Anti-Aliased Line Drawing on a Distributed Cell Store
System

A.A Moore, C.M.Ng, D.W.Bustard
Departient of Computering Science
Universily of Ulster
Cromore Road
Coleraine BT52 1SA
Northern Ireland

July, 1992

Abstract

One of the principle drawbacks with traditional parallel image composition architectures is
the lack of support for transparcat images. This paper introduces the Distributed Ceoll Store
System, an architecture based on image composition principles, but which provides explicit
support for transparency via its Scrial Bus System. The transparcency support is exploited in
a scheme for the generation of smooth-edged lines, which avoids the ueed for any anti-aliasing
calculation in software. The benefits of seginenting lines so that different segmoents may be
rendered in parallel in different processing units are identified and quantified, and the paper
concludes with a discussion on the benefits for incremental image specification systes which

could be gained from implementation on such a hardware platforns.

170 delivered by
- = EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org

1 Introduction

Interactive graphics systeins providing a quick response to user input clearly require high sys-
tem performance., One way to attain such performance levels is to perforin multiple operations
concurrently. Multiprocessing archilectures have been used for several years to meet the demand-
ing computational requirements of interactive graphics systems. Siinple operatigns suclt as the
rendering process can be easily divided into a sequence of pipelined operations. H idependent
processors are used to handle these operations, very high performance can be attained [Clar82].
However, more complex operations such as surlace tesselation aud illunination calculations can
not easily be handled by a highly pipelined architecture because of the difficulty in reconliguring
the pipeline to execute a wide varicly of graphics operations efficiently.

Parallel processing architectures have been explored by many rescurchers for performing draw- .
ing operations [Fuch81] and for front-cud geometric and arithmetic operations [Torb87). However,
a major drawback of highly parallel architectures is the low utilization of each processing unit in a
fully instantiated processor-per-pixel [KSyles8] or processor-per-polygon [Deme80] systei. In some
cases the utilization of the processing uuits may be less than one percent of their capacity [Fole90].
One way to achieve higher utilization 1s to build only a fraction of the hardware, bhut to allocate
its resources dynamically as they are needed. Two variants of this technique exist: virtual buffers
[Ghar89] and virtual processors [Bunks9]. Since both systems visit a region only once in a frame
time, bucket sorting is required, and this sorting must be performed on a frame-by-frame basis
at video rates. The impact of the sorting process is o increasc the fatency of the system by one
frame time which can be detrimental in real-time systems.

Another level of parallelisin is available in virtual buffer systens by having several buffers
work in parallel on different conceptual regions [Fuch89]. This notion of combining iiages from
different regions lead to the formulation of another category of multilevel parallel system, the
image-composition architecture [Molusg], [Shaw88]. 'The central idea is to distribute drawing
primitives over é number of complete rendering systems. Each rendering systetn then processes

its allocated primitives iudependently and stores the output in its own frame bufler. The output

171

from the frame buffers is synchronised so that a tree of compositors can be used to combie the
pixel streams of the partial image to form the final output. Very high performance systeins can
be built with this distributed processiug technique by using»a large pumber of pavallel rendering
systems. However, the image comnposilion operation does not support transparent immages, and
aliasing can often be introduced into the final output.

The Distributed Cell Store systens, heing designed at the University of Ulster, is an extensible
architecture based on the image composition principle which combines the functionality of a digital
.painting system with that of a video cflects unit. The {ollowing sections describe this architecture
and consider the possibilities for an increase in system throughput by making use of the hardware-

implemented transparency functiou, and the distributed nature of the processing uunits.

2 The Distributed Cell Store System

The Distributed Céll Store (DCS) System (Iig. 1) is based on the nmage composition architecture.
In order to overcome the aliasing and transparency deficiencies identified iu the previous section,
each image is assigned a display priority and each pixel is associated with an 8-bit transparency
value. The Serial Bus System (1mage compuositor) provides managenment of overlapping images, and
mixes such images of similar display priority on a pixel-by-pixel basis according to the relationship
defined by their transparency values. The number of processing centres {cell stores) in the system
is determined by a trade-off between support for multiple overlapping imnages, and the vesultant
complexity of the image composition mechanism. For reasons of cost and cfficiency, the current
system uses four cell stores.

A cell store is a self contained rendering unit consisting of a graphics processing engine, a
frame buffer, and a display processor to handle cell store output. "T'he graphics engine in each
cell store is a Texas Instruments 'I'MS34020 Graphies System Processor (GSP) [Texa90a). This
is a powerful general-purpose CPU, providing iustruction set support for graphics applications, a

512-byte instruction cache, and an on-chip memory controller which allows the GSP to interface

172

Host Host Data Bus Output
Interface Stage
Displa;
F) Y Feedback
List
Manager Bus
Display List
Cell Store Cell Store Cell Store Cell Store
0 i 2 3
. 3 nes i Pixel
Pixel Pixel Pixel Streain
Stream Stiream Stream
Serial
External Bus
" Video In Systens
Interface External Video Signal

Figure 1: Distributed Cddl Store Systen: Funetion Block Diagram

directly with the frame bufler, so completely removing the graphics burden froui the host. Within
a cell store, the GSP is associated with four 'T'MS34082 floating point coprocessors [Texa0bl, so
increasing the system throughput fur 31) and other floatiug point intensive applications. Morcover,
the four coprocessors can be employed to tinprove cell store performance by processing the four
pixel components (red, green, blue and transparency) in parallel.

An important capability of thic newer, graphics-based user interlaces, originally developed
at Xerox PARC [Thac81], is the use of windows to organise information on the display. The
Distributed Cell Store System provides hardware support for window management. On screen,
the window format is broken down into a series of horizoutal strips or bands, each containing a

number of rectangular areas, or tiles. A tile can be as large as the display itsclll or as simall as

173

N
™

4

Image Viewed by the User
Scrfeen. Display
Description Processor
List
Band]
MO g .
\ A NN 4
2 A QN A

>
-
§
-

7
7 4 A

Image Organisation in the {rame bufler The Underlyiug Tile Description

Figure 2: Screen Description Mcchanism for a Display wilth T'wo Querlapping Windows

a single pixel. The images for cach tile are read directly from the appropriate arcas of the frame
buffer on the fly during the active display time. A tile representation of a screen with two windows
is shown in Fig. 2.

In Fig. 2, tiles labelled A represcut the background area, and may be an arbitrary colour. Data
need not be fetched from the frame huller for these tiles, since the hackground colour pattern is
stored in a register in the display processor. The areas of tiles BB and ' map the visible portion of
window 1. The display processor [ctches data for these tiles from the frame buller region where
the image for this window is located. Tiles D and B represent the visible portion of window 2.
As an example, consider the composition of the first (uppermost) scan line in band 2. "This band
consists of 4 tiles; labelled A, C, 1) and A. The corresponding action [or the display processor is

to generate the background pattern for the area corresponding to tile A; then to read from the

174

frame buffer, at the appropriate place, image data for tiles C and D; and finally to output the
background pattern for the remainder of the scan line. If the user puts window 1 on top, the
pointers specifying the width of tile €. the frame buffer starting address and the width of tile D
will be changed, so instructing the display processor to fetch more data for tile * and less for tile
D. |

The tile description of the display screen is updated by the Display List Manager. 'T'his updated
list is then downloaded to the Display List Processor of the corresponding cell store. As the tiles
are defined by a set of pointers, operations such as panning and scrolling images within a window,
or even resizing and moving the window about the screen can be performed simply by manipulating
these pointers. Since the images arc read directly from the framne buller, the changes are always
presented to the user in a single {rame tinte.

The Serial Bus System serves three matn purposes: The first concerns the provision for output
of images at video rate in responsc to the display processor. This involves the resolution of over-
lapping images, and combination of images of equal priority according to the mixing relationship
defined by their transparency values. Sccondly, the Serial Bus System provides a method for the
capture of an external video signal. Uhis is a function of the Serial Bus System rather than the
data bus, as the latter cannot meet thie required video rate and caunot he occupied for long periods
of time without affecting the memory and screeu refresh functions ol the GSP. Thirdly, the Serial
Bus System controls the merging of a captured live inage with that stored in the franie buffer.

The display priority of an image defines its conceptual distance from the viewer. The opacity
of an image is defined by an 8-bit value (transparency factor) at each pixel. 1f the image of highest
priority is non-opaque (transparency lactor < 255) at any pixel position, it will be mixed with the
image of next highest priority. This depth traversal continues uutit cither a fully opaque pixel or
the background is reached. A hole in au image is specified by pixel (ransparency factors of zero;
such pixels will contribute nothing to the displayed image.

The output stage of the systemn consists of an output bufler and « transformation uuit. Final

system output can be redirected to a bhuller either preceding or following the transforimation engine.

The image stored in this buller can be regarded as the current output as frozen. thus enabling
a mix between an old frame and the new output. This is a cost-clfective alternative to using a
second screen output system.

The transformation engine consists of a GSP and a multiplier-adder tree. "The trassformation of
an image from a source space to a target space using a 4-by-4 transformation control grid [Nibl79]
requires 32 multiplications and 30 additions for each pixel. Such a throughiput is impossible in
a 70nS pixel time, so the transforination engine takes advantage ol the fact that pixels of the
same scan line have similar vertical cocflicients and control paramecters. “These values can then
be calculated during the horizontal blanl.\'ing period prior to the processing of that scan line.
Horizontal coefficients are accessed when needed from an SRAM store, indexed by a counter
(Horizontal Offset Generator). The control parameters, and vertical and horizontal cocflicients
are then passed to the multiplier-adder tree, {rom which the address in source-space of a pixel can

be output in a single 70nS pixel time.

3 Serial Bus Anti-Aliasing of Lines

One of the most widely used benclunarks against which the performance of computer graphies
systems is measured is the rate at which straight lines can be generated. Many architectures
provide hardware support for line generation and the 'TMS34020 GSP at the heart of cach cell
store even provides explicit instruction set support for this operation. The quality of the lines
produced by such hardware supported technigues, however, is usually tmmpaired by aliasing. One
of the most common and effective methods for elimination of aliasing is brush extrusion - a
technique first suggested by Whitted [Whit83] from an idea espoused by Crow {CrowT8].

By brush extrusion, a matrix of intensities greatest at the centre and decreasing towards the
edges, (representing a brush) is couceptually dragged along the path of the line. The line is
rendered by stamping the brush on the raster at eachi position produced by the line drawing

algorithm. The stamp is performed ou a pixel-by-pixel basis and comprises a weighted mix of

176

the drawing colour and the existing pixel value at that point. Colour systems which specifly pixel
values in terms of quantities of red, green and blue require three such mix operations for each
pixel. The Serial Bus System of the DOS provides hardware support for non~opague itnages, and,
by employing some of the capabilitics of the GSP at the heart of cach cell store, a brush extrusion
technique which avoids time-cousutning pixel mixing in software can be implemented.

The anti-aliasing scheme takes advautage of the fact that the Serial Bus System perforins pixel
mixing in hardware at the image cotnposition stage. By this technique, the line is drawn only on
the transparency plane of {the {ramne bufler, thus specifying the degree of opacity for cach pixel of
the image represented on the colour planes. For a line of constant colour, the red, green and blue
slanes need only contain a b’l;)ck of that colour which bounds the patli of the line. 'T'his block may
be created by the GSP FILL instruction which can set the values of up to 40 million 32-bit pixels
per second. The stamping of the brush along the path of the line can also take advantage of a
hardware-supported GSP instructios.

The PIXBLT (pixel-block transfer) instruction implements a general bitBlt [Pikes4] operation,
of which the transfer rate can approach 4 million 32-bit pixels per sccond. The (}Sl’ also provides
pixel processing operations which can be used to specify the exact ninner in which the PIXBLT
instruction affects the destination raster. These range from a replaceient of the destination array
with the source, to a number of boolcan and arithmetic functions such as AND, OR, XOR, ADD,
SUB, MAX, and MIN. Ani.i-aliasipg applications are supported by the ADDS (Add with Saturate)
option, by which the pixel values in the PIXBLT source array are added to those of the destination
region, but where each pixel sum is bounded to the maximum displayable value (Fig. 3).

Consider a line from (2g, yy) to (+1, 1) (where 2y < 21 and yy < y1) creabed using a brush
of diameter d. The path of the line is traced by repeatedly PIXBLTing the brush array to
the transparency plane, with one PIXBLT centred on cach point generated by the fine drawing
algorithm. The ADDS option will ensure that those pixels affected most often by PIXBLs will
exhibit the highest intensity, while the intensity of those pixels on the extremitics of the line

will be lower. Since the first and last PIXBLTs will be centred on the start- and cudpoints of

1 (2250|8050 22 1y o U 0 0 v i
2150 |1151170 {115} 50 210 0 0 0 0 i
3801701255170 80 310710 | 010 U |
4150 11151170115 50 410101041010 |
5122 150) 80502 570701 0}10710
(a) Brush to be stamped (b) Traget Raster
Values represent the 8-bit inteusity Zero values indicate a virgin (black)
level of the brush at that pixel background before the first stanyp operatiop
a c|d| e r| s alb|]cfd]e f]8
17122 80150214100 112215018 5012207 0

R

50 o 2| 50 | 137|220 | 195|100| 22 | 0

%f/{é//t% 0 31801220125
i

3180

<t
N
[
[V
[
@
[
[\]
<
<

SNHE
NN

4 {50

5 22% %%//z/// 0 5] 22 |100]195]2201137| 50 | ©
60%%%/9///5?0 60 225 |80 [50]|221]0
7101010100101 0 7101070107010 0

(c) The effect of the 1st brush Stawup (4) Result of the 2ud brush staunp

This diagram shows the effect of the This diagram shows the effect of the

first stamp, centered on pixel (3,¢). second stamp, centered on pixel (4,d).
where the maximum intensily is 255. Note how thic ADDS function has resulted
The shaded area will be affected by in some pixels reaching (but no exceeding)
the next stamp. the maximum value, while those further

from the centre are at lesser intensity.

Figure 3: The ADDS Funclion with OQuverlapping Brush Stamps

the line, respectively; the smallest rectangle which bounds the arca affected can be described by
(zo —d/2,y0 — d/2) and (z1 + d/2, 41 + d/2). These coordinates specifly the window from which
the line is displayed.

The position of the line on the screen is passed to the Display List Manager which adjusts
the tile description of the output image to map the window containing the line to the appropriate
place on the screen. During image composition, the Serial Bus System resolves the transparency
for the window, so allowing only those pixels which have been alffected by the PIXBLTs (those
which play a part in the line) to contribute to the final image. The amount contributed by these
pixels is dependent on their transparcncy value, and as can be scen {rom Fig. 3 the resultant
pattern will be that of a line seginent with intensity greatest at the centre and tending to zero at

the endpoints and edges.

4 A Parallel Line Drawing Technique using the DCS

The example of the previous section illustrates how the hardware support for transparency inherent
to the Serial Bus System can be used to implement an efficient anti-aliasing mechanisim. However,
such a scheme requires only a single cell store, and makes scant use of the hardware windowing
facility. We now present a line drawing methodology which employs the full functionality of the
Distributed Cell Store System to greatly mprove the throughput of an image creation system.
Consider a 4-cell store DCS architecture as described in Fig. {. Provision of an inmage creation
environment would require that one of the cell stores be dedicated to matutaining the state of the
current image so far. Therefore, at most 3 fully functional cell stores remaiu for rendering of future
primitives. If an anti-aliased line is to be added to the hmage, the operating systen can determine
exactly how many cell stores are available and then equally subdivide the line, distributing one
segment to each available cell store for rendering in parallel. The line segmients can be rendered
on any available area of the frame bulfer in a cell store, since the Display List Manager keeps track

of the frame buffer locations of all entities and their corresponding screen coordinutes.

Cell Store

I X Coordinate | Y Coordinate

0 (zg — dJ2) (yo — d/?2)
1 (zo — d/2) + (dz/3) (yo — d/2) + (dy/3)
2 (o — d/2)+(2+dxf3) | (yo—d/2)+ (2% dy/3)

Cable 10 The display origin of the line scgmcnds

When all line segments have been rcndércd, the Display List Manager distributes the updated
display lists to the cell stores. For cach cell store, the display list specifies the frane bulfer origin,
width, and height of the window containing that cell store’s line seginent, and the display origin
from which that window will be output. ‘The display lists are processed by their respective display
processors, which fetch the pixels froin thie frame buflers and output them to the Serial Bus System
at the appropriate time.

Suppose a line from (2o, y0) to (£, y1) created with a regular brush of diamecter d is to be
added to an image in cell store 3. I all othier three cell stores are available, the line can be equally
subdivided into three segments. Tlic rectangular area required to bind a segment has a dimension
of dx by dy, where dz = (&) — £y + d)/3 and dy = (y1 — yo + d)/3. The display origin to which
each cell store’s segment window is mapped is then given in t‘ablc [

The display lists are downloaded to the display processor during the field blanking period
after the entire line rendering process has been completed. By wmapping the individual windows
containing the line segments to the origins given, the complete line ca;x be viewed i the next
displayed frame. As the display inmage output from the Serial Bus System can be routed through
an output stage frame buffer, the composite image can then be directed, via the Feedback Bus, to
cell store 3 from where it can be used as the background for the next primitive to he added. Such
an incremental approach to image coustruction has applications in a wide range of arcas from
painting toolkits to CAD systems. Pig. 4 illustrates this distributed approach to the rendering of
primitives.

One potential problem in this schewme concerns the treatment of the points al whicli the line is
subdivided. The overlapping nature of the brush stamps comprising a line results in pixels being

potentially affected by a sequence of PIXBLT instructions. I, Lhowever, the line is segmented,

FeedBack Bus

Cell Cell Cell Cell
Store 0 Store 1 Store 2 Store 3

Line Line Line Buck.bround
Seg. 1 Seg. 2 Seg. 3 Image
Output

Frame)

Buffer Display Screen

Serial Bus System -+ S -

A

Line Line Line
Seg. 1 Seg. 2 Seg. 3

Figure 4: Distributed Line Rendcring. Cell Slores 0, 1 & 2 cach render one thid of the line
which the serial Bus System displays as a whole on the background supplied by Cell Store 3. The
resultant tmage is then caplured by the Qulpul Frame Buffer and rouled to Cell Store 3, where it
becomes the background onio which the nexl primilive is added

then stamps immediately before and after the point segmentation witl not influcunce all the pixels
that would have been affected had scgmentation not taken place - since different segments reside
in different cell stores. The solution is to extend the segnient in cach cell store past ihe point of
subdivision, and clip the segment to the original subdivision when passing the window dimensions
to the Display List Manager. lu this way, each pixel tn each segient is visited by the brush
exactly as it would in a non-distributed implementation, yet the line appears as if it were rendered
in a single cell store. If the brush is stamped once for each horizontal or vertical pixel along the
extent of the line, the required exteusion in a cell store holding a scgment from the middle of the
line is equivalent to the diameter ol the brush - half of which is at cither end of ihe segment.
It is therefore important to ensure helure subdivision that the overhead incurred by the segment
extension does not outweigh the advantages of segmenting and distributing the line.

Assume that the length of the original line is L, the diameter of the brush is d, and u cell stores

are used to process the line in parallel. With n line segments, there are (2n — 2) extensions, and
the total extra length due to these extensions is (n — 1) x d. If the line is equally divided, cach cell
store will need to process a line seginent of average length [L+ (. — 1) * d]/n. In order to achieve
any speed advantage from the distributed approach, the fength of the line seginent rendered by
each cell store must be less thau the original length of the line, which could after all be rendered

by a single cell store without any cxtensions. i.e.

[L+(n—=1Dxd]/n<l (1)
rearranging,
L+(n-1xdl/u<l = [L+(n—-1)*dl< Lxn (2)
= (n—1yxd< Lxn—1L 3)
= (n—=1Dxd<{n~1)*L (4)
= d<L (%)

This result indicates that for any perfortnance improvement to be gained from distribution, the
length of the line to be rendered must he greater than the diameter of the renderiug brush. If this
is not the case, then the line will be rendered tore quickly by a single cell store.

It is interesting to note the effect on the performance of the distributed scheme of the ratio of
the length of the line to the diamcter of the brush. Assuming that the time required to render a
line segment 1s proportional to the length of the segient, then the ratio of the time required to
process the w.hole original line by a siugle rendering unit to the time required for cach individual

cell store to process an equally divided line scgmént 1s:
L:{L+(n—=1)xd]/n (6)

Expressing the ratio of line fength to brush diameter as M = L : d aud substituting Af into the

Ratio of Line Length to Brush Diameter
1 2 4 8 16 32 40 G4 80 100 120
21100 133 160 1.98 188 194 195 197 198 199 1.99

Number of
rendering 31 1.00 150 200 240 267 2.82 286 293 296 298 2.99
cell stores ’

41100 160 229 291 337 3.66 3.72 3.86 3.93 3.96 3.98

Table 2: Performance lmprovement Obtained by Disiribulion of Line Drawing

ratio above gives:

Md : [Md+(n-1)xd/n (N
=Mud @ Md+nd-d (8)
=Mn : M+tn-1 9

Table 2 illustrates how this ratio is affected by the line length to brush diamcter ratio and by
the number of rendering cell stores. As the length of the line greatly exceeds the brush diameter, so
the overhead incurred by segment extension becomes negligible, and the performance improvement

offered by distribution becomes a direct function of the number of reudering cell stores.

5 Performance Evaluation

Table 3 provides simulated results (in mS) for the rendering of a rauge of lines of different lengths,

with rendering carried oul by a varying number of cell stores. The rendering time comprises:

1. the time required for the host to determine the nunber of available cell stores and subdivide

the line accordingly;

2. the time for commands to be issued sequentially by the host to cach participating cell store;

and

3. the time for the cell stores involved to perform the area fill, poiut generation, and brush

stamping functions required for each line segment.

Length of the Line (in pixels)
4 [% [207 40] 80 [160 [320 | o640
No Distribution || 0.319 | 0.634 | 1.654 | 3.606 | 8.474 | 22.050 | 64.562 | 211.026
1 Cell Store 0.335 | 0.650 | 1.670 | 3.623 | 8.490 | 22.067 | 64.579 | 211.042
2 Cell Stores 0.495 | 0.574 | 1.064 | 1.945 | 3.947 | 8.911 | 22.679 | 65.575
3 Cell Stores 0.499 | 0.578 | 0.902 | 1.499 | 2.712 | 5.063 | 13.152 | 35.119
4 Cell Stores 0.503 | 0.582 | 0.824 | 1.242 } 2.139 | 4.173 | 9.201 | 23.097

Table 3: Simulaled Lreculion Time of Line Drawing (in mS)

The precise time for the area {ill operation 1s dependent on the orientation of the fine and hence
the size of its bounding rectangle. 'I'lie results in Table 3 reflect the worst case when the line lies
on the true diagondl and the size of the bounding box is at its greatest. 'The brush stamping
function assumes a square brush matrix of dimension 7 pixels.

For the purposes of compatrison, the top line of results indicales the performance of this tech-
nique where no attempt is made to distribute rendering and the lines are generated in entirety
by a single cell store. The difference hetween the results in this case and those where an attempt
is made to distribute but only a single cell store is available may be expressed as the overhead
incurred during distribution. Where distribution is available, it can be seen that as the line length
grows, so the speedup gained by distribution increases (lramétically, up to a 90% reduction in the

rendering time for a 640 pixel lne when produced by 4 cell stores.

6 Conclusions

The efficient generation of high-quality fmages can be greatly enhanced by hardware support for
anti-aliasing, but such support is not usually provided by image composition architectures. This
paper has introduced the Distributed Cell Store System - an architecture based on the image
composition principle, but which tnplenents a pixel-level transparency function in hardware via
its Serial Bus System. The provision for windowing by dynamic mapping of regions of distributed
frame buffers to the display screcn, lends itsell to the specification ol images by their component
parts - each rendered in parallel by an independent processing unit. "The DCS feedback bus can

be used to route the composite tnage back 1o one of the independent units in a single frame time.

Experiments suggest that a substautial linprovement in systen throughput can be obtained by
employing such hardware in an environment of incremental image spocification. A specific scheme
for distributed rendering of anti-aliasced lnes has been presented, but the basic approach could

easily be extended to other primitives.

References

[Bunk89] Bunker, M, and Econouy, R.. “Evolution of GE CIG Systeuns”, SCSD Documnent, Gen-

eral Electric Company, Daytoua Beach, FL, 1989

{Clar82] Clark, J., “The Geometry Engine: A VLSI Geometry System for Graphices™, Computer

Graphics, Vol.16, No.3, 1982, pp127-133

[Crow78] Crow, F., “The use of Grayscale for lmproved Raster Display of Vectors and Characters”,

Compuler Graphics, Vol.12, No.3, August 1978, ppl-5

[Deme80] Demetrescu, S., “A VLSI-Based Real-Time Hidden-Surface Elimination Display Sys-
tem”, Master Thesis, Departinent of Computer Science, California Institute of "Technol-

ogy, Pasadena, CA, May 1980

[Eyle88] Eyles, J., Austin, J., Fuchs, H., Greer, T., and Poulton, J., “Pixel-Planes 40 A Sum-
mary”, in Advauces in Compuler Graphics Hardware 11 (1987 Furographics Workshop

on Graphics Hardware), Eurographics Seminars, 1988, pp83-208

[Fole90] Foley, VanDam, Feiner, Huglies, Computer Graphics: Principles and Praclice, second

edition, Addison Wesley

[Fuch81] Fuchs, H. and Poulton, J.. "Pixel-Planes: A VLSI-Oriented Design for a Raster Graphics

Engine”, VLSI Design, 2(3), Q3 1981, pp20-28

[Fuch89] Fuchs, H. Poulton, J, Eyles, J., Greer, 1., Goldfeather, J., Ellsworth, D., Molnar, S.,

Turk, G., Tebbs, B., and Israel, f.., “Pixel-Planes 5: A Heterogeneous Multiprocessor

[Ghar89]

[Moln88]

[Nibl79]

[Pike84]

[Shaw88]

Graphics System Using Processor-Enhanced Memories™, Computer Graphics, Vol.23,

No.3, 1989, pp79-88

Gharachorloo, N., Gupta, S., Sproull, R., Sutherland, [., “A Characterization of Ten

Rasterization Techniques™. Compuler Graphics, Vol.23, No.3, 1989, pp355-368

Molnar, S., “Combining Z-Bufler Engines for Higher-Speed Rendering™. 1988 Euro-
graphics Workshop on Graplhics Hardware, Sophia-Antipolis, France, September, 1988,
in Kuijk, A.A.M., ed., Advances i Compuier Graphics Hardware 111 Proccedings of
1988 Eurographics Workshop on Graphics Hardware, Burographics Setuinars, Springer-

Verlag, Berlin, 1989

Niblack, W., An Inlroduclion lo Digilal Image Processinyg, Prentice-Hall International,

1979, pp140-141

Pike, R., “Bitmap Graphics”, in Course Noles { for SIGGIAPH 84, Miuneapolis, MN,

July 1984

Shaw, C., Green, M., and Schaeclier, J.; “A VLSI Architecture for hnage Composi-
tion”, 1988 Eurographics Workshop on Graphics Hardware, S<‘>phiav-1‘\m.ipolis, France,
September, 1988, in Kuijk, A.AM., ed., in Advances in Computer Graphics Hardware
III Proceedings of 1988 Kurographics Workshop on Gruphik's Hardware, Kurographics

Serninars, Springer-Verlag, Berlin, 1989

[Texa90a] Texas Instruments luc., 13534020 User’s Guide, Texas lustruments, Dallas, 'T'X, 1990

[Texa90b] Texas Instruments Inc., T'A534082 User’s Guide, Texas Instruinents, Dallas, 'T'X, 1990

[Thac81]

{Torb87)

Thacker, E., McCreight, IX.. Lampson, B., Sproull, R.,and Boggs, R., “Alto: A Personal
Computer”, in Siewiorck, O, Bell, G., andNewwell, A, Computer Structure: Readings

and Ezample, McGraw-Hill, NewYork, 2nd edition, 1981

Torborg, J., “A Parallel Processor Architecture for Graphies Arithmetic Operation”,

Computer Graphics, Vol.21, No.3, July 1987, ppl97-204

[Whit83] Whitted, T., “Anti-Aliascd Line Drawing using Brush Extrusion”, Compuler Graphics,

Vol.17, No.3, July 1933, pp151-156

