EUROGRAPHICS 2014 / E. Galin and M. Wand

Latency considerations of depth-first GPU ray tracing

M. Guthe'

! Universitaet Bayreuth, Visual Computing

Short Paper

Abstract

Despite the potential divergence of depth-first ray tracing [AL09], it is nevertheless the most efficient approach
on massively parallel graphics processors. Due to the use of specialized caching strategies that were originally
developed for texture access, it has been shown to be compute rather than bandwidth limited. Especially with
recents developments however, not only the raw bandwidth, but also the latency for both memory access and read
after write register dependencies can become a limiting factor.

In this paper we will analyze the memory and instruction dependency latencies of depth first ray tracing. We will
show that ray tracing is in fact latency limited on current GPUs and propose three simple strategies to better hide
the latencies. This way, we come significantly closer to the maximum performance of the GPU.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms 1.3.7 [Computer Graphics]: Three-DimensionalGraphics and Realism—

Raytracing

1. Introduction

Most global illumination algorithms are based on ray trac-
ing and need to compute intersections between rays and the
scene geometry. Using hierarchical data structures, the run-
time complexity of this is O(logn), where n is the number
of primitives. On GPUs, this comes at the cost of incoher-
ent execution paths and memory access. Both problems have
been addressed using specialized traversal methods and the
caching strategies of modern GPUs. This way, a depth first
ray scene intersection method has been developed, that is
not bandwidth limited any more. It has also been shown that
implementing complete global illumination algorithms in a
single kernel is less efficient than splitting the whole pipeline
into a few specialized kernels including a trace kernel.

Due to the recent developments of GPUs, latency has be-
come increasingly important for kernel performance. With
the introduction of the Kepler architecture the maximum
number of instructions per clock has increased from 2 to 6
per multiprocessor. This means that the number of eligible
warps has to be three times as high to fully utilize the com-
pute performance, while the maximum number of warps has
only grown from 48 to 64. While latency was not a signifi-
cant problem for ray tracing on the Tesla architecture, it has
become the limiting factor on current GPUs.

(© The Eurographics Association 2014.

DOI: 10.2312/egsh.20141013

We only discuss the performance and optimization of the
trace kernel on recent NVIDIA GPUs. Although ray genera-
tion and shading are also important for a global illumination
renderer, these are not covered in this paper. Nevertheless,
any global illumination method that is not based on the less
efficient megakernel approach can directly benefit from the
proposed improvements.

The main contribution of the paper is an analysis of the
memory and read after write latency and the development of
strategies to reduce both. The core idea is using instruction
level parellelism (ILP) to improve performance. Although
GPUs only issue two instructions per warp in parallel, ker-
nels benefit from more independent execution paths due to
reduced latency and a higher instruction throughput.

2. Related Work

Real-time ray tracing has received a growing interest in the
recent years. Development in this field has been especially
spured by advances in general purpose programmable graph-
ics hardware. Here the research can be divided into two
fields. The first is the development of efficient traversal al-
gorithms on massively parallel systems and the second one
is the design of suitable acceleration data structures.

delivered by

www.eg.org

-G EUROGRAPHICS
: DIGITAL LIBRARY

diglib.eg.org

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/egsh.20141013

54 M. Guthe / Latency of GPU tracing

2.1. Efficient GPU Ray Tracing

Wald et al. [WBBO0S8] proposed a parallel ray tracing method
designed for 16 thread wide SIMD Intel CPUs. For NVIDIA
GPUs, Aila and Laine [AL09] developed an efficient trace
kernel that is not memory bound. Later, Aila et al. [ALK12]
extended this work to newer GPUs. In addition, Aila and
Karras conducted some considerations for designing effi-
cient ray tarcing hardware [AK10]. Based on observations
made by van Antwerpen [vA11], Laine et al. [LKA13] ar-
gued that a single mega kernel is unsuitable for ray tracing
on GPUs. A consequence of this is that any efficient GPU
ray tracing algorithm requires a dedicated trace kernel.

2.2. Acceleration Data Structures

An early acceleration data structure for ray tracing of dy-
namic scenes was the bounding interval hierarchy [WKO06].
It consists of a binary tree with two split planes at each node
and an efficient construction algorithm. Similarly, Zhou
et al. [ZHWGOS8] describe an efficient KD-tree construc-
tion algorithm running on the GPU. Later, Lauterbach et
al. [LGS™09] proposed optimized algorithms to construct
bounding volume hierarchies on the GPU. While bounding
volume hierarchies (BVHs) have shown to be the most ef-
ficient data structure on GPUs due to minimal stack access,
they can be further improved using spatial splits [SFD09].

3. Performance Analysis of GPU Ray Tracing

The two performance limiting factors of depth first ray trac-
ing on GPUs are the SIMD efficiency and the latency caused
by memory access and instruction dependencies. While sev-
eral approaches have been made to improve the SIMD ef-
ficiency, all methods so far rely on the hardware schedul-
ing to hide the latency. This however only works as long as
there are enough eligible warps, i.e. warps where the next in-
struction can be executed. To fully utilize the computational
power of the current Kepler GPUs, at least 6 warps have to
be eligible for the 6 schedulers. For the previous architec-
ture, at least two warps need to be eligible at all times.

Table 1 shows the number of executed instructions per
clock cycle and the average number of eligible warps, that
is an upper bound for the instructions per clock. In addition,
we analyze the warp stall reasons to identify possible im-
provement strategies. While memory latency is inherent to
any system where the memory is not located on the same
die, the instruction dependency stems from the fact, that it
takes several clock cycles to fetch the data from the registers
to the cores and store them after the instruction has executed.

The analysis shows that the trace kernel is neither com-
pute nor bandwidth limited on Kepler, as it only utilizes the
cores by 39% to 48% and memory bandwidth by 7% to 12%.
In case of relatively coherent rays, instruction dependency
and memory latency each contribute to about 40% of all is-
sue stalls on Kepler. For incoherent rays, the memory latency

GPU ray type | IPC | el.w. | fetch | mem. | dep.
GTX primary | 1.41 313 | 32% 10% | 52%
480 AO 1.37 3.60 | 28% 17% | 49%
Fermi | diffuse 1.06 | 274 | 11% 16% | 66%
GTX primary | 2.73 4.17 8% 42% | 43%
680 AO 2.71 4.20 9% 42% | 43%
Kepler | diffuse 234 | 3.37 7% 51% | 37%
GTX primary | 2.85 522 9% 46% | 37%
Titan AO 2.79 515 | 10% 46% | 37%
Kepler | diffuse 2.52 4.65 9% 52% | 33%

Table 1: Latency analysis of depth-first ray tracing using the
kernel and hierarchy from [ALK12] for the conference scene
(data obtained using the NVIDIA Nsight Monitor).

causes more than half of the stalls. On Fermi, instruction de-
pendency is the main stall reason, but core utilization is be-
tween 53% and 71%. Despite the significant difference be-
tween the architectures and tracing coherent and incoherent
rays, it becomes clear that depth-first tracing performance is
reduced by latency on recent GPU architectures. Analysis of
other kernels, i.e. ray setup and hit processing, shows that
these are almost always purely bandwidth limited using well
over 70% of the maximum device memory bandwidth.

As a large part of the issue stalls is caused by read af-
ter write (RAW) dependencies, we take a closer look at the
latency in this case. On Fermi it typically takes 22 clock cy-
cles [NVI13] to store the result of an operation. On Kepler,
this latency was reduced to typically 11 cycles. Together
with the time required for the execution and considering the
number of parallel warps, this translates to a latency of 44
instructions on Fermi and 88 on Kepler, while it was 6 on
Tesla. In addition, Fermi and Kepler issue pairs of instruc-
tions for each warp that need to have no RAW dependency.

While the number of independent instructions has in-
creased from 6 to 88, the number of active warps per mul-
tiprocessor has only marginally increased. Originally it was
24 on early Tesla and 32 on later GPUs. For Fermi the num-
ber was 48 and on Kepler it is now 64. This implies that two
independent instructions are theoretically just enough to sat-
urate the warp schedulers of Fermi and Tesla GPUs. In prac-
tice however, we cannot assume an optimal warp scheduling
due to other factors, like memory latency and caching issues.

4. Reducing Latency

The classical approach to reduce latency is increasing oc-
cupancy, i.e. the number of active warps per multiproces-
sor. The trace kernel however requires 37 registers such that
increasing occupancy cannot be achieved without introduc-
ing additional local memory access. On the contrary, three
more registers could be used on Kepler without reducing
occupancy, while 5 would have to be saved to increase it.
For Fermi, occupancy changes more fine grained but regis-
ter spilling degrades the overall performance there as well.

(© The Eurographics Association 2014.

M. Guthe / Latency of GPU tracing 55

Despite occupancy, there are some other options to reduce
latency. First of all, memory latency can be reduced by load-
ing data at once, without conditional branches that make one
load dependent on the data of another one. This was already
used by Aila and Laine [ALO9], where the indices of the
child nodes are loaded regardless of the intersection test re-
sults. While this wastes bandwidth, memory latency occurs
only once for each node of the bounding volume hierarchy.

Another option is to relocate memory access, such that
the number of instructions between memory access and us-
ing the result is increased. This is automatically performed
by the compiler/assembler, but instructions cannot be moved
between loop iterations. Loop unrolling can solve this prob-
lem and, in addition, reduces the number of branches. This
is especially suited for the triangle intersection loop, where
unroll counts between 2 and 4 are reasonable.

Reducing the read after write latency is the most challang-
ing task. The general problem is also relevant for sequential
programs as all modern CPUs exploit instruction level par-
allelism. The idea is to split a sequential program into in-
struction sequences that can be executed in parallel. These
are caracterized by not having read after write dependencies
between each other. One candidate for ILP is the intersec-
tion test of the child nodes. Here, the two intersection tests
for a binary tree are already independent and the number of
registers is less of a problem than for the triangle test.

4.1. Shallower Hierarchy

If an n-ary tree is used instead of a binary tree, n independent
instruction sequences exist. This reduces read after write la-
tency by a factor of n/2 compared to binary trees. In addi-
tion, the total memory bandwith is slightly reduced, up to
4-ary trees. Interestingly, using wider trees has already been
considered [WBBOS, AL09], but only in the context of dis-
tributing a single ray over several threads.

The 4-ary tree can be generated from a given binary tree
by pulling up the children of a child node into the current
one. Starting from the root, we could simply remove every
second level of the binary tree. If the tree was built using the
surface area heuristic, e.g. using [SFD09], we can further
optimize the construction similar to the 16-ary trees pro-
posed by Wald et al. [WBBO0S8]. The algorithm starts with
the root node and recursively processes the constructred tree.
For each node, the child with larger bounding box is first in-
tegrated into the current node. Then again that child with the
largest bounding box is chosen which could be a grandchild
in the original binary tree. In the original method, a special
algorithm is used to accumulate 16 triangles in each leaf.
As we want to preserve the number of triangles per leaf, we
chose a slightly different approach close to the leaf level: If
a child only has two leaf nodes, we force adding it to the
current node, as this completely removes a node from the
hierarchy. When two or more children only have two leaf

(© The Eurographics Association 2014.

nodes, we choose the one with the largest bounding box. If
no child has two leaves and a child has three leaf nodes, we
force adding it if we did not already pull up another child. If
we did, we only pull it up, if it is the only non-leaf node.

After intersection testing, we can further improve ILP at
the cost of a slightly higher instruction count. For depth-first
tracing, we need to sort the intersected nodes according to
their distance. Using a sorting network [Bat68], we need
6 compare and swap operations instead of 5 using merge
sort. On the other hand, we have two independent instruc-
tion paths, which more than compensates for the increased
instruction count. We implemented the parallel merge sort
algorithm using conditional assignment.

4.2. Unsorted Occlusion Tracing

Given the fact that a part of the computation for hierarchy
traversal is required for the distance sorting of intersected
child nodes, a further improvement is possible for rays that
only require any hit and not the closest one. In this case, we
can simply omit sorting and push all intersected child nodes
except one onto the traversal stack. This has two advantages:
First, the reduced instruction count significantly speeds up
traversal and second, the more coherent child node traversal
slightly improves the SIMD efficiency when tracing incoher-
ent rays. Note, that for binary trees, sorting is negligible.

5. Results

Table 2 shows the results based on the benchmark from
http://code.google.com/p/understanding-the-efficiency-of-

ray-traversal-on-gpus/. Note, that the results differ from
those published in [ALK12], as mentioned in the source
code. The reasons are the different BVH builder and
possibly the newer CUDA and driver versions. In addition,
we disabled ray sorting. As local memory access is slow on
Fermi GPUs, not sorting the nodes for occlusion rays actu-
ally reduces the performance due to divergent access. The
speedup ranges from -6.7% (primary) to 19.1% (diffuse)
for these GPUs using a 4-ary tree and loop unrolling and
increases with scene complexity. The overall speedup on
Kepler GK104 using all optimizations is 5.1% (diffuse) to
20.1% (AO). Using 4-ary trees only, we measured a speedup
of 3.4% (AO) to 11.5% (diffuse). In combination with not
sorting the occlusion rays, this improves to 3.7% (primary)
to 16.3% (AO). Using loop unrolling of the triangle test
only results in a speedup of 1.9% (diffuse) to 4.9% (AO).
On the more recent GK110, the speedup increases for
incoherent rays, except for very small scenes, and decreases
for primary rays. Table 3 shows the number of executed
instructions and the cause of latency as for the original
code. On Fermi GPUs, the main improvement is due to the
improved dual instruction issuing. For Kepler, the number
of instructions per clock has significantly increased in all
cases. Nevertheless, RAW and memory latency are still
present, possibly leaving room for further improvements.

http://code.google.com/p/understanding-the-efficiency-of-ray-traversal-on-gpus/
http://code.google.com/p/understanding-the-efficiency-of-ray-traversal-on-gpus/

56

M. Guthe / Latency of GPU tracing

—‘,‘ ‘l J—
e
- >
Conference, 283k tris Falry, 174K tris Sibenik, 80k tris Sam Miguel, 11M tris
Ray type 480 680 Titan 480 680 Titan 480 680 Titan 480 680 Titan
[ALK12] | Primary 272.1 | 393.5 | 605.7 150.9 | 220.3 | 326.2 252.7 | 359.8 | 538.6 70.2 115.1 173.0
measured | AO 1924 | 3375 | 527.2 125.5 | 229.8 | 353.2 172.9 | 2953 | 44838 78.8 150.0 | 231.8
(MRays/s) | Diffuse 70.6 1344 | 2164 52.4 100.6 | 159.2 56.4 114.7 | 193.6 23.0 45.1 74.1
Improved | Primary 2774 | 451.8 | 688.6 147.0 | 244.0 | 354.1 235.8 | 383.6 | 534.6 75.1 130.9 188.2
measured | AO 203.7 | 387.0 | 613.3 127.2 | 264.9 | 410.1 176.4 | 354.6 | 534.1 84.5 170.0 | 266.2
(MRays/s) | Diffuse 78.4 156.7 | 254.4 56.8 115.1 183.2 63.4 129.7 | 218.7 27.4 474 82.7
Primary 1.9% | 14.8% | 13.7% || -2.6% | 10.8% | 8.6% -6.7% | 6.6% | -0.7% 7.0% | 13.7% | 8.8%
speedup | AO 59% | 14.7% | 16.3% 14% | 153% | 16.1% 2.0% | 20.1% | 19.0% 72% | 133% | 14.8%
Diffuse 11.0% | 16.6% | 17.6% 84% | 144% | 15.1% || 12.4% | 13.1% | 13.0% || 19.1% | 5.1% | 11.6%

Table 2: Performance comparison for Fermi (GTX480), and Kepler (GTX680, GTX Titan) using the setup of Aila et al. [ALK12].

GPU ray type | IPC | el. w. | fetch | mem. | dep.
GTX primary | 1.52 | 3.87 | 28% | 10% | 55%
480 AO 149 | 441 | 25% | 16% | 51%
Fermi | diffuse 120 | 3.10 | 11% | 14% | 68%
GTX primary | 3.47 | 638 | 10% | 33% | 44%
680 AO 331 | 592 | 10% | 33% | 46%
Kepler | diffuse 3.05 | 5.08 8% 42% | 40%
GTX primary | 3.57 | 7.89 | 13% | 35% | 35%
Titan AO 342 | 745 | 13% | 35% | 36%
Kepler | diffuse 328 | 6.84 | 12% | 42% | 34%

Table 3: Latency analysis of our improved depth first ray
tracing for the conference scene (cf. Table 1).

6. Conclusion and Limitations

We have analyzed the performace of depth-first ray tracing
on GPUs, specifically considering read after write and mem-
ory latency. Based on our observations, we have proposed
three simple improvements that result in a speedup of up to
20% on recent GPUs, depending on scene and ray type. In
addition, the nodes need about 27% less graphics memory.

The current implementation is limited to bounding vol-
ume hierarchies. In principle, it would be possible to use
a similar approach for other acceleration data structures.
For bounding interval hierarchies [WK06] and KD-trees, we
could aggregate 6 or 3 planes respectively into one node.
This way we could also increase ILP, since the plane inter-
section tests can be computed independently of each other.
Finally, we do not attempt to solve the problem of thread
divergence. Nevertheless, the thread utilization slightly im-
proved by about 1% for all ray types on Fermi and Kepler.

References

[AK10] AILA T., KARRAS T.: Architecture considerations for
tracing incoherent rays. In Proc. High-Performance Graphics

2010 (2010), pp. 113-122. 2

[ALO9] AILA T., LAINE S.: Understanding the efficiency of ray
traversal on gpus. In Proceedings of the Conference on High
Performance Graphics 2009 (2009), HPG *09, ACM, pp. 145-
149. 1,2,3

[ALK12] AILA T., LAINE S., KARRAS T.: Understanding the
Efficiency of Ray Traversal on GPUs — Kepler and Fermi Adden-
dum. NVIDIA Technical Report NVR-2012-02, NVIDIA Cor-
poration, June 2012. 2, 3, 4

[Bat68] BATCHER K. E.: Sorting networks and their applications.
In Proceedings of the 1968, spring joint computer conference
(1968), AFIPS ’68, ACM, pp. 307-314. 3

[LGS*09] LAUTERBACH C., GARLAND M., SENGUPTA S.,
LUEBKE D., MANOCHA D.: Fast bvh construction on gpus.
Computer Graphics Forum 28, 2 (2009), 375-384. 2

[LKA13] LAINE S., KARRAS T., AILA T.: Megakernels consid-
ered harmful: Wavefront path tracing on GPUs. In Proceedings
of High-Performance Graphics 2013 (2013). 2

[NVI13] NVIDIA: NVIDIA CUDA Programming Guide 5.5.
NVIDIA, 2013. 2

[SFD09] STICH M., FRIEDRICH H., DIETRICH A.: Spatial splits
in bounding volume hierarchies. In Proceedings of the Con-
ference on High Performance Graphics 2009 (2009), HPG 09,
ACM, pp. 7-13. 2,3

[VA11] VAN ANTWERPEN D.: Improving simd efficiency for par-
allel monte carlo light transport on the gpu. In Proceedings of
the ACM SIGGRAPH Symposium on High Performance Graph-
ics (2011), HPG ’11, ACM, pp. 41-50. 2

[WBB08] WALD I., BENTHIN C., BouLosS S.: Getting Rid
of Packets — Efficient SIMD Single-Ray Traversal using Multi-
Branching BVHs. In Proceedings of IEEE Symposium on Inter-
active Ray Tracing 2008 (2008). 2, 3

[WKO06] WACHTER C., KELLER A.: Instant ray tracing: The
bounding interval hierarchy. In Rendering Techniques 2006 —
Proceedings of the 17th Eurographics Symposium on Rendering
(2006), pp. 139-149. 2, 4

[ZHWGO08] ZHou K., Hou Q., WANG R., GUO B.: Real-time
kd-tree construction on graphics hardware. ACM Transactions
on Graphics 27,5 (2008), 126:1-126:11. 2

(© The Eurographics Association 2014.

