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Abstract

In this paper, we develop a method for robust filtering of a noisy set of points sampled from a smooth surface. The
main idea of the method consists of using a kernel density estimation technique for point clustering. Specifically,
we use a mean-shift based clustering procedure. With every point of the input data we associate a local likelihood
measure capturing the probability that a 3D point is located on the sampled surface. The likelihood measure takes
into account the normal directions estimated at the scattered points. Our filtering procedure suppresses noise of
different amplitudes and allows for an easy detection of outliers which are then automatically removed by simple
thresholding. The remaining set of maximum likelihood points delivers an accurate point-based approximation of
the surface. We also show that while some established meshing techniques often fail to reconstruct the surface
from original noisy point scattered data, they work well in conjunction with our filtering method.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Computational Geometry

and Object Modeling

1. Introduction

Point clouds have become increasingly popular in mod-
eling and rendering applications [ABCO*01], [AKO04],
[PZBGO00, RL00, BK03, PKKGO03, ZPvBGO1] due to im-
proved graphics hardware and technologies for the acqui-
sition of point geometry. Specifically, robust processing
of scattered point data is currently a subject of intensive
research [Ste99, MVd03, PMG04, FS05, SSB05]. Here ro-
bustness means that an estimation/ filtering technique works
well on noisy data with a small fraction of gross errors (“out-
liers”). A concise introduction into the field of robust filter-
ing and estimation is available in [PTVF93]. In this paper,
we develop a technique for robust filtering of noisy sets of
points scattered over surfaces and containing outliers. Such
point datasets are routinely generated by optical and photo-
metric range finders. The left image of Figure 1 shows a typ-
ical output of a structured light scanner. Beside usual small-
amplitude noise the dataset contains many outliers. The right
image presents the result of our filtering technique. The
outliers are automatically removed and the small-amplitude
noise is nicely suppressed.

While low-pass filtering [Lin01], MLS fitting
[ABCO*01, MVd04, WPH*04, DGS04] and PDE-
based [LPO5] approaches remove small-amplitude

noise well, eliminating outliers remains mostly a man-
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Figure 1: Filtering of a face scan acquired using a struc-
tured light scanner. Initial scattered point data contains
small-amplitude noise and outliers (left image). Our method
automatically removes the outliers and nicely suppresses
small-amplitude noise (right image).
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Figure 2: lllustration of the kernel density estimation tech-
nique for 1D scattered point data. Local maxima of the ker-
nel estimation f define cluster centers of the original data.

ual procedure. A concept for the removal of distant
outliers can be found in [XMQO4]. Despite of recent
progress in extending robust statistics and statistical
learning techniques to processing scattered point data
[PMGO4, ILL*04, SGS05, FS05, SSB05], the problem of
automatic outlier identification and removal from scattered
point data remains unsolved. We consider our technique
as a step towards a satisfactory solution to the problem of
automatic robust filtering.

Our method can be considered as a nonparametric kernel
density estimation scheme [Ros56, Par62]. Given 3D scat-
tered point data P = {py,...,py}, we want to estimate an
unknown density function f(x) of the data. A simple kernel
estimation f(x) of f(x) is given by

-gere(5®). o

The smoothing parameter # is called the kernel size and &
is the kernel function which is usually chosen to be a Gaus-
sian function. Figure 2 illustrates the kernel-based density
estimation approach. Local maxima of the kernel estima-
tion f(x) naturally define centers of clusters in the scattered
data P.

The main idea behind our filtering approach consists of
defining a kernel estimation f(x) to determine those cluster
centers which deliver an accurate approximation of the sam-
pled surface. To detect the local maxima of an appropriately
constructed kernel estimation f the Mean Shift technique
[Che95, CMO02, FH75] is used. Then clusters corresponding
to the outliers are easily detected by using a simple thresh-
olding scheme.

We also demonstrate that our robust filtering method
works nicely in conjunction with mesh reconstruction tech-
niques as Power Crust [ACKO1] and Tight Cocone [DGO03].
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Figure 3: 2D example of the weighted least-squares fitting
plane and ellipsoid kernel computation.

2. Likelihood and Convergence

In this section, we present our statistical method to filter
noisy point cloud surface data. We approach this problem by
defining a smooth likelihood function L reflecting the prob-
ability that a point x € Risa point on the surface S sam-
pled by a noisy point cloud P. In order to filter the noisy
samples we use an iterative scheme inspired by Mean Shift
[Che95, CMO02, FH75] to move the points along the gradient
of L to maximum likelihood positions.

2.1. Likelihood Function

In order to define the likelihood function L we accumulate
local likelihood functions L; defined for every sample point
pi € P. We measure the likelihood L;(x) for a certain x con-
sidering the squared distance of x to the least-squares plane
fitted to a spatial neighborhood of p;. Being more specific,
we determine the fitting plane by computing the weighted
covariance matrix

N D
S T (L T
=1

where £ is the kernel size, ¥ is a monotonically decreasing
weight function and ¢; is the weighted average of all sam-
ples inside the kernel. Since C; is symmetric and positive
semi-definite, its eigenvalues kf, [ =1,2,3, are real-valued
and non-negative: 0 < 7»? < 7»1«2 < 7»,!, Furthermore, the cor-
responding eigenvectors vf form an orthonormal basis. Thus
the covariance matrix (2) defines the ellipsoid

Ei(x)={x: (x—ci)TCi_1 (x—¢;) <1}, 3)

where the least-squares fitting plane is spanned by the two
main principal axes Vil and V,~2 of E; and has the normal V? =
n;. A 2D example is illustrated in Figure 3. If normals are
provided by the scanning device we use them instead of the
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estimated normals. Using the squared distance of x to the
least-squares plane we measure the likelihood L;(x) as

L) = @i (x—e) [~ [(x—e) n?]. @)

Thus positions x closer to the least-squares plane will be as-
signed a higher probability than positions being more dis-
tant. Additionally, we assume that the influence of a point
p; on the likelihood of a position x diminishes with increas-
ing distance. To consider this behavior we use monotonically
decreasing weighting functions ®; to reduce the influence of
each L;. In contrast to radial functions in [PMG04, OBS05]
we use a trivariate anisotropic Gaussian function ®; which is
adapted to the shape of the ellipsoid E;. This has the advan-
tage that the weighting function is also adapted to the point
distribution in a spatial neighborhood of p;.

To define the likelihood function L modeling the proba-
bility that a certain point X is a point on the sampled surface
S, we accumulate the local likelihoods L;(x) contributed by
all points p;.

N
1) = L wiki(¥) )

Note that we can easily incorporate scanning confidence
measures w; € [0, 1] associated with each point p; by scal-
ing the amplitudes of the likelihood functions. If no scanning
confidences are provided we use w; = 1. Figure 4 shows an
example of a slice of the likelihood function L.

2.2. Convergence

After determining the likelihood function L(x) we use it to
smooth the point cloud by moving all samples to positions of
high probability. This means we move the samples to posi-
tions which are most likely locations on the sampled surface.
To find the local maxima of L(x) we use a procedure simi-
lar to a gradient-ascent maximization. We freeze the weight-
ing functions ®; since they change slowly and approximate
VL(x) by

N
-2 ZIWJ'(DJ' (x—¢j)- [(x—¢j)-m]-mp. (6
=

To allow a fast convergence of the samples to probability
maxima we choose the step-size adaptive as

1
T= .
N
2051 wi® (x—c¢))
This means that the step size is small near to the probability

maximum and increases to the border of each kernel. This
provides a fast and stable convergence of all sample points.

O]

Combining equations (6) and (7) we get the resulting iter-
ative scheme
pi=pi . p =pf-—mf @)
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Figure 4: A slice of the likelihood function L of the noisy
Dragon head model (bottom left) and a zoom of the framed
region (bottom right). The function values are represented
by colors increasing from deep blue to purple. Note that L is
a smooth function.

N k k
v =1 Wi (Pi - Cj) - [(pi —¢j) n,-] nj
m; = N T .
Yiiwi®; (Pi - cj)
In order to filter the point cloud P we apply the iterative

scheme individually to every sample. We stop the iterative
process if

©)

-+l k —4
o™ =il < 10" (10)
Each sample usually converges in less than 10 iterations.

A feature of our filtering method is the inherent clustering
property. As the number of kernels is larger than the number
of maxima in the likelihood function L (see Figure 2), several
sample points converge to the same probability maximum.
We cluster those samples and place one representative point
at the local maximum of L. See Table 1 for details on the
point reduction rate.

2.3. Adaptive kernel size

So far we only used a fixed radius / to compute the local
neighborhoods for the ellipsoidal weight function and least-
squares fitting plane computation. However, invariant ker-
nels might not be suitable for datasets with varying sam-
pling density. To overcome this problem we use the k-
neighborhood of each sample p; for the PCA analysis to
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Figure 5: The effect of adaptive kernels. Left: The Dragon
dataset is smoothed using a fixed kernel size. Large ampli-
tude noise at the right foot of the dragon cannot be filtered
due to maxima of L distant to the most likely surface. Right:
Filtering result of the same dataset using adaptive kernels.
Outlying maxima are well damped. Beside very few points,
the noisy samples in the rectangular region are filtered com-
pletely.

compute the ellipsoidal kernel E;. In this manner we not only
adapt the kernel shape to the point sample distribution in
a neighborhood of p; but also the kernel size to the spatial
sampling density. The motivation behind this choice can be
observed in Figure 5. If a fixed radius /% is used local maxima
of L are created distant to the most likely surface in regions
of the point cloud with large-amplitude noise. Those max-
ima also attract points during the iterative filtering process
creating a second layer of points around the most likely sur-
face (left). The usage of adaptive kernels leads to larger ker-
nel sizes in this regions due to the lower sampling density
of large amplitude noise. Therefore, kernels of both layers
intersect which dampens the effect of local maxima. This re-
sults in an improved filtering of large scale noise (right).

3. Results and Applications

This section shows results of our point cloud data filtering
technique. We apply our method to real-world datasets from
laser and structured light scanners. Furthermore, we present
the application of our algorithm to surface reconstruction. In
general, surface reconstruction is performed on noisy data
reducing the efficiency of surface reconstruction algorithms.
We show that the results of well-known surface reconstruc-
tion methods can be improved in conjunction with our filter-
ing method.

Dataset N M kernels  filtering h
Face 180K 114K  1.38s 18.45s 0.8
Sforza (front) 123K 81K 1.33s 21.32s 2
Sforza (side) 143K 95K 1.49s 24.94s 2

Dragonhead 485K 170K 23.22s 10m53s  0.0015
Dragon 2.IM 796K 1m43s 36m26s 0.0015
Dragon 2.IM 795K 6m40s 38mO05s k=250

Table 1: Timings for the ellipsoid kernel computation and
the filtering for the models presented in this paper. The ker-
nel size h is chosen in the interval of one to ten times the
average sampling density of the input data. The character
N denotes the number of input samples and M the num-
ber of filtered points. The parameter k indicates the number
of nearest neighbors used for the adaptive kernel compu-
tation. All results were computed on a 2.66 GHz Pentium 4
with 1.5 GB of RAM.

3.1. Filtering and Outlier Removal

We demonstrate results of our filtering technique in Fig-
ure 1 and Figures 5-7. All images are rendered using shaded
points. Normals for illustrating the results are computed us-
ing PCA analysis with small neighborhoods to avoid blur-
ring effects. Meshes in Figure 7 are displayed using flat
shading in order to show faceting. Table 1 summarizes our
results and the parameters used to generate them.

Figure 1 shows a point cloud face dataset acquired by a
structured light scanner before and after filtering using our
method. The raw point cloud suffers from several outliers
and ridges which are typical artifacts caused by the struc-
tured light. We show this comparison to illustrate the effec-
tiveness of our method for removing outliers and smoothing
of difficult datasets. Due to the clustering property of our
method, groups of outliers usually converge to a set of sin-
gle points sparsely distributed around the surface samples.
These points can be characterized by a very low spatial sam-
pling density compared to the surface samples. We use this
criterion for the detection of outliers and remove them using
simple thresholding. In Figure 6 we demonstrate the filter-
ing efficiency of our algorithm on laser scan data. We show
this comparison as laser scans are usually affected by differ-
ent types of noise compared to structured light scans. Due
to the different acquisition technique, laser scans are usu-
ally not corrupted by ridges and pits caused by structured
light, but affected by dense noise. Figure 6 illustrates that
high-frequency noise is removed by our method while lower
frequency details like hair, mouth and eyes of the Ippolita
Sforza Bust are preserved. As noted previously, our method
uses adaptive kernels to handle large scale noise. Figure 5
shows that while the dragon scan cannot be accurately fil-
tered using a fixed kernel size, adaptive kernels provide a
proper filtering of large amplitude noise.
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Figure 6: Smoothing of two range scans of the Ippolita
Sforza Bust. Note that details in hair, mouth and eye regions
are accurately preserved.

3.2. Surface Reconstruction

Surface reconstruction is one of the most fundamental prob-
lems in geometry processing. One important group of re-
construction algorithms are Delaunay-based methods. Those
techniques are supported by rigorous mathematical results
and provide correct reconstructions under specific sampling
conditions. Furthermore, they have the great advantage to be
able to reconstruct surfaces from points without normals. On
the other hand, these methods are sensitive to data with noise
and outliers which cannot be avoided in physical acquisition
processes. Most Delaunay-based methods are therefore not
practical to be applied to raw data. Therefore, making these
methods robust for noisy data is currently a field of intensive
research.

Our method can be used to filter real-world data before
using it for surface reconstruction by computational geom-
etry methods. We apply our filtering technique to noisy
point clouds and reconstruct a surface from the preprocessed
data. For comparison we also reconstruct a surface from
the same noisy point cloud without cleaning it using our
method. For surface reconstruction we use two well-known
Delaunay-based reconstruction algorithms, namely Power
Crust [ACKO1] and Tight Cocone [DGO03], which are avail-
able for scientific purposes. Figure 7 shows results of the
comparison. The direct reconstruction of the noisy scattered
data does not produce usable results. In contrast, results of
both algorithms using the filtered scattered data show signif-
icantly improved reconstructions.

(© The Eurographics Association 2005.

4. Conclusion and Future Work

We have introduced a kernel based clustering approach for
robust filtering of point cloud surface data. We show that
our technique removes noise of different amplitudes and al-
lows for an easy detection of outliers. We demonstrate the ef-
fectiveness of our algorithm on real-world datasets acquired
using structured light and laser scanners. Furthermore, our
method can be used in combination with surface reconstruc-
tion algorithms and improves their results on noisy data.

So far our method contains no special treatment of sharp
features which are usually present in mechanical models,
for instance. A nice work addressing sharp features is in-
troduced in [FCOSO05]. We consider this area as an interest-
ing avenue for future work. Furthermore, we plan to aug-
ment our filtering technique to out-of-core handling of large
datasets. As every point converges independently to a maxi-
mum of the likelihood function, parallelization is a straight-
forward task. This would allow our method to be applied to
extremely large models.
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