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Abstract
The categorization of art (paintings, literature) into distinct styles such as expressionism, or surrealism has had
a profound influence on how art is presented, marketed, analyzed, and historicized. Here, we present results
from several perceptual experiments with the goal of determining whether such categories also have a perceptual
foundation. Following experimental methods from perceptual psychology on category formation, naive, non-expert
participants were asked to sort printouts of artworks from different art periods into categories. Converting these
data into similarity data and running a multi-dimensional scaling (MDS) analysis, we found distinct perceptual
categories which did in some cases correspond to canonical art periods. Initial results from a comparison with
several computational algorithms for image analysis and scene categorization are also reported.

Categories and Subject Descriptors (according to ACM CCS): J.4 [Computer Application]: Social and Behavioural
Sciences Psychology; J.5 [Computer Application]: Arts and Humanities Fine arts

1. Introduction

Art historians commonly divide Western pictorial art into
distinct stylistic classes, movements, or periods. In many
cases, the attribution of an artist or artwork to a particular
class or movement is uncertain, and the number of art pe-
riods, as well as their duration and definition is a matter of
ongoing debate. Nevertheless, this categorization has had a
profound influence on how art is presented, analyzed, and
appreciated. How can one achieve such a categorization–
how can different works of art and different painters be at-
tributed to a specific art period? Given a quick glance at a
painting, knowledgable experts can identify the art period
(as well as the painter and the title of the work) based on
several types of information which need to be integrated:

• Low-level pictorial information: technique, thickness of
brush strokes, type of painting material (oil, acrylic, etc.),
color composition of the scene

• Mid-level content information: specific objects or scenes
that are depicted, type of painting or sujet (landscape
painting, portrait, etc.)

• High-level background information: knowledge about
specific historical events, knowledge about art periods

Based on these types of information, different clusters can be
formed and the history of art can be structured by assessing
similarities within a large selection of pictorial art. Follow-

ing Little [Lit04], we can distinguish between periods de-
fined by a trend within the visual arts, a broad cultural trend,
an artist-defined movement, and a retrospectively applied la-
bel. These different types of art periods are usually found to
be defined in quite abstract, art historical terms emphasizing
high-level, expert concepts.

The first main question which this paper addresses is then:
to what degree can art periods be determined based on low-
level and mid-level information alone? The answer to this
question will be therefore the degree with which art periods
are perceptually founded. Similar to how art experts would
assess the category of images by identifying similarities and
dissimilarities, we asked naive participants to group several
hundreds of images into categories based on the artistic style.
The data which we gathered gives insights not only into per-
ceptual qualities of art but also allows us to investigate the
perceptual validity of the canonical art periods. Going be-
yond perceptual categories, the second main question was:
can we also model the perceptual results computationally?
In other words, can we find a computer algorithm which
takes as input the same paintings given to our participants
and which then clusters the paintings in a similar fashion?
As today’s computer vision algorithms are only beginning to
be able to work on mid-level content information, this part
of the study mostly focuses on how low-level, pictorial in-
formation determines (perceptual) art periods.
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Art period Artist
Gothics (Goth) Bondone Bosch di Buonisegna Van Eyck Weyden

Renaissance (Rena) Altdorfer del Sarto Botticelli Duerer Signorelli
Baroque (Baro) Caravaggio Poussin Rembrandt Reni Velazquez
Rokoko (Roko) Fragonard Nattier Pesne Rigaud Watteau

Classicism (Clas) David Dietrich Ingres Kauffmann Mengs
Romanticism (Roma) Friedrich Delacroix Gericault Spitzweg von Blechen

Realism (Real) Courbet Menzel Millet Repin Thoma
Impressionism (Impr) Cezanne Liebermann Manet Monet Sisley
Expressionism (Expr) Macke Marc Nolde Pechstein Schiele

Surrealism (Surr) Chirico Duchamp Ernst Magritte Tanguy
Postmodern Art (Post) de Maria Hesse Malevich Newman Stella

Table 1: Art periods (and abbreviations) and representative artists chosen for our experiments.

2. Related work

As this study is rooted both in perceptual and computa-
tional contexts, the following briefly reviews the most rel-
evant work in these two areas.

2.1. Perception of art

The formation of categories is one of the most fundamen-
tal aspects of perception and perceptual learning [Har05]
and has been studied extensively in cognitive and perceptual
psychology, as well as in neuroscience. Recent work em-
phasizes especially the role of similarity judgments in creat-
ing categories [Slo03]. The study of art in perceptual terms
also enjoys a long tradition in perception research. Perhaps
one of the most influential accounts is the the book by Arn-
heim [Arn74] in which he develops a theory of art perception
based on Gestalt principles - many of these Gestalt princi-
ples also had an influence on and were influenced by art and
art theory. Going beyond representational work, recent re-
search has also focussed on how we might perceive indeter-
minate art - art which was intentionally created not to allow
a clear interpretation (e.g., [WKK∗07]). Even in the neuro-
sciences, perception of art has gained an interest, most no-
tably in the recent book by Zeki [Zek99] which explores the
connections between physiological structures of the visual
system and art. In [Red07], natural image statistics—which
the human visual system is highly tuned to—are used to an-
alyze different works of art. As we cannot give an exhaustive
overview of the many attempts to connect vision science and
art, we refer the reader to two special issues of the Journal
Spatial Vision [Spa06,Spa07], a short review paper by Spill-
mann [Spi07], as well as the book by Livingstone [Liv02].

2.2. Computational analysis of art

In the context of computational analysis of art, in [CHL05]
the authors proposed a framework for distinguishing paint-
ings from photographs based on color edges, spatial varia-
tion of colors, number of unique colors, and pixel saturation.
No single feature could do the task, but a combination of fea-
tures was shown to yield good discrimination performance.
In [MTSI05] concepts based on color temperature (warm

versus cold), color palette (primary, complimentary) and
color contrasts (light-dark) derived from paintings are in-
troduced. These resulted in good classification performance.
By extending the feature concepts to include texture features
[MCJ07], performance increased further as the system was
also able to work with different brush stroke patterns. Based
on this work, [LCR07] go beyond low-level feature analysis
and propose a method which assigns visual concepts (such as
the coloring or the brush stroke used) to parts of a painting.
Using an ontology-based disambiguation method, their ap-
proach outperforms other techniques relying solely on clas-
sification of low-level features. In [DJLW06], 56 computa-
tional features were used to model human aesthetic scores on
a database of photographs. These features comprised color,
texture, as well as shape cues, and also included higher-
level scores based on the photograph’s similarity to a "stan-
dard database" of images. The latter turned out to be a cru-
cial ingredient to modeling the aesthetic scores. All of the
mentioned works mainly rely on lower-level features to an-
alyze and categorize artworks. The book by Leyton [Ley07]
proposes a mathematical framework for understanding the
structure of paintings, i.e., the spatial organization and com-
position of the different elements and how they serve to cre-
ate an aesthetic "whole" - although this is perhaps one of the
most ambitious attempts at a quantitative description of art,
so far no automatic algorithms exists which can perform the
tasks required by the framework of [Ley07].

3. Stimuli

A total of 11 art periods were selected for investigation based
on various sources. We tried to select art periods at a suffi-
ciently broad level, which would also include larger periods
of time in art history. Using this criterion, we came up with
11 art periods: Gothicism, Renaissance, Baroque, Rokoko,
Classicism, Romanticism, Realism, Impressionism, Expres-
sionism, Surrealism, Postmodernism.

For each of these art periods we identified 5 major artists
whose work mainly can be attributed to the time period in
question - these are listed in 1. Then, for each of the artists,
we chose 5 representative paintings with which we tried to
cover the artistic spectrum. As we were not interested in a
familiarity task, we tried to choose less well-known paint-
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Figure 1: Example images for each artistic style.

ings for the more famous artists in our database. All images
were taken from www.prometheus-bildarchiv.de -
an online library which provides access to a variety of large,
online collections of art. Figure 1 shows example paintings
from the 11 different art periods.

4. Free-Sorting Experiments

In order to assess "naive" judgments of art, we conducted
two free-sorting experiments with similar experimental de-
sign and analyses, which are described in the following.

4.1. Experimental Design

15 participants took part in the first experiment and 10 par-
ticipants in the second. We specifically selected participants
who indicated to be non-experts in art, art history, or art prac-
tice. Before the main experiment, we first gathered familiar-
ity ratings for all images from each participant. This was
done not only to make sure that familiarity with a subset of
the paintings would not interfere too much with the group-
ing but also to show all paintings once to the participant. For
this task, participants viewed all 275 images in randomized
order on a standard 21” CRT set to 1280x1024 pixel resolu-
tion. Images were shown centered on the screen and partic-
ipants were instructed to rate the familiarity of each image
on a scale of 1 (not familiar at all) to 7 (definitely familiar).
In order to properly anchor the scale, every number was also
explained with a short sentence. Participants could set their
own pace and finished in ≈13 minutes on average.

The main experiments followed immediately after the rat-
ing task. Printouts of the paintings were shuffled and spread
out on a large table. Participants were then instructed to
group the printouts into clusters according to painting style
or art period. They were explicitly asked not to group ac-
cording to image content (still-life, portrait, etc.), if possible.
For the first experiment, we did not constrain the number of
clusters, whereas for the second experiment, we instructed
participants to group all 275 images into 11 clusters. For
both experiments, the number of paintings per cluster could
be set freely (therefore leading to unevenly-sized clusters).
After the experiment we gathered some more information in

a questionnaire - these included specific strategies for solv-
ing the task as well as subjective ratings of the difficulty of
the experiment, participants’ expertise in art and familiarity
with our chosen art periods. Overall, participants took ≈80
minutes on average for this task.

4.2. Analysis Methods

First of all, we analyzed the data of the familiarity rating
experiments. Familiarity ratings were averaged across all
paintings. We also looked for "outliers", i.e. paintings which
received consistently higher ratings.

For the main experiments, the raw data for the first set
of analyses consisted of determining which image was put
into which cluster for each participant. From this data we
determined three measures:

• Number of clusters for this participant (for the second ex-
periment, this value was, of course, always 11)

• Consistency score for each artist cartist : Regardless of
our attribution of artists to art periods, the only "true"
labels we have are the 5 images which belong to one
artist. In order to determine how well participants did in
the grouping task, this score therefore counts the num-
ber of clusters nartist across which the paintings of one
artist are spread. The higher the consistency score cartist =
(4− (nartist −1))/4 (with 0≤ c≤ 1), the more paintings
of one painter were put into the same cluster.

• Consistency score for each art period cperiod : By averag-
ing all 5 cartist we can determine how consistently one
particular art period was treated.

For the next step, we converted the data into a similarity
matrix: for each image i we increased a counter in cell (i, j)
if i was in the same cluster as j. Averaging all matrices across
participants yields an average similarity matrix. Matrices for
both experiments are shown in Figure 5. Such a matrix en-
ables two types of analyses: (i) multi-dimensional scaling,
which projects the data into a lower-dimensional space en-
abling us to investigate the criteria along which similarity
was judged; and (ii) clustering analysis which tries to predict
distinct, consistent clusters allowing us to see which items
would be grouped together.
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MDS refers to a family of algorithms which operate on prox-
imity data taken between pairs of objects [BG05]. The out-
put is a configuration of objects embedded in a multidimen-
sional space. Psychologists have used MDS to explore per-
ceptual representations of different visually (e.g., [SC73])
presented object sets. The technique has also found a large
following in domains such as knowledge mapping and mar-
keting because it allows for the identification of psychologi-
cal dimensions of stimulus variation (e.g., dimensions along
which buyers differentiate amongst competing products) and
quantification of perceptual distances between stimuli (e.g.,
how closely related fields of research are).

Hierarchical clustering analysis was also applied to the
similarity data. Briefly, the algorithm proceeds as follows:
(1) initialize by assigning each item to one cluster, then (2)
find the most similar pair of clusters and merge them, com-
pute distances between this new cluster and the remaining
clusters (based on averaging similarities); (3) repeat previ-
ous two steps until all items are clustered into one big cluster.
The correlation between the cluster hierarchy and the simi-
larity data provides a "goodness-of-fit" measure.

4.3. Results

4.3.1. Familiarity

Familiarity ratings for both experiments overall were very
low - on average participants’ familiarity with all paintings
was only 1.5 (this is inbetween the lowest category ("Totally
unfamiliar. You are sure that you have not seen this image
before, and have no idea who might have created it.") and the
second-lowest category ("Moderately unfamiliar. You feel
that you probably have not seen this particular image before,
although you may have seen similar ones.")). The maximum
average value (averaged across all 25 participants) for a sin-
gle painting was 2.2. Taken together this data indicates that
- even though some paintings received the maximum rating
of 5 from a participant - overall familiarity with the stimulus
set was very low, such that we can exclude any influence of
this factor on the data from the main experiment.

4.3.2. Raw data analysis

Number of clusters: Figure 2 plots the number of clusters
for each participant in the first experiment. There is a large
variety across participants ranging from 7 to 41 clusters. The
average number of clusters was 17.8 - just looking at this
number we already can tell that participants on average did
not try to put each of the 55 artists into a separate cluster but
rather tried to build larger groups. In order to go into more
details, we need to look at the consistency scores, however.

Average consistency scores: Figure 3 shows averaged con-
sistency scores for each participant for the first and second
experiment. Only focusing on Experiment 1 and looking at
Figure 2 it seems as if participants who made fewer clusters
also scored higher on average. Intuitively, this might make

Figure 2: Number of clusters for Experiment 1

a)

b)

Figure 3: Consistency scores for a) Experiment 1 b) Exper-
iment 2

sense at first glance, as the chances of putting all paintings of
one artist into one cluster is higher the larger the cluster is. A
correlation analysis between number of clusters and consis-
tency score, however, revealed only a moderately strong (but
statistically significant) correlation of r2 = 0.44. Participant
14 had a larger number of clusters than participant 15, for ex-
ample, but at the same time had a significantly higher consis-
tency score showing that it cannot be the number of clusters
alone which determines participants’ consistency. Similarly,
if this were the case then also the data from Experiment 2
should yield similar consistency scores for all participants.
Figure 3, however, shows a different pattern: even though the
average number of clusters is now 11 (as opposed to 17.8),
on average consistency scores are only a little higher, show-
ing a very similar spread. The average scores for the two
experiments were 0.61 and 0.65, respectively.

Consistency scores for artists and art periods: Figures
4a,b plot cartist for Experiment 1 and Experiment 2. The
consistency matrices exhibit a large degree of variation -
some artists are clearly treated more consistently than others.
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For both experiments, Bondone, Di Buonisegna, Pechstein,
Newman, and Stella were grouped most often into the same
cluster, whereas Courbet and Thoma were the least consis-
tently grouped artists. A closer look at the clusters shows
that participants often had no trouble identifying older ver-
sus postmodern art (for example, Christian motifs versus
fully abstract art) which explains this finding. The consis-
tency scores in Figure 4c show that participants were least
consistent for Realism and most consistent for Postmod-
ernism, Expressionism, and Gothicism. Additionally, a post-
hoc ANOVA comparing cartist , cperiod across experiments
did not find significant differences due to the large individ-
ual variances. Overall, we thus found no differences between
the two experiments both of which had modern art periods
grouped more consistently than older ones. The full similar-
ity matrix discussed in the following section makes this even
clearer.

Similarity matrices: The similarity matrices in Figures 5
a,b both exhibit two large clusters as square patterns - these
correspond to earlier and modern art periods. A closer look
shows that a clear split between the two square patterns oc-
curs at the Impressionism period. Interestingly, this corre-
sponds to an important transition in the development of mod-
ern art, when artists moved away from realism, and exper-
imented with new painting techniques resulting in thicker,
broader brush strokes, vivid colorings, and abstracted shad-
ing patterns. On average, these patterns thus show that par-
ticipants were well aware of the historic turn from realism
to modern art - a non-trivial result given that all participants
were non-experts! The consistent art periods show up as as
small, reddish, square patterns in the matrix.

Figure 5 c also shows how the pattern should look like if
participants were grouping by artist or by (our notion of) art
period. Comparing these ideal patterns to the experimental
similarity matrices clearly shows that participants grouped
by period rather than by artist. Finally, the matrix also can
give insights into the most common confusions that occur.
Some examples of this include (a full analysis cannot be
done here due to space constraints): some of Duchamp’s
paintings were frequently put into other categories; Van Ey-
cks portraits were rarely in the earliest art clusters; paintings
by Newman and Stella were often confused; etc.

MDS analyses: In order to find out how many dimensions
can be used to approximate the similarity data well enough,
the point where the Eigenvalues of the MDS solution taper
off after a sharp, initial drop is commonly determined. This
"elbow" can be set at roughly 25 dimensions which then cap-
ture ≈80% of the variance in the similarity data. The MDS
solution can thus be used to localize each of the paintings
in a 25-dimensional space. In order to determine what some
of these dimensions might correspond to, we projected the
paintings onto each dimension and plotted the images oc-
cupying the extreme ends of the scale. The results of this
analysis are listed in Table 2 for the first 6 dimensions (cor-

responding to ≥60% of the variance) which had a clear per-
ceptual interpretation.

First of all, the first dimensions for both experiments were
very similar showing that participants in both experiments
used similar criteria along which to group the images. The
most important dimension separated the historically old art
periods from the newer ones. The second dimension sepa-
rated flat images (such as the abstract, single-color paintings
from Newman, but also the perspective-free Gothic images)
from images with more depth structure (such as landscapes,
but also street scenes). The third dimension was used to dis-
tinguish between post-modern and expressionist art, whereas
the fourth separates landscape paintings from portraits. The
fifth and sixth dimension were used to differentiate between
Surrealism and Postmodernism, and between whole-figure
paintings versus portraits, respectively. On each of these six
dimensions, neighboring paintings often share the same art
period or even artist.

Whereas some dimensions are clearly genre-based, others
separate whole art periods, which corresponds well to the
consistent cluster structure seen in the similarity matrix in
Figure 5. Participants thus used a mixture of historical and
content-based clues to group the paintings. The reason for
the success of content-based information - even though we
explicitly asked participants not to group based on genre, for
example - lies in the fact that many art periods do, indeed,
have a clear content preference: For the period of Rokoko,
for example, many painters were appointed to court and were
expected to create often highly stylized and glorifying paint-
ings of the absolutist monarchs - thus creating many portraits
and full-figure paintings which are typical for this period.

Clustering analyses: Whereas the dimensionality analysis
from MDS has revealed possible image properties that par-
ticipants use to classify the paintings, clustering analysis
allows us to look at which paintings on average will be
grouped together based on the similarity matrix. First, we
grouped all images into two clusters to find the most impor-
tant distinction within the data. Second, we created a group-
ing based on 11 clusters to check what a perceptual grouping
of the same size as our art period grouping would yield.

For both experiments, the two clusters split the 275 paint-
ings into a larger group containing paintings up to the Im-
pressionist period and a smaller group starting with the late
impressionists. The clusters for both experiments are identi-
cal except for only two impressionist images which change
cluster membership. This very stable result confirms the
overall pattern discussed earlier and testifies to the ability of
even non-experts to create theoretically meaningful structure
in our sample of paintings. The results for the 11 clusters are
summarized in Table 3. Again, results for both experiments
are very similar. Additionally, we find period-based clusters,
content-based clusters, as well as clusters based on painting-
style (Cluster 7 for Experiment 1).
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a) b) c)

Figure 4: Consistency matrix showing all cartist for a) Experiment 1, b) Experiment 2; c) Consistency values for art periods
cperiod (error bars depict SEM). Each entry in the matrices corresponds to the entry in Table 1.

a) b) c)

Figure 5: Similarity matrices for a) Experiment 1, b) Experiment 2, c) ideal grouping according to artists or periods

5. Computational Experiment

For the computational experiment, we were interested to find
out to which degree low-level, pictorial cues would be able
to explain the groupings in the previous, perceptual experi-
ments. To this end, we implemented several image process-
ing algorithms which yielded similarity values between all
image pairs enabling us to conduct the same analyses (MDS,
clustering) as for the perceptual experiments.

5.1. Algorithms

One of the most straightforward low-level similarity mea-
sure is to take the Euclidean distance (or L2 distance) be-
tween the pixel values of two color images. This is of course
very far from being perceptually plausible as the brain does
not assess similarity by subtracting two images, but it pro-
vides a good baseline for the further measures.

As color is one of the most prominent features in art, color
histograms might provide a better correlation with the hu-
man data. In order to test this hypothesis, color histograms
were extracted from both RGB-versions and CIELAB-
versions of the paintings. Histograms always had 20 bins
for each of the three color channels. CIELab is a percep-
tually plausible color space - the L-dimension corresponds
to the luminance, the a-dimesion to green-red transitions,
and b-dimension blue-yellow transitions. The color oppo-
nency scheme is derived from both perceptual and physio-
logical experiments on how the human visual system pro-
cesses color (among other things, color opponency explains
the after-images appearing after fixating a colored surface
for a long time).

Fourier analysis was done as the third feature class. The
human visual system is highly tuned towards the statistics
of the environment as measured by fourier statistics (see
[SO01]). The slope of the amplitude spectrum (as a func-
tion of frequency) of natural images, for example, was found
to be close to 2 (a = 1

f 2 ) corresponding to the scale invari-
ance or self-similarity usually found in nature. Perhaps the
amplitude spectra of paintings could be used to tell differ-
ent artists, or art periods apart given that fourier analysis is
sensitive to spatial frequencies (for example, thicker brush
strokes in later art periods, very fine brush strokes in the Re-
alism period). For our experiments, we determined the am-
plitude spectrum of all images by binning across 100 fre-
quency bins in the two-dimensional fourier spectrum yield-
ing a 100-dimensional vector.

Several studies in scene perception have shown that hu-
mans are able to understand the general context of novel
scenes even when presentation time is very short (<100
msec) [TFM96]. This overall meaning of a scene is often
referred to as "gist" and most commonly refers to low-level,
global features such as color, spatial frequencies and spatial
organization. In computational studies [OT06] it was found
that a very simple frequency analysis (based on the output of
filters tuned to different orientations and scales) of the spec-
trum of an image can already be enough to classify a scene
as indoors, outdoors, open, closed, - in short, the frequency
spectrum allows to determine the spatial content of an im-
age. In recent scene categorization experiments [OT06], this
approach was also shown to have perceptual relevance as
it was able to account for several experimental results on
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Dim Exp1 and Exp2 ImDist RGB CIE FOUR GIST
1 older realistic motifs↔Surr, Expr dark↔light dark↔light dark↔light colorful dark↔light flat↔textured
2 perspective (flat↔open) top light↔bottom dark dark↔light dark↔light - -
3 Post↔Expr green↔red light red↔dark blue - flat↔textured flat↔depth
4 landscapes↔portraits yellow↔blue - dark red↔yellow - fine↔-coarse-grained
5 Surr↔Post blue↔green - - - -
6 figures↔portraits blue↔red - - - -

Table 2: Results of dimension analysis following MDS for perceptual grouping and five computational measures.

Clus Exp1 Exp2
1 Goth, Rena Goth, Rena
2 Portraits (Goth,Rena,Baro,Roko,Clas) Portraits (Goth,Rena,Baro)
3 Landscapes (Roma,Real,Clas) Landscapes (Roma,Real,Clas)
4 Paintings with people (Rena,Baro,Clas,Roma) Paintings with people (Rena,Baro,Clas,Roma)
5 Impr landscapes Portraits (Roko,Clas,Real)
6 Outliers Outliers
7 Fine brushstroke paintings Outlier
8 Impr, Expr Impr, Expr
9 Expr (Cubist) Impr landscapes
10 Surr Surr
11 Post Post

Table 3: Results of cluster analysis for perceptual grouping.

scene categorization. For the following experiments, all pa-
rameters of the implementation based on [OT06] were set
to the default values which yield a total of 320 values for a
grayscale-image.

5.2. Analysis and Results

5.2.1. Similarity matrices

Figure 6: Similarity matrices for the five computational
measures.

Figure 6 shows the similarity matrices for the five compu-
tational measures. It is very obvious that all features measure
image properties that give rise to very different similarity
patterns - see Figure 5 for comparison. We again performed
MDS on the matrices in order to see how many dimensions
would be necessary to explain the similarity data - these
were IMDIST(12),RGB(12),CIE(18),FOUR(10),GIST(14).
The overall number of dimensions needed is therefore much
lower than that of the human data.

As Table 2 shows, the first 6 dimensions of most com-
putational measures (as far as they were interpretable) ex-
tract low-level properties of the artworks such as overall
brightness, or large color differences. Fourier analysis - as
could be expected - also is sensitive to texture. GIST, how-
ever, differs from the other measures as it specifically fo-
cuses on scale properties of the images. More specifically,
dimension 4 corresponds to a higher-level dimension as it
separates images with flat appearance from those with more
depth structure - nevertheless, the separation not as clear as
for dimension 2 of the human data. Similarly, even though
dimension 5 of the GIST measure distinguishes fine-grained
from coarse-grained paintings, it does not do this fully con-
sistently along art periods. Apart from this exception, none

of the other computational measures thus correlate with the
human data. This could have several reasons:

• our measures left out some important low-level correlate
of human judgements

• no single measure can correlate with human data, multiple
measures need to be taken into account

• humans also use higher-level properties of paintings or se-
mantic knowledge to do the task

Although of course a host of algorithms measuring low-level
image properties exist, the fact that neither texture nor color-
based, nor scale-sensitive measures correlate at any dimen-
sion casts doubt on whether another measure will do much
better. The second point also seems unlikely given that the
dimensions for the human data clearly correspond to higher-
level image properties - additionally, even higher dimensions
in the computational data never explicitly capture such prop-
erties explicitly. In our opinion, participants therefore clearly
used higher-level properties of the paintings which are cur-
rently beyond what our computational measures can extract
- and most likely those developed by other authors as well.

5.2.2. Clustering analyses

Not surprisingly, the clustering analysis shows a similar re-
sult. None of the clusterings groups corresponding artists
consistently together and correlations with human data are
non-existent. We also tried different clustering approaches
(such as different variations of k-means) directly on the com-
putational measures, again with no better result.

6. Conclusion and Outlook

Our study has shown that non-experts were able to reliably
group unfamiliar paintings of many artists into meaningful
categories. Dimension and clustering analyses have shown
that this was done based on both low-level, more perceptual
(brush stroke, perspective) and mid-level, more cognitive in-
formation (genre, motif) resulting in historically correct cat-
egories. The most salient difference includes a clear category
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break between pre-Impressionist and post-Impressionist art
which corresponds well to the beginnings of modern art in
art historical terms. Little difference was observed when
restricting the number of categories versus free grouping
showing that the underlying processes in both tasks were
highly similar. The aesthetics of non-expert viewers thus
leads to surprisingly "canon-conform" categorizations.

Of course we realize that our study is only the first step
towards a full mapping of the perceptual and cognitive cat-
egories of art. More specifically, our particular choice of
paintings - even though a random sampling from the on-
line databases - might have introduced certain biases in the
grouping. We are currently re-running the experiments with
a different, disjoint set of images from the same artists and
art periods to cross-validate the grouping results and also
to get a better measure of the inter-subject variance for
this task. Furthermore, as we asked participants to group
based on the style of the image, it would be interesting also
to group by different criteria such as early/late art, genre
(stilllife, portrait) in order to get perceptual grouping re-
sults for these properties as well. Additionally, we are plan-
ning comparisons with expert-judgments of our stimulus set
which also will give a better annotation and validation of our
database. Finally, rapid categorization tasks as in [TFM96]
will allow us to look at perceptual processes in isolation as
the speeded task prevents cognitive influences.

Several computational measures sensitive to color, tex-
ture, and spatial composition were implemented in order
to seek low-level correlates with the human data. Both in
terms of dimension and clustering analyses results, none of
the computational measures - with the notable exception of
the GIST feature - came close to modelling the human data.
In our opinion, this emphasizes the higher-level processing
that even non-expert viewers make when viewing and inter-
preting works of art. Nevertheless, we want to stress that our
computational studies were only the beginning of a larger set
of experiments, for which we also plan to implement more
complex types of measures. Given the success of the GIST
analysis, we will test more sophisticated features based on
automatic analysis of the depth structure [HSEH07] of paint-
ings which might yield more insights.
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