
The AIDA Display Processor System Architecture 

S. R. Evans, R. 1. Grimsdale, P. F. Lister and A. D. Nimmo 

ABSTRACT This paper describes the Advanced Image Display Architecture, AIDA. The 
primary aims were to design a graphics display subsystem capable of satisfying the needs 
of both high performance workstations and vehicle simulator visual systems. AIDA can 
accept planar triangle primitives which have been transformed, clipped and projected by 
preceding stages. The system implements many desirable features including modularity, 
anti-aliasing, translucency, pixel-rate hidden surface removal and Gouraud shading. AIDA 
has been designed to take advantage of ASIC technology in the implementation of its 
processing units. 

1 Introduction 

The realization of a flexible Display Processor Architecture, capable of meeting the re­
quirements of radically different applications, requires the use of modular subsystems. 
Application areas that the VLSI and Computer Graphics Research Group have targeted 
include high-performance 3D workstations and vehicle simulator visual systems. This 
paper will introduce AIDA, developed as part of the ALVEY PRISM project, in collabo­
ration with Link-Miles Ltd. and GEC Hirst Research Centre, and initially designed to be 
used in a graphics systems with the MAGIC I [1] or MAGIC II [4] processors performing 
the required geometry operations. The algorithms used, the system architecture, its com­
ponents and configuration details, and an analysis of the expected performance will be 
discussed. Several similar systems exist [3], but AIDA is considered to be more flexible in 
terms of configurability. Figure 1 represents the AIDA graphics display subsystems. 

AIDA accepts triangle vertex data, face data and gradient information. Subsequent 
processing steps produce an image with several desirable attributes. These include anti­
aliasing, Gouraud shading and translucency. The conceptual display pipeline is used to 
express the decomposition of primitive objects into spans, then into rendered, depth sorted 
pixels, without indicating the amount of data produced by each step. This depends primar­
ily, on the characteristics of the database and the effect of preprocessing stages. Section 4 
attempts to predict the results obtained from different database types. 

2 Algorithms 

The only primitive currently accepted by AIDA is the planar triangle-the decomposi­
tion of a database into triangular elements is assumed to be a relatively trivial task. This 
primitive was chosen to simplify the span generation process~the planar triangle is al­
ways convex, can be described using a small amount of data and can he characterised 

http://www.eg.org
http://diglib.eg.org


16 

. Span Pixel Rendering 
Generator r-----­ Generator r-----­ Unit 

Fig. 1. The Conceptual Display Pipeline 

simply. However, because the Pixel Generator and Rendering Unit only rely on span 
and pixel primitives, alternative Span Generators operating on different primitives-line, 
polygons, parametric surfaces-can be readily employed. Coherency is exploited by using 
interpolation methods in both the Span Generator and the Pixel Generator. 

2.1 The Span Generator 

The Span Generator is the first processing element of AIDA, generating spans from the dis­
play list of triangle data. Triangle primitives are defined for a virtual screen of 4096 x 4096 
elements, for viewing on a display screen of 1024 x 1024 pixels. A span therefore consists 
of four sub-scan lines and the start and end x coordinates, which, together with bounding 
information-sub-scan line coverage-provides enough information for anti-aliasing to be 
implemented in subsequent processing steps. One assumption is made-the triangles to 
be processed must have the top vertex (smallest Y coordinate) passed first, and if two 
vertices share the smallest y coordinate the one with the smallest x coordinate is to be 
passed first. The vertices are then passed to the Span Generator in clockwise order. In 
order to generate spans in a largely autonomous manner, a processing step is employed to 
ascertain the relative positions of the triangle vertices. This process is known as triangle 
typing. There are four types of triangle vertex orientations that AIDA must distinguish be­
tween, although triangle type 0 defines two effectively equivalent orientations. The typing 
parameters, So, 51 and 52, are given in Equations 1, 2 and 3. 

So YVI - Yvo (1) 

S1 YV2 - Yvo (2) 

52 YVI - YV2 (3) 



17 

Type qualifications are allocated using the simple magnitude comparisons, 

if (80 == 0)II(S2 == 0) 

type = 0 


else if (80 < 81) 


type = 1 
else if (80) sI) 


type = 2 


Together, the typing parameters and the type qualification fully describe a planar 
triangle for the span generation process. The triangle orientations are shown in Figure 2 
and gives the relevant typing parameters. A Bounding Mask is used to describe the span 
sub-scan line coverage, and is calculated using the current y coordinate and the two closest 
vertices, information which is type dependent. It is also used to determine the allocation 
of x coordinate interpolators to sub-scan lines to avoid reverse interpolation when a span 
does not start on the first sub-scan line. 

~ Gv:' ~v/,\ 
SoVS2 S2~ 

~ ~ 

Fig. 2. Triangle Types 

The development of a suitable algorithm for the Span Generator uses triangle typing 
and span coverage information, together with counters and comparators, to simplify and 
aid the production of similar routines for different triangle configurations. An overview of 
the algorithm is given. 



18 

per triangle { 
read vertex data. attribute data, write attribute data to face memory 
calculate data So. S10 S2. type triangle 

Ye = Yvo 

if (type == 0) { 
calculate bound mask (Ye. Vo, V2). allocate interpolators. write span 
while 	(Ye != Yv,) { 

Yc++. interpolate 
calculate bound mask (Ye) Vo, V2), write span 

} 
} 
else if (type == 1) { 

calculate bound mask (Ye, Vo, vd. allocate interpolators, write span 
while (Ye != YVj) { 

Ye++. interpolate 
calculate bound mask (Ye, Vo, vd. write span 

} 
calculate bound mask (Ye, Vt, V2). allocate interpolators. write span 
while (Ye != Yv,) { 

Yc++. interpolate 
calculate bound mask (Ye, Vl, vz). write span 

} 

} 

else { 1* type == 2 *1 

calculate bound mask (Ye, vo, V2). allocate interpolators. write span 
while (Ye != Yv,) { 

Ye++. interpolate 
calculate bound mask (Yo vo, vz). write span 

} 
calculate bound mask (Ye, V2, vd. allocate interpolators. write span 
while (Ye != YVj) { 

Yc++. interpolate 
calculate bound mask (Yc,v2, Vl). write span 

} 
} 

} 



19 

2.2 The Pixel Generator 


The Pixel Generator follows the Span Generator and has three main functions: 


• Interpolation in x for Gouraud shading. 

• Generation of the edge mask [2], required to perform antialiasing. 

• Depth sorting all the surfaces at each pixel for hidden surface removal. 

An outline of the Pixel Generator operations is given, 

per 	pixel { 

if (span(s) cover(s) pixel) { 


for (all spans previously read and stored) { 

read span data 

calculate intensity, proximity and edge mask 

depth sort 

keep span if contribution to next pixel 


} 
for (all spans that start at current pixel) { 


read span data 

calculate edge mask 

depth sort 

keep span contribution to next pixel 


} 
while (pixel contributing surfaces exist, until maximum) { 


output pixel contributions 


} 

} 

else { 


output background surface 

} 


} 

The AIDA depth sort algorithm was developed to resolve two problems: 

• Surfaces at different distances from the viewing position. 

• Coplanar surfaces. 

Surfaces with less depth (greater proximity) are placed in front of surfaces with greater 
depth (less proximity). Coplanar surfaces present an interesting dilemma. Take the ex­
ample of superimposing one surface on another-typically used for road markings, where 
texturing techniques may be inappropriate. Each surface will have the same proximity 
value, making it impossible to predict the visible surface. A label, termed surface i. d. and 
allocated during the design of a database, comprising a surface identification tag and 
a priority word tag is used. Identical surface identification tags are given to primitives 
with the same parent object. The database designer can then choose a priority value for 
superimposed markings and details depending on the desired effect. 



20 

2.3 The Rendering Unit 

Pixel rendering functionality is provided by the AIDA Rendering Unit. Situated between 
the Pixel Generator and the frame buffer, it takes depth sorted pixel contributions and 
outputs rendered RGB pixel data. Desirable features of the design include antialiasing 
and translucency. An algorithm for the Rendering Unit is given, 

per pixel { 
set pixel colour zero 
per element { 

read element 
} 
per sub-pixel { 

find depth mask 
} 
do { 

find next unused depth mask 
mark all unused depth masks as used 
find number of depth mask 
calculate initial translucency factor 
for (every surface covering sub-pixel in depth order) { 

accumulate colour 
produce translucency factor 

} 
} while (not all sub pixels used) 

} 

The Rendering Unit algorithm takes in a pixel packet, finding which sub-pixels are 
covered by the same pixel contributions, which will have the same final colour. The colour 
of each different coloured sub-pixel is calculated then multiplied by the percentage of sub­
pixels with that colour. The values for all the different coloured sub-pixels are then added 
together to give the final pixel colour, Equation 4, where m is number of covering pixel 
contributions, n is number of differing depth masks, if is the translucency factor, tl is the 
translucency level and w is the weighting factor. 

xth 
Cout (4)

16 
th+l th x tii (5) 

tfo w (6) 

To find which sub-pixels are covered by the same pixel contributions, the bit corre­
sponding to a given sub-pixel in the edge mask is stored. Each sub-pixel has a word, or 
depth mask, in which the nth bit represents the coverage by the nth pixel contribution in 
the packet. Comparisons of the depth masks will show which sub-pixels produce the same 
colour. By resetting the bits in any edge mask covered by an opaque pixel contribution, 
the number of differing sub-pixels can be reduced, without affecting the final result. This 
significantly decreases the number of calculations needed to produce the final pixel colour. 



21 

3 System Description 

The AIDA architecture exhibits an hierarchical structure, taking advantage of parallel 
processing and exploiting coherency. System performance can be optimised to meet a wide 
variety of applications by varying the number and configuration of processing elements. 

3.1 The Span Generator 

A complete Span Generator is implemented using two instances of the Span Genera­
tor ASIC-they are synchronised to track and interpolate the values at the left and right 
edges of a triangle, Figure 3. 

Display List 

8~o
Generator 

, 

Right Edges 

Span Memory 

Fig. 3. The Span Generator System Architecture 

Figure 4 shows the internal ASIC architecture. Interpolation of x values, proximity 
and intensity occur in parallel. The initial values for x are cascaded from the preceding 
interpolator, since each x interpolator deals with only a sub-scan line. The interpolated 
results are buffered in an output memory block, which is sent to the output block when a 
complete span is present-when the bottom bit of the bounding mask is set, or the bottom 
of the triangle has been reached. This information is obtained from the span coverage, 
using the Bounding Mask generator output present at the current scan-line. 

3.2 The Span Memory 

The Span Memory is the first stage of the pixel generation process, sorting all the spans, 
per frame or region, in XY order. The sort process creates, for each pixel, a null terminated 
linked list of spans which start at the referenced pixels. This method of span sorting 
simplifies Pixel Generator access to spans. 

3.3 The Pixel Generator 

Span coherency within the Pixel Generator, Figure 5, implies that only complete scan 
lines can be allocated per Pixel Generator. 



22 

I 

Output
LoInput I- OutputI-Memory 

Input Memory 

Typing -0 Interpolators 

Mask Generation 

Fig. 4. The Span Generator ASIC Architecture 

Span Memory 

Sort Pipeline 

Mask Face 
Pointer 

Fig. 5. The Pixel Generator ASIC Architecture 



23 

The Pixel Generator creates pixel packets, derived from all the spans covering a given 
pixel, and consists of a depth sorted list of pixel contributions. Two types of span, input 
through a 128-bit bus, are recognised: 

• A new span, which starts on the current pixel. 

• An active span, one which has previously started. 

The essential difference between the two types of span is their source. New spans 
come directly from span memory and are input after all current active spans have been 
processed. Active spans are stored in an external FIFO instance----on-chip storage of every 
active span may not be possible because of the RAM size required. 

The Datapath, Figure 6 generates the data packet of unsorted pixel contributions used 
by the Sort Pipeline. For a given pixel, the Sort Pipeline sorts the data in ascending depth 
order. The pipeline n autonomous modules, where (n - 1) is the maximum 
number of resolved translucent surfaces. Data at the input of each module is either routed 
to the output or exchanged with the data present in the module. 

1 r 
Span Output

Span Input Latch (SPIP) Latch 
(SPOP) 

1 1 1 1 
Proximity Intensity Face Mask 

Adder Adder Register Generate 

1 1 1 1 
1 

Proximity. Intensity. SID, Face Pointer 

Fig. 6. The Pixel Generator Datapath 

3.4 The Rendering Unit 

The Rendering Unit ASIC Architecture, Figure 7, presents a hardware implementation of 
the Rendering Unit algorithm. 



24 

Mask TL R G B 

Mask 

Process 


Logic 


RAM 

Weighting 
Factor 

Fig. 7. The Rendering Unit ASIC Architecture 

4 Performance 

4.1 Introduction 

It is widely recognised that accurate performance results for one system often have lit­
tle real value for comparisons with other systems. More suitable performance indicators 
are obtained by using a variety of different data, to reflect different applications. The 
results presented here use several AIDA system configurations, to give an indication of 
the predicted peak performance. 

4.2 System Configuration and Triangle Throughput 

We have given three example configurations, Figures 8, 9 and 10, together with peak 
performance rates and memory requirements. These configurations represent typical con­
nection schemes. System Configuration A is used as a reference, Figure 8, with peak 
throughput and memory requirements given in Tables 1 and 2. System Configurations B 
and C, Figures 9 and 10, show more complex, higher performance configurations which 
would typically be used in workstation and vehicle simulator display systems, together 
with associated throughput and memory requirements. 



25 

Throughput 
6/sec No. of 

SG PG ASICs 
1M lOOK 4 

Table 1. 

Memory Requirements 
Sub Regions 

Frame rate 6/frame 1 64 
1Hz lOOK 32M (21M) 19M (328K) 
5Hz 20K 
30Hz 3.3K 1M 

6.4M (4.2K) 3.7M 
600K 

Table 2. 

J 

Span Generator 

Pixel Generator 

l 


Rendering Unit 


+ 

Fig. 8. System Configuration A 



26 

Throughput 
!:::./sec No. of 

SG PG ASICs 
1M 400K 10 

Table 3. 

Memory Requirements 
Sub Regions 

Frame rate!:::./frame 1 64 
1Hz 400K 130M (84M) 74M (1.3M) 
5Hz 80K 26MB (17M) 15M (260K) 
30Hz 13.2K 4.3M (2.8M) 2.4M (43K) 

Table 4. 

Span Generator 

1 
! ! ! 1 

Pixel Generator Pixel Generator Pixel Generator Pixel Generator 

! 1 1 1 

Rendering Unit Rendering Unit Rendering Unit Rendering Unit 

Fig. 9. System Configuration B 



27 

Throughput 
6./sec No. of 

SG PG ASICs 
4M 6.8M 72 

Table 5. 

Memory Requirements 
Sub Regions 

Frame rate 6./frame 1 64 
1Hz 4M 1.3GB 741.1MB 
5Hz SOOK 260MB 148.22MB 

30Hz 133K 43MB 24.7MB 

Table 6. 

,--l .l. 
1 

-.l.. .L 
SG SG SG SG 

T T T 1 
11 11 i1 11 11 11 1 11 11 1 1 11 11111111 

PG PG PG PG PG PG PG PG PG PG PGPG PG PG PG PG 
PG PG PG PG PG PG PG PG PG PG PGPG PG PG PGPG 

l'U. U It 11 H It U 11 II It U II 11 U !1 

RU RURU RU RU RU RU RU RU RU RURU RU RU RU RU 
RU RU RU RU RURU RU RU RU RU RU RU RU RU RU RU 

U H II U HHUU HHUH U U U H 


Fig. 10. System Configuration C 



28 

5 Conclusion 

We have presented a modular graphics display subsystem, capable of high throughput and 
different system configurations, for the production of high-quality images. These designs 
have been developed using techniques presented in [5], and are being implemented in 
silicon using the GENESIU silicon compiler. 

Acknowledgements 

The work presented here has been funded under the UK ALVEY programme, and performed in 
collaboration with Link-Miles Ltd. and GEC Hirst Research Centre. We would like to thank Alan 
Cunliffe and Daljit Bimrah of Link-Miles Ltd. for their contributions, and all the members 
of the VLSI and Computer Graphics Research Group, Graham Dunnet, Marie-Pierre Hebert, 
Michael D. J. McNeill, Bina Shah and Martin White. 

References 

[1] 	 M. Agate, H.R. Finch, A.A. Garel, R.L. Grimsdale, P,F. Lister and A.C. Simmons.: A multiple 
application graphics integrated circuit-MAGIC. In A.A,G. Requicha, editor, EUROGRAPHICS'86, 
pages 67-77, 1986. 

[2] 	 L. Carpenter.: The A-buffer, an antialiased hidden surface method. In H. Christiansen, editor, Com­
puter Graphics-SIGGRAPH Conference Proceedings, pages 103-108, 1984. 

[3] 	 M. Dt>filring, S. Winner, B. Schediwy, C. Duffy and N. Hunt.: The triangle processor and normal 
vector shader: A VLSI system for high performance graphics. In Computer Graphics-SIGGRAPH 
Conference Proceedings, pages 21-30, 1988. 

[4] 	 H.R. Finch, M. Agate, A.A. Garel, P,F. Lister and R.L. Grimsdale.: A multiple application graphics 
integrated circuit-MAGIC II. In A.A,M. Kuijk and W. Strasser, editors, Advances in Computer 
Graphics Hardware II, pages 81-92. Springer-Verlag Berlin Heidelberg New York, 1987. 

[5] 	 A.D. Nimmo, P.F. Lister and R.L. Grimsdale.: A VLSI strategy for graphics. In A.A.M. Kuijk, ed­
itor, Advances in Computer Graphics Hardware III. Springer-Verlag Berlin Heidelberg New York, 
forthcoming. 

IGENESIL is a trademark of Mentor Graphics Silicon Design Division 


