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ABSTRACT This paper presents the conveyor, an interconnection device which 
operates on a 3D skewed memory space and provides the capability of parallel vol­
umetric transformation. The special concept of the conveyor, its design and imple­
mentation are discussed. 

6.1 Introduction 

Volumetric graphics is an emerging alternative approach to the traditional 3D surface 
graphics [2]. The volumetric scene is represented in a discrete fashion employing a 3D 
lattice of voxels (3D raster). One can assume that the voxel space is an N X N X N array, 
where N defines the resolution. A typical voxel space occupies a large amount of memory, 
for example, a moderate resolution of N equal to 512, the 3D raster consists of more than 
100 million of voxels. Although such large memories are becoming feasible, the extremely 
large throughput that has to be supported requires special architectural and processing 
solutions. In order to achieve real-time performance, parallel access and processing are 
essential [3]. Typically, voxel space operations, such as projections, 3D transformations 
(rotation, translation, shearing etc.), 3D filtering or synthesis, have the complexity of 
O(N3 ), which is linear to the number of voxels [4]. 

In the approach we have taken the volumetric operations mentioned above are unified 
and defined on 3D windows called rooms. A room is a box aligned with the main axes . The 
room can, thus, be treated as a 2D array of beams, where a beam is defined as a sequence 
of consecutive voxels parallel to one of the main axes. It is therefore desirable to have 
a mechanism that provides parallel access and displacement of beams. This mechanism 
can support volumetric operations to that are performed on a beam by beam basis, and 
therefore reduces the time complexity by an order of magnitude. That is, the complexity 
is O(N2), linear to the number of beams, rather than linear to the number of voxels . The 
capability to read and write an arbitrary beam of any size is, therefore, the key for real­
time volumetric operations and it plays a central role in the Cube [5] and the Flipping 
Cube [6] architectures. 

The design of parallel memories that permit conflict-free access to rows and columns 
is widely known [7,8]. The extension to 3D memories is described shortly in Section 6.2, 
where we propose the conveyor - a mechanism to displace a beam of arbitrary size and 
orientation from an arbitrary source location to an arbitrary destination in few memory 
cycles . The challenge confronting the realization of the conveyor is efficient displacements 
by arbitrary distance in a constant time. Moreover, it has to deal with very long beams 
(512 or more), and it must be feasible for VLSI realization. In Section 6.4 we describe the 

special hardware implementation of the conveyor. 
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FIGURE 6.1. A latin cube of order 4. 

6.2 Conflict-Free Access to Beams 

A Latin square of order N is an N x N array of symbols from 0 to N - 1 such that no 
symbol appears more than once in any row or any column. The Latin square provides 
a skewing scheme for the partition of the 2D space into memory modules in way that 
guarantee conflict-free access to 2D beams. 

A linear skewing scheme is a simple mapping K from the x, y space to the N memories 
modules, defined by: 

K (x, y) = a * x + b * y (mod N) (6.1) 

if gcd( a, N) = 1 and gcd( b, N) = 1 then K defines mapping into a latin square. Similarly 
a 3D linear skewing scheme 

K (x, y, z) = a * x + b * y + c * z (mod N) (6.2) 

such that gcd of (a, N), (b, N) and (c, N) are all equal to 1, defines a mapping into a 
latin cube, which provides a conflict-free access to 3D beams. In the Cube architecture 
the simplest 3D linear skewing scheme 

K(x,y,z) = x + y + z (mod N) (6.3) 

has been employed [5]. This skewing scheme can be intuitively understood as a memory 
space which consists of diagonal parallel sections having a 45 degree angle with the main 
axes planes. The diagonal sections are sequentially numbered and grouped (modulo N) 
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into N modules indexed from 0 through N -1. Figure 6.1 depicts such a skewing scheme 
for N=4. Note that Equation 6.3 is symmetric to all the three dimensions, thus it equally 
treats all beams independently of their orientation. 

In the following discussion the skewing scheme (3) is assumed and all arithmetics must 
be taken modulo N. Any beam of length N can be represented as by a sequence i,i + 
1,i+2, ... i+N -1 of memory modules, where i identifies the beam. An x-beam X(XO,Xl) 
from Xo to Xl with constant Y = Yj and Z = Zk is a sequence So, So + 1, So + 2, ... Sl, where 

So = Xo + Yj + Zk (mod N) (6.4) 

and 

(6.5) 

Similarly, y-beams Y(yo, Yl) and z-beams Z(zo, Zl) are defined. 
An important feature of the linear skewing scheme is that two arbitrary beams of the 

same length are equal, up to a constant value modulo N. Let A( ao, ao + 1) = So, .. . , Sl and 
B(bo, bo + 1) = to, ... , tl be two arbitrary beams of length 1 along the dimensions A and B, 
respectively. For every i (0 < = i < = 1) Si = ti + D, where D is the distance between the 
two beams defined by 

D = to - So (6.6) 

where to and So are calculated by Equation 6.4. 
In order to displace a beam, the value of D (Equation 6.6) has to be added to all voxels 

along the beam. Instead of adding, they are shifted in a conveyor belt fashion within the 
address space. The shifting device is, therefore, termed a conveyor. Figure 6.2 illustrates 
the conceptual functionality of the conveyor that operates in three steps: 

1. The selected source beam is read into the conveyor. 

2. The conveyor shifts around its values to match the destination beam. 

3. The shifted beam is written back to the memory. 

Practically, the conveyor is an internal device that interconnects the memory modules as 
depicted in Figure 6.3. This flow-through mechanism provides the basic atomic operation 
of moving beams. In the next section we demonstrate a few 3D operations in which the 
complexity of room operators is reduced to those of 2D window operators. 

6.3 3D Transformations Via the Conveyor 

In the previous section we showed that the conveyor, by interconnecting the memory 
modules, provides a fast mechanism for beam transporting. One can assume that reading, 
shifting, and writing a beam takes a constant time. An immediate application of that 
mechanism is a room translation. There are three orientations by which the translation of 
the room can be broken into beams. Clearly it is always faster to translate beams along 
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FIGURE 6.2. The concept of the conveyor: (a) a source beam is read into the conveyor. (b) The conveyor 
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FIGURE 6.4. A beam, parallel to the main axis preserves its parallelism when rotated about the axis. 

the largest dimension. Assume an NI X N2 X N3 room such that N3 > N2 > N 1 , then by 
translating beams along N3 the entire room can be moved in NI X N2 steps. 

A 3D rotation is a primary application supported by the conveyor. In fact, the concept 
of the conveyor was first devised to support real-time rotations of volumes. The principle is 
shown in Figure 6.4; a rotation around one main axis is a 2D rotation where the rotation 
of an individual "pixel" is followed by a beam translation along the axis of rotation. 
A full 3D rotation is accomplished by two consecutive rotations around one axis. Note 
that unlike the translation operation, the parallel rotation does not have an analog 2D 
operation, and it is inherently a 3D feature. 

Shearing is yet another 3D transformation that can be executed by the basic operation 
of beam translation. A sequence of three consecutive shearing operations can yield arbi­
trary 3D rotation. Such parallel shearing on volumes can accelerate applications of affine 
transformation for volume rendering [9]. In particular, a 90-degree rotation of the entire 
3D space can be performed with no need for external storage, and without degradation 
of the image. The Flipping-cube architecture is based on that feature, and it relies on the 
conveyor to perform parallel shearing transformations [6]. 

6.4 The Conveyor Realization 

The conveyor is a device capable of shifting data along N memory modules. To achieve 
high bandwidth, parallel shifting is necessary, while keeping a low number of installed 
links in order to minimize the hardware complexity. Conventional communication channels 
such as a single bus or ring are unacceptable due to their serial nature. Various parallel 
interconnection network topologies are in use in parallel processing, providing different 
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communication patterns [10J. Two extremes are the bus and the crossbar. Multiple buses, 
connecting between adjacent modules have a simple topology but the performance is linear 
with the number of shifts. In contrast, the crossbar offers constant time connection but 
has N 2 link complexity. One compromise is the barrel shifter that provides an arbitrary 
shift in logN steps but requires N /21ogN link complexity. Another solution is the perfect 
shuffle that can achieve an arbitrary shift in logN steps and requires only N links. 

High speed and low complexity has been achieved in the unique design of the conveyor, 
exploiting the fact that no two accesses in the network involve the same memory module 
and that there is a uniform communication distance among all units. The design of the 
physical device has been guided by following requirements: low hardware complexity, high 
bandwidth, modularity for a flexible length of network and a flexible width of data, and 
suitability for VLSI implementation. 

Let us assume a case study of a 2563 voxel space, where the requirement is a simultane­
ous shifting of 8 bits of data in an arbitrary distance among the 256 modules. Applying the 
existing methods it would require either 256 buses or a large crossbar matrix of 256 X 256 
paths, 8 bit each. The conveyor, shown in Figure 6.3, is a modular structured network 
interconnecting among the clients (either processors or memory modules) [1 J. The basic 
component is a conveyor unit (CU) which serves s clients, receiving from each a single bit 
of data (s bits in total) and shifting it further on. This layout provides modularity and 
flexibility of the entire network. The network is extendable in its overall length, by serially 
connecting arbitrary numbers of CU's, and in data width, by stacking up any number of 
units, one layer per data bit. Such a modular approach results in breaking down the entire 
communication network into small building-blocks easily implement able in VLSI. 

The CU is a flow-through bidirectional shifter performing a shift of up to s steps. These 
bidirectional shifts contribute to a significant reduction in communication area and time. 
Rotation to the right by k steps, when k > 256/2, can be performed with leftward rotation 
of (256 - k) steps. 

Long rotations of k steps are subdivided into smaller flow-through s steps. A rotational 
distance of up to s steps is performed in a single clock. Longer rotations require k/ s 
clocks, and the longest is performed in N /2s clocks. Since, for small N, the term N /2s 
for relatively small s is the same as logN, the conveyor performance equals or surpasses 
the performance of the barrel shifter and the perfect shuffle. 

The topology of the conveyor is simple since the links connect between adjacent clients 
only. The CU is composed of s columns (see Figure 6.6), exhibiting link complexity of 
O(s). Since the CU's are serially (linearly) composed, the entire network has the same 
O( s) hardware complexity. There is a trade-off between the hardware complexity and the 
time performance. The bigger the step size s, the faster the network, but on the other 
hand, the link complexity of the CU component is increasing. 

A CU is composed of three main parts (see Figure 6.6): the input-output terminals; 
the shift-array (SA) of communication links; and the local control sub-unit called decoder . 
All the signals, controlling this module, are furnished by an external control. 

Data transfer through the conveyor is performed in the following manner. First, data 
from all the clients are moved to their associated CU via the D terminals. Next, the data 
is shifted out to the next CU through, for example, the R terminals, and new data is 
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FIGURE 6.5. A simplified Shift Array (SA) with four columns (s = 4). 

shifted in through the L terminals. A full shift, up to s places, is performed in a single 
clock cycle. This shifting step can be repeated any number of times. Finally, the shifted 
data is returned to the clients through the D terminals. The shift array is a matrix of s 
columns by s rows, organized in a simple and repetitive pattern of junction elements and 
connection paths. The data from, and to the clients are placed on a row and transferred 
out to the appropriate column, depending on the required shift. Each of the columns 
performs its unique shift distance. For example, a 3 step shift all D inputs are passed to 
the third column which shifts them three steps ahead and the result is placed back on D 
terminals for output. The decoder sets up the appropriate connections in the shift array. 

The conveyor has been implemented in SUNY at Stony Brook as part of the Cube 
architecture. In [1] it was suggested to use a shift array with s = 16 for 256 modules. 
Rotations up to 16 consecutive locations are performed within a single clock period, and 
the longest rotation of 127 is executed in 8 clocks. Each CU is implemented as a custom­
designed VLSI chip. The shift array contains about 2500 transistors. Adding the decoder, 
control circuits, and I/ O pads, it totals to 4000 transistors and 64 pins per chip. 

6.5 Summary 

We have introduced a new technique to parallelize volumetric transformations. It relies 
on the ability to simultaneously read from a memory, circularly shift, and write back an 
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FIGURE 6.6. The Conveyor Unit (CU). 

entire group of data. We have presented the conveyor, which is a shift device with a simple 
topology, low link complexity, high bandwidth, and is suitable for VLSI implementation. 
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