initial view (b) argmax-based update with blending

Figure 4.7: Merge-maps of two successive frames when using eq. (4.7). Valid pixels are
colored blue.

4.3.5 Object instance detection

In this section we describe how to employ the extracted textures for object instance
detection i.e. differentiating multiple instances of the same object. Here, we
extend the color-based outlier rejection of [38] to multiple color hypotheses to
simultaneously perform classification.

The idea of color-based outlier rejection in [38] is to store the expected color
of the object projection alongside the LINEMOD template and at run-time count
how many pixels in the camera frame have the expected color.

To make the check robust against lighting variations, they convert the images
to the HSV colour space and compare only the hue component. However, hue
does not cover the colors black (V' = 0) and white (V = 1,5 = 0). Therefore,
these are mapped to blue and yellow respectively, which completes the color-based
descriptor (see Figure 4.8a).

To extend this scheme for object instance detection as well as for on-the-fly
recorded textures, we separate the expected color from the expected surface visibility.
To this end, we store the texture coordinates of the object projection (compare
Figure 4.3a) instead of storing the expected color directly. The template surface-
texture is stored separately. At runtime, we now use the texture coordinates to
perform a lookup into the template-texture to retrieve the expected color, which

gives us the same information as in [38].
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DA

(a) input image (b) candidate / white template / red template

Figure 4.8: Hue-based instance detection. The input image (Figure 4.2) is cropped
based on the template bounding box and compared to a set of hue templates.

However, it is now possible to easily swap the surface-texture to globally change
the expected colors. Here a live-reconstructed texture can provide more accurate
template colors and notably multiple template-textures can be used for object
instance detection (see Figure 4.8b).

Finally, the outlier rejection scheme needs a slight modification for classification.
Instead of returning the first inlier based on the expected color, it needs to allow
multiple matches without repetition. For this, after finding an inlier, only the
corresponding texture-template is removed and the remaining candidates are checked
until all template-textures are found or all candidates are rejected.

While this is an integral part of the LINEMOD pipeline, it can be optionally
integrated as a post-processing step to a CNN-based architecture that is capable of
abstracting the object appearance to some degree. E.g. it can be executed after

non-maximum-suppression in [93] to compute agreement with the color template.

4.3.6 Evaluation

The presented method is evaluated in the context of object detection. To this
end we train the LINE2D variant of the LINEMOD detector on the corresponding
dataset [38]. The dataset does not contain views specifically intended for surface
reconstruction and thus represents reconstruction during detection well. We use
the publicly available LINEMOD implementation of OpenCV.

There are 15 sequences for different objects, consisting of RGB-D frames with
ground-truth poses and recorded at distances of 65cm-115cm. We select a subset of
8 objects for which a 3D mesh is available and that are large enough to provide a

reasonable texture resolution. The meshes included in the dataset were recorded
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using a variation of KINECTFUSION [68] and thus encode surface information
as vertex-colors.

We apply our texturing algorithm on each sequence using the ground-truth
poses to merely simulate a tracking algorithm for better reproducibility. Then
we train LINEMOD on synthetic renderings using the generated textures as well
as included vertex-colors as a baseline. We parametrize training and testing as

in [38], particularly;

We use 89 views on the upper hemisphere around the object, derived by

subdividing an icosahedron recursively twice.

o For each view there are 7 in-plane rotations with roll angles between —45°
and 45°.

o Furthermore 6 distances, with 10cm increments, between 65cm and 115cm

are used.

e During color-based outlier rejection we discard candidates where less than
70% of the pixels have the expected color. The threshold on per-pixel hue

difference is set to H4°.

This results in a total of 3738 templates per object for training. However, in contrast
to [38], we are only using RGB data without depth — therefore we do not restrict
the color gradient features to the contour, but compute them on the interior as well.

For testing, we measure the true positive rate on the sequences. As in [37] we
consider an object successfully detected when it is within a fixed radius r around
the ground truth position. We globally set » = 11cm in our experiments to allow
for depth mis-classification by one step.

In order to keep interactive performance, we only consider the first 30 LINEMOD
candidates for matching and outlier rejection.

To simulate the CAD data use-case without any surface information available,
we additionally perform training using a white diffuse material for all objects. For
generating gradient features on the interior of the object, we use ambient occlusion
(AO) [4] as a lighting approximation. Ambient occlusion is a purely geometrical
method that is independent of actual light and surface properties. We skip the
outlier-rejection step as no color information is available.

Table 4.1 shows the true positive rates for the variants mentioned above — as
can be seen the texture-based variants outperform the vertex-color baseline of [38]

by a margin of 10% on average. However, there are strong variations between
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| Object | AO | vertexcolor | texture (4.7) | texture (4.6) |

benchvise | 0.54 0.75 0.82 0.82
driller 0.15 0.43 0.63 0.54
iron 0.53 0.71 0.67 0.68
can 0.38 0.67 0.78 0.83
glue 0.07 0.21 0.17 0.17
cam 0.1 0.28 0.62 0.55
egghox 0.47 0.6 0.79 0.79

holepuncher | 0.2 0.62 0.59 0.65

’ average \ 0.3 \ 0.53 \ 0.64 \ 0.63 ‘

Table 4.1: True positive rates on the LINEMOD dataset with different training data.
The ambient occlusion (AO) variant does not include any outlier rejection.

(a) LiNeMoD [38] (b) "Single shot pose" [93] (c) Ground truth

Figure 4.9: Qualitative results for on-the-fly surface color reconstructions of the "driller"
object in relation to different pose detection methods.

the individual objects, therefore it remains inconclusive whether variant (4.6) or
variant (4.7) of our algorithm is preferable.

Notably the AO variant cannot reach the performance of the other methods.
With some objects where it even becomes unusable (e.g. driller, cam). This

emphasizes the need of surface information for object detection.

Using noisy pose data To evaluate the applicability of our method for on-the-fly
texturing with noisy pose data, we additionally used the state-of-the-art "single
shot pose" (SSP) detector [93] instead of relying on ground-truth poses.

Figure 4.9 shows qualitative results of texturing using ground-truth, SSP and
LINEMOD poses. While the LINEMOD results only allow for a rough color-based
outlier rejection, the results using SSP poses are very similar to using the ground
truth. To further quantify this, we repeated the training of SSP using synthetic
renderings of the "driller" object instead of using cross-validation as in the original

paper. At this, we measured the true positive rate (TPR) using the 5cm, 5deg
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metric. Here, training with textured renderings (Fig. 4.9¢) resulted in a TPR of 0.37.
Using the imperfectly textured objects (Fig. 4.9b) resulted in a TPR of 0.34, which
supports the qualitative impression. When training with vertex colored renderings

only, the performance was significantly degraded, resulting in a TPR of 0.14.

Speed The evaluation was performed on a notebook with an Intel i7-7700HQ
CPU at 2.80GHz and an Intel HD 630 iGPU. The average time to accumulate one
video frame into a 1024x1024 px sized texture is 2.69 ms. This allows running the
texturing algorithm in parallel to tracking to reconstruct a texture on-the-fly.
The average time to perform a texture lookup as described in Section 4.3.5 is
0.82 ms using the software remap implementation in OpenCV. This step can be

therefore applied generally without requiring GPU usage.

Multi instance detection For the multi-instance detection we performed a
qualitative analysis using a separate sequence where two toy cars are alternately and
simultaneously visible. The surface colors are white and red which are adjacent in
HSV space (white is mapped to yellow as described in section 4.3.5). Furthermore,
the surface exhibits specular reflection which is not filtered during texturing.

Nevertheless, our method was able to robustly discriminate both objects (see Fig-
ure 4.2).
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Figure 4.10: Example of YOLOG6D [93] on the LINEMOD data-set when trained solely
on synthetic images. The green bounding box represents the ground truth pose and the
yellow one the predicted pose.

4.4 Style-transfer GANs for bridging the domain
gap

This section focuses on employing conditional GAN models to formulate the domain
gap between real and synthetic images as a learning problem. At this, we propose
training pipelines incorporating both paired and unpaired style-transfer and evaluate
the results on the task of object pose estimation — a particularly challenging scenario
which requires a high fidelity of the object contours, which was, to the best of
our knowledge, not previously addressed with GAN based domain adaptation. In
the context of paired style-transfer, we propose the use of the intermediate edge
domain to do away with the need of real images for supervised training. Here,
we evaluate different representation for mapping CAD geometry with unknown
surface properties into the edge domain.

Most closely related to our work is [2] which employ GANSs for data augmentation.
In contrast, we use GANs to specifically address the domain gap and employ
synthetic data generation instead of data augmentation. [74] introduce the "pencil
filter" as a domain with reduced expressiveness to tackle the domain gap and train a
pose estimation network in this domain. However, the pose estimation network takes
a strong performance hit as the "pencil domain" does not retain enough relevant
features. We are able to avoid this hit by learning a mapping from the reduced
domain to real images to reconstruct appropriate features. In the medical domain,
[64] employ a GAN architecture for domain adaptation. However, they only consider
the use of an unsupervised GAN model for reverse domain adaptation by making
real images more synthetic, while we consider both paired and unpaired architectures
and also consider the forward domain adaptation in the unsupervised case.

Based on the above, our key contributions are;
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1. formulating the domain gap as a learning problem using off-the-shelf image-

conditional GANS,

2. introduction of the intermediate edge domain for training paired translation

networks purely from synthetic data and

3. evaluation of paired and unpaired models regarding pose estimation perfor-

mance.

This Section is structured as follows: in Section 4.4.1 the general approach
is introduced, Section 4.4.2 defines baseline methods and Section 4.4.3 discusses
the choice of suitable GAN models. We then continue to describe our training
pipeline employing an intermediate domain for paired domain translation in Section
4.4.4 and unpaired direct domain translation in Section 4.4.5. In Section 4.4.6
the method is evaluated in terms of pose detection performance of the YOLO6D
[93] model on the LINEMOD [38] data-set.

4.4.1 Approach

The core idea of our approach is to formulate the domain gap as a learning problem
that is addressed with generative CNN models. Here, we use the generative
adversarial framework to train a conditional generator that is able to augment
images such that the pose estimation network becomes invariant to the source
domain. For this, the statistical distribution of image features found in both the
real world and the synthetic domain must be matched, allowing the alignment
of one domain to the other.

In this section we first discuss applicable GAN models and show qualitative
results on the LINEMOD data-set to motivate the choice of specific image-conditional
GAN models. Then, we present our pipeline for fully synthetic training based on
supervised image translation, leveraging P1x2PixHD [103]. Next, we turn to
unsupervised image translation and introduce an alternative pipeline, that replaces
the GAN model with CYCLEGAN [114], which simplifies data acquisition by lifting

the requirement of pairing images from both domains.

4.4.2 Baseline methods

We define two baseline methods for synthetic training. Both follow the data
augmentation scheme of [93] by using random backgrounds from a set of real
images, apply random image scaling and randomly adjust exposure and saturation
adjustment. However, instead of using crops from real images, we render the object

on top of the background (See Figure 4.11) with the following methods:
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(a) real texture (b) random texture

Figure 4.11: Baseline data augmentation schemes for object "driller" using (a) realistic
object texturing and (b) randomly selected image for object texturing

a) Realistic texturing, by applying the true texture extracted from the data-set
(see Section 4.3) and

b) randomly texturing the object during rendering.

The first option depends on having the surface properties of the physical object
available, but allows generating an arbitrary amount of realistic data by rendering.
The second scheme applies blind DR by randomizing both the object and the
background appearance. Note that this scheme neither requires plausible object
placement nor plausible object appearance and thus is far easier to set up, compared

to other DR solutions.

4.4.3 Suitable GAN models

The main requirement on the generator is that the resulting images have a high
correlation with a given pose, such that the pose estimation model can be trained in
a supervised fashion. In theory any GAN model can be used for this if images can be
mapped into the latent space of the generator. Such a mapping allows to condition
the generator to create images, that resemble the input inside the latent space.
If the latent space is constructed in a way that allows for interpolation by e.g.
employing Kullback-Leibler loss [23], this approach would also allow synthesizing
novel samples not seen during training. In the case of pose estimation, this is
required to generate images for views not seen by the adaptation network during
training. However, the resulting image must retain enough fidelity for the pose

estimation network to predict the correct pose. Not all GAN architectures are
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(a) input (b) sample

Figure 4.12: Exemplary results of using STYLEGAN for conditional sampling. Here,
the input image is mapped into the latent space of the generator and is used as the mean
for sampling.

practical for this use case. For a preliminary experiment, we use the STYLEGAN [49]
model, which offers state-of-the art generation performance and allows interpolation
in the latent space of the generator.

Here, we map a real image into the latent space and use it as the mean for the
random vector to sample new images, which would ideally retain most of the original
image content; particularly the pose of the target object. Figure 4.12 shows an
exemplary result; while the images seem plausible (considering the reduced training
time), it is obvious that the model is not able to sufficiently capture the locality
of the object. This results in a significantly different pose in the sampled image,
compared to the input image. This precludes this approach in being used for pose
estimation. Therefore, we focus on conditional GAN models in the following.

For this experiment, STYLEGAN was trained at a reduced resolution of 256 x 256
px for three days using approximately 110.000 renderings composed on top of real
backgrounds. The model was initialized using the weights for the LSUN Cat
data-set [109] of the original publication. This allowed operating with the reduced
training period, compared to training the model from scratch which required 13

days according to the original publication.

4.4.4 Paired intermediate domain translation

In this section we introduce a training pipeline based on the P1x2P1xHD [103]
paired image translation model. This is a supervised approach, which requires
aligned image pairs to learn the domain translation. Pairing synthetic images with

real images requires an according training set of real images, which defies the goal
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YOLO6D

Figure 4.13: Our synthetic training pipeline using the laplace filtered intermediate
domain and incorporating the PIX2PIXHD GAN for domain adaptation as presented in
Section 4.4.4.

of synthetic training. Therefore, we introduce a deterministic transform into an
intermediate domain with reduced expressiveness, making real-world and rendered
images less distinguishable. Here, we use the Laplace filter, which approximates
the second order image derivative that is continuous and directly translates to
edge strength without requiring a thinning step. The P1Xx2P1xHD model is then
employed to reconstruct real images from their Laplace filtered variants.

The pipeline now consists of two trainable models; the PIx2PIxHD model
for domain adaptation followed by the pose-estimation task network (see Figure
4.13). As the performance of the second model depends on the first model, the
pipeline has to be trained in two stages. First, the domain adaptation network is
trained until convergence on rendered images with random backgrounds and their
Laplace-filtered variants. Here, the network must simultaneously reconstruct the
rendering as well as the real background which forces the network towards realistic
reconstructions. Next, the pose estimation model is trained on the reconstructed
images. Assuming the adaptation network was able to generalize from the training
data, we now can create a virtually infinite amount of realistic views.

The remaining question is how to model the object surface before converting it to
the Laplace domain, given that we do not want to impose any restrictions on possible
object appearances. Here, one needs to balance the learning problem between the
domain adaptation and the pose estimation network — e.g. enforcing discriminative
features makes the problem for the adaptation network more challenging, yet it
reduces the difficulty for the pose estimation network. Specifically, we opted for the
following methods covering different work distributions of the involved networks:
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(a) random texture (b) solid gray (c) checkerboard

Figure 4.14: Examples of the reconstruction tasks for PIx2PixHD with different
rendering methods. Top row: source image in the Laplace domain Bottom row: target
images to be reconstructed.

1. Use the real world texture (see Figure 4.13). This should result in the best
model performance as it is the easiest task. However, to obtain the texture
real images are needed, which dissents with our goal of fully synthetic training.
This option was therefore mainly included to assess the performance loss of
mapping into the Laplace domain as well as the loss induced by the following

options. It corresponds to baseline variant a) with domain adaptation.

2. Use a random texture (see Figure 4.14a). This prevents the networks from
learning any surface related information of the object to be detected. While
this should not affect the domain adaptation network which is already faced
with the task of reconstructing arbitrary background images, it makes the
task of pose estimation significantly more challenging. The important shading
and contour cues can be arbitrarily degraded by the used texture. This

corresponds to baseline variant b) with domain adaptation.

3. Use a uniform color for the object (see Figure 4.14b). Instead of using a
random texture, we assume the object to be of one uniform, yet arbitrary
color. Given the Laplace intermediate domain, the adaptation network cannot
learn a correct object colorization. Therefore, we set the target color to gray,
which is the most likely guess the adaptation network can take, given this

task. Keeping the surface properties fixed allows to apply a consistent shading
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Figure 4.15: Our synthetic training pipeline using direct domain adaptation as presented
in Section 4.4.5

to the object, which in turn can be exploited by the pose estimation network.
However, the reconstruction of a plausible surface shading in turn makes the
task of the domain adaptation network more challenging, but is a deliberate
choice for balancing the work. To prevent the adaptation network to over-fit
to a specific lighting position, we place several point lights randomly around
the object.

4. Use a fixed checkerboard pattern for the object surface (see Figure 4.14c).
Here, the Laplace images are generated from a uniformly colored object as
above, while the reconstruction target is rendered with a fixed checkerboard
texture. This makes the pose estimation task easier as the network can rely on
stable cues on the object surface. However, this is particularly challenging for
the adaptation network as it must encode the object geometry to reconstruct
a correct appearance, while being confronted with merely an edge image

generated from an uniformly colored object.

Note that the translation of the object appearance to a different representation
in the last two methods, requires the translation network to be executed at

inference time as well.

4.4.5 Direct image domain translation

In this section we introduce a CYCLEGAN [114] based training pipeline for
unsupervised domain adaptation. As this model does not require matching image
pairs, there is no need for an explicit intermediate representation, and the model
can directly learn the mapping between the domains of synthetic and real images.

For the real domain we use the same generation scheme as in baseline b) of
rendering randomly textured objects on random backgrounds. However, for the

synthetic domain we cannot use real backgrounds to generate samples, as the different
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Figure 4.16: Domain translation capabilites of CYCLEGAN. Top row: masked crops
from real images. Middle row: synthetic rendering without lighting and using vertex
colors only. Bottom row: output of CYCLEGAN applied on the middle row, adding
lighting effects and generally improving image fidelity.

statistics would give away the synthetic object and bias the GAN towards object
segmentation. Instead, we collect a separate data-set of synthetic background images
from 3D-game footage on Youtube. Here, we select 50.000 random crops of randomly
selected frames (see Figure 4.17) from a total of about 5 hours of video footage.

We train CYCLEGAN on the custom 3D-game and the IMAGENET datsets
to obtain a mapping between the real and the synthethic domain. To train the
YOLOG6D detector, we generate synthetic renderings and then map them into the
real domain with the learned CYCLEGAN model. Furthermore, the CYCLEGAN
architecture is capable of translating images in both directions. This allows reversing
the pipeline; instead of adapting synthetic images to the real domain at training
time, it is also possible to adapt real images to the synthetic domain at run-
time. While this eases training, it comes with the cost of having to execute the
translation network for inference.

We train CYCLEGAN on the custom 3D-game and the IMAGENET datsets
to obtain a mapping between the real and the synthethic domain. To train the
YOLOGD detector, we generate synthetic renderings and then map them into the
real domain with the learned CYCLEGAN model. Furthermore, the CYCLEGAN
architecture is capable of translating images in both directions. This allows reversing
the pipeline; instead of adapting synthetic images to the real domain at training

time, it is also possible to adapt real images to the synthetic domain at run-time.
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(b) ImageNet

Figure 4.17: Examples of the datasets, that we use as backgrounds and for training
CYCLEGAN

As a limitation, the original CYCLEGAN model is tuned to produce images at a
resolution of 256 x 256 px, which is only a fraction of the YOLOGD receptive field of
416 x 416 px. Scaling the GAN up would require fine-tuning its hyper-parameters
like the size of the hidden layers, which is out of the scope of this work. Therefore,
we perform our experiments with the limited resolution, which allows to judge the
feasibility of the method. However, one should keep in mind that pose precision

can be improved by scaling the network output to match YOLOGD.

4.4.6 FEvaluation

In this section we quantitatively and qualitatively evaluate, whether our pipeline
allows the training of the demanding pose estimation task network from synthetic,
randomized and non-photorealistic renderings only. For comparability with related

work, we use the LINEMOD data-set for evaluation. Here, we focus on the "Driller”
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object as it exhibits a characteristic, non-uniform surface and is the most challenging
object [93] for the pose estimation model.

In the following, we first present the results of the baseline approaches as
introduced in section 4.4.1. We then turn to the paired image translation via an
intermediate, reduced domain and finally present the results for direct image

domain translation.

Implementation details For training the pipeline, we follow the procedure
outlined by [93] in initially dropping the confidence loss, when training YOLO6D
on a domain different from real images. This proved essential to allow the pose-
estimator to adapt, as samples from the GAN exhibit significantly different colors
and details than the IMAGENET data-set, which the model was initialized on. After
500.000 samples the estimator was able to reach 85% recall which improved to
95% after 1.000.000 samples. Only after such initialization, we proceeded with
training with the complete loss function.

If not specified otherwise, each benchmark used the following training parameters:

stochastic gradient descent with momentum (0.9)

2700 epochs

weight decay of 0.0005 and learning rate of 0.001

batch size of 32.

When not explicitly aiming for convergence, the learning rate was kept constant,

otherwise it was reduced gradually with advancing training.

Quantitative results We measure the domain translation performance of the
presented methods in terms of pose estimation error of the task network [93].
Here, we employ two different metrics; the 3D translation and 3D rotation as
well as the 2D corner re-projection error. The latter measures the error in screen-
space and therefore is well suited for augmented-reality, while the former is more
meaningful for robotic applications.

Comparing the baseline methods as introduced in Section 4.4.2 (see Figure 4.18),
we see that the performance of baseline method b) is significantly reduced, although
we ensured model convergence in both cases. This shows, that our task network
for pose-estimation, YOLOGD, is not sufficiently conditioned to overcome the
domain gap on its own, even when presented with a virtually unlimited amount

of images from the synthetic domain.
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Figure 4.18: Pose estimation error of using real images as in [93] and the baseline
methods a) and b) respectively.
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Figure 4.19: Pose estimation error of paired domain translation as introduced in Section
4.4.4
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Figure 4.20: Pose estimation error of direct domain translation as introduced in Section
4.4.5, as well as translation reversal (real2synth).

Looking at the domain translation results using the paired model as introduced
in Section 4.4.4 in Figure 4.19, we see a reduction of re-projection error by about
23% when using random texturing as in 2). This indicates that the edge-based
intermediate representation leads to a more robust representation with YOLOGD.
Likely, because we are able to reduce the texture bias [31] of the model. In
contrast, rendering the object using a solid color as in 3) results in degraded
results compared to using random texturing. Probably the pose-estimator over-
fits to the uniform colour present in the reconstruction, thus still suffering from
the domain-gap. Training the pose estimation network was not possible when
applying rendering-method 4).

While the results improve over baseline, the margin is only moderate. Likely,
the reason for this is that the Laplace filtering does not sufficiently reduce the
expressiveness of the image and the domain gap is still present in the intermediate
representation.

Turning to the direct domain translation using CYCLEGAN as introduced
in Section 4.4.5 in Figure 4.20, the results of synthetic to real translation are
consistent with paired translation, even though the network produces images only
at quarter the resolution. This leads us to believe that unsupervised models are

generally sufficient for domain adaptation.
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Rendering method / Mean error
Domain translation | re-projection \ translation \ angle
real images [93] 12 px 8.9 cm 13.2°
realtex / none 16 px 125 cm | 17.7°
randtex / none A7 px 33 cm 52.0°
realtex / laplace 22.5 px 21.2 cm | 25.8°
randtex / laplace 36 px 37.6 cm | 45.3°
uniform / laplace 43 px 46.1 cm | 48.3°
randtex / real2synth 35 px 272 cm | 42.8°
randtex / synth2real 32 px 34 cm 40.4°

Table 4.2: Raw data for Figure 4.18, Figure 4.19, Figure 4.20

Figure 4.21: Checkerboard surface reconstruction results as required by surface rendering
method 4). Top row: target image. The input to the network is a Laplace filtered version
(confer Figure 4.14c) Bottom row: output of the PIX2P1xHD model trained to reconstruct
the checkerboard pattern and applied to the whole image.

When reversing the translation from real to synthetic, we see a reduction of
re-projection error by 31% compared to random texturing (b). However, the

real-textured baseline (a) has a 50% lower error.

Qualitative results As shown in Figure 4.21, P1x2P1XHD cannot predict a
consistent checkerboard texture. While the results are plausible, they do not
exhibit enough detail to help the pose estimation model. Still, this is a remarkable
result as the translation network is confronted with a significantly more demanding
challenge; to correctly apply the texture pattern it not only has to infer the object

pose, but also the object geometry.
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Figure 4.10 shows some predictions of the pipeline trained with CYCLEGAN
for domain adaptation. While the model is able to reliably detect the object, the
accuracy of the object pose is lacking. This is likely due to the limited resolution of
the adaptation network and can be further improved by scaling it up to the
pose estimation input size.

Figure 4.16 shows the effect on image quality after applying CYCLEGAN on
the objects "ape" and "benchvise". The model is able to improve color reproduction

as well as applying details like specular highlights.
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4.5 Conclusion

In this chapter, we have presented improvements to the state-of-the-art regarding

transfer learning for CAD geometry in the following areas:

o We have described a method for real-time texturing that can be used to
improve an object detection model on-the-fly. At this we have shown that
texturing itself is crucial for detection of CAD data, where no surface
information is available. However, even with meshes where vertex-colors
were previously available, our approach improves detection performance
significantly. Furthermore, we successfully applied the resulting textures
to extend LINEMOD for object-instance recognition. By interleaving detection
and texture extraction it now becomes possible to extend detection algorithms

by color cues on-the-fly.

o We have shown that employing a paired translation GAN for domain adap-
tation during training generally improves model robustness and hence the
performance of the target network. Turning to unpaired translation GANs,
we have shown that training solely on CAD geometry with neither knowing
the surface properties nor the environment is possible and is in the same
error range as using paired GANs — with a slight advantage, when using
real2synth translation. These results indicate that image-conditional GANs
are indeed an effective measure to close the domain gap between real and
synthetic images. However, when only relying on the CAD geometry with
both the object background and object surface being randomized, there is

still a considerable performance degradation.

On the other hand, the introduced training is much simpler compared to
existing solutions relying on domain randomization. The latter require a
faithful setup of randomization modules — even when employing guided
domain randomization. In contrast, the presented style transfer pipelines only
require collecting unstructured images from the target domain, which are fed
into the adaptation network in an unsupervised fashion. This allows focusing
on training the task network. At this, we have shown that it is possible to

train a pose-estimation model with satisfactory precision.



Discussion

The availability of scene understanding on an object-pose level is crucial for many
computer vision applications. In this thesis we have outlined a pipeline to achieve
this understanding, while only relying on a consumer-grade camera. First, we
introduced a system which made reliable calibration data ubiquitously available,
before we continued with the task of object detection and pose estimation. While
there are many ways to perform object detection, we focused on approaches using
deep CNN models. This choice imposes the least amount of restrictions on the
application environment. Conversely, setting up a respective system is considerably
more involved compared to classical algorithms. Here, we presented an approach
that allows fully automating the training of a CNN model, if the geometry of the
object is known. Particularly, the presented method is able to work with CAD
geometry, where the actual surface properties are unknown.

In the following we summarize the contributions presented in this thesis and

discuss possible perspectives for future work.

5.1 Contributions

In Chapter 3, we have addressed the task of acquiring reliable calibration data for

a wide range of devices. The general approach can be summarized as follows:

o In chapter 3.3 we have presented a pose selection algorithm, that generates a
compact set of calibration poses and is suitable for interactive user guidance.
By monitoring the uncertainty of individual parameters it can adapt to inexact

pose matching by the user and dynamically generate new poses ensuring that
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5.2. Future work

a given confidence level is reached. This allows even inexperienced users to

perform a precise camera calibration in about 2 min.

In chapter 3.4 we have further evaluated different camera setups and visual-
izations to be used for user-guidance. The conducted user survey, resulted
in recommendations for an improved calibration setup, that makes the task

more accessible for users.

In chapter 3.5 we presented a calibration aggregation service, that allows the
general deployment of web-based computer vision algorithms by providing a
database of known calibrations. In case an unknown camera is encountered, it
transparently falls back to the user-guidance method based on pose selection.
Here, we presented an efficient client-server architecture, which allows for a
purely web-based implementation of the guidance part. As only a web-browser
environment is required, this enables the calibration of a wide range of devices

including smartphones and AR glasses.

In Chapter 4, we have addressed the task of training a CNN model for object

detection from synthetic, non-photorealistic, data only. Specifically, we followed

the following approaches:

o In chapter 4.3, we have presented a real time texturing method that can

be used to reconstruct the missing surface information of CAD data, which
significantly improved the color fidelity compared to the vertex-color based

methods used previously.

In chapter 4.4, we have shown that off-the-shelf GAN architectures can be
used to formulate the domain gap as a style transfer problem. Particularly,
we have presented pipelines for both, supervised and unsupervised image
translation architectures. Here, we introduced the intermediate edge domain

for the supervised case.

5.2 Future work

This thesis has shown how a pipeline for object pose detection can be constructed

in a semi-automated way. Nevertheless, the presented approaches have certain

limitations that can motivate further research in this area. We will address

particularly relevant aspects below.
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5.2.1 Extending pose selection to complex lens models

In chapter 3.3, we have presented a pose selection algorithm, that efficiently generates
a set of poses suitable for precise camera calibration. Here, we focused on the
widespread radial and tangential distortion model, which covers many kinds of
lenses. However, specialized camera setups or more severe construction flaws require
more complex distortion models like thin prism [104], rational [62] and tilted sensor.
Eventually, one could incorporate a detection of unused parameters. This would
allow starting with the most complex distortion model which could be gradually
reduced during calibration. Furthermore, the applicability of the proposed method
to non-pinhole camera models like omnidirectional cameras [32] should be evaluated.

Finally, the general method needs adaptation to special cases like;
» microscopy, where the depth of field limits the possible calibration angles and

o calibration for a large distance, which requires calibrating at out of focus

distances, as scaling the pattern to distance is not applicable.

5.2.2 Adapting pose selection to improve guidance

In chapter 3.4, we have evaluated different camera setups and visualizations for
guidance during calibration. While the surveys indicate benefits from using
a specific visualization, our qualitative observations indicate that larger gains
are to be expected from adapting the pose sequence then from modifying the
pattern visualization. Particularly the arbitrary switching between the pose
categories requires physical and mental switching on the user side. Additionally,
we observed that matching 3 arbitrary rotations of the pattern to the target pose
took considerably longer than matching the position. Therefore, the pose sequence
should be adapted to further improvements on user guidance. Currently, the poses
optimize the algorithmic constraints while neglecting the user. One option would
be to look for a better compromise between these two objectives. Alternatively,
one could introduce "guidance only" poses that are placed between the current
pattern position and the target pose. Those would not be used for calibration, but
rather give the user more hints on how to reach the target pose. Trivially one could
insert the neutral pose between two calibration poses such that only 3 DOF change
between each two displayed targets. As our compactness evaluation shows that
the amount of required frames can be further reduced, the introduction of neutral

transition poses would not necessarily increase calibration time.



100 5.3. Final thoughts

5.2.3 Enable capturing complex surfaces

In chapter 4.3, we have presented a method that makes it possible to extract the
texture of an object on the fly. However, the method relies on a fixed camera
exposure. To account for exposure compensation as employed by many cameras, we
presented a global exposure normalization approach, which, however, is error-prone.
Here, reading the actual camera exposure could be used for accurate exposure fusion
of the images. The surface specularity could be explicitly considered during merging
[46]. Currently, we assume diffuse reflection, which systematically over-brightens
specular surfaces. At this a plausibility test during merging could be used to reject
implausible colors as caused by e.g. occlusion. As the LINEMOD detector is no
longer state-of-the-art and further investigation is needed to similarly integrate our
approach into an existing CNN-based method. This would require breaking up the

end-to-end trained "black-box" to make the color information explicit.

5.2.4 Multi-modal image translation

In chapter 4.4, we have introduced GAN models to bridge the domain gap between
real images and synthetic images. To consider the multitude of possible surface
materials, the method relies on blind randomization during rendering. Instead,
it seems beneficial to employ a generator that is aware of the multi-modal data
and therefore is capable of producing different surface materials based on a noise
vector. To this end, one could replace the image-conditional CYCLEGAN by a
more recent variant like MUNIT [43]. Alternatively, the unconditional STYLEGAN
[49] architecture is capable of generating multiple styles in a similar fashion, as it
is able to disentangle content from style. However, it needs further regularization

to force it to closer resemble the input image.

5.3 Final thoughts

In this thesis, we have shown how to automate the setup of a camera for the task of
object pose detection. Particularly, we introduced a camera calibration service and
an easy to handle method for synthetic training of deep CNN models. This enables
scene understanding for many internet-connected cameras today. Notably inside
industrial production lines, which can now be dynamically set up and re-configured.
However, similarly any current inference-capable smartphone can be used. This
enables a wide range of new applications, as the choice of a device is no longer
dictated by a vendor-specific framework. Indeed, the actual device can be considered

as a black box thus allowing to fully focus on the task at hand.
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The techniques developed in this thesis are however only the first step towards a
wide deployment of the computer vision algorithms that are available today. At least
partly inspired by the approaches in this work, researchers have started applying

similar ideas to stereo-camera setups, depth sensors and beyond [54, 89, 72].
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Appendix

Supervising activities

The following bachelor and master thesis were supervised by the author.

1.

Pollabauer, Thomas; Supervisors: Rojtberg, Pavel; Kuijper, Arjan 'STYLE:
Style Transfer for Synthetic Training of a YoLo6D Pose Estimator'. TU
Darmstadt. Master Thesis, 2020.

Matthiesen, Moritz; Supervisors: Rojtberg, Pavel; Kuijper, Arjan "Interpola-
tion von Kalibrier daten fir Zoom und Autofokus Kameras". TU Darmstadt.
Bachelor Thesis, 2019.

Huertas Celis, Lizeth Andrea; "Evaluation and design of camera calibration
patterns". hda Darmstadt. Bachelor Thesis, 2018.

Bergmann, Tim Alexander; Supervisors: Kuijper, Arjan; Rojtberg, Pavel
"Interaktive Echtzeit-Kalibrierung"'. T'U Darmstadt. Bachelor Thesis, 2016.

Gorschlueter, Felix; Supervisors: Goesele, Prof. Dr. Michael; Rojtberg,
Pavel "Eine quantitative Evaluation von Farbtransferverfahren fiir Augmented
Reality". TU Darmstadt. Master Thesis, 2015.

In the years from 2016 until 2020 the author contributed to the lecture Virtual
and Augmented Reality at the TU Darmstadt by supervising student projects

and holding lectures on the topics of "Camera Calibration", "3D Visualization"
and "Object Detection".
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A.2 Further publications

The following publications are related to the field of CAD-based object detection
and have been co-authored. As they are not core to this work, they are mainly

mentioned for completeness.

Rojtberg, Pavel, and Audenrith, Benjamin. "x3ogre: connecting X3D to
a state of the art rendering engine." Proceedings of the 22nd International
Conference on 3D Web Technology. 2017. — [81]

Engelke, Timo, Jens Keil, Pavel Rojtberg, Folker Wientapper, Michael Schmitt,
and Ulrich Bockholt "Content first: a concept for industrial augmented reality

maintenance applications using mobile devices." Proceedings of the 6th ACM
Multimedia Systems Conference. 2015. — [24]

Olbrich, Manuel, Tobias Franke, and Pavel Rojtberg. "Remote visual tracking
for the (mobile) web." Proceedings of the 19th International ACM Conference
on 3D Web Technologies. 2014. — [69]

Wientapper, Folker, Harald Wuest, Pavel Rojtberg, and Dieter Fellner "A
camera-based calibration for automotive augmented reality head-up-displays."
2013 IEEE International Symposium on Mized and Augmented Reality (1S-
MAR). IEEE, 2013. — [106]

A.3 Software contributions

During the course of this thesis, several contributions to open-source projects have

been made. Particularly, I became the core maintainer of the Ogre3D rendering

engine. The following list shows some notable mentions:

Honorable mention for contributing to the OpenCV 3.2 release

https://opencv.org/opencv-3-2/

Maintainer of the Ogre3D rendering engine
https://github.com/0GRECave/ogre

Author of the ovis 3D rendering module in OpenCV
https://github.com/opencv/opencv_contrib

General availability of the calibDB calibration service
https://www.calibdb.net/

Source code release of posecalib

https://github.com/paroj/pose_calib
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