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Kurzfassung

Die Moglichkeit, Daten schnell, interaktiv und visuell vergleichen zu konnen, wird fiir die
Datenanalyse eine immer wichtigere Aufgabe. In der Visualisierung sind immer mehr Systeme
gefragt, die sich nicht nur fiir die Représentation von einzelnen Datensétzen, sondern fiir die
Analyse von ganzen Sequenzen von Datensitzen eignen. Der Benutzer kann beim Vergleichen
von Daten auf zwei Arten unterstiitzt werden. Zuvorderst ist es sehr hilfreich, wenn Benutzer
die Datensitze, die verglichen werden sollen, im System passend zueinander anordnen konnen.
Das unterstiitzt die intuitive Vorgangsweise von Menschen beim Vergleichen von Daten. Weiters
konnen Visualisierungssysteme die Unterschiede in den Daten selbst berechnen und dann in
geeigneter Form dem Benutzer priasentieren. Die Vergleichende Visualisierung beschiftigt sich mit
neuen Techniken, wie man in der Visualisierung Benutzer am besten beim Vergleichen von Daten
unterstiitzen kann. Solche Techniken konnen iiblicherweise einfach fiir zwei oder mehrere Objekte
angewendet werden, stolen aber an ihre Grenzen, sobald die Datenmenge entsprechend grof3 wird
(z.B. 100 Objekte oder mehr). Solche Datensammlungen, die eine groe Anzahl an individuellen,
aber doch zusammengehorigen, Datensitzen enthalten, werden Ensembles genannt. Die einzelnen
Datensitze, genannt die Ensemble-Mitglieder, beschreiben dabei dasselbe Phidnomen, weisen
aber kleine lokale Unterschiede auf. Urspriinglich stammen Ensembles aus dem Bereich der
Simulationsanalyse, meist fiir Wetter- und Klimadaten. In diesen Bereichen werden sie schon seit
einiger Zeit verwendet, da mehrere Simulationsldaufe immer zu einer gro3en Anzahl von Resultaten
fithren, die anschlieend analysiert werden miissen. Die Simulationsanalyse war daher ein starker
treibender Faktor im Bereich der Ensemble-Visualisierung. Leistbare Rechenkapazititen und
die Verfiigbarkeit von unterschiedlichsten Analysealgorithmen (z.B. fiir die Segmentierung)
haben aber dazu gefiihrt, dass sich auch andere Anwendungsbereiche heutzutage mit der Analyse
von Ensembles beschiftigen miissen. Ensembles werden iiblicherweise entweder basierend auf
Datenmerkmalen (feature-based), oder basierend auf lokalen rdumlichen Regionen (location-
based) analysiert. Im Falle der Analyse basirend auf lokalen rdumlichen Regionen miissen
Visualisierungssysteme Moglichkeiten anbieten, dass Benutzer ihre Analyse auf lokale Regionen
konzentrieren kdnnen.

In Rahmen dieser Arbeit wurden verschiedene Techniken fiir das visuelle Vergleichen von
komplexen Daten entwickelt. Ein spezielles Augenmerk wurde dabei auf die Skalierbarkeit der
Techniken gelegt, und zwar im Bezug auf die mogliche Anzahl von Mitgliedern pro Datensatz.
Die Techniken operieren auf unterschiedlichen Arten von Datensétzen in 2D und 3D. Im ersten
Teil dieser Arbeit wird eine Technik fiir die Analyse von 2D Bilddaten vorgestellt, die nicht nur
die Berechnung von lokalen Unterschieden in den Daten ermoglicht, sondern auch eine genauere
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Einsicht in die Daten erlaubt. Dadurch kann, im Unterschied zu bestehenden Methoden, sehr
schnell festgestellt werden, wo sich die Daten unterscheiden, und auf welchen Merkmalen diese
Unterschiede beruhen. Dadurch werden Muster in den Daten sichtbar, und es konnen sehr schnell
Sonderfille lokalisiert werden. Der zweite Teil der Arbeit befasst sich mit einem System, das die
Analyse von einem Ensemble bestehend aus dreidimensionalen Objekten (meshes) ermoglicht.
Solche Ensembles werden beispielsweise beim Testen von Rekonstruktionsalgorithmen fiir
Punktwolken mit unterschiedlichen Parametern generiert. Ahnlich wie die vorgestellte Technik zum
Vergleichen von 2D Bilddaten kann das System auf eine grofle Anzahl an Datensitzen angewendet
werden und ermoglicht sowohl die Berechnung der Unterschiede, als auch die lokale Analyse von
einzelnen Regionen in den Daten. Die lokale Analyse erfolgt in diesem Fall im 3D, da es sich um
3D-Datensétze handelt. Das vorgestellte System bietet auch die Moglichkeit, lokale Unterschiede
in den Daten mittels paralleler Koordinaten zu visualisieren. Vorher selektierte und vom Benutzer
selbst gewihlte Regionen dienen dabei als Koordinatenachsen, und die 3D-Datensitze (meshes)
werden als Polylinien in den Plot eingetragen. Dadurch kann sehr schnell abgelesen werden, welche
Datensitze in welchen Regionen gute/schlechte Ergebnisse liefern. Aufbauend auf dieser Idee
wird im dritten und letzten Teil dieser Arbeit eine weitere 3D-Technik vorgestellt, die die Analyse
von lokalen Regionen in einem Ensemble von Volumsdatensitzen ermoglicht. Benutzer konnen
in diesem Fall lokale Regionen, die fiir die Analyse von Interess sind, selbst wéhlen. Basierend
auf der Ahnlichkeit der Regionen, konnen diese in einem Graphen angeordnet werden. Durch den
Graphen konnen Regionen mit einer dhnlichen Charakteristik im Ensemble gefunden werden,
und einzelne Mitglieder gegen den Rest des Ensembles verglichen werden. Alle vorgestellten
Techniken wurden auf aktuelle Datensétze aus verschiedenen Anwendungsgebieten angewandt,
und die Resultate der Analyse belegen die Niitzlichkeit der Techniken fiir die vergleichende
Analyse von Ensembles.



Abstract

The comparison of two or more objects is getting an increasingly important task in data analysis.
Visualization systems successively have to move from representing one phenomenon to allowing
users to analyze several datasets at once. Visualization systems can support the users in several
ways. Firstly, comparison tasks can be supported in a very intuitive way by allowing users to
place objects that should be compared in an appropriate context. Secondly, visualization systems
can explicitly compute differences among the datasets and present the results to the user. In
comparative visualization, researchers are working on new approaches for computer-supported
techniques that provide data comparison functionality. Techniques from this research field can
be used to compare two objects with each other, but often reach their limits if a multitude of
objects (i.e., 100 or more) have to be compared. Large data collections that contain a lot of
individual, but related, datasets with slightly different characteristics can be called ensembles. The
individual datasets being part of an ensemble are called the ensemble members. Ensembles have
been created in the simulation domain, especially for weather and climate research, for already
quite some time. These domains were greatly driving the development of ensemble visualization
techniques. Due to the availability of affordable computing resources and the multitude of different
analysis algorithms (e.g., for segmentation), other domains nowadays also face similar problems.
All together, this shows a great need for ensemble visualization techniques in various domains.
Ensembles can either be analyzed in a feature-based or in a location-based way. In the case of
a location-based analysis, the ensemble members are compared based on certain spatial data
positions of interest. For such an analysis, local selection and analysis techniques for ensembles
are needed.

In the course of this thesis different visual analytics techniques for the comparative visualization
of datasets have been researched. A special focus has been set on providing scalable techniques,
which makes them also suitable for ensemble datasets. The proposed techniques operate on
different dataset types in 2D and 3D. In the first part of the thesis, a visual analytics approach for
the analysis of 2D image datasets is introduced. The technique analyzes localized differences in
2D images. The approach not only identifies differences in the data, but also provides a technique
to quickly find out what the differences are, and judge upon the underlying data. This way patterns
can be found in the data, and outliers can be identified very quickly. As a second part of the thesis,
a scalable application for the comparison of several similar 3D mesh datasets is described. Such
meshes may be, for example, created by point-cloud reconstruction algorithms, using different
parameter settings. Similar to the proposed technique for the comparison of 2D images, this
application is also scalable to a large number of individual datasets. The application enables the
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automatic comparison of the meshes, searches interesting regions in the data, and allows users to
also concentrate on local regions of interest. The analysis of the local regions is in this case done
in 3D. The application provides the possibility to arrange local regions in a parallel coordinates
plot. The regions are represented by the axes in the plot, and the input meshes are depicted as
polylines. This way it can be very quickly spotted whether meshes produce good/bad results
in a certain local region. In the third and last part of the thesis, a technique for the interactive
analysis of local regions in a volume ensemble dataset is introduced. Users can pick regions of
interest, and these regions can be arranged in a graph according to their similarity. The graph can
then be used to detect similar regions with a similar data distribution within the ensemble, and to
compare individual ensemble members against the rest of the ensemble. All proposed techniques
and applications have been tested with real-world datasets from different domains. The results
clearly show the usefulness of the techniques for the comparative analysis of ensembles.
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CHAPTER

Introduction

When we visually compare objects, we try to find the differences and similarities by using our
eyes. Since vision is our dominant sense, we are well-trained for visually putting objects into
relation. In our early developments, we intuitively make use of visual comparison to understand
the concepts of geometry and measurements. Later on, we are faced with visual comparisons in
many situations in our everyday life. We use visual comparison to make simple decisions like
selecting between two similar photographs, and we need comparisons to do more detailed and
fine-grained analyses in our professional life. For people working, for example, in chemistry,
medical treatment, cosmetics, or photography, visual comparisons are a necessary step to judge
upon someone’s work, to evaluate results, and to improve the current state of a certain product.
Since visual comparison is a very intuitive and easy-to-understand concept, it is also used for
entertainment, as for example in the popular spot-the-difference puzzles. There people should find

Figure 1.1: Visual comparison. Humans are very well trained to visually compare objects. The
concept of visual comparison is also used for entertainment, like in the popular spot-the-difference
puzzles with two images [Wik16].
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the differences between two rather similar images, where the images have usually been altered
with photo manipulation. Spot-the-difference puzzles are often used in activity books for children
or newspapers. An example for such a puzzle can be seen in Figure 1.1.

This thesis deals with the visual comparison of datasets of different types and domains. A
special focus lies on the scalability of techniques, meaning how visual comparison can be applied,
if a large number of objects need to be compared with each other. The objects can be of different
complexity, like data in 2D (e.g., images) or data in 3D (e.g., volumes). This scalability with
aspect to the number of datasets, and by considering the complexity of the objects, poses several
challenges, which are discussed in this thesis. Solutions are proposed for the comparison of 2D
images, 3D meshes and volume datasets.

In the first part of this chapter, the general scope of the thesis topic and the necessary background
knowledge is described (Section 1.1). In the second part, the related work relevant for this thesis
is introduced (Section 1.2). In the third and final part of the chapter, the contributions of the thesis
are outlined (Section 1.3).

1.1 Scope of the Thesis

Although humans often solely rely on their visual system to compare objects, it is also possible
to actively support comparison tasks. A demonstration of the possible support mechanisms,
as investigated by Tominsky et al. [TFJ12], can be found in Figure 1.2. A very intuitive way to
aid the comparison, and this is what humans usually do, is to place the objects that should be
compared next to each other. This makes it much easier to visually switch between the objects,
and this way spot the differences. If the objects are spatially large, it may additionally be helpful
to partially overlay them with their neighbors, so that the regions of interest are closer together.
Another technique, also often used in our everyday life, is to place objects in a stacked way (i.e.,
above each other) and flip between them. Flip-books use this concept, where a series of gradually
varying pictures are turned rapidly, so that the pictures appear to be animated. The same technique
can be used to compare objects (by flipping forth and back). If it is possible to represent the
objects that should be compared in a semi-transparent way, they could be placed above each other
in front of a light source (e.g., a window), so that differences become visible due to the manually
created blending effect. Another intuitive comparison method, especially if the results need to be
remembered, or communicated to others, is the explicit marking of differences on the objects
themselves (e.g., by encircling interesting features with a pencil).

Comparisons are not only an everyday’s concept we have to deal with, they also play a more
and more important role in visual data exploration and analysis. Datasets are getting more
and more complex, and increasingly visualization systems need to allow the users to relate
and compare parts of the data, or whole datasets. This is necessary so that experts can gain
insight into the data, formulate, confirm, fine-tune, or reject initial hypotheses, and get a better
understanding of the available data. Visualization systems can support comparison tasks in two
ways. Firstly, visualization systems can allow the users to place objects in a way that supports the
comparison task. This imitates the natural workflow users typically employ when comparing
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Figure 1.2: Supporting comparison tasks [TFJ12]. Humans intuitively arrange objects side-by-side
if they want to compare them. Alternatively, if possible, objects can be placed in a stacked way, so
that differences become visible by flipping the objects, or through blending (i.e., semi-transparency).
If differences should be remembered, or communicated to others, they are often explicitly marked

by directly painting onto the objects.

objects. Visualization systems following this concept typically allow the users to specify the
objects of interest in the data (e.g., by applying selection or filtering interactions). Then the
visualization system provide means so that users can arrange the objects of interest in a way that
suits the comparison task. Possible modalities range from arranging objects in a grids, to the
usage of multiple interactive views. An important task of the visualization system is to resolve
occlusions that might occur if objects are, for example, placed above each other. Occlusions can
be resolved by applying blending or folding effects. In all cases the task of finding and evaluating
the differences is left to the users’ perception. Therefore, secondly, visualization systems can
also compute the differences among datasets and present them to the users. Computers are
better in fine-grained calculations than human, and are therefore in some cases better suited to
automatically detect differences in datasets. Using visualization system this way implies that
a metric for comparing the objects, and a concept for presenting the differences to the users,
exists beforehand. One drawback of this approach is that the more the visualization system itself
is involved in the comparison workflow, the more the visualization system is typically targeted
towards a specific comparison scenario.

In comparative visualization, researchers work on automated and semi-automated techniques
that are designed to explicitly support comparison tasks of complex objects. Visualizations in this
case do not only deal with tabular data, but also with more complex objects including graphs,
surfaces, or volumes. Comparative visualization can be used in several different application
domains [Hin09], ranging from medicine, to data mining, to material sciences. If visualization
systems should be employed by users not familiar with computer science and automatic data
analysis, the interactive concepts should be as easy to understand as possible. Therefore,
comparative visualization techniques often make use of the intuitive concepts humans would use
when comparing objects. Gleicher et al. [GAW ™ 11] observed that the visual design strategies for
comparative visualization can be divided into three categories: juxtaposition (placing objects
next to each other), superposition (placing objects in the same coordinate space), and explicit



1.

INTRODUCTION

Values A

L Values A e—— A - B e—
) Values B =——

Values B

Juxtaposition Superposition Explicit Encoding

Figure 1.3: Visual designs for comparative visualization [GAW™ 11]. If juxtaposition is used, the
objects that should be compared are placed next to each other. The design concept of superposition
places objects in the same coordinate space. If explicit encoding is used, the differences among
the objects are visually encoded.

encoding (visual encoding of the differences). An overview of the design strategies is given in
Figure 1.3. It can be seen that these three categories actually match the intuitive concepts used by
humans when comparing objects (as it has been illustrated in Figure 1.2). The design strategy
of juxtaposition describes that objects that are compared are placed next to each other. In the
case superposition is used, objects that should be compared are placed in the same coordinate
space. Superpositions are typically used in situations with limited screen space, and where the
objects to be compared are similar enough, so that they can be viewed in the same coordinate
space. Both design strategies of juxtaposition and superposition rely on the users’ perception to
make connections between the objects, and to spot the differences. Explicit encoding means that
differences between objects are computed beforehand, and are then explicitly visually presented
to the users. This requires a pre-definition about the relationships between the objects, about the
importance of the relationships, and a proper metric to extract this information. Explicit encoding,
therefore, provides a trade-off. The users definitively save time during the analysis, since the
differences are directly presented to them. On the other hand, explicit encoding is limited to
datasets with existing pre-defined relationships. Explicit encoding is, therefore, mainly used in
cases where the relationships between the objects are the actual topic of the analysis.

If visualization systems compute differences between the datasets themselves, then the systems are
actively involved in the datasets comparison. For comparing datasets, Verma and Pang [VP04]
introduced three modalities of how data can be compared. As an exemplary use case, they
were working on the visual comparison of flow data. There they defined that datasets can be
compared at three different levels: on an image-based, on a data-based, or on a feature-based
level. The image-based comparison is considered to be the most simple one. In this case images
(e.g., the output of visualization algorithms) are compared using standard image comparison
methods [ZCW02]. The image-based comparison is useful to compare different representations
of the same dataset (e.g., a volume rendered with different transfer functions). In the case of data-
based comparison, the analysis concentrates on the raw data values of the datasets and compares
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them. The advantage of this type of comparison is that differences in the data can be explicitly
presented to the users. The greatest challenge, though, is the design of a suitable data comparison
metric. This then also implies a disadvantage of this type of comparison, because the design
of a metric is often task-dependent, which makes this concept less general. The feature-based
comparison first extracts features from the data, and then compares the features in all datasets.
Features may be application-dependent (e.g., shock waves, vortices) or application-independent
(e.g., streamlines, iso-surfaces). The feature-based comparison allows users to concentrate on
derived properties, that often have semantic meanings.

The need for automatic data comparison in visualization becomes even more obvious when
the users are not only dealing with very complex, but also very large datasets. It is nowadays
possible to create collections with a huge number of individual datasets (i.e., up to 100 items,
or more). Comparative visualization techniques may be used for just two datasets as well, but
their impact especially becomes obvious if they are applied to a large amount of data. Originally,
large datasets have been used in the simulation domain for already quite some time [MGJ*10].
Especially the domain of weather and climate research was a driving force for the analysis of
large datasets [NFBO7]. The used prediction models comprise a large variety of parameter values,
and, in addition, usually do not lead to one fixed result, but to a spectrum of possible outcomes.
An example for such an ensemble dataset can be seen in Figure 1.4. It is a special challenge in
visualization to find out how comparisons can be done at such a large scale.

Originating from the simulation domain, such large data collections (that also exhibit certain
characteristics) are called ensembles. The individual datasets being part of an ensemble are
called the ensemble members. The definition of ensembles is on the one hand strongly targeted
to simulation results, but on the other hand may be also applied to other data collections. Based
on the definition by Wilson et al. [WP09], we define ensembles as being data collections that

* always cover a certain phenomenon,

» combine a set of single, but related, individual ensemble members,

L]

show slightly different characteristics among the individual ensemble members, which is
due to varying variables affecting the phenomenon, and

* consist of a significantly large number of individual ensemble members.

This definition certainly covers the results created by simulations. However, since this definition
is rather general, other datasets in visualization may also fall into the same category. This is on
purpose, because due to the increased availability of high-performance computing resources and
the large variety of data analysis algorithms (e.g., for segmentation [KAC™12]), other application
areas (e.g., material sciences [SZ11]) nowadays also have to deal with similar visualization
problems. For example, in material sciences, it is often necessary to find the best segmentation
strategy for Computed Tomography data of a given specimen. In this case the ensemble describes
possible segmentations of the specimen (studied phenomenon). The ensemble then contains
different segmentations (ensemble members), which originated from segmentations with different



1. INTRODUCTION

Figure 1.4: Ensemble datasets. This is an example for an ensemble dataset from the weather and
climate simulation domain. It shows climate variability in models and observations of the EI Nifio
phenomenon [(NC14].
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algorithms or parameter settings (slightly different characteristics). Typically, a lot of such
segmentations have to be created to find the best solution (large number of ensemble members).
Since such datasets are becoming more popular nowadays, ensemble visualization is an emerging
topic in visualization. This thesis therefore concentrates not only on ensembles originating from
the simulation domain, but also on other datasets showing the same characteristics.

Before the definition of the term ensemble, people also used different expressions for what can
now be called an ensemble dataset. Hansen et al. [HCJ " 14] referred to ensembles as multi-field
data. Love et al. [LPKO5] introduced the term of multi-value data, describing spatial data that
consists of a high-dimensional data vector at each spatial location in the domain. They proposed
either a parametric or an operator approach to visualize this kind of data. The parametric
approach analyzes the whole dataset, assuming that the data vectors can be adequately described
by statistical parameters. The operator approach visualizes the multi-values themselves, by
using visual concepts such as streamlines or iso-surfaces. Multi-variate data describes data
that contains several different connected data types (e.g, scalars, vectors, tensors) that need to
be integrated into one visualization [FHO9]. The term multi-modal data is used if different
modalities of the same phenomenon exist and need to be analyzed together (e.g., body tracking,
audio, and gaze of one patient [WAC™13]). Similar to this, multi-model data describes how
results from different computation models (e.g., a climate model and a fluid-physics model) that
share certain parameters (e.g., temperature) can be merged in a simulation and in the following
analysis [KMDHI11]. Another aspect that has lead to its own research branch in visualization is
the domain of time-varying data. In this case also mostly the same phenomenon is observed over
time, and changes are recorded in the visualization [AMST11]. Another domain also dealing with
ensembles is the visualization research branch of parameter space visualization [SHP*14]. In
this case researchers propose methods how the parameter space spanned by the ensemble can
be explored and analyzed. Closely related to ensembles in the weather and climate domain, the
term of uncertainty visualization has been created [HCJ* 14]. Uncertainty visualization relates to
the fact that due to the multitude of information in an ensemble, decisions on this data can only
be made based on statistical probabilities. The success of uncertainty visualization was, again,
greatly driven by the analysis tasks needed in the weather and climate simulation domain. In this
thesis we will continue to use the term ensemble, and we will also mainly concentrate on the
visualization of such datasets.

Due to the large number of ensemble members, and due to the complexity of the data, ensembles
rely on a closely coupled human and machine interaction for their analysis [TC05]. Ensembles
exhibit great advantages for a automatic or semi-automatic analysis of phenomena. First of
all, the ensemble members describe the same phenomenon under different prerequisites. The
ensemble members are therefore defined in the same spatial (and temporal) domain and typically
are of the same data type (e.g., volumetric or vector field data). Furthermore, the ensemble
members are usually co-registered and of the same size, which allows for comparisons amongst
them. In ensemble visualization, researchers work on new techniques how ensembles can be
visually analyzed in an automatic or semi-automatic way. They often make use of concepts
from comparative visualization, which then need to be extended to the large amount of data
available in ensembles. While comparative visualization techniques can also be applied to
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just two objects, ensembles require a different approach for analyzing them. Due to the large
amount of data, the raw data values can be hardly presented to the user, since this would result in
over-plotting in any standard visualization system. Alternatively, in ensemble visualization it is
typically required to use aggregation methods (e.g., statistical measures or clustering) to reduce
the dimensionality of the available data, and provide overviews to the users. It is important that
the aggregation techniques encompass a set of underlying distributions, because simple techniques
(e.g., summation) will suppress small features that might be of interest for the analysis. So far, it
was not possible to find an overall visualization that would cover all cases [WP09]. Instead, many
people advocate the use of multiple linked views, where each of the views can convey a different
facet of the data [LSP*10]. Another advantage of multiple linked views is that representations
the experts are already familiar with can be re-used in the analysis, and can be combined with
standard plots and novel visualization techniques.

So far, according to Obermaier and Joy [OJ14], the existing techniques for ensemble visualization
can be divided into the two groups of feature-based and location-based visualizations. Feature-
based visualizations, as the name already implies, extract features from the ensemble members,
and then compare these extracted features across the whole ensemble. Such features can, for
example, be iso-surfaces in a volume dataset, or clusters in an abstract dataset. Feature-based
techniques imply that it is possible to extract such features from all the ensemble members, and
that a comparison metric exists that allows for the comparison of the features in the ensemble.
Further, appropriate visualization techniques are needed to visualize the differences of the features
across the ensemble. Location-based visualizations, on the other hand, concentrate on fixed
locations in the ensemble and compare ensemble members at these fixed positions. Such positions
can either inherently exist in the data (e.g., geographic regions in case of weather data), or can
be defined by the user. The more abstract the ensemble data, the more the techniques usually
shift towards feature-based visualization, because then spatial locations in the data are not that
important anymore, or do not even exist.

In this thesis a special focus lies on the usage of location-based techniques for ensemble
visualization. Interestingly, a global (mostly statistical) evaluation of the ensemble members alone
does not communicate a full understanding of individual dataset features in all cases. It might
happen that individual datasets with a low overall statistical significance contain data features
in certain local regions, which are not desired by the users. For example, when working with
3D for archaeological preservation purposes, it is important that small details like stucco work
are preserved in the data [BHE*15]. Algorithms for mesh reconstruction from point clouds,
or algorithms for mesh denoising, sometimes have the tendency to smooth the data. Although
the results of such algorithms might not show any global statistical significance, because they
handle noise quite well, edges and corners are smoothed in the result. This would not be a
desired behavior for archaeological purposes, because then the small details like stucco work
would be lost. In this case experts might prefer the result from another, more noise-sensitive,
algorithm, which also better reconstructs small features. A comparison of a smoothing and a
detail-preserving mesh denoising can be seen in Figure 1.5. To reveal such cases, it is necessary to
allow the users to concentrate on certain local regions of interest in the data. A dataset containing
different results from one mesh editing algorithm (with different parameter settings), or results
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Figure 1.5: Local details analysis. Global statistical evaluation of ensemble members may hide
information about small details in the data. In this example two mesh denoising algorithms for
reconstructions of a laser scan of a statue can be seen. As the close-ups reveal, an algorithm
smoothing the data cannot preserve small details in the data [LWZ"16].

from different mesh editing algorithms applied to the same input data, can be generalized into
the already defined concept of ensembles. Since such ensembles are typically complex (with
regards to data dimensions), sophisticated interaction techniques are needed that let users define
regions of interest in the data [EF08]. These definitions of local regions can be done by different
interaction concepts. In case the data has a geographical component (e.g., weather and climate
data), users might want to select regions of interest simply based on geographical properties
(e.g., latitude/longitude, name, etc). For non-geographical, or even abstract data, there are no
pre-defined locations available that could be harnessed by the users. In the case of complex
3D data, the semantics behind a user’s definition of a region of interest has to be defined more
accurately, because users are always operating on the data within a certain context. The context is
defined by the current viewing position, and by other parameters influencing the representation
(e.g., a transfer function). Interaction techniques, therefore, have to be aware of the context,
so that they can correctly interpret a user-based selection [WVFH12]. Another challenge for
location-based techniques is not only to let users define regions of interest, but also to allow the
users to explore these regions further. Due to the complexity of ensembles, it is a challenging
task to provide more information about a local region of interest in a concise way. In many cases
multiple coordinated views are employed to show more information about a user-defined region
in the data [KH13]. Another possibility is to use in-place techniques [MBS*12] to show more
information about the underlying data at the spatial position of the region of interest. The choice
of the visualization concept also highly depends on the ensemble data, and on the tasks that have
to be solved by the users.
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1.2 Related Work

Researchers in comparative visualization work on novel techniques how objects can be visually
compared. Existing approaches for comparative visualization are reviewed in Section 1.2.1. Due to
the availability of ensemble datasets, analysts are faced with the problem of applying comparative
visualization techniques to large amounts of data. The related techniques and applications targeted
to ensemble visualization are reviewed in Section 1.2.2. To reveal local differences in datasets,
interactive local data exploration techniques are needed, that allow the users to concentrate on
regions of interest in the data. Such techniques are discussed in Section 1.2.3.

1.2.1 Comparative Visualization

This section reviews existing approaches for comparative visualization. The presented techniques
are related to the taxonomy of the three groups of juxtaposition, superposition, and explicit
encoding, as proposed by Gleicher et al. [GAW ™ 11].

Juxtaposition means that objects can be placed side-by-side to facilitate comparison. The
comparison of the objects and the detection of differences is done by the users. This concept
has already been used by Tufte [Tuf86], which he called the concept of small multiples at
that time. An example for the usage of small multiples to compare vessel movement data
can be seen in Figure 1.6. Later scatter plot matrices were used to analyze multidimensional
data [BSM™13]. Adding juxtaposition to an existing visualization system is rather easy, because
it does not require changes in how objects are drawn. Therefore, juxtaposition is used as a
comparison concept in many applications, often referred to as side-by-side views [AH11], or dual
views [NSGS07]. Munzner et al. [MGT*03] presented TreeJuxtaposer, a technique that allows
biologists to compare large phylogenic trees by placing the information side-by-side. Verhagen
and van den Berg [VvdBO08] used juxtaposition to compare nutrient profiling schemes. Lampe et
al. [LKH10] arranged different abstractions of a large dataset in side-by-side-views, so that users
could spot temporal patterns. Hotz et al. [HSNHH10] used juxtaposition to compare diffusion
tensor fields. Juxtaposition can also be used to compare graphs, as shown by the work of Burch et
al. [BVB™11]. They arranged graphs vertically in a way that the edges are all directed from left to
right, so that they can be compared to each other.
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Figure 1.6: Example for a juxtaposition. Comparison of vessel movement data for different time
spans and weekdays in a small multiples display [KPBG13].
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In the case superposition is used, objects that need to be compared are placed in the same view,
and in the same coordinate space. Depending on the data, different strategies have to be used to
present several objects at once. Blending (i.e., making objects semi-transparent) is a common
method to place images in the same view. Kammerer et al. [KHZ04] used this method to spot
differences between infrared and color images of ancient paintings. More advanced techniques
for the superposition of images would be color weaving [HSKIHO6], or attribute blocks [MilO7].
Malik et al. [MHG10] proposed an approach for comparing images. Their technique subdivides
the image space into hexagonal regions, and each region is subdivided into smaller elements
which depict data from different series. This way it is possible to compare different volume
datasets in a slice-based way in one view. The technique is shown in Figure 1.7. If graphs should
be compared, it is possible to use color coding or strokes to encode the different objects in the
same view [EKLLNO4]. Jianu et al. [JYC*10] employed superpositions for graphs to compare
different proteomic pathways. A challenging task is the comparison of 3D data, due to the large
amount of data, and due to the possibility of occlusions. Alabi et al. [AWH™" 12] proposed to
support the comparison of 3D surfaces by placing slices of the surfaces in the same view. The
slices of the different surfaces are interleaved, so that they can be compared with each other.

001 0.01 =F 001 001 L~ ,:

Figure 1.7: Example for a superposition. Slices of volume datasets can be compared by subdividing
the image space into hexagonal regions. Each of these region is then subdivided into smaller
elements that depict data from different volume slices [MHG10].

So far the identification of relationships between different objects and the detection of differences
was done by the users. If using explicit encoding, the users are pointed to where to find the
differences in the data. This implies, though, that the differences can be computed by some
metric. Volume datasets, for example, can be compared by computing the differences in a
voxel-based way, and by explicitly encoding the differences through using surfaces [WS06].
Another possibility is to encode the differences through using graphs [WSKKO06]. Similar to
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this, Sauber et al. [STS06] visualize correlations between 3D multi-field scalar datasets. For
diffusion tensor volumes, differences can be encoded by color [DZD1.02] or by glyphs [ZSL*16].
As an example for non-spatial data, Tory et al. [TSFH" 13] showed how changes in construction
schedules can be compared. There are some examples of how explicit encoding can aid the
comparison of 3D surfaces. Some approaches just use color encoding [MIA* 03], while others
also employ additional symbols like arrows [WTOS5].

The three concepts of juxtaposition, superposition, and explicit encoding (or just a subset of
them) can also be combined into hybrid solutions. In this case the strengths of several concepts
can be combined into one design. A very common technique is to combine one of the concepts
arranging objects in a spatial way (juxtaposition or superposition) with explicit encoding. In this
way objects are put in relation to each other, and the differences are also clearly visible. Drucker
et al. [DPAO6] used a combination of juxtaposition and explicit encoding with connecting lines
to compare different versions of a PowerPoint presentation. The same combination of concepts
can be used to compare two networks, by showing the color-coded differences in the middle
between the two graphs that are compared [AWWO09]. The combination of superposition and
explicit encoding may be redundant, because the superposition of the objects already reveals the
differences among them. In many cases explicit encoding is therefore used only to emphasize
differences in the data. Another possibility is to use an aggregated view or a summarization of
the objects, and to display the differences on top of it [EST07]. Busking et al. [BBF*11] used
superposition to compare surfaces in 3D, and in addition used glyphs to enhance the visualization
of the differences (see also Figure 1.8).

Figure 1.8: Example for a hybrid solution. Two surfaces in 3D are compared by placing them in the
same 3D view (superposition), and by enhancing the differences among them with glyphs (explicit
encoding) [BBF*11].

Apart from the three categories, other visualization techniques can be used to support comparisons.
A very important concept for analyzing datasets is interaction. The users can employ drill-down
techniques to interactively focus on interesting parts in the dataset [VJC09]. Another interesting
concept to convey changes is animation. Keefe et al. [KERC09] showed how animation can be
used to visualize biomechanical motion data, and Hermann et al. [HSSK16] used animation to
convey differences between volume datasets.
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1.2.2 Ensemble Visualization

In this section existing approaches for ensemble visualization are reviewed. The techniques are
divided into the two categories of feature-based and location-based approaches, as proposed by
Obermaier and Joy [OJ14].

Feature-based techniques first extract features from the raw data that can then be compared
across all ensemble members. Ensemble visualization was greatly driven by application cases in
the weather and climate simulation domain, therefore much research was done in this area. The
system Met.3D, as introduced by Rautenhaus et al. [RKSW15], can be used to, for example, detect
warm conveyor belt situations in the weather data [RGSW15]. These are important informations
for airline companies. Hollt et al. [HMZ" 14] presented Ovis, a system to analyze the different sea
surface heights for ocean forecasting. Diehl et al. [DPD* 15] provided means to search for patterns
in weather ensembles. They made use of small multiples and curve-comparison techniques to
help users find patterns in the data. Also other domains already employed ensemble visualization
techniques. Beham et al. [BHGK14] developed a technique combining parallel coordinates
and glyph-based visualization to analyze a set of simulation results from a cup generator, an
algorithm that generates 3D models of cups. The visualization helps to find proper parameters
settings for the generator. Piringer et al. [PPBT12] proposed a framework for the visual analysis
of simulation data from the automotive industry. A very important technique for feature-based
ensemble visualization is the extraction of contours or iso-surfaces from the data. A common way
to present the features in 2D is to use spaghetti plots [PWB*09]. In a spaghetti plot all available
contours/lines are drawn on top of each other, but in different colors. Spaghetti plots are a useful
tool to get an overview of the available data, to identify patterns or clusters, and to detect outliers
in the distribution. However, for larger datasets, spaghetti plots heavily suffer from over-plotting.
Therefore, researchers tried to find new techniques how these plots could be improved. Sanyal et
al. [SZD™"10] invented Noodles, where they used ribbons and glyph-based techniques to better
convey the content of a spaghetti plot. Mirzargar et al. [MWK14] developed curve boxplots,
where they show a statistical summary of the spaghetti plot data. The summary included the
median curve, an indication where 50% of the curves will result, and outlier curves. Similar to
this, Whitaker et al. [WMK13] proposed to arrange contours in a contour boxplot. The display
of various information is already complicated in 2D when using spaghetti plots, but becomes
even more complex in 3D. Due to occlusions, it is basically useless to plot the information from
more then one to three ensemble members at once. Ferstl et al. [FBW 16] therefore introduced
variability plots for streamlines, where users can see the main directions and outliers in a vector
field. For 3D surfaces, color-coding the variability [PRW11], or presenting the variability of
surfaces in one plot view [MGKHO09] can help users to get an overview of a set of 3D surfaces.
Genton et al. [GJP* 14] proposed surface boxplots, where a statistical summary of the available
surfaces is presented. This technique can be extended by integrating surface boxplots directly
into the visualization [RMK™" 15]. The median surface, the locations of the other contours and
outliers are clearly depicted. An example of such surface boxplots can be seen in Figure 1.9. The
display of multiple surfaces in 3D is still not easy to achieve, and is therefore still an ongoing
research topic for the visualization of ensembles. Demir et al. [DDW 14] presented MultiCharts,
a system to visualize temperature curves in weather simulation data. They analyzed multiple
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Figure 1.9: Example for a feature-based comparison. The surface boxplot allows users to compare
an ensemble of 3D surfaces by showing the median surface contour (yellow) and outlier contours
(red) [RMK*15].

volume datasets created by weather simulations. From this data they extracted 3D data points,
linearly arranged them along a space-filling curve, and drew them as multiple charts in the same
plot area. MultiCharts can be used to quickly provide an overview of the data and depict data
regions exhibiting unusual behavior. If a different linearization mechanism is used, the system
can be shifted from a feature-based to a location-based analysis tool.

In the case of location-based techniques, the visualization supports experts in analyzing ensemble
properties at selected spatial positions. For climate data, Bottinger et al. [BPR*15] proposed
a technique to visualize different parameters by using color-coding. In their system it is also
possible to concentrate on local regions of the data, to detect local anomalies in, for example,
the temperature. Waser et al. [WFR* 10] concentrated on the visualization of heterogeneous
simulation runs for environmental disasters, in particular flooding. Their technique World Lines
allows users to browse the outcome of the different simulations, but it allows users also to
concentrate on local regions. For example, it can be virtually tested how the placement/elimination
of a barrage would affect a certain flooding situation. For data from computational fluid dynamics,
Hummel et al. [HOGJ13] developed a framework to visually convey how ensemble members
agree or disagree in certain regions. If ground-truth data is available, ensemble members can be
compared with it and outliers can be quickly identified. This outlier identification can also be
done based on local features [GBP* 13]. Coffey et al. [CLEK13] proposed Design by Dragging
for in-place queries on large ensemble data. Their system allows users to locally edit the ensemble
data, and adjust the available parameters, so that the final outcome suits the users’ needs. A very
important concept of the system are the interaction possibilities, so the authors implemented
multi-cursor and multi-touch capabilities to locally manipulate the data. Jarema et al. [JDKW15]
used a glyph-based visualization to show the local variability of a 2D vector field ensemble. The
vector field was created from weather simulations. The users can select regions in the main view,
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Figure 1.10: Example for location-based comparison. Users can select a region in a 2D vector field
ensemble (upper part, red box), and then the region is shown in more detail (lower part). Glyphs
are placed at certain fixed positions in a 2D vector field ensemble to visualize the parameters at
these positions [JDKW15].

and then the local parameters of these regions are shown in a multiple-linked-view environment.
In Figure 1.10 a user-defined region of interest in the 2D vector field (red rectangle) and the
corresponding detail view are shown. In the detail view glyphs are placed on a regular grid to
depict the values of the ensemble parameter at the corresponding positions. It is also possible to
select positions in the grid, and then the system searches for other locations similar to the selected
one. The domain experts evaluating the system highly appreciated the possibility to be able to
select spatial regions in the data.
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1.2.3 Local Data Exploration

The question of how local regions can be inspected while still having an overview of the overall
context is addressed with Focus+Context in the literature. Several approaches in 2D and 3D can
already be found [CKBO09]. In the case of ensembles, a local exploration of the data is especially
challenging, since the data is typically very large (in terms of number of ensemble members) and
complex (in terms of data dimensions).

If dealing with 2D data likes images or vector fields, it is rather easy to let users define a region
of interest by mouse click. In the case of surface data, which is usually defined in 3D, it is also
possible to use mouse interaction to define a local region of interest. In the case of complex 3D
volume data, or 3D vector field data, the selection of regions of interest is not that straightforward
any more, because of the additional aspect of depth. The users in all cases see a 2D representation
of the data on the screen. Whenever users employ mouse interaction, it has to be defined which
depth inside the data they are actually referring to. In the case of volumes, the process of selecting
structures inside the data is usually referred to as volume picking. It is possible to decide which
depth to take by analyzing the density profile along the ray that is defined by the mouse click
and the current viewing direction [KBKGO09]. Selected regions of interest can be used in a
visualization system to display additional information about the volume [RVB*09] in interactive
close-up views. The technique was implemented for the purpose of medical reporting, and each
closeup could be used to show different modalities using different visualization styles. Mlejnek
et al. [MEV*05] implemented Profile Flags, a volume probing technique to reveal structures in
volumetric datasets and display them along an additional axis in the 3D environment. Volume
probing is not only useful to display more details about a certain region in a volume, but can be
also used to improve the current depiction of the volume. Transfer function design [KKHO02]
can be greatly enhanced by letting users select regions of interest in a volume dataset. The
selection of visible structures can be used to refine the segmentation of certain parts in the
volume [SKO7]. Picking structures in a volume can also be used for a successive interaction.
Patel et al. [PBVG10] implemented a system for analyzing volumetric seismic data, where users
can interactively assemble horizon parts by picking.

When analyzing flow or vector data, experts are often interested in the local parameters of a
flow field, or how local regions in the data contribute to the overall situation. De Leeuw and van
Wijk [dLvW93] created probes that can be placed in a flow field to study the local parameters.
Flow parameters like the velocity and the velocity gradient tensor (i.e., the local change of velocity)
are then mapped to geometric primitives in the visualization. Isenberg et al. [IEGCO08] proposed
a similar technique for 2D vector fields. Glyphs are placed in the view which then represent the
parameters in specific local regions. Wiebel et al. [WGS07] suggested an approach to find out
how much certain subsets of the data contribute to the overall flow. They used probes which can
be placed by the user to define these subsets, and then the visualization reveals the subset has on
the rest of the flow dataset.
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1.3 Contributions of this Thesis

The contributions of this thesis are based on research papers, which are described in more detail
in the following (Chapter 2, Chapter 3 and Chapter 4). A summary of the contributions is given
in Section 5.1.

Contribution 1 - VAICo

VAICo: Visual Analysis for Image Comparison [SGB13] presents a visual analytics pipeline for
the interactive analysis of image ensembles. We compute the pixel-wise differences in the data
and present them to the user. Then we provide drill-down interaction possibilities, so that users
can find out what the differences are, and which members of the ensemble caused them. We
applied our technique to different image datasets from different domains, and it turned out that
VAICo clearly helps to identify patterns in the data.

Contribution 2 - YMCA

YMCA - Your Mesh Comparison Application [SPA*14] describes an application suited for the
comparison of an emsemble of 3D meshes. We analyze the data and then visually encode regions
of high variance in the data. Such high-variance regions are of special interest, because they point
to spatial locations where the meshes exhibit different results. The users can employ a magic-lens
widget to explore local regions in the data. Interesting regions exhibiting a high variance are
arranged in a parallel coordinates plot, where the different ensemble members can be compared
based on local spatial regions. It is also possible to add new user-defined regions to the plot. The
YMCA system was applied to data from point-cloud reconstruction, and we identified patterns in
the data that would be tedious to detect otherwise.

Contribution 3 - VALENE

Visual Analysis of Volume Ensembles Based on Local Features [SFP*16] aims at the analysis
of local regions in a volume ensemble dataset. As an exemplary use case, we concentrated on
volumetric segmentation masks for this work. The users can specify local regions of interest
by placing volume probing widgets in 3D. The depth of the widget placement can be selected
by positioning a slicing plane in 3D. The placed widgets are arranged in a graph based on the
similarity of the local ensemble data. Using the graph information, similar local regions can be
detected inside the ensemble. It is further possible to compare individual ensemble members
against the rest of the ensemble.
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CHAPTER

Visual Analysis of Differences in Image
Ensembles

This chapter is based on the following publication:

Johanna Schmidt, M. Eduard Groller and Stefan Bruckner. VAICo: Visual Analysis for Image
Comparison. IEEE Transactions on Visualization and Computer Graphics, 19(12), pp. 2090-2099,
IEEE, New York, NY, USA, December 2013

2D images are used in a large variety of domains to view, analyze and present results of different
tasks. The comparison of images is therefore an important task in data analysis. In the medical
domain, for example, deviations in slices of magnetic resonance or sonographic imaging datasets
can indicate anomalies which should be further inspected by the domain experts. In image
processing, results of different edge detection or segmentation algorithms have to be compared.
In visualization and rendering, resulting 2D images have to be compared with each other to
evaluate variances that are caused by different parameter settings. These examples show that there
is definitely a demand for comparative visualization techniques for 2D images. The increased
availability of analysis algorithms and computing resources also lead to the creation of very large
image datasets. Therefore, another important issue for comparing images is scalability pertaining
to dataset size (i.e., number of items in the dataset). In biology, for example, datasets are often
based on the analysis of several hundreds of specimens. If the images in the dataset describe the
same phenomenon, we can then talk about them as image ensembles. A very common approach
for image comparison is to place them side-by-side or in multiple views, or to overlay them in a
semi-transparent way (blending). However, due to limitations in the human perceptual capacity as
well as due to limited screen space, such comparative visualizations do not scale well. These
tools are only suitable for comparing a limited number of images. Another important issue
when developing comparative visualization techniques is how to provide information about the
underlying original data. In many approaches differences between datasets are mapped to visual
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Side-by-side Difference Image Highlight

Figure 2.1: Image comparison. This figure shows two pictures that look similar, but in fact exhibit
local changes. A very common way to compare them is by placing them side-by-side. To help
users to find the variations more quickly, a difference image can be computed. In this illustration
information about the similar parts of the data is lost. Another possibility is to highlight differences
by certain patterns (e.g., colored circles). In this case similar parts of the data are still visible;
however, no further information is provided on how the differences are structured.

attributes such as colored patterns (Figure 2.1). Although this clearly highlights differences and
similarities between the datasets, it hides the original data that has been used for the calculation.
Having knowledge about the original data allows us to identify patterns in the datasets (e.g., to
detect outliers).

A strong focus of our work for image comparison lies on the interactive visualization tools,
that provide insight into the underlying raw data. We believe that this can lead to a better
overall understanding of the studied datasets. The comparative visualization approach which is
introduced in this chapter preserves contextual information, while allowing for a detailed analysis
of the variations between datasets. Our approach provides effective means for examining local
differences in a large image dataset. It supports users in gaining a better overview of different
image characteristics and allows them to further investigate individual local regions.

The main features of our approach are:

* Scalability: Unlike previous approaches, the proposed visualization technique is specifically
designed to compare image ensembles. It is scalable to a large amount of images.

* Focus+Context: Our comparative visualization approach provides an overview of the image
differences (i.e., how much of the image space is affected) and allows users to drill-down
on individual features. With the drill-down techniques, users can explore the underlying
raw image data.

* Flexibility: Our approach is not targeted to a certain type of image and is not tied to any
particular image comparison metric. We demonstrate this by applying the approach to
different image datasets.
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2.1 Related Work

The VAICo system is strongly related to comparative visualization (as introduced in Section 1.2.1)
and ensemble visualization (as described in Section 1.2.2). There also other applications
specifically dealing with the comparison of 2D images. For analyzing different light intensities
in renderings, Pang and Freeman [PF96] used color and other parameters like textures to
highlight differences. Baudrier and Riffaud [EBRO7] introduced an approach for comparing
ancient documents, mainly by placing them side-by-side and highlighting the differences. Eler
et al. [ENP*08] proposed a method to visually analyze image collections. Their visualization
method allows feature-based grouping and classification of images, but does not provide means to
further inspect individual features. Many approaches use color to indicate differences between
2D images (i.e., explicit encoding). Since this is a very simple and intuitive way to display
differences, it can be applied to various domains. Hollingsworth et al. [HRTV06] used a specific
colorization scheme for difference images to compare 2D gas chromatographies. Sahasrabudhe et
al. [SWM1J99] used color coding to highlight differences between visualization results. Apart
from color-coding, other methods of abstraction have been used to analyze image differences. As
described in Section 1.2.1, Malik et al. [MHG10] proposed superposition for the comparison of
images. The images in this case were slices of volume datasets. The image space is subdivided
into hexagonal regions, and each region shows data from different volume datasets. This way
contextual information is provided about the data, and outliers can be spotted very easily. The
more elements a dataset consists of, the more sub-elements have to be created for every hexagonal
region. At some point the sub-elements will be too small for a proper analysis, which makes this
method unsuitable for large image ensembles. The authors also state that their approach is targeted
to grey-scale values only. Our approach for comparative image visualization is somewhat similar
to the multi-image view by Malik et al., since our approach also aims at preserving information
about the underlying data. Due to the use of clustering, our method is scalable to large image
ensembles. Our visualization technique is also only applied to regions where changes take place,
and therefore provides a better localization of the differences in the data.

Hierarchical clustering is a statistical method of cluster analysis which aims at building a
hierarchy of clusters [DH73]. Hierarchical clustering either follows an agglomerative (bottom-up)
or a divisive (top-down) approach. In the case of agglomerative hierarchical clustering, each
object starts in its own cluster, and pairs of clusters are merged as one moves up the hierarchy.
Divisive hierarchical clustering starts with one big cluster containing all objects, and splits are
performed recursively as one moves down the hierarchy. Hierarchical clustering has become a
de facto standard for analyzing biological gene expression data in the past years [ESBB98]. It
is also used in other domains, for example, to analyze audio data as described by Clarkson and
Pentland [CP99], or to classify ocean colors as proposed by Yacoub et al. [YBTO1]. We use
agglomerative hierarchical clustering to embed differences in the set of images in a hierarchy to
identify different levels of data variances.
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2.2 Visual Analysis for Image Comparison

To effectively convey information about differences in an image ensemble, we decided to provide
an interactive visualization system that preserves contextual information while enabling the
inspection of individual image differences. Our Visual Analysis for Image Comparison (VAICo)
uses a mixed approach of superposition and explicit encoding. Our work is focused on the
comparison of image ensembles (i.e., up to hundreds of ensemble members). None of the images
has to be defined as a reference image. Image differences are interpreted as variations in the image
dataset (i.e., local color changes). In particular, VAICo is designed to assist users in identifying
distinct classes of variations which characterize the underlying phenomena.

VAICo is based on an image comparison step where the image space, defined by the images in the
given dataset, is divided into the two parts of contextual information and regions of differences
(RoDs). Contextual information refers to parts of the image space that are the same in all images.
RoDs correspond to variations in the image ensemble. The calculation of the RoDs is explained in
Section 2.2.1. Image variations are interpreted as color changes between at least two images in the
dataset. Image data related to a certain RoD is then embedded in a hierarchy, which enables the
classification of changes in the data. The creation of the hierarchy is explained in Section 2.2.2.
The results of the image comparison and clustering can be explored with interactive visual analysis
tools, which are described in Section 2.2.3. The whole pipeline of the VAICo system is outlined
in Figure 2.2.
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Figure 2.2: Overview of our comparative image visualization approach. VAICo operates in image
ensembles. To locate regions of differences (RoDs), an image comparison metric is applied. In
the next step hierarchical clustering is performed on the corresponding image data of every RoD.
This classifies the differences according to their significance. The results are then presented by
using our proposed visual analysis tools.
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2.2.1 Region-of-Difference Computation

In the first step region of differences (RoDs) have to be identified in image space. We propose two
image comparison approaches which both result in a list of RoDs for the given image dataset. We
call them the unbiased, and the biased image comparison.

To apply an unbiased image comparison, we employ a pixel-based image comparison metric
based on the Mean Squared Error (MSE) [ZCWO02]. All pixels from one image are compared
to pixels at the same location in all other images in the dataset. A threshold is used to filter out
low color variations. This enables users to control the algorithm’s sensitivity with respect to
changes in the data. After applying the MSE calculations to all pixels in image space, a set of
difference pixels is identified which represent pixels with varying color values in the images.
Region growing [SHB98] is then used to group difference pixels together to form disjoint subsets
of pixels. Difference pixels are grouped together based on their spatial arrangement. In the region
growing approach all difference pixels are considered to be seeds which potentially could start a
new region. The region growing is initiated with a randomly selected pixel. Then neighboring
pixels (according to an 8-connected neighborhood) are merged into a connected region. The
process is iterated until all pixels have been assigned to a region, as demonstrated in Figure 2.3.
The subsets resulting from the region growing step define the RoDs which form the basis of our

t=n t=n+1 t=n+2

t .. time || contextual information

N ... number of iterations 1 difference pixels

M seed pixels
B pixels assigned to subset

n .. region growing iterations (0 < n < N)

Figure 2.3: lllustration of subset computation by region growing. After the image comparison step
a set of so-called difference pixels has been identified. Region growing is used to group them
together into disjoint subsets. During region growing, difference pixels are assigned to the current
subset until it cannot grow any more (¢ = n). Then another difference pixel is selected (t = n + 1)
and the iteration is continued (t = n + 2).
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interactive visual analysis approach. RoDs indicate the locations where changes take place in
the data. All together, they give an overview on how much of the image space is affected by
differences in the dataset and where the differences are located.

In addition to the unbiased image comparison we also propose a biased image comparison. This
enhances the image comparison by allowing us to include prior knowledge about the data. For
some datasets not only image variations are of interest for the analysis, but also differences of
features in the image. This follows the idea of a feature-based approach for ensemble visualization.
Features in this case are represented as connected image regions which can have different
characteristics in the image data (i.e., different color values). These features are calculated for
every image in the dataset individually, before starting the comparison. We employ a color
segmentation approach based on Mean Shift [CMO02] to identify regions of interest in every image
in the dataset. The segmented regions then define a set of m features per image in the dataset.
We can also refer to these features as RoDs, since they exhibit the same properties (i.e., set of
connected pixels). Afterwards image comparison is applied. With the new definition, the image
comparison then refers to sets of RoDs being compared to each other. The goal of the comparison
is to find out whether RoDs of different images represent the same information. Figure 2.4
illustrates the process of RoD comparison. RoDs are compared based on their spatial position,
shape and size. RoDs of different images are considered to represent the same region if their
overlap exceeds a threshold (we use 90% of overlapping RoD pixels as a default). The list of
RoDs resulting from the biased image comparison describes features that are present in at least
one of the ensemble images. Using the biased instead of the unbiased image comparison allows
users to eliminate certain regions (e.g., background information) from further analysis.

| [ [T ]
IMG{ IMG, IMG;

|| contextual information B pixels assigned to RoDs

Figure 2.4: lllustration of RoD comparison. After color segmentation a set of RoDs has been
defined per image. In the comparison step RoDs of different images are identified that refer to the
same information (i.e., overlap). In this figure the upper RoD can only be identified in the first two
images (IM G and IMG;). The second RoD can be identified in all three images (IM G, IMG,,
and IMG3).
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Both modalities, the unbiased as well as the biased image comparison, result in a list of final
RoDs. These RoDs are further analyzed in the next steps to gain more information about the
underlying data at the RoD positions.

Since all ensemble images are registered and of the same size, a part covered by a RoD’s location
and size can be found in every image. A RoD’s location and size is defined by its corresponding
set of difference pixels. This leads to an unordered list of i image parts per RoD for i images in the
dataset. In Figure 2.5 the process for collecting the image parts for a RoD is illustrated. In the case
of biased image comparison, only images that contain a certain RoD are further considered. This
therefore leads to a list of / image parts per RoD in the case of biased image comparison, where
I <i. The image parts which are collected per RoD from the images are called the RoD-related
image parts in the following.
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Figure 2.5: Image data corresponding to a certain RoD. In this figure one particular RoD together
with its corresponding image parts is illustrated. The image parts are taken from all images in
the set (as indicated by the arrows) and are defined by the RoD’s size and location (i.e., the
corresponding set of difference pixels). The figure describes the collection of RoD-related image
parts in the case of unbiased image comparison.
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2.2.2 Data Analysis by Clustering

After defining the RoDs and collecting the RoD-related image parts, we now apply clustering
to the RoD-related image parts to embed them in a hierarchy. This enables the classification of
changes in the data and conveys information about the underlying data.

For the clustering, complete-linkage agglomerative hierarchical clustering [DH73] is used.
Initially, every RoD-related image part forms a separate cluster. Then in each iterative step
clusters are merged together according to their distance. The difference between two image parts
is defined by their amount of pixel-wise differences (ranging from 0 to 100 percent). We employ
a similarity metric based on the Mean Squared Error (MSE). If another image comparison metric
should be used to compare the images, this metric could be employed here as well. The clustering
terminates once all elements are included in one big cluster. Based on the clustering, a tree is
built which describes the results of the hierarchical clustering process (Figure 2.6).

Every hierarchy level in the hierarchical clustering tree describes a valid clustering result for
the RoD-related image parts. However, for the best description of the given data, an optimal
clustering has to be found. In the case of hierarchical clustering, a clustering is basically defined by
the number of available clusters. A clustering with maximum accuracy assigns each RoD-related
image part to its own cluster. By comparison, a clustering with maximum compression uses one
single cluster to include all RoD-related image parts. A clustering is considered to be optimal if it

h=0

Figure 2.6: Hierarchical clustering result for the RoD introduced in Figure 2.5. h depicts the
hierarchy level in the tree. At the beginning (2 = 0) all image parts are in separate clusters. In
further steps (& = 1, h = 2) clusters are subsequently merged together according to their distance,
until all elements are enclosed in one cluster (& = 3).
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strikes a balance between the maximum accuracy and the maximum compression clustering. An
optimal clustering of the data will classify the image differences and provide more information
about outliers as well as similarities in the data. To get an optimal clustering, the hierarchical
clustering tree has to be cut at a certain level. We decided to use the elbow criterion to determine
the tree level which contains the best clustering result. In essence, the elbow criterion specifies
that a clustering should be chosen in a way that adding another cluster does not give a better
modeling of the data [PKO6].

In a clustering, outliers are defined by their distance to other clusters in the set. For our approach
cluster outliers are of special interest, since they are considered to represent significant changes
in the data. Therefore, clusters from the level with the best clustering result are sorted according
to their inter-cluster distance. The cluster sorting process is done in an iterative way. In every
step, the cluster with the maximum inter-cluster distance (defined by the sum of all distances to
other clusters) is determined. It is then stored in an ordered list and excluded from further sorting
operations. The process is repeated until no unsorted cluster is left. At the end, an ordered list of
clusters is created for every RoD.

2.2.3 Visual Analysis

The results of the image comparison step can be explored with VAICo’s interactive visualization
tools. Although the main interactions are based on the RoD visualization, it is possible to view
the clustering and data analysis results as well. The visual analysis tools of VAICo are illustrated
in Figure 2.7.

The interactive visualization elements are embedded in image space which is defined by the
images in the given dataset. The entire set of images is visualized in one view. Parts of the
image space which represent the same information in every image are depicted as contextual
information (Figure 2.7a). We create an average image of all images in the dataset, and this
image is displayed in the background. Pixels are faded out to enhance the visibility of the image
variations. This contextual information is needed to embed the interactive visualization tools in
the appropriate context.

RoDs are emphasized through colored polygons in the foreground (Figure 2.7a). The shape and
position of the polygons correspond to the set of difference pixels assigned to the RoD. The RoD
visualization provides a visual overview of the image comparison results. In combination with the
contextual information, the RoD visualization allows users to immediately differentiate between
image variations and regions of similar information. In contrast to marking differences by abstract
shapes (e.g., circles or rectangles), the polygon shape provides more information about the extent
of the image variations. The number of RoD polygons in image space depicts how many image
variations have been identified. The position and distribution of the RoD polygons shows where
variations are located in the images, and how much of the image space is affected. In addition to
size, shape, and location of the image variations, information about the RoD-related clustering
results is also included in the visualization. In case the clustering leads to a higher number of
clusters than in other RoDs, the underlying RoD-related image data shows a greater variety than in
other cases. This may indicate the existence of outliers in the data, wherefore these cases should
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Figure 2.7: Main components of the interactive user interface. The image space is displayed in
one view (a). Similar information is displayed in the background (context) and the variations in
the images are highlighted by RoDs. The RoDs can be further explored individually by using the
assigned RoD widgets (b). The cluster bullets assigned to the RoD widget depict the clusters
available for the corresponding RoD. The bullets can be expanded (c) to cluster views which consist
of the assigned cluster average images and icons depicting the number of images in the cluster.
Such an icon can be used to retrieve the list of images assigned to the cluster.
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be further analyzed by the users. Color-coding is used in the visualization to indicate a higher
number of RoD-related clusters. A higher number of clusters is mapped to a darker color of the
RoD polygon. Color-coding allows us to integrate the cluster information in the RoD visualization
without occluding additional contextual information. In Figure 2.7a, the number of clusters for
RoD; is lower than the number of clusters for RoD,. Therefore, the color of RoD; is darker in
the visualization.

RoD polygons can be inspected individually through mouse manipulation. When activated, RoD
polygons are expanded to form RoD widgets. The widgets are displayed in image space in relation
to the corresponding RoD polygons (Figure 2.7b). This embeds the widgets into the appropriate
context and enables the users to analyze image variations without switching between different
views. RoD widgets consist of a circle with colored bullets arranged around it. The colored
bullets of the RoD widgets depict the corresponding clusters. The colors of the cluster bullets
change according to the number of images that are included in the respective cluster. The color
hue of the RoD polygon is always different from the hue of the bullets to prevent ambiguity. The
color of a bullet is the darker, the more images the corresponding cluster contains. The bullets
are ordered according to the number of images in the clusters. The users can decide whether
they should be ordered in descending or ascending order. This allows users to decide whether
the cluster with the highest number of images should be listed first (i.e., to quickly spot common
patterns in the data), or whether the cluster with the lowest number of images should be on top
(i.e., to find outliers in the data).

The cluster bullets of the RoD widgets can be further expanded by mouse manipulation (Figure 2.7¢)
to display the cluster views. Clusters are then represented by the average image which is derived
from the images in the clusters. This immediately gives an overview on the image data that is
encoded in the cluster. To get more quantitative information about the cluster size, the number
of images is depicted for every cluster in a separate icon. These icons are attached to the
average cluster images and provide additional functionality which can be controlled by mouse
manipulation. When activated, the list of images encoded in the cluster can be viewed. The
original input images are shown in a popup-window, and users can enlarge them by mouse
interaction. This way users can very quickly identify groups of images in the original data, based
on certain patterns.

In addition to the condensed view on the data, every RoD widget provides means to further
analyze the results of the hierarchical clustering process. Mouse manipulation of the RoD
polygons can also be used to view a visualization of the complete clustering tree. We use a
dendogram approach, since this gives an instant structural overview of the hierarchical clustering
results. A dendrogram is a tree diagram which illustrates the arrangement of clusters produced by
hierarchical clustering. Clusters which are created by merging are represented by the average
image computed from their leaves. Visualizing the clustering tree helps to understand how the
final RoD-related clusters have been generated. Furthermore, the number of hierarchy levels in
the tree indicates the diversity of the RoD-related image parts. The clustering which is visible in
a RoD widget refers to a specific level in the clustering tree. The elbow criterion has been used
to select the clustering (as described in Section 2.2.2). This decision may not be accurate in all
cases. We therefore enable the users to overrule this decision by simply selecting another level in
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Figure 2.8: Interactive clustering tree. The default clustering for every RoD is selected automatically
(before interaction). In the interactive clustering tree the users can specify a new level by mouse
manipulation (Clustering selection). This will overrule the decision made during the clustering
process. The new clustering is immediately available in the RoD widget (after interaction).

the clustering selection. The users can select a new level in the clustering tree by moving a slider.
This process is illustrated in Figure 2.8. The corresponding RoD widget is immediately updated
to represent the new clustering. Two leveles in the clustering tree are excluded from the selection,
namely the top and the bottom level. The top level of the clustering tree contains only one cluster
which includes all available images. At the bottom level of the clustering tree, all clusters only
contain one image.

Additional control tools are provided in VAICo which users can employ to influence the
visualization. The color of both the RoD polygons and the RoD widgets can be changed according
to given color schemes. To skip variations that are not of interest for the data analysis, and to
prevent the visualization from getting overly cluttered, users can employ command tools to hide
individual RoDs. By default, RoD widgets are drawn around the corresponding RoD polygon.
According to the size and shape of the image variations, it may happen that RoD widgets cover a
large area of the image space when activated. Therefore, the RoD widgets can be shrunk. In the
case of a biased image comparison, the semantics of the color coding of the RoD polygons are
slightly different, since information is collected on the number of images the RoDs are present
in. The darker the RoD polygon, the higher the number of corresponding image parts. This way
the colors of the polygons depict outliers in the data that are either available in many, or in just a
fraction of the input images.
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2.3 Implementation

The raw data for the presented approach comprise an ensemble of unsorted PNG images. The
pre-processing, consisting of an image comparison step and a data clustering step, has been
implemented in JAVA. The interactive visualization tools have been implemented as an interactive
web application. The widgets are embedded in an HTML5 canvas and interactions are done in
JavaScript (using the library KineticJS!).

The cost of the pre-processing depends on the number and size of the images in the set. The
run-time depends on the number of identified RoDs, since for every RoD hierarchical clustering
has to be applied. The pre-processing for the largest data set called Gene Expression, which
consists of 578 images of size 200x200 pixels, takes 2.1 minutes. Afterwards the results of the
pre-processing step are transferred to the visualization system by JSON files. The results are
then loaded into the visualization system, which means that the provided JSON files are parsed.
This takes 10 seconds for the largest data set. Afterwards the visualization system is ready to be
utilized by the users. The interaction itself works in real-time.

2.4 Results

In order to evaluate the proposed visualization technique different ensembles of images have been
analyzed. The images are taken from different domains to show the applicability of the proposed
method to different types of datasets. An overview of the image ensembles is given in Figure 2.9.

Figure 2.9: Image datasets. The dataset Puzzle contains pictures of a real-world scene (first
column). The dataset Shapes contains images with shapes of different colors (second column).
The dataset Retina contains retina images from different patients (third column). The dataset
Satellite comprises satellite images of a coast-line in Indonesia (fourth column). The dataset Gene
Expression contains images with color coded gene expression information (fifth column).

Thttp://kineticjs.com/
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The selection of the dataset Puzzle was inspired by the well-known spot-the-difference puzzles.
This dataset consists of ten pictures which show a real-world scene. The images are of size
1050x700 pixels. In the images small elements disappear or change their color. We used the
unbiased (i.e., pixel-based) image comparison approach to locate the image differences. VAICo
then takes the results of the comparison to give an instant overview of all variations in the datasets.
The RoD widgets can be used to reveal the underlying raw data that actually caused the difference
in the data. The VAICo visualization of the Puzzle dataset is depicted in Figure 2.10. It can
be seen that four RoDs have been identified that contain two main clusters each. These RoDs
correspond to features that are present in some of the images, and are missing in other images.
For example, in the right lower corner, there is a men visible in seven of the images, but not in
three. One of the RoDs contains three main clusters. Here an umbrella is colored differently in
the images, which can be clearly seen when opening the RoD widget’s cluster bullets.
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Figure 2.10: Results for dataset Puzzle. Our approach identified five RoDs which depict the data
changes in the images. One object in the scene changes its color (RoD3), and some other objects
are not present in all images (RoDj, RoD>, RoD4, RoDs). The color-coding of the RoDs shows
the number of corresponding clusters. The color-coding of the cluster bullets indicates the number
of assigned images.
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The dataset Shapes is a synthetic dataset which consists of 52 images. The images are of size
600x400 pixels. They contain different types of shapes (rectangles, triangles and circles) of various
colors and sizes on a white background. In the series of images, individual shapes disappear,
re-appear or change their color. We used the unbiased (i.e., pixel-based) image comparison
approach to locate the image differences. An overview of the VAICo visualization of the dataset
can be seen in Figure 2.11. The RoD widgets of three of the available four RoDs have been
expanded in the Figure to see the underlying details. Similar to the Puzzle dataset, images for
which certain shapes are missing, are clearly visible in the visualization. Also another case can be
depicted when examining the RoDs. For the RoD in the middle, it can be seen that a rectangle at
that location changes the color, as well as that it is also missing in some of the images. The sizes
of the clusters also indicate how many images are effected, and how the differences are distributed
among the images.
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Figure 2.11: Results for dataset Shapes. This dataset consists of images containing shapes of
different colors on a white background. Our approach identified four RoDs (three of them expanded
in this Figure). Some of the objects are not present in all images (RoD1, RoD;), and some of them
also change their color (RoD3). The color-coding of the RoDs shows the number of corresponding
clusters. The color-coding of the cluster bullets indicates the number of assigned images.
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The dataset Retina contains 20 retina images of different patients. The images are of size
1168x779 pixels. In some of the images anomalies are present, because the patients suffered
from diabetic retinopathy. Retinopathy is a damage to the retina caused by complications from
diabetes. Blood vessels at the back of the eye can bleed and blur vision. The leakage of blood
can be seen as dark spots in the retina images. Through these dark spots, retina images of sick
patients can be differentiated from retina images of healthy patients. We also used the unbiased
image comparison approach to analyze this dataset. The results can be seen in Figure 2.12. In the
comparative visualization of VAICo, the dark spots which were present in some of the images
resulted in the creation of RoDs at these positions. When investigating the RoDs, these images
containing dark spots on the retina can be identified as outliers in the data. Images without
anomalies are merged into one cluster since they contain similar information. The RoD widget
allows us to explore the variations in the data, so that anomalies can be distinguished from normal
data variations that do not indicate pathological changes. The RoD widgets provide the possibility
to retrieve the original image data, which keeps track of the investigated patients.
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Figure 2.12: Results for dataset Retina. This dataset consists of retina images from different
patients. The image comparison identified dark spots on the retina, which can be further analyzed
by using the RoD widgets. The color-coding of the RoDs shows the number of corresponding
clusters. The color-coding of the cluster bullets indicates the number of assigned images.

The dataset Satellite consists of 12 satellite images of size 614x450 pixels. The images show a
coast-line in Indonesia and cover a time period from 2000 to 2011. One image has been produced
every year. The coast-line has been greatly affected by a tsunami in 2004. We used the unbiased
(i.e., pixel-based) image comparison approach to analyze this dataset, since no prior information
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was given about the structure of the image data. It was necessary to adjust the threshold to skip
small variations in some parts of the data. When viewing the comparison results with VAICo, the
image part showing the coast-line is covered by one RoD. The results of the visualization can
be seen in Figure 2.13. VAICo allowed to detect very interesting patterns in the data. As it can
be seen in the Figure, the image showing the damage caused by the tsunami on the coast-line
is clearly visible as an outlier in the RoD data. The image is contained in one separate cluster
(leftmost cluster in Figure 2.13). The In the remaining two clusters, the images before (middle
cluster) and after (rightmost cluster) the tsunami are summarized. When manually inspecting the
images, such patterns and outliers that are present in the data could be easily missed. Additionally,
differences between the state of the coast-line before and after the tsunami are not inherently
available in the dataset.

[T

low high

cluster bullets

[

low high

Figure 2.13: Results for dataset Satellite. The images in this dataset show a coast-line in Indonesia.
Damage caused by the tsunami in 2004 is identified as an outlier in the data (leftmost cluster). The
images showing the state of the coast-line before (middle cluster) and afterwards (rightmost cluster)
are summarized in separately. The color-coding of the RoDs shows the number of corresponding
clusters. The color-coding of the cluster bullets indicates the number of assigned images.
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The dataset Gene Expression originates from the biological domain and consists of 578 images
showing gene expression data. The images are of size 200x200 pixels. The data has been created
from point cloud datasets of different fruit fly embryos as described by Fowlkes et al. [FHK"08].
In the images gene expressions of the EVE protein are color-coded from very high (red) to very
low (blue). Every image in the Gene Expression dataset corresponds to one fruit fly embryo.
We analyzed this dataset by using the biased image comparison approach. We located the seven
stripes of the EVE protein in the images by segmentation. Then the RoD data of the images was
compared and the results were visualized with VAICo (Figure 2.14). The color coding of the
RoD polygons indicates the number of images the RoDs are present in. In the visualization it can
be seen that the first stripe shows up in more images than the other six stripes. This is due to
the fact that some images covering the earlier stage of the embryo development only contain one
stripe. Additionally, outliers can be detected very easily in VAICo. They refer to patterns in the
images where the gene expression does not look like as expected.
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Figure 2.14: Results for dataset Gene Expression. The color-coding of the RoD widgets depicts
in how many images the corresponding RoD can be found. The first stripe (RoDg) is available
in more images than other stripes. An outlier region RoD; could also be identified, which shows
unexpected gene expression data (available only in 2 images).
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2.5 Evaluation

We collected user feedback to evaluate the presented visualization techniques. We hypothesized
that using our visualization technique, participants would: (1) get results faster when searching
for differences in a set of images; (2) get a better overview of individual variations in the image
data; and (3) be able to better spatially localize differences in the image data.

For the feedback we created a setting were we could compare a juxtaposition of images to the
comparative visualization VAICo as presented in this chapter. In the juxtaposition participants
could scroll through the list of images, sort them by drag-and-drop and click on images to enlarge
them. VAICo, on the other hand, contained all the main features, like that the ensemble is
presented in one view, and that users could use the RoD widgets to explore the details. An
overview of the evaluation setting is given in Figure 2.15. The images taken from the Shapes
dataset contained shapes like triangles, circles and rectangles on a white background. Some of
the shapes changed their color or disappeared in the image set. For the evaluation, six different
dataset versions have been prepared. Due to their very general composition, images could be
easily interpreted by users from different domains.

We designed three tasks which refer to the three hypotheses mentioned above:

» T1: Depict variations with certain parameters. In this task participants had to identify one
shape which is present in all images. None of the remaining shapes did show up in all of
the images.

e T2: Analyzing local variations. In this task participants had to identify one shape that is
colored in three different ways in the images. Then they had to sort the three colors for this
shape by the number of occurrences.

e T3: Localization of changes. In this task participants had to identify the most mutable
image region (i.e., the image space part with the highest number of variations).

Participants had to complete all three tasks twice: once by using the juxtaposition and once by
using the VAICo visualization system. Datasets were switched between different tasks, and also
between different visualization techniques. Therefore, participants never worked on the same
dataset twice. The order of the tasks (as stated above) was the same for every participant. The
order in which the two different visualization techniques were presented to the user was selected

at random. For every task we measured the completion times and the correctness of the answers.

The user study was conducted with 11 participants from three different domains, namely computer

science (7), engineering (3), and medicine (1). Participants were between 26 and 57 years old.

The group of participants consisted of 9 men and 2 women.

The results of the user study are presented in Figure 2.16. The results show that VAICo definitely
improves the search time for image differences. In addition to time, the error rate was measured
for every task. For the juxtaposition some participants made errors when trying to solve task T2
(error rate of 9.1 %) and task T3 (error rate of 27.3%). Participants did not give wrong answers
when using the VAICo system. When analyzing the results, it can be seen that VAICo helps users
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Figure 2.15: Evaluation setting. The users had to solve the same tasks in a juxtaposition (upper
part), and in our proposed VAICo system (lower part). In the juxtaposition, images were placed
side-by-side (a). Users could scroll through the list of images, sort images by drag-and-drop (b),
and check individual images by clicking on them (c). In the VAICo system, the image ensemble
was presented in one view (d). Users could employ the RoD widgets (e) to get more details about
individual image differences (f).



2.5. Evaluation

to quickly get an overview on differences in the image set (task T1). It also helps to analyze local
variations (task T2). Both tasks would require time-consuming analysis steps if done manually
by the user. The comparative visualization brings significant improvements for users to localize
variations in image space (task T3). This is a very tedious task if done manually.
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Figure 2.16: Evaluation Results. The charts indicate the time it took the participants to complete
the tasks T1-3 with the juxtaposition (blue) and with VAICo (red). The x-axis depicts the participant
number (1-11) and the y-axis gives the time (in seconds) it took to complete the task. Every
participant had to complete every task twice: once by using a juxtaposition and once by using
VAICo. Therefore, two different measurements are available per task for every participant. The
evaluation results show that VAICo clearly is of benefit for completing the examined tasks.
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2.6 Summary

VAICo is a visualization technique for the comparative visualization of image ensembles.
Interactive visualization tools are provided to explore the image space and drill-down on
individual variances. Our visualization approach addresses the scalability of image comparisons
and proposes ways to integrate contextual information and more detailed information in one view.
Contextual information is preserved, whereas image variances can be efficiently spotted and put
into context. Our approach can be applied to quickly identify small local differences in an image
set. It is also helpful for analyzing the occurrence of previously defined image features.

VAICo is scalable to a large number of images. We use clustering to cope with scale and to
identify patterns in the data. Clusters are depicted as bullets around the RoD widgets. If many
clusters have to be displayed in the widget, there might not be enough space around the widget to
visualize all of them. In this case additional functionality is provided to the users, which means
that clusters are presented in a separate popup-window (where scrolling can be activated easily).
However, we would like to point out that a high number of cluster bullets for a RoD usually
indicates that the underlying clustering should be refined. VAICo provides the possibility to adjust
the clustering by selecting another level in the clustering tree. We think that having the ability to
refine the clustering is more appropriate for analyzing the data, than providing means to deal with
high numbers of clusters. Including additional visualization techniques which can handle these
special cases might be an interesting idea for future work.

The used Mean Squared Error (MSE) computation is a very simple image comparison approach
which has some limitations. As one approach to deal with these limitations, we provide the
possibility to adjust the sensitivity of the algorithm. The users can define a sensitivity threshold
for intensity changes. Figure 2.17 illustrates how the threshold effects the RoD calculation. The
higher the threshold, the less pixels will be considered as variations in the data. Increasing the
threshold will shrink the resulting RoDs, and might even cause RoDs to disappear. This way,
particular intensity variations in the data can be skipped if they are not of interest for the data
analysis. MSE is very sensitive to global intensity shifts, and adjusting the sensitivity threshold
might not be enough to deal with global changes in the data.

2] b

) Y -
(> O

Figure 2.17: Effect of sensitivity threshold. Three different threshold have been applied, increasing
values from (a) to (c). A higher threshold values results in less image space being occupied by the
regions of differences (RoDs).




2.6. Summary

VAICo operates on a set of images, where the individual images exhibit small localized differences.
The approach has its limitations if dealing with a high number of variations in the data. Figure 2.18
shows two examples where VAICo does not produce appropriate results, namely varying data in
landscape images and motion data. VAICo is designed for scenarios where the obtained images
have undergone a certain form of standardization. This is often done during the acquisition
process itself (e.g., by employing a particular protocol for mounting and imaging) or through
post-processing such as registration. As such procedures are highly dependent on the application
domain, they are not the focus of our work. Instead, we assume that all images in our input set
have undergone such a process, i.e., they are of the same size and represent similar regions in
space. In the case of landscape data (Figure 2.18a), an additional clustering step could be applied
to the images, and VAICo could be used to further explore images in the individual clusters. In
the case of motion data (Figure 2.18b), VAICo gives a quick overview on the motion tracks in the
images. Although our approach is currently not suited to deal with time-dependent data, it will be
interesting to explore its applicability for event detection in video data.

Figure 2.18: Data analysis limitations. Landscape images (a), that include a high number or
variations, and motion data (b) result in very large RoDs. This is because VAICo was designed
for images that exhibit small local differences. Adjusting VAICo for other types of images is an
interesting topic for future work.
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CHAPTER

Visual Analysis of Differences in Mesh
Ensembles

This chapter is based on the following publication:

Johanna Schmidt, Reinhold Preiner, Thomas Auzinger, Michael Wimmer, M. Eduard Groller and
Stefan Bruckner. YMCA — Your Mesh Comparison Application. In Proceedings of the IEEE
Conference on Visual Analytics Science and Technology, VAST ’14, Paris, France, pp. 153-162,
November, 2014

Polygonal meshes are one of the most commonly used surface representations in 3D computer
graphics. Their explicit description of the surface location in 3D together with local connectivity
information enables memory-efficient storage and provides a convenient data structure for a wide
range of applications (e.g., in geometric processing). For many tasks related to mesh creation
and/or editing, a multitude of proposed methods exist. Polygonal meshes may serve both as
input and output for a majority of such techniques. As a consequence, the characteristics and
capabilities of different approaches for a common task have to be evaluated on the basis of their
results, which inevitably leads to the need to compare an ensemble of similar meshes. The
analysis of such mesh ensembles is of major importance for several geometric processing tasks
such as mesh resampling, mesh simplification, and mesh denoising. Beyond computer graphics,
other fields that deal with 3D objects, like CAD or biomolecular modeling, also benefit from new
trends for multi-mesh comparison. The analysis of differences in 3D poses several interesting
challenges. Firstly, if the differences should be explicitly encoded, a proper metric for comparing
the 3D data has to be found. The metric also strongly depends on the analysis tasks that have to
be solved. Secondly, for the encoding and exploration of the differences in a 3D environment, it
has to be ensured that interesting regions are not missed by the users due to occlusions. Until the
publication of this work, the tool-set for the visual comparisons of 3D meshes was limited to basic
techniques for comparative visualization. Analysts typically employ statistical evaluation (e.g.,
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computing the global error), simple juxtaposition, or explicit encoding by color to visualize mesh
differences. This is illustrated in Figure 3.1. As mentioned in Section 1.2.2, juxtaposition does
not scale well with the number of instances, and basically supports only pairwise comparisons.
If the visualization of the differences cannot be summarized in one view, it is necessary to
scan/rotate/zoom into several 3D meshes one after another, and manually detect and remember
all small differences in the data. Explicit encoding (e.g., color-coding of differences) solved this
problem by pointing users to the regions in the data where differences occur. The technique,
however, only partially characterizes the behavior of the underlying algorithm (e.g., whether the
data is smoothed). Similar to this, a global statistical evaluation of the meshes in the ensemble
might not reveal all visual properties like small details of the input meshes.

As an exemplary use case for 3D mesh comparison, we concentrated on the analysis of meshes
created by different mesh reconstruction algorithms. Mesh reconstruction refers to extracting
meshes from point clouds as accurately as possible [BLN*13]. Point clouds represent the external
surfaces of objects, and are typically created by 3D laser scanners. The advent of affordable
scanners has made the creation of virtual representations of real-world objects a commodity. Point
clouds are generally not directly usable by 3D applications, and are therefore usually converted
to polygonal or triangle meshes. A wide variety of mesh reconstruction techniques has already
been developed, and these algorithms differ (more or less) subtly in their reconstruction behavior.
Especially the presence of noise, outliers or other errors in the input data may influence the result
of the reconstruction [BTS* 14]. Furthermore, with almost every technique the output depends
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Figure 3.1: Common mesh comparison approaches. Current tools often employ statistical eval-
uation (fop) to visualize the quality of reconstructed meshes, which typically does not allow to
visually judge the mesh differences. This problem can be solved by employing juxtaposition
(middle). Another possibility is to use explicit encoding by color to show differences between
meshes (bottom).



on several, partly very sensitive, parameters with varying suitability for different kinds of data.

All these facts create a large space of possible results when reconstructing a mesh from a point
cloud. From a statistical point of view, the quality of a reconstruction can be defined by the
residual distances of each surface point from the reference shape. As mentioned before, such
a global evaluation alone hardly communicates a full understanding of a technique’s strengths
and weaknesses on different types of data. In practice, users often face a trade-off between the

preservation of geometric detail and the robust removal of scanning artifacts like noise or holes.

It is therefore required to keep the human in the loop and let the users judge upon aesthetic
considerations during the analysis. Visualization systems need to provide means that allow users to
inspect the visual properties of the input meshes in a 3D environment. When implementing mesh
reconstruction techniques, a special challenge is the evaluation of a newly developed algorithm,
as until now it required extensive laborious comparisons. It is necessary to compare samples of
the approach in its own parameter space, as well as to compare the new technique with existing
state-of-the-art methods.

In this chapter we describe our findings for the visual analysis of 3D mesh ensembles. We
propose a combination of explicit encoding, juxtaposition and quantitative measures that supports
mesh comparison tasks and provides more insight into the underlying data. We implemented
an application targeted towards the comparative visual analysis for 3D mesh ensembles. Our
application is called YMCA - Your Mesh Comparison Application. YMCA automatically
compares the meshes in the ensemble and helps to identify areas in the data where reconstruction
algorithms produce differing results. Our application further allows for a detailed exploration
of local regions of interest, so that users can visually judge the characteristics of different mesh
reconstruction algorithms. The different results of the reconstructions in the local regions of
interest can also be compared with each other.

The main features of our approach are:

* Comparison of ensembles: Our visual analysis methods are designed to overcome the
problems of previous approaches that do not scale well with mesh ensembles. With our
approach users are able to get an overview of all studied algorithm results. It is also possible
to evaluate the performance of individual algorithms with others.

» Focus+Context: As a starting point of the analysis process, we provide an overview of the
comparison results. Users can then further concentrate on local variations and explore
them in more detail without losing the context information.

* Flexibility: The proposed visual analysis tools can be applied to different mesh comparison
tasks, e.g., comparing meshes after mesh simplification, as well as comparing different
reconstructed meshes. The approach is neither tied to a certain type of mesh (e.g., watertight
mesh), nor to a certain mesh comparison metric.
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3.1 Related Work

YMCA is related to comparative visualization (as already introduced in Section 1.2) and ensemble
visualization (as already mentioned in Section 1.2.2). Our application further addresses the
problem of multi-mesh comparison. Due to the need to evaluate mesh editing techniques (e.g.,
mesh simplification or mesh denoising), many approaches have been developed that support
multi-mesh comparison. Various techniques focused on the mathematical background and
established metrics which can be used to compare meshes. Aspert et al. [ASCEQ2] proposed
an approach to measure differences between two meshes by using the Hausdorff distance. Roy
et al. [RFT04] introduced a new mesh comparison method using an attribute deviation metric.
MeshLab, by Cignoni et al. [CCROS8], was implemented to combine mesh comparison as well
as mesh editing tools. In our work we focus on visual support for mesh comparison, and some
interesting approaches have already been developed in this area. Cignoni et al. [CRS98] presented
Metro, a system that allows for pairwise comparison of surfaces. A similar approach was later
proposed by Silva et al. [SMS05]. Their system, which is called PolyMeCo, allowed users to
compare meshes with a reference mesh. Existing approaches for mesh comparison use color to
encode the differences and present the results by juxtaposition. Therefore, they are limited to a
small number of meshes. Apart from zooming, the systems also do not provide means to inspect
local areas. In our approach we extend these ideas to provide means to compare multiple meshes,
and to inspect local regions in more detail.

The acquisition of virtual representations of scanned real-world objects from point clouds is
referred to as surface reconstruction. In contrast to point-set surface-representations [AK04],
this work focuses on mesh reconstruction from point clouds. Meshes are reconstructed according
to different formulations of implicit surfaces defined on the input points, ranging from locally fitted
tangent planes [HDD*92], radial basis functions [CBC*01], to Poisson reconstruction [KBHO06].
All these techniques exhibit their own characteristic reconstruction behavior in terms of robustness
and accuracy, and require various parameters which influence the result. Berger et al. [BLN*13]
present a benchmark tool for surface reconstruction algorithms, where the users can test different
algorithms on different point cloud datasets. When presenting the results, they use juxtaposition
where rendered models are placed side by side. This way the complex task of finding relevant
differences in the data is shifted to the user.

The concept of linking-and-brushing is well-known in visualization. It refers to the connection
of two or more views in a way that a change to the representation in one view affects the
representation in the other one as well [War09]. Linking-and-brushing is a very flexible concept
that can be applied to many different data representations, like 2D data (e.g., scatter plots [BC87])
as well as 3D data [DHO2]. We use linking-and-brushing to keep track of users’ selections.
Elements in our summary representations can be selected, which will mark them as selected also
in the detailed view (and vice versa).
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3.2 YMCA - Your Mesh Comparison Application

YMCA combines explicit encoding, juxtaposition, parallel coordinates, and interaction techniques
(i.e., linking-and-brushing and focus+context) to convey an overview of mesh differences, and to
allow the users to inspect local areas of interest. We focus on triangular mesh data produced by
different mesh reconstruction algorithms. The data has been created by the surface reconstruction
benchmark tool implemented by Berger et al. [BLN*13]. The meshes are already registered. No
pre-processing (e.g., filtering) has been applied to the meshes. In addition, a reference mesh is
assumed to be available for every point cloud.

To provide a condensed representation of all differences in the data, we propose to project the
variances of the mesh deviations onto the reference mesh. The calculation of the variances is
described in Section 3.2.1. In addition, we locate problematic regions (i.e., regions of high
variance) in the model to provide additional guidance to the users when exploring the data. The
detection of such regions is outlined in Section 3.2.2. The problematic regions are used to
build a parallel coordinates plot to visualize the performance of the reconstruction algorithms
(Section 3.2.3). The inspection of local areas provides interesting insights into the behavior of the
reconstruction algorithms. The visual analysis tools of YMCA are described in Section 3.2.4.
The whole pipeline of YMCA is outlined in Figure 3.2.
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Figure 3.2: Overview of our visual analysis approach. The input data consists of a set of n meshes
my...m, and one reference mesh m,.y. The surface deviations of the meshes are calculated to

get the corresponding variance map. Afterwards high-variance regions are located in the data.

The results are finally presented using our visual analysis tools.
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3.2.1 Calculation of Error Variances

The usage of explicit encoding of the mesh differences requires the computation of the mesh
differences in the ensemble first. For the mesh comparison we use an attribute deviation metric as
described by Roy et al. [RFT04]. This metric can be employed to compare meshes in a pairwise
manner. The metric calculates point-wise deviations from a first mesh to a second mesh. The
deviation is defined as the distance between a vertex of the first mesh and the nearest point on
the surface of the second mesh. In our case the first mesh is always defined to be the reference
mesh. The reference mesh of m,.¢ is then compared to all other meshes in the ensemble in a
pair-wise manner. In all cases the surface deviation values for all vertices of m,.. s are computed.
The surface deviation values can be denoted by errors in the following, because they describe
differences between the reference mesh and the input meshes. Given » input meshes my, . .., my,,
the mesh comparison then results in a set of n error values for every vertex in m,.f.

We then calculate the per-vertex error variances for all vertices v in m,..¢. The error variances are
used to detect regions where algorithms differ in the way they handle noise or missing data. Some
reconstructions produce holes in areas where other reconstruction algorithms are able to close
the mesh. Some algorithms take outlier points into account which lead to bumps on the surface,
which are smoothed away by other algorithms. Such cases can be identified in the data when
using the error variances. First we need to compute the per-vertex mean error mean,. Then the
per-vertex variance 0"2, can be calculated based on the n error values d; . . . d,, with the standard
formula:

2 _ Xlmean, - d,)?

v n

3.1

These computations result in per-vertex variance values o2 for all vertices in n1,, . In YMCA,
we call this discrete distribution of variances the variance map. The variance map is later used
to extract interesting regions in the data (as described in Section 3.2.2), and also surfs as the basis
for our visual exploration.

3.2.2 Automatic High Variance Localization

To guide the users during the exploration, we extract & surface regions showing the highest error
variances from the variance map. These surface regions are assumed to be the most interesting
areas for comparison due to the high disagreement between the reconstruction methods. We
extract these regions automatically in the data and present them later to the users. The detection
of high-variance regions in the data only has to be done once in a pre-processing step, directly
after the variance map computation.

The variance map computed in the previous step serves as a basis for finding local maxima in
the distribution of per-vertex variances on the surface. These maxima are found by employing
a weighted Mean-Shift [CM02] algorithm in R? on the set of mesh vertices. In our case, the

weights for the weighted Mean-Shift algorithm are defined by the per-vertex variances o-2.
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anisotropic kernel

12 isotropic kernel

Figure 3.3: Surface-aware Mean-Shift. Instead of using an isotropic kernel (a), we employ a
surface-aware Mean-Shift with an anisotropic kernel (b) around the current mean x;. This prevents
the means from moving away from the model surface (x.). Instead, by considering the normal
vector N, the means stay close to the intrinsic surface (x;).

A set of initially random samples x;, i = 1...k of mesh vertices are iteratively shifted toward
2
modes in the variance distribution using a smooth kernel 8(r) = e="/$)" of finite support s. One
iteration step is given as
o 200607 pj
Xj= (3.2)
2 0(6ij)o;

where (712. gives the variance at vertex j, while p; is its location in R3 and 6; ; denotes its distance
to the sample x;.

However, an isotropic kernel might let samples move away from the intrinsic surface described
by the local neighborhood of vertices (Figure 3.3a). Thus, we need to constrain the sample
movements to be close to the local surface around x; (Figure 3.3b). We employ a surface-aware
distance metric ¢;;, which incorporates the surface normal n; into the weighting kernel as given by

bij = ”Pj — x| + |<ni,]9j - xi> - (3.3)
After the samples converged to different high-variance modes on the surface, spatially similar
points are discarded, and the remaining ones are sorted by their amplitude. This gives a list of
hot-spots that we use in the consecutive visual analysis procedure. Besides the positions p; of the
hot-spots, we are also interested in their extent, which is given by the weighted sample standard

deviation o of variance values at every hot-spot.
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3.2.3 Parallel Coordinates Plot

The list of hot-spots created in the previous Section can be used to span a multi-dimensional
feature space. The space is defined by the number of hot-spots % and the error values e,, for all n
input meshes at the hot-spot positions. We propose to use the high-dimensional visualization
technique of parallel coordinates [1D90] to analyze this multi-dimensional feature space.

Every hot-spot defines one axis in the parallel coordinates plot, and the dimensions of the axes
are given by the global minimum and maximum error values. The input meshes are represented
as polylines in the plot. A schematic representation of the parallel coordinates plot can be found
in Figure 3.4. The axes in the plot are initially sorted according to the hot-spots’ weighted sample
standard deviation of variance values. This assures that the hot-spots at positions where the input
meshes produced varying results are listed first. The sorting of the axes can be interactively
changed by the user. The parallel coordinates plot is initialized with the pre-computed hot-spots.
Users can also manually insert new hot-spots into the plot which are especially interesting for
their analysis.

The parallel coordinates plot gives an abstract representation of the information encoded by the
hot-spots. The plot enables users to track the error rate of algorithms in different local regions in
the data. This reveals whether certain algorithms produce desired results in all regions of interest,
or just in a subset of them.
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Figure 3.4: Parallel coordinates plot. We can use the hot-spots to create a multi-dimensional
feature space, defined by the hot-spots ¢;...t;, and the error values e,, at those positions for all n
input meshes. The hot-spots are represented as thumbnail images, and the input meshes m;...m,
are defined by polylines.
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3.2.4 Visual Analysis

YMCA provides interactive tools to explore the results of the mesh comparison analysis. The
interaction concepts follow the principle of overview first, details on demand. The main elements
of the user interface are illustrated in Figure 3.5.

To provide an overview of the differences in the data, we propose a rendering of the reference
mesh (Figure 3.5a). A heat map is projected onto the mesh according to the current variance
map. The default heat-map colors range from blue (low variance) to red (high variance). The
decision to choose a color scale ranging from blue to red was the result of some discussion with
our collaborators, because such color maps are widely used in practice, and they were already
familiar with such a heat-map color scale. We are aware that the color scale may not be ideal
(e.g., for colorblind people). If necessary, the color scale can therefore be adjusted by the users by
selecting different colors for the minimum and maximum variance values. The reference mesh
rendering allows users to inspect differences in the data without having to check all individual
meshes, because the relevant information is aggregated in one view. An example for an overview
image can be seen in Figure 3.6.

In the user interface, the hot-spots are arranged in a parallel coordinates plot. The parallel
coordinates plot, where the hot-spots are embedded in, represents the input meshes as polylines,
indicating their local error value at the hot-spot positions (Figure 3.5b). To interact with the data,
the users can change the ordering of the axes and also eliminate individual hot-spots by mouse
interaction. Individual polylines can be activated and selected. It is also possible to create new
hot-spots during the analysis. To give users an idea about the position and size of the hot-spots, the
corresponding surface regions are represented by thumbnail images of the mesh. The thumbnails
are displayed at the corresponding parallel coordinates axes. The thumbnail images are created
when a hot-spot is generated in the system. The reference mesh is used to produce the images,
and the viewports are given by the corresponding hot-spots’ locations. The users can interact
with the thumbnails by mouse. When clicking on one of them, the overview is automatically
rotated to the location of the hot-spot. The optimal viewing angle is calculated by aligning the
viewing direction with the normal vector of the hot-spot and centering it in the viewport. To
emphasize the hot-spot locations, we use a focus+context approach in the rendering of the mesh.
We employ opaque rendering only in the hot-spot area, while the rest of the mesh is depicted
with high translucency (Figure 3.5c). The users can employ the parallel coordinates plot and the
hot-spots to quickly depict input meshes containing undesired results and eliminate them from
further analysis. It is also possible to compare input meshes based on local properties.

Besides giving an overview of the data, YMCA also provides means to further inspect local
variations. We propose a magic lens tool (Figure 3.5d) which can be used to select a certain
region of interest on the surface of the mesh. The magic lens is circular, because drawing a
circle is a very intuitive way of selecting objects. A colored, transparent circle drawn over the
mesh indicates the current location of the lens. The size can be dynamically adjusted by mouse
interaction. Since the circle is transparent, the selected part of the reference mesh remains visible
in the 3D view. The magic lens is linked to the detail view (as described below), so that the
properties of the input meshes can be explored at the current position of the lens.
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Figure 3.5: User interface elements. YMCA conveys an overview of the available data (a) by
rendering the previously computed variance map. Hot-spots are computed, which point to regions
of high variance in the data. They can be arranged in a parallel coordinates plot to compare the
input meshes based on local regions (b). Rendering of the hot-spots points users to interesting
features (c). The local regions can be explored by employing a magic-lens (d), which updates the
corresponding detail view (e).
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Figure 3.6: Overview image. In this figure the reference mesh with a projected heat map according
to the variances in the data is shown (a), as well as some mesh regions in more detail (b).

The current location and size of the magic lens tool is used to present more detailed information
about the local behavior of the mesh reconstruction algorithms in a detail view (Figure 3.5¢).
A more detailed example of how a detail view can look like is given in Figure 3.7. To provide
quantitative information, a ranking of the mesh algorithms is provided. The reconstruction
algorithms are sorted according to their corresponding accumulated error at the current lens
position. For every algorithm a rectangle is placed at the corresponding position along an error
scale (Figure 3.7a). The scale ranges from the global minimum to the global maximum error. In
addition, the ranking of the algorithms at the current lens position is shown below (Figure 3.7b).
This reveals whether an algorithm, which has a low/high global ranking, produces different
results at the current local position. The users can activate rectangles by mouse interaction
to reveal the name of the algorithm at this position. In addition to the ranking, further visual
information is needed for the analysis of the meshes, for which we added a data summarization
view (Figure 3.7¢). Here the meshes are classified according to their accumulated error at the
current lens position (see Section 3.2.5 for further information). This summary gives an overview
of the variance and possible problems at the current lens position. According to feedback from
domain experts, besides having an overview, it still is necessary to have access to the individual
meshes. Therefore, we allow users to see close-up views of the reconstructed meshes. If more than
one mesh is selected, we place the close-up views in a juxtaposition (Figure 3.7d). The meshes
inside the close-up views are color-coded according to the accumulated error at the current lens
position. Here we use a different heat map than the one projected onto the reference mesh to make
a clear distinction between the variance and the local error values. All interface items are updated
every time the magic lens is moved or resized.
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Alg. 04

Figure 3.7: Detail view. When using the magic lens tool, the users can hover over the reference
mesh and inspect parts of it in more detail. The global error value of the input meshes (a) and the
local error at the lens position (b) are displayed at the top. The meshes are classified according to
their local error value at the current position of the lens (c). It is also possible to view individual
mesh renderings (d).

We provide some additional controls which can be used to adapt the system’s interface elements
according to individual preferences. As mentioned above, the color scales of the overview image
and the close-up views of the reconstructed meshes can be customized by the user. In addition, the
upper and lower bound of the color heat map in the overview image can also be adjusted, which
allows users to concentrate on different variance ranges. The render mode can be changed from
hot-spot rendering to heat-map rendering at any time. In the detail view, the users can decide
whether they want to see the global ranking as well. The detail view can further be adjusted
to concentrate on the data summarization, on the individual meshes, or both. It is possible
to replace the reference mesh by some other input mesh. Then all differences and variances
have to be re-computed, and the data has to be re-loaded. This option can be employed by the
users to compare one mesh with the other meshes in the dataset (e.g., to evaluate a new mesh
reconstruction technique).
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3.2.5 Data Summarization in the Detail View

To deal with scalability and to provide a condensed overview of the data, we decided to integrate
a data summarization into the detail view. If hovering with the magic lens over the mesh, the
users should get details about the underlying data, as well as a combined summary. The purpose
of the summary is to quickly inform the users about the variability of the data at the current lens
position and to indicate whether further inspection would be necessary (e.g., if meshes exhibit
varying results).

We propose to classify the reconstructions according to their accumulated error at the current
lens position. The variance at the current lens position indicates the number of classes which are
needed. After detailed discussions with our collaborators we came to the conclusion that dividing
the data into three classes (best/middle/worst) is a very intuitive way of presenting a summary of
the data. Therefore, a maximum of three classes is allowed. We use two fixed thresholds that
define the final number of classes. An average image is used as class representative to display the
data. Figure 3.8 gives an example of how the data summarization could look like. If the variance
at the current lens position is low, only one class is created containing all meshes (Figure 3.8a).
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Figure 3.8: Data summarization. This figure shows two examples for data summarization in the
detail view when hovering over areas of low (a) and high (b) variance.
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This shows that all reconstruction algorithms produced the same result at this position. The higher
the variance, the more classes are created (Figure 3.8b). Such positions on the mesh, where the
reconstruction algorithms produced very different results, might need further visual inspection by
the users.

The proposed data summarization provides a good overview of the data, where the users can
quickly decide about a further local inspection of the data. In addition to this level of abstraction,
the average images representing the classes still reveal the underlying information.

3.2.6 Hot-Spot Rendering

The hot-spots in YMCA can be dynamically activated in the user interface by selecting a hot-spot
thumbnail in the parallel coordinates view (Section 3.2.3). This automatically rotates the overview
to an optimal viewing angle to uncover the region of interest on the reference mesh. However, in
many cases the hot-spots are located in concavities of the surface, which are often occluded by
other parts of the mesh. Thus, a clear view onto the hot-spot may be prevented, and the users
might lose the focus if they rotate the model.

We therefore use a visualization technique that removes any occlusions of the interesting surface
region by increasing the transparency with the distance to the hot-spot. Given a pre-computed
hot-spot position p and its extent o, we employ a smooth transparency kernel K (x) = e~#IX=P /0
to put the hot-spot into focus (full opacity) while removing occluding surface parts and at the
same time providing background context (high transparency). This is done by ray casting, using
two render passes: First, in an accumulation pass, the whole mesh is drawn into a texture using
accumulative blending. Every fragment with corresponding surface position x is weighted by the
kernel K (x). This way, the resulting texture stores for each pixel the weighted sum of surface
colors along the respective ray, as well as the sum of all weights. Then, in the normalization pass,
the accumulated values in the texture are normalized by the sum of their weights and drawn onto
the screen (Figure 3.9).

¥

Figure 3.9: Hot-spot exploration. This figure shows a model rendered in hot-spot mode (Sec-
tion 3.2.6) with three different hot-spot examples (different position and extend).
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3.3 Implementation

The pre-processing step, consisting of comparing the meshes and calculating the variances, was
implemented in C++. We used MeshDev [RFT04] to calculate the differences. The cost of the
pre-processing step, consisting of the calculation of the variance map and the location of the
hot-spots, depends on the number of meshes in the input data set. No user input is required during
the pre-processing step. The interaction itself, which works in real-time, has been implemented in
C++ and OpenGL/GLSL. The application was tested on a machine with an Intel i7 CPU, 12 GB
of RAM and an NVIDIA GeForce GTX 580 graphics card. A comparison of the computation
times and memory requirements during the analysis can be found in Table 3.1. A more detailed
description of the datasets can be found in Section 3.4.

Table 3.1: Runtime and memory requirements. In this table the dataset sizes, the runtime for the
pre-processing and the memory requirements are shown. The first column gives the name of the
dataset. The second column shows the number of meshes the corresponding dataset comprises
of. The next column depicts the runtime for the pre-processing, which consists of the calculation of
the variance maps and the localization of the hot-spots. The last column shows the amount of
memory used on the graphics card.

Dataset Meshes Pre-Processing Memory
Gargoyle 10 12.7 s 82.6 MB
Dancing-Children 100 86.9 s 797.5 MB
Daratech 15 17.2s 131.4 MB

3.4 Results

Reconstruction algorithms perform with varying accuracies on different parts of a surface. YMCA
allows users to analyze these differences. The parallel coordinates plot in conjunction with the
hot-spot thumbnails enables users to understand the relative performance of different algorithms
on a particular part of a surface, and at the same time allows for the visual inspection of the
reconstructed surface and its quality.

We used data from the field of point-cloud reconstruction to test our approach. The data
was produced by different algorithms, for example Poisson Surface Reconstruction (Poisson),
Algebraic Point Set Surfaces (APSS), and Multi-level Partition of Unity Implicits (MPU). The
reader is referred to the survey by Berger et al. [BLN*13] for a more detailed description of the
reconstruction algorithms. We applied our approach to three different datasets. The first dataset,
called Gargoyle, comprises ten mesh reconstructions from a virtual point cloud scan of a carved

57



3. VisuAL ANALYSIS OF DIFFERENCES IN MESH ENSEMBLES

Faces: 240 260

Gargoyle

Dancing Children Vertices: 84 523 Faces: 169 068

Daratech Vertices: 45 132 Faces: 90 292

Figure 3.10: Datasets used to evaluate YMCA. All datasets consist of mesh reconstructions from
point cloud scans. The reference mesh of the datasets and two selected reconstructions each are
shown. The Gargoyle datasets shows the scan of an ancient statue, the Dancing-Children a scan of
a small figurine, and the Daratech datasets represents the scan of an industrial workpiece [BLN*13].
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stone figure. The second dataset, called Dancing-Children, consists of 100 mesh reconstructions
from a virtual point cloud scan of an figurine. The third dataset, called Daratech, comprises
15 mesh reconstructions from a scan of an industrial workpiece. Figure 3.10 shows renderings
of the reference meshes, examples for reconstructions, and further information about the mesh
dimensions of the three datasets.

In all datasets, parts of the variance map exhibit rectangular-shaped artifacts. We used the
overview image and the magic lens to further inspect those areas. With our tools we could find
out that these artifacts are always produced by the Poisson reconstruction algorithm (Figure 3.11).
Apparently, this artifact is caused by the limited resolution of the octree employed by the Poisson
algorithm for reconstruction. With the visual analysis tools of YMCA, this artifact could quickly
be related to the Poisson algorithm and explored visually. It is clearly visible in which part of the
models the octree resolution has to be adjusted to guarantee a smooth reconstruction.

Poisson

Figure 3.11: Artifact analysis. In all datasets rectangular-shaped artifacts could be identified in
the overview image (a). With the magic lens tool it is possible to find out that these artifacts are
caused by the Poisson reconstruction algorithm (b).

When analyzing the Daratech dataset, we could identify artifacts on the surface which were
produced by the Wavelet and the Scat algorithms. This is shown in Figure 3.12a and 3.12b (wrong
mesh vertices are highlighted in red). The artifacts are created due to the presence of noise in the
data. YMCA clearly classifies these algorithm as individual local outliers, with relatively high
reconstruction error. At a different part of the model, the RBF algorithm stands out by wrongly
closing a hole, where all remaining algorithms perform correctly (Figure 3.12¢). By giving this
integrated overview of the algorithms’ relative performance in different surfaces areas (statistically
and visually), the hot-spot localization and the parallel coordinates plot allow the users to quickly
classify algorithms and judge their eligibility. As mentioned before, a manual comparison of all
meshes would be far more tedious and can lead to particular artifacts being easily missed.
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Figure 3.12: Outlier detection. The summarization in the detail view of YMCA allows users to
quickly detect outliers, which might be caused by noise in the data (a,b) or by a certain algorithm
behavior like over-smoothing (b).
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A very interesting and helpful feature of YMCA is that with the data summarization used in the
detail view, differences at the reconstructed mesh boundaries can be explored. Blending the
lens view of meshes of the same class allows for a direct comparison and visualization of the
geometric variance of their boundaries. Different boundaries in the reconstruction result due
to different approaches to fit a surface to the point cloud data. In Figure 3.13, two examples of
different boundaries can be seen. Many parts of the boundaries of the Gargoyle model have been
reconstructed in a similar way by all algorithms. In this case no differences at the boundaries are
visible (Figure 3.13a). In other parts of the model, the boundaries of the reconstructed meshes
differ more strongly. In this case the differences in the boundaries become visible as a color band
in the images (Figure 3.13b). The Gargoyle model contains a lot of curved surfaces, and here
the boundaries of the reconstruction algorithms differ the most. With YMCA it is now possible
to explore these effects in detail. The regions where boundaries differ are clearly visible when
inspecting the mesh with the magic lens. This helps the users to judge which reconstruction
would better represent the data.

Figure 3.13: Mesh boundaries. The summary view in the detail view enables users to identify
regions where the reconstruction algorithms produce almost the same (a) or different (b) mesh
boundaries, indicated by a color band.

One major focus of our work for mesh comparison was scalability pertaining the number of
ensemble members, so that the application can be used for large mesh ensembles. The parallel
coordinates plot of YMCA proved to be very helpful in the analysis of large datasets. If such
large datasets shall be inspected, users typically would like to quickly narrow down the search
space. Then the users can concentrate on the reconstructions of interest in more detail and
eliminate others from further analysis. Depending on the task, users might want to quickly spot
reconstruction algorithms that perform either generally very good, or very bad. The parallel
coordinates plot can be employed to identify these cases.

Users can activate individual or groups of input meshes in the parallel coordinates plot. An
example is given in Figure 3.14. It shows the parallel coordinates plot as it look like when
inspecting the Dancing-Children dataset, which consisted of 100 ensemble members. In the
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parallel coordinates plot, it was possible to identify one algorithm (Fourier-3) with a low error
rate in the available hot-spot locations. The algorithm also exhibits a rather low global error
rate. One reconstruction algorithm could be spotted with a high global error rate, and which also
peforms rather bad in the available hot-spot regions (SPSS-7). Depending on the task, the users
might want to eleminate such algorithms with a good/bad performance from further analysis. As
a third example, we could identify one algorithm that exhibits a varying error rate in the available
hot-spots (Scattered-2). In the case the users would have to visually inspect the mesh properties
of the reconstruction algorithm at the hot-spot positions, to be able to judge whether the algorithm
meets the reconstruction requirements.

Figure 3.14: Analyzing large datasets. The parallel coordinates plot is a very helpful tool when
analyzing large datasets. One algorithm with a low error rate (Fourier-3), one with a high error rate
(SPSS-7) and one with a varying error rate (Scattered-2) in the hot-spot regions could be identified
very quickly.
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3.5 Evaluation

To evaluate our approach, we have collected qualitative feedback from users experienced in
working with meshes. From this feedback we wanted to find out how useful the proposed visual
analysis is for the experts, and we also discussed possible applications for future work.

Every feedback session lasted between 30 and 45 minutes. First the motivation, the YMCA
application, and all interaction techniques were explained to every participant. Then the
participants were provided with a training dataset where they could test the interaction possibilities
and get familiar with the application. Afterwards they were presented a new dataset, and were
asked to name one or more reconstruction algorithms that produce appropriate results for the
given point cloud. They were also asked to explain their decision at the end. Participants had
ten minutes time to finish the task. We used the same training and evaluation datasets for all
participants. At the end of the evaluation session, we asked them to fill in a questionnaire with
four questions.

We asked seven participants (six men, one woman) to participate in our feedback study. Three
of the participants have been working in the field of point-cloud reconstruction for years, and
therefore have a lot of experience. Two other participants are experienced computer scientists in

the rendering field, where they are working with mesh operations like filtering or simplification.

Two participants are students from the field of computer graphics. All participants agreed that
analyzing point cloud reconstructions is an important task, and that existing methods do not
provide sufficient assistance for this. Six out of seven participants had no problem to solve the
task of finding an appropriate reconstruction algorithm for the given point cloud. One participant
ran out of time while solving the task. We compared the results with reconstructions that were
previously selected by domain experts. It turned out that participants selected the most suitable
reconstruction algorithms in all cases.

With the first three questions in the questionnaire we wanted to find out more about the
practicability of the system:

1. Question I: Does the system help to spot point cloud regions which are problematic for
reconstruction?

2. Question 2: Does the system help to decide which reconstruction algorithm should be used?

3. Question 3: Does the system help to better understand the strengths and weaknesses of
certain reconstruction algorithms?

The answers to these three questions can be seen in Figure 3.15a. The participants agreed that
YMCA helps to spot the most problematic regions in the reconstruction from a point cloud
(Question 1). They also largely agreed that the system can help to identify the most appropriate
reconstruction algorithms for a given point cloud (Question 2). However, they were discordant
about whether YMCA helps to better understand how the reconstruction algorithms work (Question
3). Some participants stated that algorithms can be judged in a visual way, but for a detailed
analysis additional information about the point cloud (i.e., noise level) would be necessary. Also
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some more information about the algorithm would then be needed. For future work, it would be
interesting to analyze the algorithms’ pipelines in more detail, and to also take into account the
influence of different parameter settings.

The fourth question in the questionnaire concerned which elements of the user interface the
participants found helpful during the analysis. We asked which of the following elements they
used the most:

* Variance map (i.e., overview image)

* Parallel coordinates (i.e., visualization of reconstruction results in the parallel coordinates
plot)

* Hot-spot localization (i.e., the possibility to click on hot-spot thumbnails in the parallel
coordinates plot and the hot-spot rendering mode)

* Detail view and data summarization (i.e., detail view with close-up views and ranking, and
data summarization)

The answers to this question can be found in Figure 3.15b. The overview image showing the
variance map was rated to be the most helpful interface element for the users. This is not
surprising, since at the one hand this is the central interaction element of the system, and on the
other hand most users are already familiar with interpreting color heat maps on 3D models. The
parallel coordinates plot was very helpful for the participants to compare the overall and local
performance of individual algorithms. They used this interface element especially to eliminate
reconstructions from further analysis. Although all users were positive about the fact that a list of
hot-spots is already prepared when starting the analysis, some of them did not like the hot-spot
rendering technique. They stated that it is confusing at the beginning and needs more experience
to be interpreted in the right way. The participants also used the detail view to judge the local
behavior of the algorithms. Only one participant stated that the data summarization is sometimes
hard to interpret and would need a longer training period.

We also asked the participants about suggestions for future work. During these discussions
it turned out that the system inspired the users quite a lot, and they had many suggestions for
additional features and applications. For the overview image, one participant stated that it would
be helpful to see the reference mesh rendered in colors according to the algorithms which perform
best at certain points. This could be a valuable hint in the analysis. Having a very colorful model
means that the inout algorithms differ a lot, whereas having large uniformly colored parts means
that one algorithm performs better than all others in those areas. For the data summarization
in the detail view, the participants suggested that sometimes it would be useful to be able to
manually adjust the class borders, or even do a classification by themselves (by manually selecting
algorithms). The participants experienced with point cloud reconstruction also stated that they
liked the data summarization in the detail view, because it quickly provides an overview of the
data at the current local position. They also pointed out that summarization alone is not helpful
for them. To be able to judge which algorithm performs better than the others, they still need to
be able to access the individual input meshes. Therefore, they also liked the possibility to depict
all close-up views of all meshes from one class in a small multiples display.
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Figure 3.15: Evaluating YMCA. First we asked three questions to evaluate the practicability of our
system. YMCA proved to be very helpful for evaluating point clouds and finding the most suitable
reconstruction (upper chart). In the second part of the evaluation we wanted to find out which user
interface elements the users found the most helpful ones (lower chart). All participants liked the
variance map and rated it to be very useful. Also the parallel coordinates plot and the detail view
were used by most of the participants. However, the hot-spot rendering was sometimes confusing

and therefore not rated to be very useful in all cases.
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3.6 Summary

YMCA is a visual analysis application for the comparative visualization of multiple 3D meshes.
Not many suitable tool-sets existed so far that allowed for the efficient comparison of multiple
meshes. YMCA provided interactive tools to present an overview of the differences in the data,
and to explore local areas of interest in more detail. Our visualization approach combines explicit
encoding, juxtaposition, and parallel coordinates. It further addresses the scalability problem of
previous mesh comparison tools. We applied our approach to meshes coming from different mesh
reconstruction algorithms that were applied to point clouds. With our method, differences between
several resulting meshes can be quickly identified, and it is also helpful to explore individual
characteristics of the different mesh reconstruction algorithms. With YMCA it is now possible to
quickly and visually analyze mesh reconstruction results, and depict the appropriate solution for
the given point cloud data. Our system nonetheless has some limitations, which are discussed in
this section, because they point to interesting directions for future work.

For the data tested in the scope of this thesis, reference meshes were given which could be used
to calculate the differences in the meshes. This, however, this is not the case when analyzing point
cloud data (e.g., if scanning real-world objects). In this case we propose to create an average
mesh out of the input meshes, and to compare the meshes with this average. This provides an
initial overview of the differences in the data. If users are not satisfied with comparing the meshes
with the average, they can exchange the reference and use some other input mesh instead, e.g.,
the mesh that delivers the best reconstruction of certain parts of the input data. YMCA already
provides controls for exchanging the reference mesh.

We used an attribute deviation metric [RFT04] to calculate the mesh differences. YMCA is
primarily about the visual depiction of mesh differences, which means that the calculation of the
differences is decoupled from the visual representation. The metric can be exchanged with other
vertex-based mesh difference calculation. We tested this by using geometric deviation [RFT04],
which can be seen in Figure 3.16.

The variance map of YMCA gives an overview of the regions in the point cloud where the
reconstructions produce different results. However, for some applications it might be interesting
to see the global error instead. This would better reveal regions where all reconstructions fail.
To test this, we used the mean squared error to aggregate the different errors into one value per
vertex. YMCA already provides means for exchanging the metric, which can be also applied to
using the error values for visualization instead of the variances. At present this means that the
system has to be initialized with either the one or the other settings. The users can only explore
the results of one metric at a time. This is something that we want to change in the future. We
would also like to work on possibilities where the metric can be changed during analysis, while
the settings (like selections in the parallel coordinates plot) are still preserved for all metrics. This
way it will be possible to select a list of hot-spots (calculated by different metrics) and use them
for further analysis.

As pointed out during the evaluation, YMCA provides limited support in understanding the
strengths and weaknesses of individual reconstruction algorithms. Our approach enables the
users to visually compare the results and therefore judge them, but domain experts stated that
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Figure 3.16: Changing the metric from point distances (a) to geometric deviations (b) results in an
alternative overview image as well as different hot-spot locations.
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additional information about the input data (e.g., noise level) would be helpful. We plan to
integrate this into the system in the future. Berger et al. [BLN"13] implemented a surface
reconstruction benchmark tool which can be used to test several reconstruction algorithms with
one point cloud dataset. Additionally, the benchmark tool provides scanning simulations which
can produce different point clouds of the same model with different quality (e.g., by adding more or
less noise to the data). Then the benchmark tool can be used to apply the reconstruction algorithms
to different point cloud versions. This would span a parameter space for every reconstruction
algorithm showing its strengths and weaknesses (e.g., in the presence of noise).

During the evaluation, the domain experts also brought up another promising idea for future work.

For them it would be very helpful to be able to export a 2D flattened or unrolled representation of
the current model showing all, or at least the most important, hot-spots in one image, together
with samples of the reconstructed meshes. Up to now such illustrations are generated manually by
rotating the model and producing close-up views.
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CHAPTER

Visual Analysis of Differences in
Volume Ensembles

This chapter is based on the following publication:

Johanna Schmidt, Bernhard Frohler, Reinhold Preiner, Johannes Kehrer, M. Eduard Groller and
Stefan Bruckner, and Christoph Heinzl. Visual Analysis of Volume Ensembles Based on Local
Features. Technical Report TR-186-2-16-2, Institute of Computergraphics and Algorithms, TU
Wien, Austria, 2016

Existing approaches for ensemble visualization already concentrated on how the multitude of
information, and the variability of the data can be visualized in an effective and intuitive way.
In this thesis, methods for visualizing image ensembles (Chapter 2) and 3D meshes (Chapter 3)
have been discussed so far. The presented techniques demonstrated that many analysis tasks
involve the exploration of local data regions where the ensemble members show slightly different
characteristics. One major analysis task, which is also not covered by VAICo and the YMCA
system yet, is that sometimes the local regions themselves need to be compared with each other.
Otherwise it is particularly hard to tell whether a high data variance, or variability, is in all cases
caused by the same, or by different ensemble members. It is also not possible to analyze whether
a ensemble member producing reasonable results in one region of the data might be responsible
for a high variance in another region. In YMCA, the parallel coordinates plot is a helpful took
towards answering this question. Users can compare hot-spots regions by placing them close
together in the plot, and track the performance of reconstructions algorithms by following the
polylines. The plot, however, provides an abstraction of the underlying 3D data. If the users would
like to explore the regions in 3D, they have to click on the thumbnails and move to a different
view. The parallel coordinates plot of YMCA allows to track individual ensemble members
across several local regions. Another approach from the weather simulation domain demonstrates
how glyphs can be used to visualize similar regions at positions in a regular grid [JDKW15].

69




4. VIsuAL ANALYSIS OF DIFFERENCES IN VOLUME ENSEMBLES

70

With such techniques it is not only possible to locate regions of interest in the data, but also to
further compare these regions with each other. The existing approaches, however, do not offer the
possibility to analyze how much individual ensemble members contribute to the local variance in
a certain region. They are also only suited for the analysis of 3D meshes and 2D vector fields.

With the approach proposed in this chapter we show how local features can be analyzed in 3D
volumetric ensemble datasets. We also show how the local regions can be further analyzed,
and how this local information can be combined and summarized by using techniques from
information visualization. As an exemplary use case for volume comparison, we demonstrate
our techniques on ensembles of volumetric segmentation masks. Segmentation is applied to the
volume data and based on the used parameter settings the resulting segmentation masks show
slight differences. An overview of the data we used as an illustrative example can be seen in
Figure 4.1. The analysis of the resulting segmentation masks helps to find out which regions of
the volume data are critical to segment. Furthermore, parameter settings that lead to unwanted
features in the data (e.g., noise) can be excluded from the working process in the future.

In our visual analysis approach, we first provide a general overview of the available ensemble
data. For this purpose, we compute the most representative ensemble member that represents
the data best. This most representative ensemble member is called the spatial median, or the
medoid, of the ensemble. We compute the medoid by using the Weiszfeld algorithm [BS14]. The
medoid is then used as an entry point for the local exploration. To guide users, we visualize
areas of high variance in the data in 3D. These regions can be further explored using interactive
probing widgets. The probing widgets consist of 3D spheres which can be positioned arbitrarily
in 3D space by mouse interaction to investigate regions of high variance. While moving the
widgets, the current local characteristics of the data are shown in a separate detail view. The
detail view lists the outliers at the current position and gives insight into the underlying data. It is

O
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Figure 4.1: Different segmentation masks of the same volume dataset. The segmentation masks
were created using different settings of the same parameter space. Optimal parameter settings
result in a reasonable segmentation according to the analysis task (a). Different parameter settings
may lead to under or oversegmentation, resulting in uneven surfaces (b), as well as incorporating
or excluding regions due to noise in the data (c).




4.1. Related Work

also possible to fix widgets at a user-defined position within the volumetric datasets. The fixed
probing widgets are arranged in a similarity graph in 3D and 2D to indicate whether the local data
exhibits comparable characteristics. In this way the users can explore local regions and analyze
their similarities, without losing the context and the original data.

The main contributions of our approach are:

* Volume probing: Our proposed interactive probing widgets allow users to explore local
regions in volumetric ensemble datasets. We provide means to place probes inside the
volume to specify regions of interests.

* Similarity graph: The spatial position and extent of the probing widgets are used to arrange
the local regions in a graph according to the similarity of the local data. The graph data can
be shown in 3D and in 2D.

* Multi-level analysis: With the similarity graph it is possible to analyze the whole ensemble
data and compare local regions of interest. It is also possible to compare one or more
ensemble members against the rest of the ensemble.

4.1 Related Work

The approach proposed in this chapter is strongly related to location-based ensemble visualization,
as introduced in Section 1.2.2. We use interaction tools in 3D, and we extend the ideas of Jarema
et al. [JDKW15] to the field of volumetric datasets, where widgets also need to be placed inside
the data. We also make use of local volume probing to select regions of interest, which has
already been introduced in Section 1.2.3.

As an exemplary use case, we analyze collections of volumetric segmentation masks in this paper.
Segmentation algorithms typically use several parameters which require careful tuning. Tuner, as
proposed by Torsney-Weir et al. [TWSM™11], allows user to analyze different segmentations of
2D images. Tuner requires the definition of at least one objective quality measure, for example,
defined through the difference to a ground-truth image, and concentrates on investigating these
derived measures instead of the segmentation masks. Geurts et al. [GSK™*15] proposed a system
to analyze different segmentations of medical data. They also require objective quality measures
and provide local analysis methods based on these measures. The GEMSe tool by Frohler et
al. [FHM16] can be used to browse an ensemble of 3D segmentation masks to identify parameter
settings for a proper segmentation result. It does not require an objective quality measure,
but provides limited support for local exploration. While segmentation exploration systems
mainly focus on browsing the full dataset, our technique allows users the detailed exploration
and comparison of local features. This is useful to analyze the slight differences of segmentation
masks in a subset of the ensemble, where the ensemble members have been previously defined as
useful. Our work can therefore be seen as an extension to the work by Frohler et al. [FHM 16]
and the work by Geurts et al. [GSK™ 15], improving these with respect to the local analysis. Our
technique also operates on datasets without a proper reference solution.
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4.2 Visual Analysis of Volume Ensembles Based on Local
Features

Our visual analysis approach for the comparison of volume ensembles allows for the inspection and
comparison of local regions in the data. As an exemplary use case, we focus on the comparison
of volumetric segmentation masks. The masks have been created by segmenting a specimen
with the same segmentation algorithm, using different parameter settings. The segmentations
are created from data from different domains. We do not have ground-truth data available in
the ensembles. Our comparison approach is, in particular, designed to compare the statistical
properties of local regions in the data. The proposed visualization techniques can further be used
to compare individual, or groups of ensemble members, against the rest of the ensemble.

To be able to inform users about the differences in the ensemble, the individual ensemble members
need to be compared with each other, which is described in Section 4.2.1. The comparison
involves the computation of variances in the data, and distances between the ensemble members.
We further need structures to present the differences to the users in a 3D environment. For this we
identify the most representative ensemble member using the Weiszfeld algorithm, as described
in Section 4.2.2. This ensemble member is then used to display the local differences in a 3D
environment. The interaction possibilities are described in Section 4.2.3. To be able to compare
local regions in the data, we arrange them in a graph. The construction of the graph is outlines in
Section 4.2.4. An overview of the pipeline of our approach is given in Figure 4.2.
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Figure 4.2: Overview of our visual analysis approach. We start with an ensemble of volumetric
segmentation masks. After the difference computation, we obtain the variance and the distances of
the ensemble members in the data. This data is then presented to the users in a 3D visualization
by showing the most representative ensemble member. There users can use volume probing to
explore local regions. To compare these regions, they are arranged in a similarity graph.



4.2. Visual Analysis of Volume Ensembles Based on Local Features

4.2.1 Pre-processing and Difference Computation

Before being able to start the visual analysis of the ensemble data, the ensemble members need to
be compared with each other. The input data consists of an ensemble of volumetric segmentation
masks, and we do not have ground-truth data available. We are especially interested in locating
regions of high variance in the data, since these are the regions where the segmentations produced
different results.

All of the following calculations are not computed on the raw input volume data, but on their
distance transforms. In a distance transform, or distance map, for each voxel in a volume the
distance to the nearest obstacle voxel is assigned [ST94]. In our case, obstacle voxels are defined
as the voxels representing the segmented surface. In Figure 4.3 a volumetric segmentation mask
and its corresponding distance map is shown. We use distance maps instead of the raw data for
further comparison, as they provide a more robust measure than comparing the raw pixel values.
Therefore, in a pre-processing step, a distance map is created for every input volume. The created
distance maps are of the same dimension and spacing as the input volumes.

In the next step additional parameters are extracted from the distance map data. For this purpose
we create a new volume of the same dimensions as the distance maps. Then, for every voxel v,
the mean value mean, is computed for all voxel values value, , in all n ensemble members. The
per-voxel mean values are stored in a newly created mean distance map. The mean values are
needed in the next step where we calculate the local variances in the dataset.

Figure 4.3: Distance maps. This figure shows a volumetric segmentation mask (a) and its corre-
sponding distance map (b). The distances from the surfaces are highlighted by colors from blue
(further away) to orange (close). The distance map stores the per-voxel distances to the respective
nearest obstacle voxel. The obstacle voxels are in this case defined by the voxels representing the
segmented surface.
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The variance is a very useful tool to measure the variability of a given set. We again compute the
variance in a per-voxel process. For every voxel v, the variance o2 is calculated with the standard
formula as follows:

» 2 (mean, — value,,,v)2

o2 (4.1)

n

The per-voxel variance values can be combined into a new volume, which then defines the
variance distance map. During the computations we also store the overall mean variance mv,
which is a single value computed as follows:

4.2)

The paramater k defines the number of voxels, namely the dimension of the ensemble members,
computed as k = width = height = depth.

In addition to the variance, we would like to keep track of which ensemble members are responsible
for the high variance in a certain region. We therefore also store the total distance of one ensemble
member to the other ensemble members in every voxel v. This distance dist;,, with 1 < j < n,
is again computed in a per-voxel process, and is defined as the sum of all n — 1 mean-squared
Euclidean distances to the other ensemble members’ voxel values:

distj, = Z(valuei,v - valuej,v)2 4.3)

i#]

We store the per-voxel distances in a new ensemble member distances volume. The mean
distance map can be deleted after the variance computation is finished to save memory. The
variance distance map and the ensemble member distances volume are kept to be later used in the
visual exploration (Section 4.2.3).

4.2.2 Medoid Computation

We need a starting point in the visualization, from where the users can start the visual exploration
of the local regions. Since we follow the principle of overview first and details on demand, we
need to provide an overview to the users. The overview should convey how the ensemble data
looks like (i.e., the phenomenon described by the ensemble). There are a lot of possibilities
to present ensemble data in an aggregated way, for example, by simply calculating the mean
ensemble member [JSWO05]. Using an actual ensemble member, though, is generally favorable
over a synthetic representative such as the mean [SPA*14]. Picking a random ensemble member
might give a wrong impression of the actual data, because an ensemble member with a lot of
artifacts might be picked accidentally. We therefore decided to calculate the most representative
ensemble member, which we then call the medoid ensemble member.
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Figure 4.4: Ensemble medoid. The input volumes can be interpreted as points in a k-dimensional
space (blue). The mean (m) is usually prone to follow outliers in the dataset, and the nearest
neighbor (arrow) of the mean would not be a good representative of the dataset in this case. The
spatial median (sm) minimizes the Euclidean distances to all points, but is generally not a part of
the dataset. We therefore find the point that is closest to the spatial median (arrow) and use this
as the medoid (med) of the ensemble.

Apart from the fact that the mean is not part of the ensemble, it is also known to be sensitive
to outliers. Therefore, it may happen that the mean is actually located far from the cluster of
real samples. This is shown in Figure 4.4 for points in a 2D environment, where the presence
of a single significant outlier (right) creates a mean (m, in orange) that is a blend between two
clusters that does not relate to any of the ensemble members. Therefore, the mean would not be
a good representation of the dataset. The figure also demonstrates that a mean-based medoid
(i.e., the nearest neighbor of the mean in the ensemble) can also result in a bad representative

object. Therefore, we choose a medoid based on the spatial median of the dataset (sm, in green).

By interpreting each sample volume as a point in k-dimensional-space, its spatial median sm is
defined as the k-dimensional point x that minimizes the sum of Euclidean distances to all other n
points pt,, as follows:

sm = argmin [1x = ptall 4.4
gx ; Pln )

Equation (4.4) can be solved using the Weiszfeld algorithm [BS14], which, starting from the
mean, approximates the minimum using the following fixed-point iteration:

_ 2o Din |1x —an”_l
Ynllx = ptal 7!

4.5)

In the 1D case, the median is always an ensemble member. This is, however, not the case for the
spatial median in nD (n > 1). The spatial median is generally not part of the dataset, and can
therefore not directly be used as the medoid of the ensemble. Therefore, we instead choose the
medoid as the k-dimensional Euclidean nearest neighbor of the resulting spatial median. This is
also illustrated in Figure 4.4 (med, in blue).

In the following step, this ensemble medoid will be used to represent the dataset, and to start the
visual exploration of the local regions. The calculation of the medoid only has to be done once
when loading the ensemble into the system.
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4.2.3 Local Exploration in 3D

Our proposed visual analysis technique provides different views onto the data, which can be
influenced by different interaction techniques. The concept of our interaction techniques is
described in Figure 4.5. The individual elements of the concept are described in this section.

The interaction works mainly in 3D, and therefore the most important view is considered to
be the 3D view. As a starting point for the exploration, we display the medoid volume as a
representation of the ensemble dataset in this view. In addition, the regions of high variance are
also shown in 3D. The per-voxel variance values have been stored in a separate variance distance
map. We decided against standard volume rendering to display the variance values, to make a
clear distinction between the medoid and the rendered variance values. To show the regions of
high variance, we use Marching Cubes [LC87] to transform the variance values into mesh data.
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Figure 4.5: Interaction concept. Starting from the 3D view, the user can employ volume probing
to explore local regions. The current position of the probe influences the detail view and the
similarity graph. The member selection possibility in the detail view has an impact on several other
views. The similarity graph has two stages, either for comparing the whole ensemble data, or just
comparing one ensemble member against the rest.
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Figure 4.6: Regions of high variance in 3D. For displaying high variance in the data, we decided
against volume rendering (a) to make a clear distinction between the variance information and the
medoid volume (b).

The threshold for the Marching Cubes algorithm is set to divide between regions of low and high
variance. We used the mean variance mv (as computed in Section 4.2.1) as the input threshold
for the Marching Cubes algorithm. All values above this threshold are considered to represent
a high variance in the data. The mean variance is used, instead of an outlier computation like
the Z-score, to capture as many areas with a high variance as possible. This way geometry is
created for regions of high variance, and regions of low variance are discarded from the visual
representation. Since we operate on mesh data now, it is possible to render it in a way that it is
visually easily discriminable from the medoid volume (Figure 4.6).

In the 3D view users can explore local regions by using our proposed volume probing. When
activated by a hotkey, a probing widget follows the position of the mouse cursor. Users can also
control the movement in the third dimension by keeping the hotkey pressed and using the mouse
wheel. Then a clipping plane will be shown and moved along the z-axis of the volume, and the
current probing widget will always be positioned on this plane. Users can employ the probing
widgets to explore the regions of high variance. We opted for using 3D spheres as probing widget
due to their intuitiveness and rotation-invariance. The size of the spheres can be individually
adjusted by the users. Furthermore, users can fix widgets at the current position by mouse click.
The widget is then fixed and stored in a sorted list, which is visible next to the 3D view. In this list
users can activate fixed widgets again by mouse click.

An important visual channel to convey information in our technique is color. If new ensemble
members are added to the ensemble, we assign a unique color to each of them that stays the same
for the time our tool is running. We call these colors the ensemble member colors. Whenever
a ensemble member is selected in the interface, it is important that information related to this
ensemble member is visible in other views. We decided to indicate these relations with color,
and therefore a unique color is assigned to every ensemble member. We created a color table
of 100 colors by using the i want hue tool [Jac16]. Whenever an ensemble member is added
to the analysis, a new color is selected for it from the table. It is also clear that not more than
approximately 10-15 colors can be discriminated in one view. It has to be mentioned that when
selecting colors to relate information in the views, it is not the purpose of our technique to compare
a multitude of ensemble members (i.e., more than 10-15) against each other.
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The position of the currently active probing widget is used to update the detail view. The detail
view is placed next to the 3D view and shows the data characteristics at the current probe position.
On the top a stacked bar-chart with all ensemble members is shown (Figure 4.7a). As described
in Section 4.2.1, we store the Euclidean distances of the ensemble members in a separate volume.
At the local probe position, we now iterate through all voxels covered by the probe and sum the
distances dist, for all ensemble members. The summed values are then displayed in the bar-chart.
The larger a segment in the stacked bar, the larger the distance of the ensemble member to all
others. A large segment thus indicates here that the corresponding ensemble member differs from
the rest of the ensemble members in the current local region. Below the chart, a more detailed
view on the local data is presented. This view reveals more information about the data (e.g.,
statistical properties) which is not visible in the 3D view. We decided to show a 3D rendering
of the segmented surface of the medoid (Figure 4.7b). Since we are dealing with segmentation
masks, an additional information we can present to the user (apart from the volume rendering
of the medoid) is the shape of the segmentation surface at the current local position. The local
differences in the data are shown as 3D structures in the rendering. If individual ensemble
members have been selected (this is also explained below), their surfaces are shown next to the
medoid surface (Figure 4.7¢c). The viewing direction of the surface rendering in the detail view is
adapted according to the main viewing direction in the 3D view.
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Figure 4.7: Detail view. This view is updated when the currently activated probing widget is moved.
The detail view shows a stacked bar-chart to indicate the distances of the ensemble members at
the current position (a). Below a rendering of the cropped surface extracted from the medoid can
be seen (b - minimized). The surface is sphere-shaped, since it has been cropped at the current
probe position. The high variance regions are indicated on the medoid surface in red color. In the
area below, surfaces of ensemble members can be shown next to each other (c).
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In the detail view, the member selection tools can be used. It is possible to select individual
ensemble members in the bar-chart by clicking in the rectangles in the stacked bar. This
ensemble member selection triggers other views to update, because it has a strong influence on the
visualization. First of all, a member selection updates the detail view itself, because if ensemble

members are selected, their surfaces are shown in the detail view together with the medoid surface.

This way the data of several ensemble members can be compared to each other.

In our user interface, we also preserve the view on the individual ensemble members. The input
volumes are represented as thumbnails in a thumbnail bar above the other views. If hovering
over the thumbnail, the filename of the ensemble member is shown. The medoid is marked by a
grey background in the thumbnail. Users can open a 3D view of the original segmentation mask
volume data by a mouse click on the thumbnails. Members which have been previously selected
in the detail view are marked with a colored border. The thumbnail view allows users to always
go back to the original data, if necessary.

4.2.4 Similarity Graph

An important contribution of our technique is the indication of the similarity between different
probes. This allows users to compare local regions, and to find similar or distinctive regions in
the data. The users can fix the position of the probes, and all fixed probes are then arranged in a
similarity graph. The graph is shown in the interface in 3D and 2D. The 2D representations

reveals patterns in the graph, while the 3D representation shows the spatial positions of the nodes.

In the graph, nodes represent probes and edges indicate their similarity. If two probes are
identified to be similar, they are connected by an edge in the similarity graph. The edges are
colored accordingly to identify patterns in the graph. The similarity of two probes is computed
by analyzing the local outliers at the probe positions. We make use of the sum of distances for
every ensemble member, which is automatically computed for every probe position. We analyze
these sum of distances using statistical methods to identify outliers. First, we compute the median
median,, of all sums of distances for the current probe p with the standard formula. Then we
compute the median absolute deviation [How14] for the probe, which is a robust estimate for the
standard deviation. The median absolute deviation mad,, is computed as follows:

mad,, = 1.4826 - median(|dist, , — median,|) 4.6)

A modified version of the Z-score, as proposed by Iglewicz and Hoaglin [IH93], can be used to
compute an outlier index o), , for the current probe as follows:

distp , — median,

Op,n = 4.7

mad,

An ensemble member is considered to be an outlier in a voxel v if 0, , >= 3.5 holds [IH93].

In the case mad,, is equal to zero, the equation cannot be solve. Then every distance deviating
from the median is considered to be an outlier. After the computation, we end up with a list of
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1...n binary flags for every ensemble member 7 inside the probe. The flags indicate whether an
ensemble member has been identified as an outlier (flag = 1) for the current probe position or
not (flag = 0). For all fixed probes the flags can be compared to compute the similarity.

The nodes of the graph are always colored in the same color, since they refer to the probes in the
3D view. The way edges are colored in the graph, and how the similarity is computed, depends
on the current stage of the graph. The different stages allow users to explore different aspects of
the data. The following three graph stages are possible (see also Figure 4.8):

¢ Analyze all: No members have been selected. In this case the whole ensemble data can be
analyzed. The similarity is computed in a way that if all outlier flags for all members are
equal, two probes are considered to be similar. The graph edges are all displayed in the
same color.

* Analyze one member: One member has been selected. In this case one member can be
compared against the rest of the ensemble. The similarity is computed in a way that only
the flags for this member are considered (if the member is a local outlier) - in case the
flags are equal, two probes are considered to be similar. The graph edges are colored in the
member color, if the member has been identified as an outlier in the probes (no edges are
drawn otherwise).

Analyze a group of members: Between 2 and n — 1 members have been selected. In this
case several members can be compared against the rest of the ensemble. The similarity
is computed in a way that only the flags for the selected members are considered (if the
members are local outliers) - in case the flags are equal, two probes are considered to be
equal. The graph edges are colored in the member color of the members that have been
identified as outliers.
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Figure 4.8: Similarity graph. The visualization of the graph depends on its stage. If the whole
ensemble is analyzed, the similarity is indicated by lines (a). If only one ensemble member is
compared against the rest of the ensemble, the edges between probes where it has been identified
as an outlier are colored in the ensemble member color (b). If more than one ensemble member is
compared against the rest of the ensemble, the edge colors indicate which ensemble members
have been identified as outliers at the respective positions (c).
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4.3 Implementation

Our technique was implemented in C++, and the user interface was implemented by using the Qt!
framework (version 5.5.1 64bit). Loading and rendering of the volume data was done using the
VTK? framework (version 7.0.0 64bit). VTK was also used to compute the distance transforms
of the volumes, to render the 3D elements and the similarity graph, and for handling the user
interactions. The application was tested on an Intel i7 CPU 3.07 GHz machine with 24 GB RAM
and an NVIDIA GeForce GTX 680 graphics card.

To analyze the data, pre-processing and the computation of the differences as well as the outliers
is necessary (see Section 4.2.1). This step is not interactive, so the user has to wait until all
attributes are calculated. It is however possible to cache intermediate steps (e.g., the computed
distance transform, the medoid, and the variance outlier volume), so that a repeated load of the
same dataset is faster. A detailed description of the datasets used for the demonstration can be
found in Section 4.4.

Table 4.1: Runtime and memory requirements. In this table the dataset dimensions and number of
ensemble members, the runtime for the analysis (for computing the dataset differences and the
medoid), and the memory requirements are shown.

Ensemble Dimension Members || Analysis | Memory
Synthetic 120x120x8 74 47 s 1.1 GB

Rock Crystal || 285x300x216 51 2.6m 14.2 GB
Lower Body || 512x512x801 13 53 m 16.9 GB
Aorta 512x512x805 21 6.1 m 17.3 GB

An overview of the runtime of the preprocessing steps for each dataset is shown in the Table
4.1. The column Analysis shows the time it took to compute the distance maps, the volume
differences, and the medoid for every dataset. The computation of the variance and the distances
between the ensemble members could be greatly speed up by distributing the computations into
several threads. Since the variance and the distances are computed in a per-voxel process, the
computations are completely independent and can therefore run in parallel. The column Memory
shows the overall memory consumption during runtime. More discussions on the runtime and the
memory consumption can be found in Section 4.5.

Thttp://www.qt.io/
2http://www.vtk.org/
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4.4 Results

We applied our technique to volumetric segmentation mask ensembles from different domains.
All datasets have in common that all ensemble members are of the same size. Since all input
volumes are of the same dimension and spacing, we can rely on the fact that every voxel position
is present in every volume, and also represents the same spatial position in every volume.

4.4.1 Segmentation of Industrial-CT Data

The first two datasets we tested our approach with came from the domain of industrial computed
tomography (CT) analysis. The segmentation masks were derived from industrial CT datasets by
applying the extended random walker algorithm [Gra05] to segment the data. The algorithm was
run several times with different parameters, which created ensembles of segmentation runs.

The dataset Synthetic consists of 74 different segmentation results of an artificially created
industrial workpiece with quite small dimensions (120x120x8). In this dataset we could identify
interesting artifacts outside the boundaries of the actual object. Such artifacts usually occur if a
segmentation algorithm is affected by a lot of noise during the calculation. This may happen due
to the inherent structure of the algorithm, or due to improper parameter settings. It is therefore
important to know which ensemble members are responsible for such artifacts in the data.

With our technique artifacts can be analyzed by placing probing widgets at the positions of the
artifacts that should be analyzed. One placed, the stacked bar in the detail view clearly indicated
that in all cases only one ensemble member produced these artifacts. We then fixed the probing
widgets at the positions of interest. The probes were then connected by edges in the similarity
graph, which means that they are placed in regions with similar data. Figure 4.9 shows the
similarity graph in 3D (Figure 4.9a) and some of the stacked bars of the detail views of the
fixed probes (Figure 4.9b). In the Figure it can also be seen that one of the probing widgets is
colored in red (rightmost one). This probe has not been fixed yet, so its position and size can still
interactively be changed. Nevertheless, the probe is already included in the similarity graph. This
way the active probe can be used to interactively compare new regions to the already fixed ones.
If the region the active probing widgets is currently placed at is similar to the fixed ones, the
probes are connected in the graph (as it can be seen in Figure 4.9). If the region the active probe
is currently placed would not be similar, there would be not connecting edges between the fixed
ones and the active probe. This way users immediately recognize if they are currently moving
into region which is similar to data already stored in the similarity graph. This way users can
check whether a high local variances are always caused by the same ensemble member or by the
same group of ensemble members.

The dataset Rock Crystal represents a piece of a rock crystal, which has been scanned by an
industrial CT scanner. The dataset consists of 51 ensemble members with 285x300x216 voxels
each. The segmentation of the inner structures is a non-trivial task, and therefore a lot of regions
of high variance could be located inside the object (Figure 4.10a). Some other artifacts are also
visible outside the rock crystal. These artifacts appear because some segmentations included
parts of the scanning equipment which were also present in the scanned data.
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Figure 4.9: Dataset Synthetic. When analyzing the artifacts outside the object, the connected
nodes in the similarity graph show that the local distribution of the differences is similar (a). In the
detail view, it can be seen that only one ensemble member causes the artifacts in the ensemble
(b). The probing widget in red is currently active and can be moved by mouse interaction.

To analyze these artifacts, we placed several probing widgets inside the object, and also at the
artifact regions in the outer regions. The fixed probes can be further analyzed in the similarity
graph. First we had a look at the graph with no ensemble member being selected (i.e., stage Analyze

all). There we could identify two clusters in the graph, in 2D as well as in 3D (Figure 4.10b).

This means that both the regions of the outer artifacts and the inner structures represent similar
data. The 2D representation of the graph allows to detect patterns in the graph, whereas the
3D representation better reveals the spatial position and size of the nodes. We could identify
one ensemble member that produced different results inside the rock object than the rest of the
ensemble. We selected this ensemble member in the detail view. The similarity graph then
changed (i.e., stage Analyze one member), and the outer probes are no longer connected in the
graph (Figure 4.10c). Only the larger connected group of nodes remains in the graph. This shows
that the selected ensemble member produces different results inside the rock object, but is not
responsible for the artifacts in the outer regions. The ensemble member is therefore responsible
for the high variance inside the rock crystal, but is not responsible for the outer artifacts.
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Figure 4.10: Dataset Rock Crystal. This dataset contains results of segmentations of a rock
crystal. A view on the complete medoid with the rendered variance regions can be seenin (a). In a
close-up of the data (grey rectangle), we placed probing widgets to analyze the local data. Similar
regions could be found, which were then connected in the similarity graph (b). When selecting one
ensemble member, it can be seen in the graph that this ensemble member only produces different
results inside the object (c), but is not responsible for the outer artifacts.
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4.4.2 Segmentation of Medical Data

We applied our technique to two datasets from the medical domain. Both datasets were generated
by computed tomography angiography (CTA), and represented segmentations of inner human
structures, like bones and vessels.

The first medical segmentation dataset, called Lower Body, was created to segment bones and
vessels in the lower body of one patient Figure 4.11a. The data was segmented using the AngioVis
ToolBox software [Str06]. Different levels of Gaussian noise were added to the data, to analyze
the impact on the segmentation algorithm. One ensemble member of the ensemble therefore
corresponds to a certan noise level in the data. Our technique can be used to compare the noise
levels, to see which ones affect the segmentation, and which do not. The ensemble consisted of
13 ensemble members with dimensions of 512x512x801 voxels each. First, the regions of interest
for the analysis can be defined by placing the probing widgets accordingly. In Figure 4.11b
and Figure 4.11c three of the placed widgets can be seen. Selecting an ensemble member in
this case means comparing the results of a segmentation with a certain noise level to the rest
of the ensemble. In the first case (Figure 4.11b) the ensemble member produces results that
are significantly different from the rest of the ensemble. The nodes are therefore connected
in the similarity graph. This means that this noise level greatly effects the outcome of the
segmentation. In the second case (Figure 4.11c) the ensemble member produces similar results
like the other algorithms in the ensemble. This can be seen in the similarity graph, since the
nodes are not connected (i.e., stage Analyze one member). This noise level therefore does not
affect the segmentation results. This demonstration case shows that our technique can be used
to quickly verify whether a segmentation is affected by certain factors. It also allows users to
concentrate on only the regions of interest that are important for their analysis.

The second dataset, Aorta, was created to segment the different vessel segments in case of an
aortic dissection. An aortic dissection is a malformation of a blood vessel, caused by a tear of the
inner vessel wall. Successively, blood flows between the diverged layers of the arterial vessel
wall, leading to the creation of two blood flow channels instead of one. The two channels are
called the true lumen (TL), the channel where blood is still flowing, and the false lumen (FL),
the channel where the blood flow has stopped. At slices perpendicular to the centerline a 2D
level set segmentation [CV01] was applied to segment the blood flow channels. The per-slice
2D segmentations were then combined into a 3D volumetric segmentation mask again. Due to
a variety of true and false lumen configurations, a perfect segmentation cannot be expected. A
perfect segmentation would separate the TL and FL, if available, in the slice. If the TL and the
FL are very close together, it may happen that the TL segmentation flows over to the FL area. If
other structures with a similar intensity value like the aorta (e.g., bones) are close to the aorta, the
segmentation may flow over into these unwanted parts. The dataset consisted of 21 ensemble
members with dimensions of 512x512x805 voxels. The ensemble members of the ensemble
have been created from the same patient data, with slightly different parameter settings for the
level-set segmentation. The segmentation was done for the full aorta, however, our collaboration
partners pointed out that they are actually only interested in the lower parts of the aorta. Since our
technique operates on local regions, it was possible to concentrate on only the regions of interest.
Segmentation in the medical domain is a common problem, and suitable solutions that would work
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Figure 4.11: Dataset Lower Body. In this dataset bones and vessels of a patient’s lower body have
been segmented (a). The ensemble members also refer to different noise levels in the data. In
the close-up (grey rectangle) three probes have been placed. In the first case (b) the ensemble
member greatly effects the segmentation, because here the results are significantly different than
the rest. In the second case (c), the results do not differ from the existing data, and therefore the
nodes in the graph are not connected.
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Figure 4.12: Dataset Aorta. In the upper part of the aorta (a), six ensemble members could be
identified that were responsible for producing artifacts in this region. The corresponding stacked
bar-chart can be seen at the lower right. In the lower part of the aorta one region could be identified
that contains a dissection, which could not be segmented by all ensemble members (b). The six
ensemble members that produce artifacts in (a) are also the only ones that are able to segment
the dissection in this region.

in all cases do not exist yet. It is common that segmentations have to be edited afterwards before
the analysis can be started. One goal of analyzing the segmentation masks was to find out which
mask would require the least manual editing steps afterwards. We therefore concentrated on the
high variance regions in the data, and placed probing widgets there. There we could identify six
ensemble members where the segmentation of the TL tends to flow into other tissues surrounding
the aorta (Figure 4.12a). We then placed a probing widget in another part of the dataset, where,
according to what is already known, the aorta is dissected. The variance was high in that region,
because not all segmentations were able to capture the two blood flow channels at this position.
We then selected the previously identified six ensemble members, and compared them to the rest
of the ensemble in the local region. Here it turned out that the six ensemble members were able
to capture the two blood flow channels (Figure 4.12b). Our collaboration partners then decided to
continue working with the six ensemble members, because it was important that the lower parts
of the aorta are segmented properly.

4.5 Summary

In this chapter we presented a visual analysis technique for the exploration of local features in an
ensemble of volumetric segmentation masks. We calculate the per-voxel variance and outlier
of the ensemble data. The spatial median, the so-called medoid, as evaluated by the Weiszfeld
algorithm, is used as a representative of the ensemble data. The regions of high variance are
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shown in the same view as the medoid. These regions are rendered as mesh data, to clearly
separate them from the medoid data. Local regions in the data can be explored by 3D probing
widgets. These widgets can be positioned by mouse interaction, and show the data characteristics
at the current position in the separate detail view. The widgets can also be fixed at positions of
interest. To visualize similarities between local regions, the probing widgets are arranged in a
similarity graph. The probes are represented by nodes, and the edges in the graph indicate whether
local regions are similar. The similarity is calculated by analyzing the statistical distribution of
the local regions. The edges in the graph are drawn and colored differently, according to whether
the whole ensemble should be analyzed, or whether one or more ensemble members should be
compared against the rest of the ensemble. With the similarity graph users can interpret local
features in a global context.

There are a lot of existing techniques for visualizing graphs in 2D, especially if the graphs are
very large. The 2D representation could, for example, be replaced by a similarity matrix. Such
representations are favorable when searching for patterns in the data, especially if the graph is
very large. We, however, consider the 3D graph to be more important. In the 3D graph the spatial
position of the nodes is clearly visible. This information is lost in the 2D representation. The
main interactions are carried out in the 3D view, and the graph is updated there at every mouse
move. This way the users get immediate feedback if they touched a region similar to other nodes
in the graph.

Our technique helps users to quickly identify ensemble members that produce different results in
local regions of the data. In some cases the variance is high, but no local outliers can be detected
in the data. This is, for example, the case if segmentations produce slightly different results at the
border of an object. In these cases the differences between the ensemble members are more or less
uniformly distributed in the stacked bar chart, and no local outliers can be detected (Figure 4.13).
On the other hand, such a case also gives some additional information about the data. It shows
that in this area all ensemble members are producing slightly different results. Ssuch regions are
therefore obviously difficult to segment.

" LN R T
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Figure 4.13: Absence of outliers. In the case no outliers can be detected at a local region, the
stacked bar chart shows that the differences among the ensemble members are more or less
uniformly distributed. Then no outlier can be spotted. The visualization, however, in this case
conveys to the user that all ensemble members produce slightly different results in this region.

So far users can define the local regions they are interested in by placing the probing widgets. In
the future, we would like to explore means to automatically extract similar regions from the
data. This is not a trivial task, though. The interesting regions are of unknown size, they can be
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smaller/larger than the already defined ones. Therefore, a fixed search kernel would not work. If
the kernel is set too large/small, regions might be missed. Also just placing search kernels along
fixed grid positions might lead to interesting regions being missed. We would therefore like to
implement a flexible technique that is able to detect similar regions. Such a tool would definitely
be a great extension for our proposed visualization technique.

Depending on the particular hardware configuration and the size of the ensemble dataset, our
difference computations may run into memeory problems (see Table 4.1 for details). This is due to
the fact that it is necessary to calculate a distance map and a surface representation for every input

volume, which means that another volume as large as the original one has to be kept in memory.

In addition, per-voxel values for the mean, the median and the median absolute deviation have to
be stored. New volumes for the variance values and the outliers have to be created. The volume
holding the statistical parameters is deleted after the difference computation, though. We therefore
implemented a caching mechanism, where only the datasets currently required for the calculation
are loaded into the memory. This decreases the memory requirements of the applications, but
increases the computation time, since additional reads on the hard-disk become necessary.

The runtime for the medoid computation highly depends on the dataset size, and on the number
of iterations. Since we operate on a very small sample set compared to the available space
(comparing the width = height = depth dimensional space to the n input volumes), the Weiszfeld
algorithm converges very quickly. We therefore discovered that approximately 10 iterations are
enough to let the algorithm converge in a point.
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CHAPTER

Conclusion

In this thesis three contributions to the field of comparative visualization of ensembles have
been presented. The techniques allow the comparison of ensembles of different data types (in
2D and 3D), and they are scalable to a large number of ensemble members. The thesis is now
concluded in this chapter by first summing up the contributions, which were developed in the
course of this thesis (Section 5.1). Afterwards, an outlook is given with possibilities for future
work (Section 5.2). The chapter is concluded with critical reflections on the topic and the research
that has been carried out in the course of this thesis (Section 5.3).

5.1 Contributions

VAICo: Visual Analysis for Image Comparison [SGB13] is a visualization technique for the
interactive comparative visualization of image ensembles (Chapter 2). The input images were
similar, apart from localized changes, and no reference image was available. We computed
the pixel-wise differences in the data and presented them to the user. Interactive visualization
tools were provided to explore the image space and drill-down on individual variances. The
drill-down allows users to find out what caused the differences in the data. Our visualization
approach addresses the scalability of image comparisons and proposes ways to integrate contextual
information and more detailed information in one view. Contextual information is preserved,
whereas image variances can be efficiently spotted and put into context. Our approach fulfills the
visual analytics mantra [Shn96] of analyze first (computing the differences), show the important
(colored polygons), zoom (RoD widgets), filter (hierarchical clustering) and analyze further
(interaction possibilities), details on demand (access to individual ensemble members). Our
approach can be applied to quickly identify small local differences in an image set. It is also
helpful for analyzing the occurrence and value ranges of previously defined image features. We
demonstrated the scalability and usefulness of our technique by applying it to five image ensembles
with varying numbers of images.
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YMCA - Your Mesh Comparison Application [SPA*14] described an application suited for the
comparison of ensembles of 3D meshes (Chapter 3). A reference mesh was available in every
input dataset. Therefore, we could analyzed the data by comparing the input meshes with the
ground truth data. We then visually encoded regions of high variance in the data, to highlight
regions where the meshes exhibited different properties. The interaction was started with an
overview of the data in 3D. Then users could use a 3D magic-lens widget to explore local regions
in more detail. The magic-lens widget was linked with a detail view, where more information
about the local regions could be shown. Local regions could also be arranged in a parallel
coordinates plot. In this plot the local regions were depicted by the axes, and the input meshes
were depicted by the polylines. The parallel coordinates plot allowed users to track the error rate
of input meshes in different local regions. Our visualization approach combines the concepts
of explicit encoding, by showing the high-variance regions in the data, and juxtaposition in the
detail view, where different input meshes could be viewed side-by-side. The proposed system
fulfills the visual analytics mantra of analyze first (computing the differences), show the important
(colored variance regions), zoom (magic-lens widgets), filter (parallel coordinates) and analyze
further (interaction possibilities), details on demand (access to individual ensemble members).
YMCA further addresses the scalability problem of previous mesh comparison tools. We tested
our system with mesh datasets from point cloud reconstruction, and YMCA turned out to be
useful to identify outliers and patterns in the data.

Visual Analysis of Volume Ensembles Based on Local Features [SFP*16] aimed at the analysis
of local regions in a volume ensemble dataset (Chapter 4). The input data consisted of a set of
volume dataset, without having ground truth data available. We calculated the per-voxel variance
and outlier of the ensemble data. The spatial median, the so-called medoid, as evaluated by the
Weiszfeld algorithm, was used as a representative of the ensemble data. The regions of high
variance were shown in the same view as the medoid. Local regions in the data could be explored
by 3D probing widgets. These widgets could be positioned by mouse interaction, and showed the
data characteristics at the current position in the separate detail view. To visualize similarities
between local regions, the probing widgets were arranged in a similarity graph. The probes were
depicted by the nodes, and the edges in the graph indicated whether local regions were similar
(i.e., exhibiting an equal statistical distribution). The edges in the graph were colored differently,
according to whether the whole dataset was analyzed, or whether one or more ensemble members
were compared against the rest of the ensemble. The visual analytics mantra of analyze first
(computing the variance), show the important (rendering of the medoid and the high-variance
regions), zoom (probing widgets), filter (similarity graph) and analyze further (stacked-bar charts),
details on demand (access to individual ensemble members) is fulfilled within this approach. As
an exemplary use case, we applied our technique to ensembles of volumetric segmentation masks.
The masks were created by testing segmentation algorithms with different parameter settings. Our
technique proved to be useful to link similar local regions, to compare ensemble members against
the rest of the ensemble, and to interpret local features in a global context.
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5.2 Outlook

Comparative visualization and ensemble visualization are emerging topics in visualization. Due
to the availability of ensemble datasets in various different domains, findings from these fields
will become interesting and useful for several application areas. The following research directions
may be considered in the future.

Localized Differences The first two techniques presented in this thesis (VAICo [SGB13] and
YMCA [SPA*14]) have been designed for input datasets that are mostly similar, but exhibit small
localized changes. Although a lot of datasets exist that fulfill this requirement, as outlined in the
papers, an interesting challenge would be to further explore the visualization of global changes.
VAICo, for instance, would fail if applied to images that are very dissimilar in pixel color (e.g.,
landscape images). It would be not possible, for example, to use VAICo to track changes in yearly
pictures of glaciers or surveillance video frames. Similarly, YMCA would fail if input meshes
greatly differ from the given reference mesh (e.g., if mesh parts are missing). It would therefore
be interesting to explore visualization techniques that can display global changes in a dataset.
Another challenge is to track changes that greatly change their shape (e.g., grow/shrink).

Comparison Metrics Similar to the question how visualizations can deal with global changes,
an interesting research direction is to develop appropriate comparison metrics for ensemble data.
For the techniques presented in this thesis, rather simple comparison metrics have been used. This
was due to the fact that the main focus of our work was on the visualization of the differences in
the data, and on the interaction possibilities. However, more advanced metrics would be favorable
for the comparison of ensemble datasets. In the case of 2D images, several other metrics have
already been proposed [ZCWO02] which could be applied. For 3D data, especially volume data,
the development of appropriate comparison metrics is a challenging problem. Some approaches
use derived features like iso-surfaces [FML16] to compare the data. The problem with finding a
proper metric is, that it in many cases highly depends on the task and on the available data (e.g.,
for comparing molecular surfaces [SKR*14]).

Find and Compare Features We also came across the question of how to automatically extract
interesting regions from the data. In YMCA [SPA*14], we used a Mean-Shift based approach to
detect the most interesting high-variance regions. This worked nicely, because we only had to
consider positions on the mesh surface. In our third approach for comparing volumes [SFP*16],
we let users decide in which local regions they are interested in. The user-defined positions were
then connected in a graph. As a future work, it would be interesting to develop techniques that
could automatically detect similar regions, based on the initial user selection. The idea would be
that users define some regions, and the algorithm automatically detects similar ones. This is not a
trivial task, though. The interesting regions are of unknown size, they can be smaller/larger than
the already defined ones. Therefore, a fixed search kernel would not work. If the kernel is set to
large/small, regions might be missed. Also just placing search kernels along fixed grid positions
might lead to interesting regions being missed. Obermaier and Joy [OJ15] recently proposed a
technique for the automatic placement of slice planes in a volume dataset. Based on this line of
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thinking, a search function could be implemented for the automatic search for similar regions.
Such a technique would definitely be a great extension for our proposed visualization technique
for volume dataset ensembles, as it can then be assured that important regions are not missed
during the analysis.

Summarization In this thesis we concentrated on the visual analysis of differences in ensemble
datasets. According to the findings of the local analysis, users can draw conclusions from the data.
A different research direction would be to find ways to provide a concise overview of the data to the
user. Such an overview should convey the variability of the dataset, probably by dividing the data
into groups or clusters. Further, outlier should be clearly visible in the overview. The overview
should also fit into one view, so that it can be easily grasped by the users. In the case of images,
approaches have already been presented to automatically create picture collages [TSLX12]. Such
techniques, however, rather focus on aesthetics than on the analysis aspect of the representation.
A concise overview of an image ensemble could be, for example, very useful to evaluate images
from surveillance cameras. For 3D ensembles, like mesh or volume data, no techniques are
currently available that would create a concise overview of the data.

Representations and Interaction The representation of differences and the interaction with the
multitude of information available in ensembles is a challenging task. It is especially challenging,
if the data should be represented in 3D. Visualizations in this case have to deal with occlusions
and perspective distortions, and all user interactions also have to consider the third dimension.
3D representations are also especially challenging for comparative visualization and ensemble
visualization. There are many open problems for which no suitable visualization technique exists
yet. For example, iso-surfaces are an important concept for the analysis of weather data ensembles.
Iso-surfaces can be used to encode temperature differences, or flow like wind. However, no
appropriate visualization technique exists yet that allows to display several iso-surfaces in 3D in a
way that differences between them are also visible. There are already some approaches trying to
tackle the problem, for example by Demir et al. [DKW16]. They decided to use silhouettes, so
that the displayed information is reduced, although the major shape of the surfaces is still visible.
This topic definitely provides some interesting possibilities for future research works. A similar
problem exists for iso-contours in 2D and 3D, due to the fact that spaghetti plots very easily
suffer from over-plotting. The techniques for ensemble visualization mentioned in Section 1.2.2
mainly try to solve this problem by applying statistical measurements. This, however, hides the
underlying raw data, and in this way might hinder the proper understanding of the visualization.
New techniques for unscrambling spaghetti plots in 2D and 3D are definitely an interesting topic
for future research.
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5.3 Reflections

After finishing this thesis, I now critically reflect on the topic and the four years of research.
When I started this thesis, the topic of comparative visualization was already an emerging topic
in visualization. The term ensemble was at that time only used for simulation data. We at that
time decided to extend existing comparative visualization techniques to make them scalable to
a large number of datasets. This topic has now become even more interesting, since more and
more ensemble datasets are created now in different application areas. Ensemble visualization
nowadays should therefore not any longer be only limited to simulation data.

A very challenging problem in the future will be the amount of data that has to be processed.
Techniques will need to be efficient enough to handle a large amount of data in reasonable time.
Memory on the graphics card, though, is limited, and it will not be possible to load whole
ensembles onto the graphics card to process them.

When defining new metrics for comparison methods, a big challenge is to consider the semantics.
The more sophisticated a comparison technique will be, the more targeted it will be towards a
certain task.

I still think that the topic of summarization would be a very interesting one for the future. There
are cases where users do not want to spend time analyzing the dataset in detail. Sometimes they
are fine with getting a quick overview, so that they can concentrate on the outliers in the data. In
other cases it would be important to quickly identify patterns or groups in the data. Therefore,
I believe that visualization techniques for providing a quick, concise overview of an ensemble
would be a great help for many application areas.
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