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Abstract

In this paper we present an efficient adaptive cloth simulation based on the \/3-refinement scheme. Our adaptive
cloth model can handle arbitrary triangle meshes and is not restricted to regular grid meshes which are required
by other methods. Previous works on adaptive cloth simulation often use discrete cloth models like mass-spring
systems in combination with a specific subdivision scheme. The problem of such models is that the simulation does
not converge to the correct solution as the mesh is refined. We propose to use a cloth model which is based on
continuum mechanics since continuous models do not have this problem. In order to perform an efficient simulation
we use a linear elasticity model in combination with a corotational formulation.

The \/3-subdivision scheme has the advantage that it generates high quality meshes while the number of trian-
gles increases only by a factor of 3 in each refinement step. However, the original scheme only defines a mesh
refinement. Therefore, we introduce an extension to support the coarsening of our simulation model as well. Our
proposed mesh adaption can be performed efficiently and therefore does not cause much overhead. In this paper

we will show that a significant performance gain can be achieved by our adaptive method.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [1.3.7]: Three-Dimensional

Graphics and Realism—Animation

1. Introduction

Interactive cloth simulation has a long history in computer
graphics. In this area the resolution of the simulation mesh
plays an important role. On the one hand the resolution must
be high enough to get realistic wrinkles during the sim-
ulation, on the other hand simulations with high detailed
meshes cost much computation time and often do not run
at interactive frame rates. In this paper we present a cloth
simulation method which changes the resolution of the cloth
model adaptively. In regions of the model with fine wrinkles
small triangles are used for the simulation while a low res-
olution is used in areas without fine details. The advantage
of such an adaptive model is that the performance can be
increased significantly without loosing much details.

The idea of using an adaptive mesh as cloth model is not
new. There exist different works which focus on this topic.
Most of the previous approaches use adaptive mass-spring
systems for the simulation. In general such systems are not
convergent, i.e. the simulation does not converge to the cor-
rect solution as the mesh is refined [NMK*06]. To solve this
problem we introduce an adaptive cloth model based on con-
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tinuum mechanics. We use a linear finite element method
(FEM) in combination with a corotational formulation to
perform the simulation efficiently. This method works on
triangular elements which are defined by the adaptive tri-
angle mesh of our cloth model. The resolution of this mesh
is adapted during the simulation by using a v/3-subdivision
scheme [Kob0O0]. This scheme defines how a triangle mesh
can be refined adaptively while maintaining a high mesh
quality. In this paper we present an extension which allows
us to coarsen the mesh in areas where a fine resolution is not
required anymore.

In contrast to other adaptive simulation methods, our ap-
proach can handle arbitrary triangle meshes and is not re-
stricted to meshes based on regular grids. Our refinement
criterion is based on the mean curvature. Therefore, we get
a high resolution for fine wrinkles and a low resolution in
flat regions. The proposed method can speed up the simula-
tion significantly at the cost of accuracy. The performance
gain and therefore also the accuracy loss can be controlled
indirectly by the user-defined parameters of the refinement
criterion. The mesh adaption with our method can be per-
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formed very efficiently. Hence, the computational overhead
caused by the adaption is low.

2. Related Work

In this section we want to give an overview over impor-
tant works in the area of cloth simulation and adaptive de-
formable models.

Research in cloth simulation has been done for more
than 20 years in the field of computer graphics (for sur-
veys see [MTVO05, CKO5]). Often the assumption is made
that cloth is an elastic material in order to perform an ef-
ficient simulation using spring forces. The problem is that
many real textiles cannot be stretched significantly. Differ-
ent techniques have been presented to solve this problem.
Provot [Pro95] used a mass-spring system for cloth simu-
lation in combination with an explicit time integration. In-
stead of using stiff springs which can cause instabilities,
Provot proposed to displace particle positions after each
simulation step as an alternative way for strain reduction.
Baraff and Witkin [BWO9S8] used an implicit Euler integra-
tion in order to perform a stable simulation for stiff sys-
tems. This approach supports the simulation of arbitrary tri-
angle meshes whereas other approaches require regular grid
structures, e.g. [Pro95, CK02]. A semi-implicit method was
used by Choi and Ko [CKO02] for a stable simulation with
stiff springs. They also solved the problem with instabilities
of the post-buckling response which are not caused by stiff
equations. In order to limit the strain, Bridson et al. [BFA(02]
applied corrective impulses to the velocities of the particles.
Goldenthal et al. [GHF*07] presented an approach based on
Lagrangian mechanics in combination with a fast projec-
tion method in order to simulate inextensible cloth. English
and Bridson [EBO8] performed cloth simulations using tri-
angle meshes with a hard constraint on each edge. In order
to solve the consequential locking problem, they used a non-
conforming mesh for the simulation which has more degrees
of freedom than the original one. Bender et al. [BDB11]
combined this technique with an impulse-based approach
to simulate models with hard constraints more efficiently. A
continuum-based strain limiting method was introduced by
Thomaszewski et al. [TPS09].

In the last years different authors proposed to use a contin-
uous model to simulate cloth. In contrast to discrete models
like mass-spring systems, a model based on continuum me-
chanics has the advantage that it is independent of the mesh
resolution. Etzmuss et al. [EGS03] used a finite difference
discretization of the model in order to solve the differen-
tial equations. Due to this discretization only quadrilateral
meshes can be handled. In a second work they presented
an efficient approach based on the finite element method
(FEM) with a corotational formulation which can also han-
dle arbitrary triangle meshes [EKS03]. Thomaszewski et
al. [TWSO06] also use a corotational formulation for their fi-
nite element simulation. In their work they show how mem-

brane and bending energies can be modeled consistently for
thin, flexible objects. Volino et al. [VMTFO09] present a cloth
simulation system based on continuum mechanics which is
able to simulate nonlinear anisotropic materials.

There exist different approaches to improve the perfor-
mance of such simulations by using an adaptive refinement
of the simulation model. Hutchinson et al. [HPH96] pre-
sented an adaptive mass-spring model for cloth simulation.
This model has a regular grid structure which is refined
when the angle between two neighboring springs exceeds
a certain tolerance value. A similar approach which also
uses regular quad meshes in combination with a mass spring
model was introduced in [VBO05]. Li and Volkov [LVO05]
presented an adaptive version of Baraff’s cloth simulation
method [BWO8] which is able to handle arbitrary triangle
meshes. They use a modified v/3-refinement rule without
explicit edge flip which forces a subdivision of adjacent tri-
angles. Hence, the number of triangles increases faster com-
pared to our method. Lee et al. [LYO™10] use a mass-spring
system in combination with a Loop subdivision scheme for
refining a triangle model. The subdivision steps are precom-
puted in order to get a multi-resolution hierarchy. This is
used to adaptively reduce the dimension of the linear sys-
tem which must be solved for an implicit integration step.
In contrast to these previous works that use mass spring sys-
tems which are not convergent, our model is based on con-
tinuum mechanics. Brochu et al. [BEB12] use the continu-
ous cloth model proposed by Etzmuss et al. [EGS03] and
perform simple edge splitting, flipping and collapsing in or-
der to demonstrate that their continuous collision detection is
able to handle adaptive meshes. Grinspun et al. [GKS02] use
a continuous model for the adaptive simulation of thin shells
and volumetric deformable models. But instead of refining
the elements, they introduce a refinement of the basis func-
tions to reduce the computation time of a simulation step.
Further adaptive methods for volumetric deformable models
are presented in [DDBC99, DDCBO1].

3. Overview

This section gives a short overview over the time integra-
tion of the adaptive cloth simulation method. In the follow-
ing sections each step will be explained in detail.

For the simulation we use a triangular mesh of particles as
cloth model. Each particle has a mass m, a position X and a
velocity v. A single simulation step is performed as follows:

1. Determine all external forces which are acting on the
model.

2. Perform a simulation step with the continuous model to
get new positions X" (see section 4).

3. Determine average velocities v'1/2 = (x**! —x") /Ar.

4. Detect proximities for x" and resolve them with friction
by modifying the average velocities V12 with impulses
(see section 6).
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5. Perform a continuous collision detection step for the lin-
ear trajectory from X" to X" + Arv""*1/2 and adapt the av-
erage velocities vt by applying impulses to resolve
collisions with friction (see section 6).

6. Compute final positions and velocities (see section 6).

7. Adapt the resolution of the mesh (see section 5).

4. Cloth Simulation

In this section we first introduce our cloth simulation model.
Then we introduce the corotational formulation for linear
elasticity in order to simulate stretching and shearing. Fur-
thermore, we show how the simulation of bending is real-
ized. In the end of this section we briefly introduce an im-
plicit time integration method which is used to simulate stiff
fabrics without stability problems.

4.1. Cloth model

Our cloth model is based on continuum mechanics and we
use an arbitrary triangle mesh to define elements for solving
the equation of motion with the finite element method.

The mass distribution of our cloth model is defined by a
diagonal mass matrix M. In this way the masses of the model
are concentrated at the vertices of the mesh. We assume that
the simulated material has a homogeneous mass distribution
and therefore a constant density. Furthermore, we assume
that the mass of a dynamic particle is proportional to the
area of the triangles adjacent to this particle. In our work
the area corresponding to a particle A, is bounded by the
midpoints of the incident edges and the barycenters of the
adjacent triangles (see figure 1).

Figure 1: The area on the surface of the triangle mesh which
corresponds to a particle (red point). This area is bounded
by the midpoints of the incident edges and the barycenters of
the adjacent triangles.

This area can be determined by a sum over the adjacent
triangles:

1
Ap=3 Y A

adj. tri.

where A; is the area of the i-th adjacent triangle. Instead of
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using the barycenter of a triangle one could also use the cir-
cumcenter since it is equidistant from all the vertices of the
triangle. In this case the resulting area corresponds to the
Voronoi region of the vertex. For our simulation we used
the barycenter regions since the usage of Voronoi regions
requires more computation time and a special treatment for
obtuse triangles [MDSBO03].

The final mass of a particle m,, is determined by the prod-
uct of its corresponding area Ap with a user-defined factor p
in order to account for the density of the simulated object

mp =App.

In each simulation step with our adaptive model the num-
ber of particles changes. Therefore, we have to adapt the
masses of the particles in order to guarantee the mass conser-
vation of the model. This mass adaption has to be performed
after each refinement and coarsening step but only for the
particles where the adjacent triangles changed.

4.2. Simulation

In this work we use a finite element discretization of our con-
tinuous model in order to perform a simulation step. Using
the Lagrange form we get the following ordinary differential
equations which describe the dynamics of our model:

Mx +Dx + K(x —xp) = fext

where M is the mass matrix with the masses of the particles
on the diagonal, D is a damping matrix and K is the stiffness
matrix of the cloth model. The vectors x, X and X contain the
positions, velocities and accelerations at the vertices of the
simulation mesh while x defines the rest state of the model.
Hence, we have 3n differential equations for a mesh with n
vertices.

Linear elasticity The simulation of the stretching and
shearing behavior of our cloth model can be performed in the
two-dimensional space of the triangle mesh. Therefore, we
define the deformation of our model by a two-dimensional
vector field u(m) which is used to compute the deformed
point location x(m) = m + u(m) of an undeformed point
m € R2. This vector field is only defined in areas where ma-
terial exists.

To perform a finite element simulation the continuous dis-
placement function u(m) is evaluated only at the vertices of
our triangular simulation mesh. The displacement in the in-
terior of each triangular element is interpolated linearly by
three shape functions N;(m):

e

u(m) = N,(m) ﬁ,

i=1

The vectors ; € R? contain the displacements at the vertices
of the element. In appendix A we describe how the shape
functions and the corresponding derivatives are determined.
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For our simulation we use Cauchy’s linear strain tensor
1 [ du n ou’
e=—-|=—+=—
2\dm oJm

which is in our case a symmetric 2 X 2 tensor. Therefore, it
can also be written as vector with three entries:

N;
€x 3 ox 8(1)\7
€ :ZiB,-ﬁi with B; = a?v g
1= i 90
Yoy Ay ox

Following Hooke’s law, we can describe the stress within
an element by the tensor

6 = Ce=CB.li

where B, = (B,B,,B3) and C is a tensor which describes
the elasticity of the material. Woven textiles have a weft and
a warp direction. Therefore, we model cloth as orthotropic
material with two orthogonal symmetry axes. The elasticity
tensor is defined by two Young moduli Ex and Ey for the
weft and the warp direction, by a shear modulus E; and the
Poisson’s ratios Vyy and Vyy:

E, Evye 0
T—=V,yVy T—VyyVyx

c=|_ &% r
1—ViyVy 1—VyyVyx

0 0 Es

Poisson’s ratio Vxy corresponds to a contradiction in direc-
tion y when the material is extended in direction x.

Now we can compute the forces which are acting on the
three vertices of a triangular element:

f. = A.BI CB.i = K.t (1)

where A. is the initial area of the corresponding triangle,
K. € R%*6 s the stiffness matrix of the element and the
vector f, € R® contains the forces for the three vertices in
material coordinates.

Corotational formulation A simulation with a linear elas-
ticity model can be performed efficiently and stable with an
implicit integration scheme. However, such a model is not
suitable for large rotational deformations since nonlinear ef-
fects can cause undesired deformations [MGO04]. To solve
this problem we use a corotational formulation similar to the
one of Etzmuss et al. [EKS03].

In a corotational formulation the elastic forces are com-
puted in a local unrotated coordinate frame. Therefore, we
must extract the rotational part of the deformation. In or-
der to get the rotation matrix of a triangular element, we
could determine the three-dimensional transformation x =
Ax( of an undeformed point x to its corresponding de-
formed position x and then extract the rotational part of
A. However, we are only interested in the rotational trans-
formation in the plane of the triangle. Therefore, we first

project the undeformed and deformed vertices in the two-
dimensional space of the corresponding plane. For a trian-
gular element with the vertex indices a,b, ¢ and the normal

n = (x’ —x%) x (x —x%) we determine the plane vectors
P — x? —x¢ po— p, Xn
=Xt T (x|

to define the projection matrix
T
P= (p’;) R,
)
The projection matrix Py for the undeformed triangle is de-

fined analogously. Two-dimensional coordinates can now be
computed by X = Px. By defining the matrices

b —a - =a
X0 —X0,X0 — X0

T = (xb_x“,xc_x“)

S

where S, T € R2*2, we determine the matrix TS~ which
contains the transformation of an undeformed point Xy
to its corresponding deformed position X but without the
translational part. Hence, the required rotation matrix R €
R2*2 can be extracted by a simple 2D polar decomposi-
tion [SD92].

Instead of computing the forces for an element directly
by equation (1), in the corotational formulation we first ro-
tate a vertex back to a local coordinate frame. Then the lin-
ear forces are computed and the results are transformed to
the world coordinate frame. This transformation can be com-
bined with the projection matrix P in order to project the 3D
coordinates of a vertex in the 2D space of the correspond-
ing triangle. The transposed projection matrix P7 is used to
transform the 2D forces of equation (1) to 3D. The matrix

PR 0 0
Rpe=( 0 P'R 0
0 0 PR

c R9X6

combines the projection and rotation for all three vertices of
a triangular element.

The corotated stiffness matrices are defined as follows:
~ R
K{ =Rp.K.Rp,, K.=RpK. @)

where Kf €R%*? and I~(§ e RO%S, Using this definition the
forces for the three vertices are determined by

f.=Kfx+fy, with fo,=—K %

where the vector Xy = (%4,%5,%5)7 € R® contains the 2D
positions of the undeformed triangle. Note that in contrast to
equation (1) the resulting forces are three-dimensional since
we integrated the projection in the corotational formulation.

Bending The realistic behavior of cloth is substantially in-
fluenced by the development of folds and wrinkles. Their

occurrence is highly dependent on the bending properties of

(© The Eurographics Association 2012.



J. Bender & C. Deul / Efficient cloth simulation using an adaptive finite element method 25

the particular fabric. In order to reproduce this behavior in
the case of inextensible surfaces, we employ the isometric
bending model of Bergou et al. [BWH™*06]. The limitation
to isometric deformations has the advantage that the bending
energy becomes a quadratic function in positions. Therefore,
the Hessian Q is just a constant matrix.

Since the Hessian is assembled by considering the contri-
butions of each interior edge, the matrix has to be updated
after each subdivision or coarsening step. This update is per-
formed locally to save computation time. Only the contribu-
tions of interior edges with a changed adjacent triangle are
adapted.

Time integration For time integration the linear implicit
Euler method is used together with a modified precondi-
tioned conjugate gradient method for solving the resulting
system of linear equations [BW98]. This provides a stable
time integration of the stiff equations even for large time
steps. To perform the time integration the velocity change
is determined by solving the following linear system:

(M +hC +A12K> AV = —At (Kx+fo — fext + ATKy + Cv)

where At is the time step size and the vectors fext, X and v
contain the external forces, positions and velocities for each
vertex. Matrix K is a sparse block matrix which is obtained
by assembling the corotated element stiffness matrices KX
(see equation (2)) and adding the Hessian Q of the bending
model (see above). Analogously the block vector fy is an
assembly of the vectors f( .. After solving the linear system
for Av we get the position change by Ax = A¢(v + Av).

5. Adaptive refinement and coarsening

The adaptive refinement of our cloth model is based on the
V/3-subdivision scheme of Kobbelt [Kob00]. In order to al-
low for a coarsening of the mesh as well, we introduce an
extension of the original scheme.

Refinement The +/3-refinement strategy performs a 1-to-
3 split for a triangle by inserting a vertex at its center (see
figure 2). Each edge in the original mesh shared by two re-
fined triangles is then flipped to connect the newly inserted
vertices, yielding vertices with re-balanced valences. If the
described v/3-subdivision scheme is applied two times, we
get a tri-adic split where each triangle of the original mesh
is subdivided in nine new triangles.

An edge on the boundary has just one adjacent trian-
gle. Therefore, the edge flip operation is not possible for
edges representing the mesh boundary. A different refine-
ment strategy is required in this case. The goal is to get a tri-
adic split after two subdivision steps not only in the interior
of the mesh but also on the boundary. To reach this goal we
use two different successive subdivision steps at the bound-
ary. In the first step we perform the same subdivision as for
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(b) New vertices

(a) Original mesh

AR\

(d) Edge flip

(c) Triangulation

Figure 2: \/3-subdivision of a triangle mesh which is shown
in (a). (b) New vertices are inserted at the centers of the
triangles. (c) By connecting the new vertices with the orig-
inal mesh, we get new triangles. (d) Finally, an edge flip is
performed for each edge where both adjacent triangles are
refined.

£\ dib

(a) First subdivision step

(b) Second subdivision step

Figure 3: The subdivision on the boundary requires two dif-
ferent successive steps. (a) In the first step a new vertex is
inserted in the center of the boundary triangle but no edge
flip is performed. (b) In the second step the boundary edges
are subdivided into three segments of equal length.

an interior triangle but without the edge flip at the bound-
ary edges (see figure 3(a)). In the second step the boundary
edge is split into three equal sections by inserting two ver-
tices and connecting them to the third vertex of the triangle.
In figure 3(b) which shows this step the inserted vertices on
the boundary are marked with red color.

This refinement strategy can be implemented in a sim-
ple recursive procedure, requiring just a generation index for
each face [Kob00]. All triangles of the base mesh have a gen-
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eration of zero. Inserting a vertex into a coarse triangle with
even generation sets the generation of the three new trian-
gles to the next odd integer. Flipping the edge between two
triangles with the same odd generation increases the genera-
tion by one. We restrict the difference in generation between
adjacent internal triangles to one. As a result the refinement
of one triangle can enforce successive vertex insertions and
edge flips at neighbor triangles. This keeps the valence of
the vertices balanced and avoids narrow triangles. Since the
generation is restricted, every triangle with an odd genera-
tion has to keep track of its mate triangle which is the partner
for the next edge flip. This flip is not always feasible during
adaptive refinement since the neighboring triangle might be
of a lower generation. In the case the refinement criterion en-
forces the refinement of a triangle with odd generation, first
the mate triangle has to be refined and the common edge
has to be flipped to fulfill the restriction on the difference in
generation of neighboring triangles.

Kobbelt [Kob00] proposes to apply a smoothing operator
after each refinement step which changes the vertex posi-
tions. In our work we do not use vertex smoothing rules dur-
ing the simulation since a change of vertex positions causes a
change of the potential energy of the system which is not de-
sired. This corresponds to a smoothing rule with the smooth-
ing parameter o, = 0 (see [Kob00]).

Coarsening Special care has to be taken when coarsening
the triangles. Before coarsening a triangle with even genera-
tion which results in an edge flip followed by a 3-to-1 join,
we have to make sure the mate triangle is of the same gener-
ation by coarsening the mate if its generation differs (see fig-
ure 4(a)). Performing a 3-to-1 join requires all three partici-
pating triangles to be of the same generation. After choosing
a particular triangle for coarsening we can simply identify
the two neighbors as the triangles opposite of the non-mate
edges (see figure 4(b)). The mate edge information is cru-
cial both for flipping edges back and for performing a 3-to-1
join.

When only refining the mesh we can save the mate edge
information in a face to edge table. Each time we perform
a 1-to-3 split we set the edges of the coarse triangle as the
face edges of the new triangles in the face to edge table to
mark these edges as mate edges. But when performing a 3-
to-1 join of an interior triangle it is unknown which of the
three edges of the original triangle has been the mate edge.
Consequently, in order to uniquely undo a 1-to-3 split, one
of the three triangles resulting from such a split needs to be
marked as the corresponding triangle incident to the mate
edge. We store a bit for every odd generation of a triangle to
mark the triangle as providing the mate edge during the 3-
to-1 join. To save memory we store this bit together with the
generation counter in a 32-bit integer. Using the lower 5 bits
for the generation counter and the upper 27 bits for the mate
edge enables us to generate 55 generations of triangles out
of a base triangle by refining the same triangle successively.

(b) Mate coarsening and edge
flip

(a) Original mesh

(c) Neighbor coarsening (d) 3-to-1 join

Figure 4: Coarsening of the marked triangle in (a). (b) First
the mate triangle is coarsened and then an edge flip is per-
formed. (c) The non-mate neighbors generation is reduced
by an edge flip to the generation of the marked triangle. (d)
Finally a 3-to-1 join is performed.

Refinement criterion Our refinement criterion is based on
the mean curvature [MDSBO03] at the mesh vertices. We take
the maximum of the curvature at the three vertices of a trian-
gle to decide whether to refine the triangle. Using the max-
imum allows rapid adaption if the curvature of the mesh in-
creases locally. To steer the local refinement depth based
on the mean curvature we use successively increasing lim-
its for every refinement generation. Furthermore, we limit
the maximum refinement depth by an upper bound gax for
the refinement generation. In our current implementation we
scale the refinement limits linearly based on the difference
between the limit for the maximum generation J,,,, and the
limit for the base generation /5, Which are predefined, and
the fraction between actual generation g and gmax. The re-
finement limit at generation g is:

8
lg= (lgmax - lhase) +lpase
8max

We use a second set of limits to decide whether to coarsen
a triangle. For every refinement generation the coarsening
limit is computed as a fraction of the refinement limit of
the same generation. Since coarsening a triangle might also
coarsen neighboring triangles (see figure 4) it is insufficient
to purely consider the curvature at the triangles vertices. In
the case of a 3-to-1 join we compare the maximum curva-
ture of the one-ring neighborhood of the center point that is
removed during the join (see figure 4(b)). While coarsening
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a triangle with even generation we build the one-ring neigh-
borhood of the point that is removed by the 3-to-1 join after
the edge flip of the triangle (see figure 4(a); the one-ring is
marked in red).

6. Collision handling

The collision handling in our simulation is based on the idea
of Bridson et al. [BFAO2]. First we perform a cloth sim-
ulation step with our continuous model (see section 4) to
advance the vertex positions from x" to X"*!. Then we de-
termine the average velocities in the vertices of the mesh
by evaluating v**1/2 = (x**! — x")/Ar. After detecting all
proximities for x" the average velocities are modified by ap-
plying repulsion impulses and friction. These repulsion im-
pulses significantly reduce the number of collisions in the
following continuous collision detection step which checks
the linear trajectories from x”* with the modified velocities
V12 The resulting collisions are also resolved with fric-
tion by applying impulses. The continuous collision detec-
tion and the resolution have to be repeated until all inter-
penetrations are resolved in order to get a valid state of the
system. To reduce the computational effort we only perform
a few iterations and then use rigid impact zones, as proposed
by Provot [Pro97], to resolve all interpenetrations at once.
In the end a new penetration-free state is obtained by up-
dating the positions using the modified velocities: X =
X" + Atv"1/2 The final velocity is determined by solving a
linear system as described in [BFA02].

Bridson et al. use a bounding volume hierarchy (BVH) to
increase the performance of the proximity and collision de-
tection. The BVH is constructed in a precomputation step
and updated in each simulation step. Since our cloth model
has an adaptive resolution, a BVH would require modifica-
tions of the hierarchy in each step. Therefore, we prefer to
use an acceleration method based on spatial hashing which
was introduced by Teschner et al. [THM*03].

Teschner et al. propose to use a global regular spatial grid
as acceleration structure and introduce a hash function to
compress this grid in a hash table. Their algorithm classi-
fies the vertices of all objects with respect to the grid cells
in a first pass. In the second pass the tetrahedrons of their
volume objects are also classified. If a tetrahedron intersects
a cell with vertices inside, a potential collision is reported.

In our work we use a modified variant of this method. In
contrast to Teschner et al. in our approach each object has
an own local spatial grid with a corresponding hash table.
The size of each grid is limited by a swept bounding vol-
ume which corresponds to the object. In our work we use
axis aligned bounding boxes (AABB) as swept bounding
volumes which contain both the positions at the beginning
and at the end of the current simulation step. The use of one
grid per model has different advantages. The grid cell size
influences the number of reported primitive collisions sig-
nificantly. If we use large cells many primitives are mapped

(© The Eurographics Association 2012.

to the same hash value. In the case of small cells a triangle
can cover many cells. In our work each model has an own
cell size which yields better results for scenarios with mul-
tiple models with different resolutions. Another advantage
is that the update of the grids which has to be done in each
simulation step can be performed in parallel. Furthermore,
we can reduce the time required for the update. A grid has
only to be updated if we want to detect self collisions for the
corresponding object or if its AABB intersects the AABB
of another object. In the second case only one of both grids
needs an update. Grids of static objects do not change, so
they have not to be updated during the simulation.

The collision test starts with a bounding volume test for
the simulated objects. For each collision pair which is re-
ported by the AABB test we have to update one of the corre-
sponding spatial grids. Each grid has a timestamp to prevent
redundant updates. The following steps are performed to up-
date a spatial grid. First the swept bounding volumes for all
triangles are determined. Then we compute the indices of
all cells which are intersected by the bounding volumes. If a
cell is intersected, we compute a hash value for this cell and
insert the corresponding triangle in the hash table. After the
update a spatial grid test is performed for the primitives of
the other object. This means that we determine the intersect-
ing cells for the primitive AABBs of the other object and
report the resulting collisions. The spatial grid test can be
performed in parallel for all triangles since the hash table is
not modified during the test.

If the spatial hashing algorithm reports a collision, we
have to perform point-triangle and edge-edge tests for the
corresponding triangles. Since we want to prevent redundant
tests, we assign each vertex and edge to exactly one triangle.
Only if this triangle is in the same grid cell as another trian-
gle, the corresponding point-triangle and edge-edge tests are
performed.

At the moment our collision detection is performed on the
CPU. However, Pabst et al. [PKS10] demonstrated that spa-
tial hashing can be performed efficiently on a GPU. There-
fore, one topic for future work will be to develop an efficient
GPU implementation of the algorithm which is introduced
above.

7. Results

In this section we present results with our adaptive cloth
simulation method. All simulations in this section were per-
formed on a notebook with a Intel i7-2860QM processor
with four cores. In our implementation the adaption of ver-
tex masses, the stiffness and the bending matrix as well as
the computation of the mean curvature are performed in par-
allel. In all simulations we used a maximum of six subdi-
vision generations. The mesh adaption is only performed in
each fifth simulation step in order to reduce the additional
computational costs.
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(a) Curtain model

(b) Curvature and triangulation

Figure 5: Adaptive model of a curtain. (a) shows the sur-
face of the opening curtain during the simulation. (b) The
colors of the model represent the current mean curvature.
The figure also shows the resulting triangulation.

In our first simulation we used the model of a curtain
which is opened and closed (see figure 5(a)). The model
has the following parameters: Ex = Ey = Es = 1000N/m,
Viy = Vyx = 0.33 and p = 0.1kg/m?. The simulation ran
20 s and the time step size was Ar = 5 ms. This model was
simulated once with our adaptive mesh and once with the
full resolution. A comparison is shown in the accompanying
video. The visual results of both simulations are very similar.
However, our adaptive model required only 5158 triangles at
an average while the full resolution model had 22140 trian-
gles. The average computation time of a simulation step with
the full resolution model was 115.9 ms whereas the adap-
tive model required only 22.0 ms which yields a speedup
factor of 5.3. Less than 5 percent of the computation time
was required for the mesh adaption. The mean curvature of
the model and the resulting triangle mesh is shown in fig-
ure 5(b). Figure 6 illustrates the number of triangles of the
adaptive mesh during the simulation. After 11 seconds the
number of triangles reached its maximum. At this time the
curtain was completely open and there were many wrinkles
in the mesh. Then the curtain closed again and the number
of triangles decreased thanks to our coarsening extension.

Another example is shown in figure 7. In this simulation
a piece of cloth which is fixed at two vertices falls over a
sphere causing several contacts with friction. This model
was simulated using the same parameters as for the first
model. The adaptive approach was able to reduce the num-
ber of triangles from 22140 to 8962 at average during the
simulation. This results in a speedup factor of 2.4. For this
model only 6 percent of the computation time was needed
by the mesh adaption method.

Discussion Our proposed adaptive finite element method
reduces the computational effort significantly by reducing
the number of elements during the simulation. We use
the mean curvature to define the subdivision criterion. The
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Figure 6: The diagram shows how the number of trian-
gles of the curtain model changes during the simulation.
The number increases as the curtain starts to open after 5
seconds due to the resulting wrinkles. After 11 seconds the
curtain closes again and mesh is coarsened until we reach
the initial triangulation.

Figure 7: Piece of cloth falling over a sphere. This example
shows the adaptive remeshing of the model during a contact
situation.

speedup and the resulting loss of accuracy strongly depends
on the refinement and coarsening limits that are chosen by
the user. The accuracy also depends on the maximum num-
ber of subdivision generations. In our simulations we used
six generations at maximum but this number can also be in-
creased if more accuracy is required.

However, our method also has a drawback. If we use a
small tolerance value for the proximity detection a coarsen-
ing step or an edge flip may result in an interpenetration.
We can simply solve this problem by preventing a remesh-
ing of all triangles that are in contact but in future we want

(© The Eurographics Association 2012.
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to provide a better solution for this problem by using a con-
tinuous collision detection based on "pseudo-trajectories" as
proposed by [BB09].

8. Conclusion

In this paper we introduced a novel adaptive cloth simulation
method. The simulation mesh is refined by a v/3-subdivision
scheme. We extended the original scheme in order to be able
to coarsen the mesh in areas where less detail is required.
Our simulation model is based on continuum mechanics and
we use a FEM with triangular elements to solve the equa-
tions of motion. In contrast to a mass-spring system such a
model has the advantage that the simulation converges to the
correct solution when the mesh is refined. Using our adap-
tive model results in a significant speedup of the simulation.
Furthermore, the adaption causes only a small overhead in
computation time.
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Appendix A: Shape functions

In this work we use barycentric coordinates to define the lin-
ear shape functions for our triangles. The barycentric coor-
dinates of a point m = (x,y)” in a two-dimensional triangle

are defined by three linear polynomials. The first one has the
following form

1 1 1
Ni(m) = A det| x xp x3
¢ y 2 )3
_ (ay3 —yoxs) +x(y2 —y3) +y(x3 — %)
2A,

where A, is the area of the triangle. The other two are de-
termined analogously. These polynomials are used as linear
shape functions. Therefore, the derivatives of these functions
are computed by

aNe 1 y2—=y3 X3 —X2

am:2Ae Y3—Yyr X1 —X3
yI—Y2 X2—X|

where N, = (NI,NZ,N3)T
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