Graphics Hardware (2006)
M. Olano, P. Slusallek (Editors)

Compressed Lossless Texture Representation and Caching

T. Inada' and M. D. McCoolz,

University of Waterloo and Sony Corporation
2University of Waterloo and RapidMind Inc.

Abstract
A number of texture compression algorithms have been proposed to reduce texture storage size and bandwidth
requirements. To deal with the requirement for random access, these algorithms usually divide the texture into
tiles and apply a fixed rate compression scheme to each tile. Fixed rate schemes are by nature lossy, and cannot
adapt to local changes in image complexity. Multiresolution schemes, a form of variable-rate coding, can adapt
to varying image complexity but suffer from fragmentation and can only compress a limited class of images.
On the other hand, several lossless image compression standards have been established. Lossless compression
requires variable-rate coding, and more efficient lossy algorithms also use variable-rate coding. Unfortunately,
these standards cannot be used directly as texture compression schemes since they do not allow random access.
We present a block-oriented lossless texture compression algorithm based on a simple variable-bitrate differ-
encing scheme. A B-tree index enables both random access and efficient O(1) memory allocation without external
fragmentation. Textures in our test suite compressed to between 6% and 95% of their original sizes. We propose
a cache architecture designed to support our compression scheme. Cycle-accurate simulation shows that this
cache architecture consistently reduces the external bandwidth requirements as well as the storage size without
significantly affecting latency.

Categories and Subject Descriptors (according to ACM CCS): 1.3.1 [Computer Graphics]: Hardware Architecture-

Graphics processors

1. Introduction

Video games and interactive applications use large and
growing quantities of texture data for rendering. This leads
to two problems: space and bandwidth. Although the cost
of RAM is decreasing, the memory space available for the
storage of textures is limited. The overall bandwidth of the
memory bus can also limit performance. High depth com-
plexity scenes and complex shaders can result in several tex-
ture reads per pixel, so texture bandwidth is not limited by
display resolution.

Complex multipass algorithms also often require repeated
allocation and deallocation of buffers. Allocating textures as
large contiguous regions can cause memory fragmentation
and limits the flexible use of GPUs for general-purpose com-
putation. Instead, we would like to allocate memory using
a simple free list, which requires organizing memory into
fixed-size blocks. Such a memory organization also simpli-
fies the implementation of advanced memory management
mechanisms such as virtual memory paging.

(© The Eurographics Association 2006.

The most critical problem is bandwidth, although our ap-
proach addresses all of the above issues. Memory bandwidth
is not growing as fast as on-chip computational performance.
This suggests a strategy that reduces bandwidth and space
consumption at the cost of some additional processing on-
chip. Compression is one such strategy. Compression algo-
rithms transform data to a more compact representation, but
some computation is required to recover the original data.

Most techniques proposed for hardware texture compres-
sion are based on independently accessed tiles because tex-
tures must be randomly accessed. Commonly, textures are
divided into small tiles and each tile is compressed us-
ing a fixed rate lossy mechanism, such as vector quanti-
zation. These schemes offer good compression rates but
often have poor image quality. Image compression stan-
dards exist that support both good compression rates and
high image quality. The industry standards, PNG [Wor96]
and JPEG2000 [CSEO1], also support lossless compression
modes. In order to be transparent to applications, we would

delivered by

www.eg.org

-G EUROGRAPHICS
: DIGITAL LIBRARY

diglib.eg.org

http://www.eg.org
http://diglib.eg.org

112 T. Inada and M. D. McCool / Compressed Lossless Texture Representation and Caching

also like to support a lossless compression scheme for tex-
ture data. Unfortunately, standard lossless image compres-
sion schemes usually do not support efficient random access
to fine-grained pixel data directly from the compressed rep-
resentation. JPEG2000 supports indexing and tiling, but this
is meant for coarse-grained access. Fine-grained random ac-
cess is complicated by the fact that the compression rate must
vary for lossless schemes. In addition to a good compression
rate, an ideal scheme should have good cache performance
(and bandwidth reduction) under typical random access pat-
terns.

Cache compression systems have been developed to alle-
viate the gap between processor and memory performance
in the area of CPU design. In order to support general-
purpose applications, CPU cache compression schemes must
be lossless. There are two types of CPU cache compression:
data cache compression and instruction cache compression.
Data cache compression schemes for CPUs must support
both read and write operations. In contrast, instruction cache
compression is simpler since the instruction cache is read
only, although they must still support random access. Since
texture caches are also read-only, our work builds upon ideas
in CPU instruction cache compression.

We present a block-oriented lossless texture compression
algorithm based on a variable-bitrate block-based difference
scheme combined with an index. This enables both lossless
compression and random access.

Our compression algorithm uses a B-tree index for fast
random access of variable-length compressed data. Each leaf
of the B-tree index consists of pointers to fixed-size blocks
that include a variable number of compressed data chunks
and a table of address offsets for random access to these
chunks. The average of the memory overhead for the indices
was relatively small: 1.7% of the original texture sizes in our
test suite. Index nodes are handled as fixed-size blocks of
the same size as the compressed data blocks, enabling a sim-
ple O(1) free-list allocation scheme with low overhead and
no external fragmentation. The block-oriented nature of this
data structure also permits efficient access to DRAM. Our
compression algorithm achieves significant compression, re-
ducing the sizes of the textures in our test suite to between
6% and 95% of their original sizes.

In addition to developing a compression algorithm, we
also designed a cache architecture to realize it in hardware.
Our cycle-accurate simulator shows that this cache architec-
ture can reduce external bandwidth requirements substan-
tially while not significantly affecting latency.

Our main contributions are the following:

e a texture representation that enables both lossless com-
pression and random access;

e a block-oriented indexing scheme that permits simplified
memory allocation;

e a cache architecture for implementing this scheme in

hardware, based on a tile cache, an index cache, and a
cache for compressed tiles; and

e an analysis of not only the static compression ratio but
also the bandwidth consumption and latency using a
cycle-accurate simulation.

2. Related Work

Most texture compression schemes are based on tiles be-
cause textures must handle random access. In such a scheme,
textures are divided into small tiles and each tile is com-
pressed at a fixed rate using some lossy approximation.
S3TC [INH99] is one of the most popular tile based texture
compression schemes. It is based on a BTC/CCC scheme
proposed by Knittel et al [KSKS96]. In S3TC, textures are
divided into 4 x4 pixel tiles and each tile is compressed to
64 bits. Two base colors are stored in 16 bits each. Each
pixel then stores a two-bit index into a local color set that
includes the two base colors and two linearly interpolated
colors based on the base colors. One of S3TC’s shortcom-
ings is its color limitation: only four colors can be used for
each tile.

Strom et al. present a tile base scheme called iPACK-
MAN [SAMOS5]. The texture is split into 2x4 or 4 X2 tiles.
Each tile has a base color and 8 luminance values. The fi-
nal color is the sum of the base color and luminance values.
In order to increase the resolution of base colors, they com-
bined two 2 x4 or 42 tiles into 4 x4 tiles. The compressed
size of the 4x4 tile is 64 bits, the same as S3TC. Beers et al.
use a vector quantization (VQ) approach to compress tex-
tures [BAC96]. They can compress to a rate as low as 1 or
2 bpp. A VQ approach accesses a codebook and uses an in-
dex map lookup to determine which color to use for each
pixel. The Talisman architecture [TK96] used a fixed-rate
lossy scheme similar to JPEG that could achieve compres-
sion rates of up to 15:1 on 8 X 8 texel blocks, but had a de-
compression latency of 100 cycles.

Although these texture compression schemes offer good
compression ratios, they cannot support lossless compres-
sion because of their fixed rate compression constraint. In
contrast, the compression ratio of lossless compression de-
pends on the entropy of the data. There are several methods
that can save space by discarding unused parts of the texture
and scaling down other parts [KE02,CH02,LDN04] that can
be implemented using existing shader and dependent texture
read functionality. These can be considered simple variable-
bitrate compression schemes but only work for a limited
class of textures and suffer from fragmentation. Goris et al.
patented an indirection-based retrieval method for variable-
rate compressed texture data [GA99], but the details of how
to implement decompression were not presented.

The Talisman architecture supported rendering to and
from compressed texture tiles [TK96]. They used an archi-
tecture that was similar to ours in some respects, includ-
ing a cache for both compressed and uncompressed blocks.

(© The Eurographics Association 2006.

T. Inada and M. D. McCool / Compressed Lossless Texture Representation and Caching 113

Barkans and Lengyel [Bar97, LS97] discuss how this ar-
chitecture can be used for high-quality rendering. However,
their compression scheme was lossy, took significant chip
area, and had high latency. Our major contribution over this
prior work is the introduction of an indexing scheme that can
transparently deal with variable-rate compressed data. We
focus on lossless compression but our architecture could be
easily extended to support variable-rate lossy compression.

Yee proposed a B-tree indexing method [Yee04] for loss-
less texture compression based on a wavelet transform and a
mechanism to exploit the sparse nature of the non-zero co-
efficients. Unfortunately, like other sparse texture methods,
this approach tends to suffer from internal fragmentation,
and so compresses well only in special circumstances. How-
ever, the B-tree approach, while it requires the support of
special hardware, also permits flexible and efficient memory
allocation. We describe the details of B-tree indexing in Sec-
tion 3 because our representation uses it. Our representation
can compress images more generally than Yee’s approach
and the above sparse texture approaches, but also happens to
compress sparse textures efficiently.

Several image compression standards have been estab-
lished to compress images with both high compression ra-
tios and high image quality, and with both lossy and lossless
compression. Their basic strategies are first a transformation
that decorrellates the values that need to be stored, followed
by variable-length coding. Lossy schemes also include a
quantization step. JPEG [PM93] uses the Discrete Cosine
Transform (DCT) followed by quantization and Huffman
coding. JPEG2000 uses a wavelet transformation and arith-
metic coding. For lossless compression, a special wavelet
transform is used that can be exactly inverted. For lossy com-
pression, the wavelet coefficients can be quantized. Unfor-
tunately, these image compression standards were not de-
signed to support fine-grained random access to pixel data
directly from the compressed format.

Several CPU cache compression systems have been devel-
oped for both data and instruction caches, based on modifi-
cations of standard sequential compression algorithms. Ziv-
Lempel proposed a simple memory compression algorithm
[ZL'77] which builds a dictionary from an LRU stack model.
If a current byte is found in the dictionary, the byte is en-
coded by the index of the dictionary entry. If a current byte
is not found in the dictionary, the byte is added to the index.
In order to improve performance when applying this idea
to cache compression, X-Match [KGJ96] and WK [Kap99]
process memory data units of four bytes, and use a partial hit
where the current word can partly match a word in the dic-
tionary. These data cache compression schemes support both
read and write operations. However, the compressed size of
modified data can be different from that of the original data.
A data cache mechanism that supports both writes and com-
pression must handle this problem and this leads to increased
hardware complexity.

(© The Eurographics Association 2006.

Instruction cache compression is simpler because it needs
to support only read operations. Lekatsas et al. proposed a
random access compression method for the instruction cache
[LW99]. In this scheme, instruction codes are compressed by
arithmetic coding and multiple compressed data chunks are
packed into fixed-size storage blocks. A table of indices per-
mits random access. Our scheme is similar to this approach.

3. B-Tree Indexing

We will now describe Yee’s sparse texture approach [Yee04],
because our representation is an elaboration of it. Yee’s ap-
proach is based on B-tree indexing, a block-oriented data
structure with interesting properties in this context.

We assume a 2-D texture with default value d as the target
texture. The texture is divided into small uniform tiles. Tiles
that have at least one texel with a non-d value are consid-
ered to be occupied. Unoccupied, or void tiles, are marked
as “discarded”. Each tile has a key k associated with it that
can be computed from the (x,y) coordinates of its origin.
We call the method of computing k the index scheme. In-
dex schemes that conserve spatial coherence are preferred;
for instance, the index can be the distance along the Hilbert
curve or the Morton (Z order) curve. The Morton curve can
be computed by bit interleaving and is especially suitable for
hardware, and so is what we use here. This index scheme can
also easily be applied to different dimensionalities.

[G}El 4 rliteizi2cet

J a7 VL['I Jz":;
G R P40 820
(G E 4452507 30k
32:;""-”'&"’4.'1_’3‘

WTQAE Jin 165455 i

O

Figure 1: B-tree indexing

The top right of Figure 1 gives an example. Occupied tiles
retain their original content and void tiles are represented as
white quads. The numbers on the tiles are the keys gener-
ated by the Morton curve index scheme, while the red line
indicates the order of the tiles.

The B-tree is a standard block-oriented data structure. In
our implementation, data and index blocks are the same size.

114 T. Inada and M. D. McCool / Compressed Lossless Texture Representation and Caching

This greatly simplifies memory allocation and eliminates ex-
ternal fragmentation since blocks can be allocated from any-
where in memory. Also, DRAM is most efficient when used
to access large blocks using burst transfers.

Blocks are referred to by pointers p;, each of which gives
the high-order bits of their starting address in memory. Sev-
eral (k;, p;) pairs are stored in each internal node of a B-tree,
with keys in sorted order. To find a data block, its (x,y) lo-
cation is first converted to a key value k. We then recursively
search the tree from the top, using the intervals between keys
at each level to establish the range of keys indexed by the
next level down. If a data block is not found for a certain
key, the background value d is returned.

Every internal node stores a maximum of N key-pointer
pairs. Non-root internal nodes will never have fewer than
N/2 key-pointer pairs. To insert a new data block, its key-
pointer pair is inserted starting at the bottom of the tree, after
first searching recursively for the insertion point. If there is
space in the lowest level index block, the new key-pointer
pair is simply inserted in sorted order. If there is no free
space, the index node is split in two. Half the key-pointer
pairs are then moved to a new index node and a pointer to
the new index node inserted into the parent of the original
index node. This process proceeds recursively, if necessary,
to the root of the tree. If the root must be split, the depth
of the tree increases by 1. Note that splits are rare, on aver-
age occurring only every N /2 insertions, and splits to higher
levels are progressively rarer.

Both lookup and insertion are simple enough to imple-
ment in hardware. The insertion algorithm described results
in a balanced tree, so it is possible to render directly into
this representation while maintaining efficient lookup. Dele-
tion is harder if we wish to maintain a balanced tree. The
simplest solution to this is to not support deletion, except of
the entire tree. Also, after random insertions the B-tree may
only use, in the worst case, half of the space in its internal
nodes. After rendering, an optional compaction pass can be
used reencode the tree in linear time with all but one index
node completely full [MMO02].

The bottom of Figure 1 gives an example B-tree. Every
node has up to eight key-pointer pairs in this example. In
practice, a larger fan-out and a larger block size would be
used, leading to a shallow tree depth and a low overhead
for storing the index. The size of the B-tree is based on the
number of key-pointer pairs stored in it, not the texture res-
olution. The size of the index is based only on the memory
needed for non-background parts of the texture.

4. Proposed Method

Although Yee’s B-tree indexing achieves lossless compres-
sion for a certain limited class of images, her representa-
tion cannot compress textures that have no void tiles, and

suffers from internal fragmentation: tiles with even a sin-
gle non-background pixel are considered occupied. We solve
this problem by compressing occupied tiles using a variable-
bitrate differencing scheme. We pack multiple compressed
tiles into a larger fixed-size leaf block along with a table of
offsets to enable random access.

4.1. Variable Bitrate Difference Compression

Base pos,
Base color Diff bits

A

RGBA8888

Diff colors

Figure 2: Differencing scheme and bit packing.

The texture image is divided into 4x4 tiles. The top of
Figure 2 shows what is included in a compressed occupied
tile. The base color is the color at the position specified by
the 2+2 bit base pos value. Diff colors represent differences
between the base color and the 15 other texels of the tile.
The diff bits field, 3 bits per component, defines the size of
the diff colors, from 1 to 8 bits. For example, if all of the
red diff colors are within a range from -8 to 7, the required
size to express the red diff colors is 4 bits and the value of
the diff bits field is 3. If the differences require 8 or 9 bits
to be represented, we store the original 8-bit values instead
of the difference. The compressed tile is stored as byte data.
Therefore, at most 7 bits are unused (internal fragmentation).
If we interpret the diff colors as indices to a codebook, we
can also extend this scheme to lossy compression with minor
changes.

There are two special cases in this compression scheme.
The first one is when all colors are the same. In this case,
the compressed tile is completely defined by its base color.
The second special case is when size of the “compressed”
representation exceeds the original size. In this case, the tile
is stored in uncompressed form. The decompression unit de-
tects these two special cases by the size of the tile data as
given by the offset table, described later.

The most significant advantage of our scheme is its sim-
plicity. All of the diff bits for one component have the same
bit length. All 16 final colors in a tile can be calculated in
parallel which results in a very low decompression latency.
Standard variable-length coding schemes, such as Huffman
or arithmetic codes, can also be used for tile compression,
and would be able to adapt better to the entropy distribution
of non-image data, but would have higher decompression
latency. We will show later that performance is in fact not
especially sensitive to decompression latency, so more com-
plex tile compression schemes are suitable targets for future
research.

(© The Eurographics Association 2006.

T. Inada and M. D. McCool / Compressed Lossless Texture Representation and Caching 115

4.2. Data structure

‘We will now describe the details of our data structure, and in
particular, how our indexing scheme deals with the variable
size of compressed tiles.

4.2.1. Leaf block

01222 wamnnn

Leaf block

(256 Bytes)
Figure 3: Leaf block. Leaf blocks include address offsets and
multiple compressed data blocks.

Since we use lossless compression, the size of each com-
pressed block depends on the block’s content.

After compressing occupied tiles, we pack compressed
tiles and address offsets into fixed-size leaf blocks, as in
Lekatsas’s compressed instruction cache design. Figure 3
shows an example based on the texture in Figure 1. The Z
order (Morton curve) index scheme is used for this exam-
ple. While Yee’s B-tree includes only the keys of occupied
tiles, our B-tree index includes the keys of both occupied
tiles and void tiles. Also, leaf blocks conceptually include
all data tiles in sequence, whether void or not. Each poten-
tial tile data in a leaf block is indexed from a table that gives,
for each key, an offset to the start address of the associated
compressed tile data (shown as o values in Figure 3). The
difference between one offset and the next is used to deter-
mine the length of each compressed tile’s data. If two adja-
cent offsets are the same, it means that the associated data is
zero length, and is interpreted as a void tile. The light grey
offsets in Figure 3 have the same value as the offsets to their
right. For example, the tiles for index 0 and 1 are void tiles
and the tile for index 2 is a occupied tile, whose size is the
difference between index 2 and 3. We need one additional
offset to act as a sentinel, which is illustrated in white. We
use the same size blocks for both the index blocks of the
B-tree and leaf blocks. We have chosen a block size of 256
bytes, which means each offset is one byte.

Since we need index offsets, the total size of leaf blocks
can exceed the original size of the raw image data if tiles are
not compressed well. We use an uncompressed leaf block
when necessary to avoid this situation. Uncompressed leaf
blocks include only uncompressed tile data, without any off-
sets. For example, a 256 byte leaf block can hold 4 uncom-
pressed 4 x4 RGBA pixel tiles. If all 4 tiles are not com-
pressed well, the sum of address offsets and tile data might
be more than 256 bytes.

(© The Eurographics Association 2006.

4.2.2. Index block

Yee’s B-tree index block includes 32 key-pointer pairs in 256
bytes; the size of keys and pointers are 32 bits each. We use
20-bit keys and 24-bit pointers instead. Since the tile size is
4 x4, keys need to be 20 bits long in order to support 4k x4k
textures. Pointers only need to be 24 bits long for a 4GB
memory address space, since they only need to refer to 256-
byte block boundaries. Pointers could of course be smaller
for smaller address spaces.

We also pack into an index block a single-bit flag for each
child. The compressed block flag indicates whether the child
is a compressed leaf block or not. If the child is not a leaf
block, this flag is ignored. The tree is always balanced, so
we store the depth as a global value associated with each
texture. We also store a default color with each texture.

An index block includes 45 key-pointer pairs and flags.
The total size is 253 bytes and one bit: 253.125 = (45 (20+
244 1))/8. Of the remaining 23 bits, 20 can be used for a
sentinel key to make searching more efficient.

4.3. Cache Architecture

Kiowapy

Shading
Pipe

Non-compressed

FIFO] Prefetch FIFO [FR@] Miss Fill FIFO

Figure 4: Cache architecture.

We will now describe a cache architecture to support the
proposed representation. The block diagram of our architec-
ture is shown in Figure 4. It consists of three cache units:
the tile cache, the index cache, and the leaf cache. All three
cache units use the LRU replacement policy. Since our data
structure is based on blocks of the same size, all data transac-
tions between the caches and the main memory are standard-
ized burst transfers. FIFOs and pipelined memory accesses
are used to support multiple in-flight requests.

If texture data is uncompressed, the decompression unit
can be bypassed. It is also possible to bypass the index unit
if uncompressed texture data is allocated from a contiguous
address space. The latency of the decompression unit (when
used) is 2 cycles: one cycle for unpacking the bits for a tile
and another for parallel addition.

The rasterizer outputs one fragment per cycle with up to
8 texel reads for tri-linear filtering. The number of misses
that can occur in each cache is limited to one miss per cycle.
Also, the number of cache blocks that can be committed to
the cache from the FIFO is similarly limited to one block per

116 T. Inada and M. D. McCool / Compressed Lossless Texture Representation and Caching

cycle. We chose DDR2 SDRAM [JEDO5] to model our main
memory: On the assumption that a fragment clock cycle is
400 MHz, the memory model’s setup latency is 20 cycles
and it requires 32 cycles to transfer each 256 byte block.

4.3.1. Tile Cache

The tile cache stores decompressed texture tiles. There is no
difference in the tile cache between void tiles and occupied
tiles. The tile cache receives requests from shader/filtering
units and returns texel data.

The tile cache block size is the same as tile data’s size,
which in our implementation is 64 bytes (4 x4 pixels). If a
cache miss occurs, the tile cache sends a miss request to the
index cache, which caches the index blocks that are used to
determine the address of the leaf block holding the desired
tile data. The requested leaf blocks are provided by the leaf
cache. The required tile data is decompressed before it ar-
rives at the tile cache.

4.3.2. Index Cache

The task of the index cache is to support efficient B-tree in-
dex traversal. The index cache stores recently accessed B-
tree index blocks. It receives requests from the tile cache and
searches for the requested key by descending the texture’s
B-tree. If required B-tree index blocks are missing from the
index cache during the descent, the index cache must request
the blocks from main memory. In our implementation the in-
dex cache block size is 256 bytes.

The B-tree search provides a pointer to the leaf block con-
taining the target tile data. The index cache also calculates
the offset index of the leaf block for the tile data. The pointer
and the offset index are sent to the leaf cache.

The index cache requires a reorder buffer to support mul-
tiple outstanding recursive references to index blocks. When
a request comes to the index cache, it must reserve a slot
for the request in the reorder buffer. If the reorder buffer is
full, the index cache waits until the buffer can reserve a slot.
After the request is granted, the cache recursively accesses
index blocks, doing a parallel search on each block for the
requested key. If the target leaf blocks’ address is not found
the request is sent to the prefetch FIFO and evaluated again.
Once target leaf block’s address has been found, the address
and the calculated offset index are sent to the reorder buffer.
The reorder buffer releases the oldest slot’s data to the leaf
cache when it is completed. The index cache only has to han-
dle requests that miss in the tile cache and so does not need
to process an index request on every cycle.

4.3.3. Leaf Cache

The leaf cache holds compressed tile data in the form of leaf
blocks. If a cache miss occurs, a request is sent to main mem-
ory. The leaf cache receives from the index cache an address
and an offset index and extracts the appropriate compressed

tile data, which is decompressed and sent to the tile cache.
If the requested tile is a void tile, the decompressor gener-
ates a tile initialized with the default color d recorded for the
current texture. The default color is loaded into the decom-
pressor as part of binding the texture.

4.3.4. FIFOs and Memory Units

The three caches have a standard prefetch mechanism simi-
lar to what Igehy et al. described [IEP98]. Since our archi-
tecture guarantees in-order requests, each cache has a FIFO
for requested data that provides support for a limited num-
ber of outstanding requests and pipelined access to memory.
We show the effects of varying FIFO sizes in Section 5.2.2.
Memory units also return requested data in-order. Therefore,
all of the requested data returns in-order and the cache over-
all does not need reorder bufters for the data.

5. Results

We have computed both the static compression rates for a
suite of images and the latency and the external bandwidth
requirements for a suite of scenes. Test textures in our suite
are shown in Figure 5. The Water, Stars1, Stars2, and Build-
ing2 textures are typical of tileable image textures. The Build-
ing1, Car1, and Car2 textures are texture atlases for mod-
els of our test scene suite. The Water, Stars1, Stars2, and
Car2 are 512x512 and The Building1, Building2, and Car1
are 1024 x1024. The pixel format for each texture is RGB,
24 bits per pixel.

Figure 5: Test suite. From top left to right: Kodak13, Ko-
dak17, Kodak20, Water, Stars1, Stars2, Building1, Building2,
Cart, and Car2.

We also applied our scheme to a photographic image suite
by Kodak. These images are non-square, and therefore the
top left 512x 512 part of the images were used.

5.1. Compression Ratio

We present compression ratio results in Figure 6. The Ko-
dak13, Kodak17, and Kodak20 are the worst, median, and
best of the results of Kodak images respectively. We also
tested the use of arithmetic coding to compress color differ-
ences instead of bit packing. Although bit packing is much
simpler to implement and has lower latency than arithmetic
coding, the compression rates were almost the same. Both

(© The Eurographics Association 2006.

T. Inada and M. D. McCool / Compressed Lossless Texture Representation and Caching 117

= WIEEIEL G ELET R

M total (index blocks + leaf blocks) M leaf blocks total
O compressed tiles total O arithmetic coding
WPNG @ JPEG2000

€1 epoy
L1 epoy
Hepo|
PLITIT
Isie3s
zse1g
|8uiping
Z8uping
[UC)
[255)

(4

Figure 6: Compression ratio.

JPEG2000 and PNG results were better than our compres-
sion scheme, and JPEG2000 was generally better than PNG.
The average of the compression ratio differences between
PNG and our scheme was 0.209. Comparing to only the
compressed tile total, the average is reduced to 0.125. The
overhead for enabling random access is mainly caused by
leaf blocks’ unused area (internal fragmentation). In terms of
compression ratio, the average overhead due to index blocks
is only 1.7%, and indexing also provides the substantial ad-
vantage of flexible memory allocation.

The Stars1 and Stars2 textures are compressed very well
because of their sparseness: 22% and 6% of the original
data’s size. These are also the only two textures that PNG
compressed better than JPEG2000. Texture atlases, repre-
sented by the Building1, Car1, and Car2 examples, com-
pressed to 51% to 64% of their original sizes. Like sparse
textures, texture atlases can have large void areas.

5.2. Simulation

We implemented a cycle-accurate simulator of our architec-
ture inside Mesa. The test scenes used for simulation are
shown in Figures 7 and 8. The Quad scene consists of a
single quad and is used for theoretical bandwidth testing.
The Building and Car scenes represent typical models using
texture atlases. The Multi4 scene simulates a typical scene
with multiple objects and shaders using multitexturing. In
this scene, four textures are read for each fragment. The
same texture coordinates are used for each texture, but the
image data itself is separate. In order force cache reloading,
the buildings and cars are drawn in alternating order.

Our system supports MIP-mapping. Each MIP-map level
has a corresponding compressed texture. Our tests take 8
samples for every trilinearly interpolated filtered texture
sample required by a shader (4 from each level). Our ras-
terizer scans triangles in a spatially coherent ‘Z’ (Morton
curve) order. We used Kodak17, Water, and Stars2 textures
for the Quad and Teapot scenes. The Building1 and Build-
ing2 textures are used for the Building scene and the Car1

(© The Eurographics Association 2006.

and Car2 textures are used for the Car scene. We simulated
these scenes with both compressed and uncompressed tex-
tures. All uncompressed texture data was stored in tiled for-
mat but over a single contiguous address space. To replicate
the behaviour of a conventional cache architecture, the tile
cache can send miss requests for uncompressed textures di-
rectly to the leaf cache, bypassing the index cache. Also,
uncompressed tiles bypass the decompression unit. In this
case, the leaf cache acts as an L2 cache for the tile cache.
For a comparison base case, we also ran the simulation us-
ing a conventional architecture built using a larger unified
cache using the same total area as our proposed system.

Quad Teapot
Screen: 512x512 Screen: 640x480
Texture: 512x512 Texture: 512x512

Unique texels/frag: 1.0 Unique texels/frag: 0.475

Building Car
Screen: 640x480 Screen: 640x480
Texture: 1024x1024 and 1024x1024 Texture: 1024x1024 and 512x512
Unique texels/frag: 0.868 Unique texels/frag: 1.635

Figure 7: Basic test scenes.

Multi4
Screen: 640x480
Unique texels/frag: 5.068966

Figure 8: The multiobject multitexturing test scene.

5.2.1. Cache Sizing

There are three caches that are sequentially accessed in or-
der from the shader unit side to the memory side: (1) tile
cache, (2) index cache, and (3) leaf cache. The sizes of the
index cache and leaf cache do not affect the tile cache’s miss
rate. Likewise, the size of the leaf cache does not affect the

118 T. Inada and M. D. McCool / Compressed Lossless Texture Representation and Caching

Tile Cache Miss Rate (Buildings and Cars)
"
2 01
3008
H —— 4 way
g ooe \\ e
S 004 y
¢ — 16 way
§ 002 — -
£y . . .
20kB 4.0kB 8.0kB 16.0kB
cache size
Index Cache Miss Rate (Buildings and Cars)
% 03
2025
£ 02 >~ e 8 way
g 015 = —=— 16 way
2 01 1 32 way
8005 ¢
£ o : : .
40kB 8.0kB 16.0kB 32.0kB
cache size
Leaf Cache Miss Rate (Buildings and Cars)
—— 4 way
035
% 03
[
2025 |
o2t —=-8 way
8015 f
P
2 01 -——
g
£ 005 16 way
o
160kB 320kB 640kB 1280kB 256.0kB 512.0kB
cache size

Figure 9: Effects of varying cache sizes and types. Cache
miss rate of the tile cache, the index cache (tile cache: 2way-
2kB), and the leaf cache (tile cache: 2way-2kB, index cache:
4way-4kB)

index cache’s miss rate. We therefore tuned the sizes of the
three cache units in order from the shader side. As we ob-
tained each result, we fixed the cache size, and tuned the next
level. We used the Car scene as our sample scene because its
unique texel per fragment ratio was the largest.

The results of this process are shown in Figure 9. We have
chosen 2-way/2kB, 4-way/4kB, and 2-way/16kB configura-
tions for the tile cache, index cache, and leaf cache respec-
tively. These values will be used for all of the following sim-
ulation results.

We can gauge the efficiency of our texture compression
scheme from the leaf cache’s miss rate. In this scene, the
compression ratios of the Car1 and Car2 textures are 48%
and 56% respectively. If the textures are compressed, the
miss rates are reduced almost the same as the compression
ratios.

5.2.2. FIFO size

Tile Index Leaf
Cache | Cache | Cache
Prefetch FIFO 128 1 32
Miss Fill FIFO 2 1 2

Table 1: FIFO size parameters.

Figure 10 shows the effects of varying prefetch FIFO

Prefetch FIFO (Tile Cache)

5 08

a 06 —e— Car (comp)

- X

£3 L —=— Building (comp)

& S 04

g ° 02 F Car (no comp)

£ ’ Building (no comp)

32 64 128 256 512
FIFO depth

Prefetch FIFO (Index Cache)

—e— Car (comp)
05 -
—#— Building (comp)

0 L L L

fragments
per cycle

2 4
FIFO depth

Prefetch FIFO (Leaf Cache)
08

06 ﬁ!:ﬁ
04 — ——
02

—— Car (comp)

—=— Building (comp)
Car (no comp)
Building (no comp)

cycle

fragments per

2 4 8 16 32 64 128
FIFO depth

Figure 10: The effects of varying prefetch FIFO depth.

depths on the Building and Car scenes with texture compres-
sion enabled. For each graph, one FIFO size is varied while
the others are held fixed (at the values specified in Table 1).
The results are reported in fragments per cycle. The main
reason why the fragments per cycle do not approach 1.0 is
bandwidth. As long as the bandwidth is not large enough
to transfer consecutive requested blocks, prefetch FIFOs can
not hide pipeline stall. As the bandwidth gets larger, the frag-
ments per cycle tends to 1.0 as in Figure 13.

The index cache’s prefetch FIFO size does not effect the
performance because the miss rate of this cache is relatively
low, about 0.01 per request. A depth of 1 for the index cache
FIFO gives a very simple implementation, since only one
request needs to be handled at a time. Varying the miss fill
FIFO depth hardly affects the performance. Therefore, we
set the depth to 2 as in Table 1.

5.2.3. Latency

(L 1epoy)

(Au0o :dwoo ou)
(nu00 :dwoo ou)

(

Figure 11: Latencies of the test scenes.

Figure 11 shows the latency results for each fragment
from generating the fragment to finishing texture filtering.
Bars and lines represent average latency and standard devi-
ation. To test Multi4 with its larger working set (four texture
accesses per shader) the cache sizes and associativities were
set to be four times as large as for the single texture scenes.

(© The Eurographics Association 2006.

T. Inada and M. D. McCool / Compressed Lossless Texture Representation and Caching 119

The dark bars report results for a conventional architec-
ture with a single unified cache. For the conventional archi-
tecture, we set the cache size to 32kB and the tile size to
256 bytes. This conventional architecture actually has 10kB
more memory than our architecture. We estimated 10kB
SRAM to be equivalent in area to the additional control
logic, FIFOs, and adders required for our architecture.

In case of Quad, the latencies are almost the same and tex-
ture compression actually reduced the standard deviations.
In the other three scenes, compression reduced both the av-
erage latency and its variance. Our low latency decompres-
sion scheme does not make the average latency significantly
longer, and in fact seems to have improved it (although our
test suite is small). There also was not a significant difference
between the results of two types of uncompressed textures.
This means our architecture can be used for uncompressed
textures as well as compressed textures.

Total Cycles
3
I 1.12
£ 08 @ Building
5 E06 W Car
R 804 OMulti4
g2o2
‘g 0
no comp 1 50 100 150
Decompress Latency

Figure 12: Effects of varying the decompression latency.

Although our decompression scheme has very low la-
tency, we were interesting in testing the impact of decom-
pression latency since our architecture can easily be ex-
tended to support other approaches to compression. Fig-
ure 12 shows the effects of artificially increasing decompres-
sion latency while rendering the Building and Car scenes.
Unless the decompression latency is 150 cycles or more,
compression still led to an overall improvement in latency.

5.2.4. External Bandwidth Consumption

2

bandwidth consumption

i
]

penp
=)
(dwoo ouy
=)

0

[
PR
PR

(dwoo ouy

Buping

)

(Auod w0 ou)
(Auoo :dwoo ou)
(Auoa duwoo ou)

El

(

Figure 13: External bandwidth consumption for all scenes.

External bandwidth consumption results are shown in Fig-
ure 13. The parameters for the conventional architecture are
the same as in Section 5.2.3.

The numbers are normalized by the conventional archi-
tecture’s result. Our architecture demonstrates significantly

(© The Eurographics Association 2006.

better bandwidth behaviour than the conventional architec-
ture on all of the test scenes and textures. Since our tex-
ture compression is lossless, our architecture provides ex-
actly equivalent quality at a lower bandwidth requirement,
in some cases, over an order of magnitude lower.

The Quad scene results show almost the same bandwidth
reduction as its static compression ratio (Figure 6). Due to
the alignment between the rasterization order and the texel
storage order in this scene, most texels of each cache block
are used if they are loaded into the compressed cache, and so
this scene gives the best possible performance. In contrast,
the bandwidth reductions in the Teapot, Building, Car, and
Multi4 scenes are more typical, because each compressed leaf
block is not always fully utilized.

5.2.5. Index Cache Working Set

Multitexture Scene

—=—IC: 32 entry
IC: 64 entry

simulation
cycles per fragment
=
3

80 [/
——IC: 16 entry

1 tex 2 tex 4 tex 8 tex

Figure 14: The effects of varying the number of textures and
index cache entries.

According to Section 5.2.2, the index cache does not need
a prefetch mechanism because of its relatively low miss rate.
However, since it must be accessed recursively during an in-
dex lookup, once its capacity is exceeded, the overall sys-
tem performance will get significantly worse. In a multitex-
turing environment in particular, each texture will require a
certain number of blocks of its index to be resident in the
index cache.

Figure 14 shows the effects of varying the number of tex-
tures and index cache entries on the Multi4 scene. The same
texture coordinates are used for each texture. The heights of
the index for this scene’s 1024 x 1024 textures is four, includ-
ing three index levels and one leaf block level. Only the in-
dex blocks are stored in the index cache. Based on the empir-
ical results, the working set in the index cache for these tex-
tures appears to be between 3 and 4 index blocks per texture,
or 6 to 8 taking MIP-mapping into account. For example,
performance with a 16-block index cache is excellent for two
MIP-mapped textures, but degrades when we attempt to use
it with four. Note, however, that such performance degrada-
tion is also a problem with conventional architectures when
multitexturing increases the working set size. We can also
expect the working set of a texture in the index cache to only
increase logarithmically with the entropy of the texture, and
so can trade off texture entropy for number of textures.

120 T. Inada and M. D. McCool / Compressed Lossless Texture Representation and Caching

6. Conclusions

We have presented a block-oriented lossless compressed tex-
ture representation based on a variable-bitrate differencing
scheme. Our main contribution is a B-tree indexing scheme
that enables random access and efficient memory manage-
ment and allocation. Textures in our test suite compressed to
between 6% and 95% of their original sizes. We also pro-
posed and analyzed a cache architecture designed to sup-
port our representation. Our cycle-accurate simulation of
this cache architecture showed that our compression scheme
reduces the external bandwidth requirements as well as the
data sizes.

In future work, exploring better compression schemes
would be useful. Our tile compression scheme is based
on the assumption that adjacent pixels have similar values.
Though this assumption often works for image data, it is
not good assumption for general data, as in GPGPU applica-
tions, where compression and flexible memory management
would be especially useful. Application to variable-bitrate
lossy compression schemes would also be interesting.

References

[ASMW97] ANDERSON B., STEWART A., MACAULAY
R., WHITTED T.: Accommodating memory latency in a
low-cost rasterizer. In Proc. Graphics Hardware (1997),
pp. 97-101.

[BAC96] BEERS A. C., AGRAWALA M., CHADDHA N.:
Rendering from compressed textures. Proc. SIGGRAPH
(1996), 373-378.

[Bar97] BARKANS A. C.: High quality rendering using
the Talisman architecture. In Proc. Graphics Hardware
(1997), pp. 79-88.

[CHO2] CARR N. A., HART J. C.: Meshed atlases for
real-time procedural solid texturing. ACM Trans. on
Graphics 21, 2 (Apr. 2002), 106-131.

[CSEO1] CHRISTOPOULOS C., SKODRAS A., EBRAHIMI
T.: The JPEG 2000 still image coding system. IEEE Sig-
nal Processing Mag. 18 (Sept. 2001), 336-58.

[GA99] Goris A. C., ALCORN B. A.: Data structure
for efficient retrieval of compressed texture data from a
memory system. US Patent 6,243,081, 1999.

[HG97] HAKURA Z. S., GUPTA A.: The design and anal-
ysis of a cache architecture for texture mapping. In Pro-
ceedings of the 24th annual international symposium on
Computer architecture (1997), ACM Press, pp. 108—120.

[IEH99] IGEHY H., ELDRIDGE M., HANRAHAN P.: Par-
allel texture caching. In Proc. Graphics Hardware (1999),
pp- 95-106.

[IEP98] IGEHY H., ELDRIDGE M., PROUDFOOT K.:
Prefetching in a texture cache architecture. In Proc.
Graphics Hardware (1998), pp. 133-142.

[INH99] IourcHA K., NAYAK K., HONG Z.: System
and method for fixed-rate block-based image compression
with inferred pixels values. US Patent 5,956,431, 1999.

[JEDO5] JEDEC: DDR2 SDRAM Specification,
2005. Specification document, available from
http://www.jedec.org/.

[Kap99] KAPLAN S.: Compressed Cacheing and Mod-
ern Virtual Memory Simulation. PhD thesis, University of
Texas at Austin, 1999.

[KEO2] KRAUS M., ERTL T.: Adaptive texture maps. In
Proc. Graphics Hardware (2002), pp. 7-15.

[KGJ96] KIJIELSO M., GOOCH M., JONES S.: Design and
performance of a main memory hardware data compres-

sor. In Proc. the Euromicro Conference (1996), pp. 422—
430.

[KSKS96] KNITTEL G., SCHILLING A. G., KUGLER A.,
STRASSER W.: Hardware for superior texture perfor-
mance. Computers & Graphics 20, 4 (July 1996), 475—
481.

[LDNO4] LEFEBVRE S., DARBON J., NEYRET F.: Uni-
fied Texture Management for Arbitrary Meshes. Tech.
Rep. RR-5210, INRIA, May 2004.

[LS97] LENGYEL J., SNYDER J.: Rendering with coher-
ent layers. In Proc. SIGGRAPH (1997), pp. 233-242.

[LW99] LEKATSAS H., WOLF W.: Random access de-
compression using binary arithmetic coding. In Data
Compression Conference (1999), pp. 306-315.

[MMO2] MA V. C. H., McCooL M. D.: Low latency
photon mapping via block hashing. In Proc. Graphics
Hardware (2002), pp. 89-98.

[PM93] PENNEBAKER W. B., MITCHELL J. L.: JPEG
still image data compression standard. Van Nostrand
Reinhold, 1993.

[SAMO5] STROM J., AKENINE-MOLLER T.: iPACK-
MAN: high-quality, low-complexity texture compression
for mobile phones. In Proc. Graphics Hardware (2005),
pp. 63-70.

[TK96] TORBORG J., KAJ1YA J. T.: Talisman: Commod-
ity realtime 3D graphics for the PC. In Proc. SIGGRAPH
(1996), pp. 353-363.

[Wor96] WORLD WIDE WEB CONSORTIUM: PNG
(Portable Network Graphics) Specification Version
1.0, 1996. Specification document, available from
http://www.w3.0org/TR/REC-png.

[YeeO4] YEE W. M.: Cache Design for a Hardware Ac-
celerated Sparse Texture Storage System. Master’s thesis,
University of Waterloo, 2004.

[ZL77] Ziv J., LEMPEL A.: A universal algorithm for
sequential data compression. IEEE Transactions on In-
formation Theory 23,3 (May 1977), 337-343.

(© The Eurographics Association 2006.

