
University of Genoa
Department of Mathematics

Ph.D. in Mathematics and Applications
Curriculum in Mathematical Methods for Data Analysis

XXXV Cycle

Recognition and representation of curve
and surface primitives in digital models

via the Hough transform

Advisors:
Dr. Silvia Biasotti
Dr. Bianca Falcidieno

Ph.D. Student: Chiara Romanengo
Freshman Number 4003155

January 2023

ABSTRACT

Curve and surface primitives have an important role in conveying an object shape and

their recognition finds significant applications in manufacturing, art, design and medical

applications. When 3D models are acquired by scanning real objects, the resulting

geometry does not explicitly encode these curves and surfaces, especially in the presence of

noise or missing data. Then, the knowledge of the parts that compose a 3D model allows the

reconstruction of the model itself. The problem of recognising curves and surfaces and providing

a mathematical representation of them can be addressed using the Hough transform technique

(HT), which in literature is mainly used to recognise curves in the plane and planes in space.

Only in the last few years, it has been explored for the fitting of space curves and extended to

different families of surfaces. Such a technique is robust to noise, does not suffer from missing

parts and benefits from the flexibility of the template curve or surface. For these reasons, our

approach is inspired by a generalisation of the Hough transform defined for algebraic curves.

In this thesis, we present the methods we implemented and the results we obtained about

the recognition, extraction, and representation of feature parts that compose a 3D model (both

meshes and point clouds). Specifically, we first study the recognition of plane curves, simple and

compound, expressed both in implicit and parametric form, with a focus on the application of

cultural heritage and geometric motifs. Then, we analyse the extension of the method to space

curves, concentrating on the improvement of the model through the insertion of the recognised

curves directly on its surface. To overcome the limitation of knowing in advance the family of

curves to be used with the HT, we introduce a piece-wise curve approximation using specific

parametric, low-degree polynomial curves. Finally, we analyse how to recognise simple and

complex geometric surface primitives on both pre-segmented and entire point clouds, and we

show a comparison with state-of-the-art approaches on two benchmarks specifically created to

evaluate existing and our methods.

i

TO MY GRANDFATHER TONY

iii

ACKNOWLEDGEMENTS

I would especially like to thank my advisors Silvia Biasotti and Bianca Falcidieno for being

very supportive mentors that taught me everything they could. They introduced me to this

beautiful work and they constantly supported and encouraged me during these years.

I would like to thank my brother Carlo, my mother Cristina and her husband Luca for

supporting me and putting up with me during this journey. My thanks are also dedicated to my

grandparents, Tony and Nanda, and my uncle Dario who always encouraged me in my studies.

I would like to thank all people from IMATI who have become more friends than just

colleagues.

I would like to thank the other researchers with whom I had the privilege and the pleasure to

work, in particular my colleagues.

I would like to thank my "second family" who always believed in me.

I would like to thank my life-long friends of Cavour who have encouraged me and who have

always forgiven me for my carelessness.

I would like to thank my life-long friends of Piampa, who have always supported my work,

even though they thought I was crazy when I enrolled in the math course.

v

TABLE OF CONTENTS

Page

List of Tables xi

List of Figures xiii

Introduction 1
Motivation . 1

Contribution . 3

Organization of the thesis . 4

1 Background material 7
1.1 Theoretical representation and properties of curves and surfaces 7

1.1.1 Some properties of curves . 9

1.1.2 Some properties of surfaces . 11

1.2 Computational representation and properties of curves and surfaces 15

1.2.1 Notations . 15

1.2.2 Mathematical representations in case of codimension 1 in the plane and in

the space . 16

1.2.3 Mathematical representations in case of codimension 2 in the space 17

1.2.4 Geometric properties . 18

1.2.5 Colorimetric properties . 19

1.3 The Hough transform for families of curves and surfaces 20

1.3.1 Preliminary concepts on the HT . 20

1.3.2 Mathematical representations of the HT in case of codimension 1 in the

plane and in the space . 22

1.3.3 Mathematical representations of the HT in case of codimension 2 in the

space . 22

1.3.4 Voting procedure . 23

2 Recognition, extraction and representation of plane curves 27
2.1 Previous work . 27

vii

TABLE OF CONTENTS

2.2 Families of plane curves . 29

2.2.1 Simple plane curves . 29

2.2.2 Compound plane curves . 33

2.3 A method for recognising plane curves . 35

2.3.1 Estimation of the Accumulator Function . 37

2.3.2 Computational cost . 39

2.4 Testing and validating the method on data from real objects 39

2.5 A comparative analysis for plane curves . 41

2.6 Applications . 44

2.6.1 Recognition of decorations in archaeological finds 44

2.6.2 Recognition of motifs and symbols . 49

2.7 Concluding remarks . 51

2.8 Related publications . 52

3 Recognition, extraction and representation of space curves 55
3.1 Previous work . 55

3.2 Families of space curves . 57

3.2.1 Space curves of type I . 57

3.2.2 Space curves of type II . 58

3.3 A method for recognising space curves . 60

3.3.1 Estimation of the Accumulator Function . 62

3.3.2 Computational complexity . 64

3.4 Testing the method on digital models of real objects 64

3.5 A comparative analysis for space curves . 67

3.6 Curve insertion into 3D meshes . 70

3.6.1 Feature curves insertion method . 71

3.6.2 Curve insertion examples . 74

3.7 Concluding remarks . 77

3.8 Related publications . 78

4 Piece-wise curve approximation using the Hough transform 79
4.1 Pipeline of the piece-wise curve approximation method 79

4.2 Description of the feature approximation method . 84

4.2.1 Variation from the standard HT . 84

4.2.2 Approximation method considering one projection 85

4.2.3 Approximation method considering two projections 86

4.3 Examples . 89

4.4 Feature-preserving point cloud simplification and resampling 89

4.5 Concluding remarks . 89

viii

TABLE OF CONTENTS

5 Recognition, extraction and representation of geometric primitives 93
5.1 Previous work . 94

5.2 Geometric primitives . 95

5.2.1 Simple geometric primitives . 95

5.2.2 Complex geometric primitives . 97

5.3 Recognition and fitting primitives from 3D segmented point clouds 99

5.3.1 Description of the method . 99

5.3.2 Computational complexity . 106

5.3.3 Performance over different datasets . 107

5.3.4 Comparison with the method [127] . 111

5.3.5 Tests on point clouds segmented by different methods 111

5.4 Recognition and fitting primitives from 3D point clouds 114

5.4.1 Description of the method . 115

5.4.2 Computational complexity . 119

5.4.3 Experimental results . 120

5.4.4 Comparative analysis . 128

5.5 Concluding remarks . 130

5.6 Related publications . 131

6 Conclusions 133
6.1 Ongoing activities and future directions . 135

A Benchmarking activities 141
A.1 The SHREC2022 track on fitting and recognising geometric primitives in point

clouds . 142

A.1.1 Dataset and performance measures . 142

A.1.2 Evaluation . 147

A.2 The Fit4CAD benchmark . 152

A.2.1 Dataset and performance measures . 154

A.2.2 Evaluation . 158

A.3 Related publications . 161

Bibliography 165

ix

LIST OF TABLES

TABLE Page

2.1 A set of plane curves expressed in both implicit and parametric forms. 34

2.2 Comparison between the parameters of the mathematical curve and those recognised

by our algorithm over exact or perturbed curves with respect to both implicit and

parametric curve formulation. The values in bold represent the target parameters.

The symbol = indicates when the parameter identified by the HT-based algorithm

equals the target one. 42

2.3 Quality measures and computational time for the HT-based recognition algorithm for

the same plane curve in implicit (I) and parametric (P) form. L represents the number

of characteristic points. 43

2.4 Quality measures and computational time for the HT-based recognition algorithm

for the same plane curves of Table 2.3, perturbed by the 5% of the diagonal of the

curve bounding box. The curve numbers are the same as in Table 2.2. L represents

the number of characteristic points. 43

2.5 The similarity matrix among the 6-petal flowers recognised on the four fragments

in Figure 2.10(a). The following naming convention is adopted: the first number

represents the flower label and the second one corresponds to the model number. . . . 48

3.1 A set of space curves of type I expressed in both implicit and parametric forms. 59

3.2 Comparison between the mathematical curve parameters and those recognised by

our algorithm over exact or perturbed curves, with respect to both the implicit and

parametric formulation. The labels of the parameters are those used in the curve

formulation in Section 2.2. The values in bold represent the target parameters. The

symbol = indicates when the parameter identified by the HT-based algorithm equals

the target one. 68

3.3 Quality measures and computational time for the HT-based recognition algorithm for

the same skew curves in implicit (I) and parametric (P) form. L represents the number

of feature points. The curve numbers are the same as in Table 3.2. 69

xi

LIST OF TABLES

3.4 Quality measures and computational time for the HT-based recognition algorithm for

the same mathematical curves of Table 3.3, perturbed by the 5% of the diagonal of the

curve bounding box. The curve numbers are the same as in Table 3.2. L represents

the number of feature points. 70

3.5 Statistics on the mesh properties before and after a curve insertion. The number of

vertices refers to the decrease in the mesh vertices after inserting a feature curve. The

average edge length and the minimum angle width are reported only for the region

modified by our algorithm. The models have different sizes: the models in Figures

3.5(a) and 3.7(c) are normalised in a unit sphere (radius 1); the unit measures are

millimetres, metres and centimetres for the models in Figures 3.7(a), 3.7(b) and 3.9(a),

respectively. 76

5.1 Parametric representation of some complex geometric primitives. 99

5.2 Basic distances for the primitives considered in the Section 5.2.1, using the notation

from Figure 5.1. The subscripts 1 and 2 in the parameters refer to the two segments

τ1 and τ2. 106

5.3 Average classification performances for different correlation queries on the Fit4CAD

dataset. 110

5.4 Classification performance: comparison between our method and the approach pro-

posed in [127]. 111

5.5 Statistics of the MFES for all models of Section 5.4.3.1. Being the MFE normalized

by definition, we can conclude that the maximum error for the fitting of the simple

primitives is 4.48%, which corresponds to the noisy holes in the carter of Figure 5.18. 124

5.6 Statistics of the MFES for all models of Section 5.4.3.2. Since the MFE is normalized

by definition, we can conclude that the maximum error for the fitting of the simple

primitives is 1,54%, which corresponds to the helical surface of Figure 5.22. 126

5.7 Parameter comparison between the original point cloud from Figure 5.16(b) and the

perturbed versions from Figure 5.24. 127

A.1 Classification metrics for the whole test set, with respect to each primitive type:

T1=plane, T2=cylinder, T3=sphere, T4=cone, T5=torus. Here, gold, silver and bronze

identify the first, second and third best performance. The last column contains the

macro averages. 150

A.2 Statistics of the fitting errors for the whole test set. Here, gold, silver and bronze

identify the first, second and third best performance. 151

A.3 Number of fitted primitives and classification performance metrics: comparison be-

tween the PG-based and the HT-based algorithms. 159

A.4 Approximation accuracy of the HT method. 162

xii

LIST OF FIGURES

FIGURE Page

1.1 Examples of Dupin’s indicatrix. In each of the cases, the principal directions and the

corresponding value for the discriminant LN −M2 are given. In (a) the indicatrix is a

circle, in (b) a pair of conjugate hyperbolas, and in (c) a pair of parallel lines. 14

1.2 The "classical" shapes of a surface according to the values of mean H and Gaussian K

curvature. 15

1.3 The distribution of colours considered "opposites" according to CIELAB. 19

1.4 RGB space colours (left) represented according to CIELAB coordinates (right). 20

1.5 An illustrative example of the point-line duality. 21

1.6 An illustrative example of the voting procedure, considering the profile that outlines

the threads of a screw (on the left); in the middle, the Hough transforms of points in

the space abc; on the right, the recognised curve corresponding to the coefficient ā, b̄

and c̄ identified by the intersection point in the abc space. 24

2.1 An example of recognition of a complex pattern through the product of curves compos-

ing it (courtesy of [132]). 33

2.2 An example of recognition of a complex pattern through the use of repetition rules

(courtesy of [132]). 35

2.3 Recognition of various feature curves: in (a) an Archimedean spiral; in (b) a geometric

petal of type (A); in (c) a 5-convexities curve; in (d) an egg curve; in (e) a mouth curve;

in (f) an elliptic curve. For each pair of pictures, we show on the left the projected

points, the curve that best fits them and we highlight in red the points closest to it.

This latter set of points is then shown on the original model on the right. 40

2.4 Recognition of Greek fret elements with 8 (a) and 6 (b) straight lines, respectively. In

(c) the recognition of the element complementary to (a). 45

2.5 An archaeological fragment (a). Petal-like clusters (b) recognised with citrus curves (c).

Measures and GoF of the six citrus curves (d). 46

2.6 A pictorial representation of the criteria adopted to detect which petals belong to the

same flower(a), and some examples of flowers recognised on two different fragments

(b,c). 46

xiii

LIST OF FIGURES

2.7 A detail of floral band annotation. Each petal is numbered (a) for each flower we list

its petals (b). 46

2.8 (a) A query element. In (b-g) the retrieved elements are ordered with respect to their

increasing distance. 47

2.9 Comparing the parameters of the recognised curves (Figures 2.8(a,b)) it is possible to

associate two different fragments as parts of the same moulding. 47

2.10 (a) Four different fragments with the same stylistic character of a floral band; (b)

the 6-petal flower is recognised with a geometric petal (type B) curve; (c) a visual

representation of the distance among the models shown through a dendrogram plot. . 48

2.11 Examples of recognition of complex motifs: (a) the symbol of Toyota (courtesy of the

Toyota Company); (b) the symbol of the Mathematical Olympiad; (c) the Third Paradise. 50

2.12 The sequence of the three different mathematical representations of the Third Paradise

used in the recognition process. 50

2.13 In (a) the smart table Ta.Bi with tags. In (b) and (c) some examples of symbol manipu-

lation varying the value of the parameter a of equation 2.5. 51

2.14 The letters of the word "Toyota" are highlighted inside the symbol. 51

3.1 In (a) an example of an intersection between a hyperbolic paraboloid and a cylinder

with a mouth curve as its directrix, with the same axis; in (b) an example of the

intersection between an elliptical paraboloid and a cylinder with a Lamet curve as its

directrix, with the same axis. 60

3.2 In (a) a 3D model of a screw; in (b) the clusters of points which correspond to a mean

curvature value less than 0.1. The column on the right lists some of the clusters

found, identified by a number and a colour (black for cluster #1). In (c) the cluster

P1 represented with the minimum bounding box (in red) that contains it; in (d) the

accumulator function H i; in (f) the recognised curve, corresponding to the maximum

value of H i. 62

3.3 Results obtained by the recognition method applied to some 3D models. In (a, d, f, g,

h) various types of helices, in (b) a clelia curve and in (c) a pancake curve. 65

3.4 Results obtained by our method on some 3D models. 67

3.5 An overview of the curve insertion method. In (a) a 3d model of a vase with its feature

curves is highlighted in red. In (b) its initial triangulation with the blue vertices

corresponds to 2 clusters of points extracted by our method. In (c) a detail of the 2

feature curves (notice that these curves are characterised by a stripe of thin triangles).

In (d) the insertion into the model of the two recognised curves and a detail (e) of the

curve tessellation obtained near them. 71

xiv

LIST OF FIGURES

3.6 Pipeline of the curve insertion algorithm: (a,b) in blue we highlight the boundary B

obtained after the removal of the vertices close to Cā for two feature curves recognised

in the objects of Figure 3.5 and Figure 3.3(c), respectively; (c) identification of the

vertices of the boundary B of (a), highlighted in the picture with small blue dots;

(d) the samples on the curve Cā are shown with red dots; (e,f,g) insertion of the new

vertices and the local triangulation criteria; (h) the final triangle mesh with curvilinear

elements and in (i) a detail of the curve elements for the red curve in Figure 3.5(e) . . 72

3.7 Some examples of feature curve insertion. The first two columns show some 3D models

and their original triangulation. The last column highlights the new triangles and the

curvilinear elements. 75

3.8 Visual comparison between the initial mesh (a) and the one obtained after the feature

curves insertion (c) along the border of the decoration. The three inserted curves are

highlighted in different colours on the mesh (b). 75

3.9 (a) A model with a colour decoration of a flower and (b) its petals recognised on it. (c)

The original mesh tessellation does not reflect any decorative element. (d) The mesh

after the insertion of the feature curves, with a detail around the curves inserted. . . 76

3.10 Approximation of curves projected, respectively, on a paraboloid and on a plane: in

(a)-(b) using a geometric petal curve; in (c)-(d) using an m-convexities curve (see [150]). 77

4.1 The smoothing step for a point p of P i. In (a) the set N (p) is highlighted in red, while

the first PCA component v is designed in blue. In (b) the point p is in blue and its

projection point is in green. 80

4.2 Example of a search for a point of self-intersection. In (a) the graph G associated

to the input point cloud; in (b,c) a node p in violet and the vertices of the subgraph

Gp in orange; in (d) the points with branch_number(p) = 4 in red, the points with

branch_number(p)= 3 in green and the points with branch_number(p)= 2 in blue. 82

4.3 The first three steps of the Douglas-Peucker algorithm considering an open, in (a), and

a closed, in (b), profile. 83

4.4 A visual illustration of the steps of our algorithm. In (a) the result of the clustering

method: for the following steps we select Cluster #5. In (b) the projection on the

(x, y)−plane and the normalization. In (c) the smoothing operation; in (d) the result of

the segmentation; finally, in (e) the output of the algorithm. 83

4.5 216 curves of the families F3,x in blue and 216 curves of the families F3,y in black

with parameters included in the range [−1,1]. 85

4.6 Curves recognised by the HT-based recognition algorithm for the first segment of P i

of Figure 4.4 considering the families Fg,y (a) and Fg,x (b). 87

xv

LIST OF FIGURES

4.7 A visual illustration of the steps of our algorithm in case of space curve approximation.

In (a) the projection on the (x, z)−plane and the normalization. In (b) the smoothing

operation; in (c,d) the curves recognised by the HT-based recognition algorithm for the

first segment considering the families Gg,z (c) and Gg,x. In (e) the approximation of all

segments. Finally, in (f) the output of the algorithm on the input point cloud P 88

4.8 Some results of our piece-wise curve approximation method. In the first column the

original model from which the point cloud is extracted. In the central columns the

resulting approximation of two projections. In the final column, the outcome curves

are highlighted on the model. 90

4.9 An example of a decimation process performed on a point cloud. In (a), the input point

cloud with the feature points is highlighted in red. In (b) - (f), the output is obtained

by reducing the number of points by a factor of 10, 20, 50, 100, and 200, respectively. 91

5.1 Simple geometric primitives: plane, cylinder, cone, sphere and torus respectively, along

with their attributes (geometric descriptors). 97

5.2 Initial estimates for a sphere. The preprocessing step centres the point cloud and

approximates the normal vectors at a set of points, see (b). Given a point p j and a

point q j on its tangent plane, (c) shows the vectors n j, t j and v j in blue, green and

red, respectively. Finally, (d) shows the estimate ĉ of the centre. 101

5.3 Initial estimates for a circular cylinder. The preprocessing step centres the point cloud

and approximates the normal vectors at a set of points, see (b). Given two points p j1

and p j2 , (c) shows the corresponding normal vectors n̂ j1 and n̂ j2 , in blue and green

respectively, and, in red, their cross product â j1, j2 . Finally, (d) shows the estimate r̂ of

the radius. 102

5.4 Initial estimates for a circular cone. The preprocessing step centres the point cloud

and approximates the normal vectors at a set of points, see (b). The intersection of the

tangent planes estimates the coordinates of the vertex v̂. Given two points p j1 and

p j2 , (d) shows the corresponding blue and green vectors û j1 and û j2 and the resulting

cross product â j1, j2 in red. 102

5.5 Initial estimates for a torus. The preprocessing step centers the point cloud and

approximates the normal vectors at a set of points, see (b). In (c) the upper/lower circle

recognition, while (d) shows the plane that identify small circles. Given the centers of

small circles, in (e) the estimation of the axis â and in (f) the estimation of center ĉ of

the torus. 103

5.6 Pipeline of the method for fitting and recognising primitives using the Hough transform.105

5.7 A model from [91]: we show segments of the same primitive type exhibiting different

similarities. Colours are used to visually represent primitives sharing the same

property. 108

5.8 Two models from [91]: segments exhibiting different similarities are shown. 109

xvi

LIST OF FIGURES

5.9 A model from [91]: a Gaussian noise is applied at three levels of intensity. 109

5.10 Examples of segmentations from [148]: the original segmentations (first column) are

post-processed by our method to overcome the problem of oversegmentation. 112

5.11 Examples of queries for planar, cylindrical, conical, and spherical segments obtained

from the RANSAC segmentation of a scanned industrial object as provided in [100]. 113

5.12 Examples of queries for planar, cylindrical, and spherical segments obtained from the

RANSAC segmentation over a challenging point cloud acquired from an industrial

object as provided in [100]. 114

5.13 Pipeline of the method. 117

5.14 In (a) a mechanical CAD model from the benchmark in [91]; in (b) the vertices of its

triangle mesh decomposed into 8 surface segments; in (c), for each primitive, the HT

parameters are compared with those provided by the database 120

5.15 In (a) a mechanical CAD model from the benchmark in [91]; in (b) the vertices of its

triangle mesh decomposed into 9 surface segments; in (c), for each primitive, the HT

parameters are compared with those provided by the database 121

5.16 Recognition of CAD point clouds containing only simple geometric primitives. The

identification of maximal segments does not require, in these cases, the application of

any clustering algorithm. 121

5.17 A linkage arm. In (a), the original model is shown, together with a magnification

revealing some imperfections. The segments identified by the HT are shown in (b)

in different colours. (c) draws attention to cylinders, among which we can recognise

segments lying on the same primitive, up to a translation. 122

5.18 A carter. In (a), the original model is shown. The surface segments found by means

of the HT approach are depicted in (b), while (c) shows the result of primitive clus-

tering when one is interested in identifying the same primitive up to a translational

transformation. Different rows correspond to different points of view. 123

5.19 A prototype of the NuGear component, courtesy of STAM S.r.l. (Genoa, Italy). The

original model is shown in (a). The decomposition in clusters of points produced by

the HT approach is given in (b). The output of the additional clustering procedure is

shown in (c), it highlights the similarity between 12 cylindrical holes (in black) and

between two cylinders (in yellow). 123

5.20 A mechanical part. In (a) the original model is shown, while in (b) the decomposition

of the corresponding point cloud into segments produced by the HT. In (c) the result

of the clustering procedure: 8 cylindrical holes, in red, have a high similarity, up to

translations; the same applies for 2 cylindrical segments, in blue; 2 tori, in orange,

identify the same primitive, up to a roto-translation. 124

5.21 Recognition of complex geometric primitives in CAD point clouds. Their identification

does not require, in these cases, the application of any clustering algorithm. 125

xvii

LIST OF FIGURES

5.22 A screw-like part. The original model, (a), is sampled. The surface primitives detected

via HT are shown in (b) in different colours: a helical surface (in purple), two planes

(in red and magenta), and two helical strips (in orange and yellow). Although no pair

of them lies on the same parametrised surface, the 2 helical strips have the same

equation up to a translation, as shown in (c) (both in orange). 125

5.23 A clamp connector. In (a) the original model. In (b) the decomposition of the corre-

sponding point cloud into 38 segments is provided by the HT procedure. In (c), the

final grouping is obtained by clustering, consisting of 6 groups of primitives (here,

singletons of segments are transparent). 126

5.24 The point cloud in Figure 5.16(b) is perturbed by adding zero-mean Gaussian noise of

standard deviation: 0.01, 0.05, 0.10 and 0.20. The first row superimposes the points

identified as noise (in black) to the final segments found by our method; the second row

depicts the points that fit the primitives found and provides a denoised segmentation. 127

5.25 Primitive type recognition: a comparison between our approach, a RANSAC-based

segmentation [144], and the method in [96]. Different colours correspond to different

primitive types: planes (red), cylinders (green), cones (blue), tori (black), splines (pink),

and unsegmented (yellow). 129

5.26 Comparison of our approach (HT) with other three methods: a primitive growing

approach (PG), ParSeNet (PN) and HPNet (HN). The analysis is performed over the

Fit4CAD benchmark [140] . 130

6.1 Examples of images present in our dataset. 136

6.2 In (a) the validation metrics and in (b) the confusion matrix associated to the classifi-

cation problem. 137

6.3 The validation metrics associated with the regression problem. 138

6.4 Three examples of images in our dataset and in red the line that represent the

estimation of the rotation angle. 138

A.1 Examples of point clouds from the dataset. Columns identify primitive types: plane

(T1), cylinder (T2), sphere (T3), cone (T4) and torus (T5). Rows correspond to point

cloud artefacts: none (A0), uniform noise (A1), Gaussian noise (A2), undersampling

(A3), missing data (A4), uniform noise + undersampling (A5), Gaussian noise + under-

sampling (A6), uniform noise + missing data (A7), Gaussian noise + missing data (A8),

small deformations (A9). 144

A.2 Confusion matrices CM for the whole test set, with respect to each primitive type.

Here, the entry CM(i, j) indicates the number of samples with the true label being the

i-th class and the predicted label being the j-th class. 148

A.3 Bar graphs of the macro averages for the classification measures, grouped by method.

The legend reflects the colour encoding of the perturbation types. 149

xviii

LIST OF FIGURES

A.4 Bar graphs of the log macro averages for the recognition and fitting measures, grouped

by method. The legend reflects the colour encoding of the perturbation types. 153

A.5 Example of models obtained using Onshape. 155

A.6 Example of point cloud creation. The initial object in (a) is sampled at a chosen density

(b) and then perturbed by simulating missing data (c). 155

A.7 The 35 point clouds used as a test set. Different colours represent different primitives,

as stored in the CAD models, i.e., our ground truth. 156

A.8 Boxplot for the classification metrics presented in Table A.3. All 35 models are here

considered. 160

A.9 Performance of the PG- and HT-based methods, with an eye on models suffering

from missing data. For these boxplots, we have made use of the classification metrics

presented in Table A.3. 160

xix

INTRODUCTION

The analysis and the recognition of characteristic parts of a 3D model are fundamental steps

for classifying, grouping, and possibly indexing digital models in proprietary or online

datasets. Curve and surface primitives play a crucial role in conveying an object shape,

and their recognition finds substantial uses in manufacturing, art, design and medical fields. For

instance, in reverse engineering, 3D scanning devices are used to digitise and validate a manually

optimised physical prototype. It is extremely important that no details of the scanned object, such

as sharp edges, corners and, in general, surface features, are lost during the acquisition process.

Indeed, when 3D models are acquired by scanning real objects, the reconstructed point cloud does

not explicitly encode these curves and surfaces, especially when it is affected by noise or missing

parts. Measurement uncertainty, sampling resolution, or occlusions during the acquisition occur

in applications like the digitisation of archaeological artefacts, often damaged, and whose details

are partially missing. Then, a large number of points, the presence of noise and outliers, the

occurrence of missing or redundant parts and the non-uniform distribution of the data are the

main problems to be addressed in many application areas. In this thesis, we propose a solution

based on the Hough transform (HT), that is able to recognise curves and surface primitives and

to provide a mathematical representation of them, ensuring the robustness to noise, outliers and

missing parts.

Motivation

The characterisation and recognition of curve patterns on 3D models is a well-known issue

in computer graphics. Feature curves, i. e., lines that characterise a shape feature, are useful

for visual shape illustration [92], and perception studies support these curves as an effective

choice for representing the salient parts of a 3D model [39, 72]. In our context, as feature curves

we consider sets of points of a model that jointly define a contour, a valley, or a ridge on the

model, thus giving local information about the surface. If the model has some boundary, it is

not considered a feature curve, as well as noise artefacts (e.g., from scan inaccuracy and/or

smoothing/resampling operations).

In the field of cultural heritage, the identification and recognition of feature elements support

the experts in documenting the relationships among multiple fragments or different digital

representations. Currently, the annotation of 3D cultural heritage artefacts is performed manually

1

INTRODUCTION

[162] or limited to a few anatomical features, like in the dashboard implemented for the project

GRAVITATE [35]. Indeed, there is a lack of tools that help to convert intuitive reasoning into

objective criteria, measures, and semantic annotations. Existing methods for the analysis of

digital artefacts are mainly limited to reconstruction [123], visual enhancement of carvings [95],

the definition of a global similarity score [23] or analysis of specific features, like constant radius

decorations over potteries [47].

Besides archaeology, the need of interpreting the feature of an artist or a culture comes from

many fields. For instance, the lines that are the signature of Gaudi’s architectural arches have

been subject to many discrepancies regarding the arch geometry; to address disputes, specific

studies have been proposed to deduce which mathematical curve better approximates them,

see [141]. In decorative arts, there exists a myriad of possible motifs and those motifs have

been distinguished based on formal properties and divided according to different categorisations.

Crafts such as weaving, which are intrinsically pattern-like, show that humans can apply their

ability of geometric abstraction to different objects and phenomena and create visual motifs on

any drawing, carving, cloth, tapestry or other artefacts. The cultural practice also indicates that

the capability to recognise and make geometric decorative patterns has always been inherent in

human nature. Indeed, today geometric motifs are often used to design logos, trademarks and

symbols, which identify products, works, or events and some of these motifs are graphic elements

obtained from the composition of mathematical curves.

Another common problem is the creation of a high-level model representation, in which the

characteristic parts are annotated. 3D Computer Aided Design (CAD) models are among the

most common medium to convey dimensional and geometrical information on designed objects or

components. In several situations, unfortunately, the CAD model of an object is not available, it

does not even exist, or it no longer corresponds to the real geometry of the manufactured object

itself. A strategy to retrieve an object digital model, when this is not available, is to acquire 3D

data directly on the object and use the obtained information to build a digital representation. The

reconstruction of digital models from measured data has been a long-term goal of engineering,

and computer science in general; this process, usually called Reverse Engineering (RE), aims at

generating 3D mathematical surfaces and geometric features representing the geometry of real

parts. There are many methods that address this problem, and we refer to these surveys that

group a large part of the approaches presented so far: [31, 88]. The general RE framework can

essentially be decomposed into three general steps: data capture and preprocessing, segmentation

and surface fitting, CAD model creation. These phases are generally common to the vast majority

of techniques available in the literature. The phase “segmentation and surface fitting" logically

divides the original point set into subsets containing just those points sampled from a particular

natural surface, it decides to what type of surface each subset of points belongs (e.g., planar,

cylindrical), and it finds which surface of the given type is the best fit to those points in the

given subset. This step is very important in the RE framework, as the results obtained may

2

significantly differ depending on the strategy adopted to perform this task.

Contribution

The main contribution of this thesis lies in the solutions proposed to recognise curves and surfaces

in 3D digital models through the use of the Hough transform technique. A recognition method

based on the HT is able to deal with both curve and surface primitives, in order to provide a

mathematical representation of them, and it is robust to noise, outliers and missing parts. Then,

it can be an answer to the problems mentioned before.

Approaches based on the HT in the literature mainly focus on the recognition of hypersurfaces,

that is objects of codimension 1 such as plane curves in images and surfaces in space. One of the

challenges is to extend them to codimension 2 cases, such as the case of space curves in space.

Regarding the recognition of surfaces, HT-based approaches mainly focus on the identification of

planes and spheres. In this context, the challenge is to effectively extend the recognition method

to a larger set of geometric primitives.

Preliminary, our study focuses on the recognition of space feature curves that can be projected

onto the regression plane, exploiting a dictionary of plane curves. Specifically, we first extend the

method in [154] by introducing new plane curves and new rules of composition and aggregation

of curves based on rotations and translations of the pattern elements. Then, we provide a

compatibility measure among the curves that belong to the same family, even if located on

objects of an overall different shape. To do this, we exploit the parameters that appear in the

mathematical representation of these curves, since they are strictly related to the geometric

properties of the curves. From the compatibility point of view, we show the effectiveness of our

approach by applying it to the archaeological domain and finding similarities among fragments.

Then, we extend the nowadays well-established Hough-type technique for plane curves to

space curves in 3D digital objects. Specifically, we extend the technique mentioned before to the

identification of space curves that cannot be projected onto the regression plane. The limited

availability of templates for space curves has probably reduced the interest in such a fitting

problem. To overcome this problem, we extend the dictionary of space curves by also including

those whose profile can be approximated as the intersection of a quadric surface with a cylinder

generated by a plane curve. Spatial curves are then distinguished into classical (type I) and

approximated with quadric surfaces (type II).

Since our technique for identifying curves on 3D shapes works for both parametric and implicit

curve representations, the pros and cons of both forms are also discussed, highlighting when to

select one instead of the other or when the two curve formulations are not interchangeable. In

particular, the quality of the curve approximation through the HT-based recognition for the two

forms of representation is compared, evaluating their advantages and drawbacks.

Recognition methods based on the HT require prior knowledge of the family of curves to look

3

INTRODUCTION

for. In some application contexts such as cultural heritage, this suggestion can come directly from

the expert, through a template or a drawing, or from the technical documentation associated

with the find. To overcome this limitation, we work on a method that provides a piece-wise space

curve approximation using specific parametric polynomial curves of degree 3 or 4.

Regarding the recognition of surfaces, our first contribution concerns the introduction of a

dictionary of surfaces made of simple and complex geometric primitives. Then, we implement two

different methods. The first one is a new technique to reduce the dimension of the parameter

space and localise the search for the optimal solution, thus making the application of the HT

algorithm possible to a larger number of primitives. The pipeline is able to compute initial

estimates for the parameters of spheres, cylinders, cones, and tori. The second method is able to

recognise multiple instances of the same primitive presented on a single point cloud and extracts

complex primitives, in addition to the most common ones (planes, cylinders, cones, spheres, tori).

Both approaches can identify global relations among the recognised geometric primitives, such

as lying on the same primitive, sharing the same axis or radius, or being on parallel planes, etc..

Simultaneously, we create datasets and metrics aimed at evaluating methods for detecting

simple geometric primitives both in 3D point clouds representing CAD objects and in 3D point

clouds representing simple geometric primitives with different kinds of perturbations.

Organization of the thesis

This thesis is divided into 6 chapters and an appendix. Chapter 1 provides a brief introduction of

the basic notions required to frame our work. The first two parts are dedicated to the representa-

tions of curves and surfaces, from both theoretical and computational points of view, together

with the definition of their geometric and colorimetric properties. The third part focuses on the

main concepts of the Hough transform technique and its representations.

Chapters 2 and 3 deal with the recognition of curves through the HT and are organised in the

same way: they provide an overview of the current literature, the dictionary available in each

method, a detailed description of the approach and some examples of applications. Specifically,

Chapter 2 deals with the recognition of space curves projectable on the regression plane via a

technique that exploits a dictionary composed of both simple and compound plane curves. Since

this approach can consider curves with implicit or parametric representation, we also provide

a comparative analysis between two expressions in terms of the quality of the approximation

and computational complexity. Finally, we show how the parameters that uniquely identify the

recognised curves can be exploited in the archaeological domain and in an interactive experience.

Chapter 3 focuses on the recognition of space curves, applying the HT to the codimension

2 case in the space. In this context, we consider two classes of space curves: the first type of

curves is equipped with a known representation, while the second one is defined starting from the

large dictionary of plane curves. Also in this case, a comparative analysis between the methods

4

in implicit and parametric form is provided. Finally, as an application, we show the insertion

of curvilinear elements as constraints on a mesh, either to modify the local mesh tessellation,

emphasising some characteristics, or complete missing parts.

Since the previous two approaches require a priori-knowledge of which family of curves to

look for, in Chapter 4 we introduce a method for piece-wise curve approximation of curvilinear

profiles in point clouds, able to approximate both planar and spatial profiles. Also, in this case,

we show an example of application that exploits the mathematical expression of the curves to

drive a constrained point cloud simplification and resampling.

Chapter 5 deals with the recognition of surfaces, introducing a dictionary that contains both

simple geometric primitives (such as planes, cylinders, spheres, cones, and tori) and complex

geometric primitives (general cylinders, general cones, surfaces of revolution, helical surfaces

and convex combination of curves). In this context, we describe two methods. The first one takes

in input a pre-segmented point cloud and provides, for each segment, the geometric descriptors

that uniquely identify it. The second one is applied to a point cloud representing a CAD object

that might contain different types of primitives and returns a segmentation together with the

mathematical expressions of segments. For each proposed method, we show some applications and

comparisons with the state-of-the-art approaches. In Appendix A we describe our two benchmarks

that concern the identification of simple geometric primitives and that we created to test and

compare our methods introduced in Chapter 5.

Chapter 6 summarises the achievements obtained, draws the conclusions of this work and

addresses open issues and potential research directions for the future.

Authorship declaration

This thesis contains published and unpublished works that have been co-authored. In order,

the material for the second chapter has been supplied by [133], [135] co-authored with my

advisors Silvia Biasotti and Bianca Falcidieno, and [137] co-authored with Silvia Biasotti, Bianca

Falcidieno, Chiara Eva Catalano and Erika Brunetto. The third chapter contains the material in

[136] and [138], co-authored with Silvia Biasotti and Bianca Falcidieno. Chapter 4 is an ongoing

work in collaboration with Silvia Biasotti, Bianca Falcidieno and Ulderico Fugacci. The first

method presented in Chapter 5 is provided by [128], while the second approach is described in

a work submitted for publication. Both works are co-authored by Andrea Raffo, Silvia Biasotti

and Bianca Falcidieno. Finally, the material for Appendix A has been supplied by [139] and [140],

co-authored with different researchers from various research groups.

5

C
H

A
P

T
E

R

1
BACKGROUND MATERIAL

This chapter is devoted to a brief presentation of basic notions useful to better understand

the sequel. It is organised as follows. In the first section, we introduce some preliminary

concepts about manifolds, curves and surfaces and their properties, such as curvatures.

In Section 1.2 we show the mathematical representations of curves and surfaces that allow us

to analytically represent them and we describe how we use and estimate their geometric and

colorimetric properties. Finally, Section 1.3 introduces the main concepts underlying the Hough

transform technique and its representations.

1.1 Theoretical representation and properties of curves and
surfaces

From the theoretical point of view, the model usually referred to when discussing the representa-

tion of a geometric shape is that of manifold or variety. For the definition of manifold, we need to

introduce some preliminary concepts (see [25, 70, 103, 115]).

Definition 1.1.1 (Function C∞). Let U be an open set of Rn and f : U → Rm a function. This

function is said to be of class C∞ or smooth if its partial derivatives exist and are continuous for

each order of differentiation.

Definition 1.1.2 (Topological Hausdorff space or T2). A topological space X is a topological

Hausdorff space or T2 if for all x,y ∈ X , x ̸=y, there exist two neighborhoods Ux, Uy containing

respectively x and y such that Ux ∩Uy =;. In other words, it is a topological space in which for

two distinct points one can always find disjointed open neighborhoods.

7

BACKGROUND MATERIAL

Definition 1.1.3 (Manifold without boundary). A topological Hausdorff space M is called a

k-dimensional topological manifold if each point x ∈ M admits a neighborhood Ui ⊆ M homeomor-

phic to the open disk Dk = {x ∈Rk|∥x∥2 < 1}⊆Rk and M =⋃
i∈NUi. Given φi the homeomorphisms

relative to Ui, a chart is defined as the pair (φi,Ui). The set of charts of a single covering is called

an atlas.

The number k represents the dimension of the manifold. In practice, by this definition,

we require that M locally possesses the same topological properties as a Euclidean space of

appropriate dimension. It should be emphasised that covering is not necessarily done by disjoint

open Ui. How two maps must be connected is expressed with the transition functions.

Definition 1.1.4 (Transition maps). Let X be an atlas and two charts related to the open sets Ui

e U j, i ̸= j. The transition maps between i and j is the function

φi, j =φi(Ui ∩U j)→φ j(Ui ∩U j).

Transition functions describe how to move from one chart to another. The regularity of the

transition functions determines how smooth such a transition is, and in the case where φi, j ∈ C∞,

∀i ̸= j, the manifold is called differentiable manifold.

Definition 1.1.5 (Manifold with boundary). A topological Hausdorff space M is called a k-

dimensional topological manifold with boundary if each point x ∈ M admits a neighborhood

Ui ⊆ M homeomorphic to the open disk Dk or to Rk−1 × {y ∈ R|y > 0}. Moreover M admits a

numerable covering of such neighborhoods.

The definitions of chart and atlas are analogous to the case without boundary, but the

space to which the neighborhoods are homeomorphic changes: for the interior points the disk of

appropriate dimensions remains, while the contours involving the boundary are homeomorphic

to the k-dimensional half-space. Points on a manifold with boundary are classified either interior,

if they have a neighborhood homeomorphic to an open disk, or boundary, if their neighborhood is

homeomorphic to a half-disk.

Examples of 3-dimensional manifolds with boundary are the solid sphere and the solid torus,

while the boundary, the usual sphere S2 and the torus T2, are two closed 2-manifolds. The circle

and the open interval (0,1) are examples of 1−manifolds. In general terms, a 2−manifold is called

a surface.

Definition 1.1.6 (Smooth Manifold). A k−topological manifold without (respectively with) bound-

ary is called a smooth manifold without (respectively with) boundary if all transition functions

are smooth.

Accordingly, a k−topological manifold without (respectively with) boundary is called a man-

ifold of class Cm without (respectively with) boundary, if all transition functions are of class

Cm.

8

1.1. THEORETICAL REPRESENTATION AND PROPERTIES OF CURVES AND SURFACES

Definition 1.1.7 (Orientability). A manifold M is called orientable if there exists an atlas

{(Ui,φi)} on it such that the Jacobian of all transiction functions φi, j from a chart to another is

positive for all interesting pairs of regions. Manifolds that do not satisfy this property are called

non-orientable.

Intuitively, a surface is orientable if you can orient the normal to the surface consistently at

every point, for example, by the right-hand rule. As a common convention, for the representation

of real objects, the normal is used to identify the external boundary. Indeed, in case of surfaces

without boundary, the direction of the surface is determined by the direction of its normals (the

outer direction is the one that sees the normals as outgoing, vice versa the inner). In case of

surfaces with boundary, there is an ambiguity of sign for the normals. In practice, one of the two

directions is chosen as outward (and thus an orientation is fixed).

In this thesis, we will consider only orientable surfaces, with or without boundary, and curves.

Often the elements we are going to consider will not be smooth, but will have a lower level of

continuity.

1.1.1 Some properties of curves

In general, a curve is defined through a continuous function γ : I → X from an interval I of the

real numbers into a topological space X . In other words, a curve is a topological space which

is locally homeomorphic to a line. If the function γ is differentiable, then the curve is called

differentiable. In case X is of three dimensions, such as the Euclidean space R3, the curve is

called space curve, while if X is a plane, it is called plane curve. Space curves that do not lie on a

plane are called skew curves. For the material provided in this section, we refer to [49, 58, 90].

Definition 1.1.8 (Regular curve). A differentiable curve γ is called regular curve if γ′ is con-

tinuous and γ′(t) ̸= 0 for all t ∈ I. Similarly, a differentiable curve is said to be m-regular if the

function γ is of class Cm and γ′(t) ̸= 0 for all t ∈ I. In case m =∞, the curve is called smooth.

The points that satisfy the regularity condition are called regular points. If there exists t0 ∈ I

such that γ′(t0)= 0, then the point γ(t0) is said to be a singular point of the curve. Note that, the

condition of regularity γ′(t) ̸= 0 for all t ∈ I can be expressed in an equivalent way through the

norm of γ′(t), then requiring that ∥γ′(t)∥2
2 ̸= 0 for all t ∈ I.

Definition 1.1.9 (Geometric continuity). A curve is said to be of class Gm (has geometric

continuity of order m, where m ≥ 1) if there exists a local regular parametrization of class Cm of

this curve in a neighbourhood of each point of this curve.

Definition 1.1.10 (Simple curve). A regular curve γ is said to be simple if there are no multiple

points, that is if t1 ̸= t2 implies γ(t1) ̸=γ(t2).

9

BACKGROUND MATERIAL

In the rest of the section, we assume X =R3. We introduce a special local coordinate system,

linked to a point γ= γ(t) on the curve, that will significantly facilitate the description of local

curve properties at that point. Let us assume that all derivatives needed below do exist. The first

terms of the Taylor expansion of γ(t+∆t) at t are given by

γ(t+∆t)=γ+γ′∆t+γ′′ 1
2

(∆t)2 +γ′′′ 1
6

(∆t)3 +

Let us assume that the first three derivatives are linearly independent. Then γ′, γ′′, γ′′′ form

a local affine coordinate system with origin γ. From this local affine coordinate system, one

easily obtains a local Cartesian (orthonormal) system with origin γ and axes t, n, b by the

Gram-Schmidt process of orthonormalization

t= γ′

∥γ′∥ , n=b∧ t, b= γ′∧γ′′

∥γ′∧γ′′∥
where t is called tangent vector, n is called main normal vector and b is called binormal vector.

The frame t, n, b is called the Frenet frame. Letting the Frenet frame vary with t provides a good

idea of the curve’s behavior in space. The plane spanned by the point γ and the two vectors t and

n is called the osculating plane.

A change τ= τ(t) of the parameter t where τ is a differentiable function of t will not change

the shape of the curve. This reparametrization will be regular if τ′ ̸= 0 for all t ∈ I, where I = [a,b].

Let

s = s(t)=
∫ t

a
∥γ′∥dt

be such a parametrization. Then, s is independent of any regular reparametrization because

γ′dt = dγ
dτ

dτ
dt

dt = dγ
dτ

dτ.

It is an invariant parameter and it is called arc length parametrization of the curve.

The following formulas may be defined both in terms of arc length s and in terms of the actual

parameter t, but they are particularly simple if one uses arc length parametrization. Some simple

calculations yield the so-called Frenet-Serret formulas:

t′ = t′(s)= κn, n′ =n′(s)=−κt+τb, b′ =b′(s)=−τn

where the terms κ and τ are called curvature and torsion. The curvature κ measures the

deviance of γ from being a straight line relative to the osculating plane; the torsion τ measures

the deviance of γ from being a plane curve. They may be defined both in terms of arc length s

and in terms of the actual parameter t. We give both definitions:

κ= κ(s)= ∥γ′′∥, κ= κ(t)= γ′∧γ′′

∥γ′∥3 ,

τ= τ(s)= 1
κ2 det(γ′,γ′′,γ′′′), τ= τ(t)= det(γ′,γ′′,γ′′′)

∥γ′∧γ′′∥2 .

10

1.1. THEORETICAL REPRESENTATION AND PROPERTIES OF CURVES AND SURFACES

1.1.2 Some properties of surfaces

A surface is defined through a continuous function f : Ω→ X from a subset Ω of R2 into a

topological space X of dimension at least three. In other words, a surface is a topological space

which is locally homeomorphic to a plane or an half-plane. If the function f is differentiable, then

the surface is called differentiable. In the rest of this section, we will assume that X =R3. For

more details on the material provided in this section, we refer to [25, 49, 58] and, for curvatures,

to [103], Chapter 4.

Definition 1.1.11 (Regular surface). A differentiable surfaces f is called regular surface if

ft(t,u) and fu(t,u) are continuous and ft(t,u)∧ fu(t,u) ̸= 0 for all (t,u) ∈Ω, that is both families of

isoparametric lines are regular and are nowhere tangent to each other.

The points that satisfy the regularity condition are called regular points. If it exists (t0,u0) ∈Ω
such that ft(t0,u0)∧ fu(t0,u0) = 0, then the point f(t0,u0) is said to be a singular point of the

surface.

The definition of curvature of a surface is derived from the concept of curvature for a curve. The

definition of the curvatures of a surface passes through two local invariants, called fundamental

forms.

1.1.2.1 Fundamental forms

Definition 1.1.12 (Coordinate patch). Let S be a surface and U an open set in the uv plane. The

map φ : U → S is called coordinate patch of class Cm, with m ≥ 1, of U in S, φ=φ(u,v), such that:

• φ is Cm on U ;

• ∂uφ×∂vφ ̸= 0 ∀(u,v) ∈U ;

• φ is injective and bicontinuous on U .

Let φ = φ(u,v) be a Cm coordinate patch of a neighborhood U of (u,v) ∈ S, m ≥ 1 and dφ =
φudu+φvdv its differential, which generates vectors parallel to the tangent plane in φ(u,v).

Committing a little abuse of notation, one can use dφ to denote both the vector generated by

φudu+φvdv and the differential. Remembering that

φ(u+du,v+dv)=φ(u,v)+dφ+ o((du2 +dv2)
1
2),

it can be said that dφ is the first-order approximation of the vector φ(u+du,v+dv)−φ(u,v), from

φ(u,v) and φ(u+du,v+dv).

Definition 1.1.13 (First fundamental form). Considering the notations introduced before, we

define the first fundamental form of φ by the product I = dφ ·dφ. In more explicit terms, we have:

I = Edu2 +2Fdudv+Gdv2 = I(du,dv),

11

BACKGROUND MATERIAL

where

E =φu ·φu, F =φu ·φv, G =φv ·φv.

This definition does not strictly depend on the representation chosen, but only on the surface

considered, as demonstrated in [103]. The first fundamental form can be used to calculate arc

length, angles, and surface areas, via the coefficients E,F, and G.

To define the second fundamental form, let us consider a coordinate patch of class Cm with

m ≥ 2. This allows us to determine the normal to each point of the coordinate patch φ, i.e.,

N = φu×φv
∥φu×φv∥ , which is a function of u and v of class at least C1, with the differential equal to

dN=Nudu+Nvdv.

Definition 1.1.14 (Second fundamental form). We define the second fundamental form of φ as

the quantity I I =−dφ ·dN, which in more explicit terms is expressed as

I I = Ldu2 +2Mdudv+Ndv2 = I I(du,dv)

with

L =−φu ·Nu, M =−1
2 (φu ·Nv +φv ·Nu), N =−φv ·Nv.

The second fundamental form is invariant with respect to the chosen parametrization, minus

the sign.

1.1.2.2 Normal curvature

The two fundamental forms are used to determine the normal curvature, which in turn allows the

principal curvatures to be derived. Let us consider a curve C of parametrization γ=γ(u(t),v(t))

of class at least C2 passing through a point p, belonging to the appropriate coordinate patch of S

containing p, at least of class C2. In this case, the curvature normal vector to C in p is defined

by kn = (k ·N)N, where k is curvature vector of C in p, that is, the vector associated to p with

respect to C that lies on the plane normal to the curve in p and points in the direction in which it

"continues", and N is the normal in p.

Definition 1.1.15 (Normal curvature). We define normal curvature of C in p the quantity

κn =k ·N

where in this case the sign depends on the sign of N.

Considering the definitions for tangent curves t and curvature vector k (see [103]), we obtain

an alternative writing of κn that exploits the coefficients of I and I I:

κn =k ·N= L(du/dt)2 +2M(du/dt)(dv/dt)+N(dv/dt)2

E(du/dt)2 +2F(du/dt)(dv/dt)+G(dv/dt)2 .

12

1.1. THEORETICAL REPRESENTATION AND PROPERTIES OF CURVES AND SURFACES

This depends strictly on the direction of the tangent line to C at p (i.e., (du/dt)/(dv/dt)). The only

other dependence for this quantity is on p.

The following theorem can be formulated.

Theorem 1.1.1. All curves passing through the point p that are tangent to the same line through

p have the same normal curvature in p.

In conclusion, since the normal curvature to C in p depends only on p and the direction of the

tangent to C in p, we can talk about normal curvature in p in the direction given by (dv/dt,du/dt)

and thus

κn = Ldu2 +2Mdudv+Ndv2

Edu2 +2Fdudv+Gdv2 = I I
I

.

The latter changes sign according to I I, being I defined positive. This identity also allows us to

state that κn is invariant with respect to parametric transformations that maintain the sign of N
(or that change sign if they reverse that of N).

1.1.2.3 Principal curvatures

In order to determine the principal curvatures, we assume that a neighborhood of a point p can

be described in the form

ue1 +ve2 + f (u,v)e3,

which does not alter κn, thanks to the invariant properties of the fundamental forms discussed

previously and given the regularity of the surface assumed. With this parametrization we

translate p into the origin of the reference system, and the plane x1x2 becomes the one tangent

to the surface at p. Referring to the definitions of I and I I and in particular their coefficients, we

obtain the simplified form:

κn = Ldu2 +2Mdudv+Ndv2

du2 +dv2 .

Assuming that du2+dv2 = 1, since κn depends solely on the ratio du/dv, and imposing du = cosθ

and dv = sinθ, we have:

κn = Lcos2θ+2M cosθsinθ+N sin2θ.

Finally, imposing |κn| = 1/r2, x1 = r cosθ and x2 = rsinθ we have

±1= Lx2
1 +2Mx1x2 +Nx2

2

which determines a conic section on x1x2 called Dupin’s indicatrix.

Thanks to these indicators, shown in Figure 1.1, in the case where they exist and are not

circles, we can identify two values, called principal curvatures and denoted by κ1 and κ2, equal to

13

BACKGROUND MATERIAL

Figure 1.1: Examples of Dupin’s indicatrix. In each of the cases, the principal directions and the
corresponding value for the discriminant LN −M2 are given. In (a) the indicatrix is a circle, in
(b) a pair of conjugate hyperbolas, and in (c) a pair of parallel lines.

the maximum and minimum values for κn, respectively. The directions corresponding to these

values are called principal directions. Knowledge of principal curvatures allows us to make a

classification of the points of a surface, distinguishing them into elliptic, parabolic and hyperbolic

points, which allows us to tie the curvature of a surface to the local nature of the surface. In cases

where there is no indicator or it is a circumference, all directions are considered principal.

To conclude the discussion, we report a result that allows the theoretical calculation of

principal curvatures through the use of fundamental forms.

Theorem 1.1.2. A value κ is a principal curvature if and only if it is a solution of

(EG−F2)κ2 − (EN +GL−2FM)κ+ (LN −M2)= 0.

1.1.2.4 Mean and Gaussian curvature

From the principal curvatures, the mean curvature and Gaussian curvature can be derived.

Definition 1.1.16 (Mean and Gaussian curvature). The mean curvature and the Gaussian

curvature of an S surface in p correspond, respectively, to the values

H = κ1 +κ2

2
= EN +GL−2FM

2(EG−F2)
.

K = κ1κ2 = LN −M2

2(EG−F2)
.

Figure 1.2 shows how the surface varies at the point p considered with respect to the value

assumed by the two curvatures.

Following a roto-translation of the surface, the maximum and minimum curvature can

be reversed. Since Gaussian curvature is defined as the product of principal curvatures, it is

invariant by roto-translation because the product of signs remains constant, while the mean

14

1.2. COMPUTATIONAL REPRESENTATION AND PROPERTIES OF CURVES AND SURFACES

Figure 1.2: The "classical" shapes of a surface according to the values of mean H and Gaussian K
curvature.

curvature can change in absolute value. This transformation is an example of isometry, then the

Gaussian curvature is an intrinsic property of the surface.

1.2 Computational representation and properties of curves and
surfaces

As a first step toward a mathematical description of an object, one therefore defines a coordinate

system in which it will be described analytically. Indeed, the main tool for the development of

general results is the use of local coordinate systems, in terms of which geometric properties

are easily described and studied. This step allows us to represent and work analytically on the

elements introduced in the previous section.

1.2.1 Notations

Let us consider a set of multivariate real functions F j : Rk+n → R, j = 1, . . . ,m, that depend on

two sets of variables x= (x1, . . . , xk) and a= (a1, . . . ,an). Replacing x and a, respectively, by points

p ∈ Rk and A ∈ Rn, two new sets of functions are originated F j,p(a) := F j(p,a), F j,p : Rn → R,

being continuous on an open convex set U ′ ∈ Rn, and F j,A(x) := F j(x,A), F j,A : Rk → R, being

continuous on an open convex set U ∈Rk. Then, there are two families of zero loci F = {CA}A∈Rn

15

BACKGROUND MATERIAL

and H = {Γp}p∈Rk , where:

CA = {x ∈U |F j,A(x)= 0, j = 1, . . . ,m},

Γp = {a ∈U ′|F j,p(a)= 0 j = 1, . . . ,m}.

To simplify the notations, from here on we denote F = {Ca} and we consider

• m = 1, k = 2, assuming that the zero loci Ca describes a plane curve;

• m = 1, k = 3, assuming that the zero loci Ca describes a surface;

• m = 2, k = 3, assuming that the zero loci Ca describes a space curve.

1.2.2 Mathematical representations in case of codimension 1 in the plane and
in the space

Terminology, definitions and concepts on hypersurfaces are presented in this section. Following

the notation introduced in Section 1.3.1, a hypersurface in the plane (k = 2) or in the space (k = 3)

is defined as the zero locus Z of a real function F,

Z = {x ∈Rk|F(x)= 0}.

In order to avoid pathological cases, the same hypothesis as [151] are adopted, that is we assume

that the sets of regular points of F are dense in Z and the function F is smooth.

Another way for representing a hypersurface is to use a parametric representation. In case

the hypersurface is a curve in the plane, it is described by the set of points {(f1(t), f2(t)), t ∈ I},

whose components f1 and f2 are continuous functions of a common variable t ∈ I, with I an

interval of R. If the hypersurface represents a surface in the space, its parametric representation

is given by {(f1(t,u), f2(t,u), f3(t,u)), (t,u) ∈Ω}, whose components f1, f2 and f3 are continuous

functions of common variables (t,u) ∈Ω, with Ω a subset of R2. We can think of a parametric

curve as a map from a straight line with points t to a curve in the (x, y)−plane and of a parametric

surface as a map from a plane with points (t,u) to a surface in the (x, y, z)−space. As said in

[78], the class of parametric algebraic curves and surfaces is smaller than the class of implicit

algebraic curves and surfaces, then the transition from implicit to parametric equations and vice

versa is generally not simple or impossible to solve. Under certain assumptions, it is possible

to switch from a parametric representation to an implicit one and vice versa. In case of plane

curve, according to the implicit-function theorem and the notations and definitions introduced

in [150](Ch.1), if it is m− regular (see Definition 1.1.8) with respect to a parametrization, the

equation x = f1(t) is solvable with respect to t in an appropriate open set, therefore t = t(x). Vice

versa, if F is a smooth function and

F(x0)= 0, F2
x (x0)+F2

y(x0)> 0

16

1.2. COMPUTATIONAL REPRESENTATION AND PROPERTIES OF CURVES AND SURFACES

at same point x0, it is well known that the fulfillment of these conditions is sufficient for

expressing one variable as a function of another. In particular, if Fy(x0) ̸= 0, then it exists a

solution of the equation F(x)= 0 in the form y= y(x) in a neighborhood of x0. Therefore, we may

choose the coordinate x, as a parameter of this curve.

In the case of surface, if it is regular (see Definition 1.1.11) with respect to a parametrization,

and specifically f1t f2u − f1u f2t ̸= 0, then the systemx = f1(t,u)

y= f2(t,u)

can be solvable with respect to t and u t = t(x, y)

u = u(x, y)

for the implicit-function theorem. Vice versa, according to the implicit-function theorem, if F is

smooth and

F(x0)= 0, F2
x (x0)+F2

y(x0)+F2
z (x0)> 0,

in particular imposing Fz(x0) ̸= 0, then it exists a solution of the equation F(x) = 0 in the

form z = z(x, y) in a neighborhood of x0. Therefore, we may choose the coordinates x and y as

parameters of this surface.

1.2.3 Mathematical representations in case of codimension 2 in the space

In this section, terminology, definitions and concepts on space curves are presented, which

differ from the case of hypersurfaces in the affine space since space curves have codimension 2.

According to the terminology introduced before, a space curve in implicit form is represented as

the zero loci Z of two real functions F1 and F2,

Z = {x ∈R3|F1(x)= 0, F2(x)= 0}.

To avoid pathological cases, we adopt the same hypothesis as [151], therefore let us assume

that the functions F1 and F2 are smooth (or at least there exist first- and second- derivatives

at every point) and the sets of regular points of (F1,F2) are dense in Z . Note that, an implicit

representation is not unique as a space curve can be represented as the intersection of many pairs

of surfaces. Specifically, a space curve is set-theoretic complete intersection of three surfaces, two

of which are cylinders (see [17, 27, 143]).

Another common method for representing a space curve is to use a parametric representation.

A space curve in parametric form is described by the set of points {(f1(t), f2(t), f3(t))|, t ∈ I}, whose

components f1, f2 and f3 are continuous functions of a common variable t ∈ I, with I an interval of

R. The implicit and parametric curve representations are not interchangeable and the transition

17

BACKGROUND MATERIAL

from implicit to parametric equations and vice versa is generally not simple or impossible to solve,

at least with elementary procedures [78]. Algebraic curves offer a remarkable class of curves

for which it is possible to switch from a parametric representation to an implicit one [157]. In

general, according to the implicit-function theorem and the notations and definitions introduced

in [150](Ch.3), if a curve is m− regular (see Definition 1.1.8) with respect to a parametrization,

the equation x = f1(t) is solvable with respect to t in an appropriate open set, therefore t = t(x).

Vice versa, the fulfillment of the inequality∣∣∣∣∣F1x (x0, y0, z0) F1y(x0, y0, z0)

F2x (x0, y0, z0) F2y(x0, y0, z0)

∣∣∣∣∣ ̸= 0,

with (x0, y0, z0) a point such that F1(x0, y0, z0)= 0 and F2(x0, y0, z0)= 0, is sufficient for expressing

any two variables as a function of the third (again for the implicit-function theorem) in a

neighborhood of (x0, y0, z0). Therefore, we may choose one of the coordinates, e.g., x, as a parameter

of this curve

y= y(x), z = z(x).

However, even when possible, the algorithmic conversion from an implicit to a parametric form

is, in general, computationally expensive [78]. Depending on the task, a parametric representation

is best suited for generating points along a curve, whereas an implicit representation is most

convenient for determining whether a given point lies on a specific curve [146]. These facts

motivate the definition of a recognition method able to handle both implicit and parametric curve

representations.

1.2.4 Geometric properties

In the literature, methods for evaluating curvatures are distinguished into three main groups:

the first goes from discrete to continuous, approximating locally with a smooth surface to which

one can apply the definitions given in Section 1.1.2; the second denotes descriptors from the

characteristics of the operators used in the continuous case, applying them directly in the discrete

and the third looks for discrete approximations of differential properties of surfaces, from which

the curvature can be derived, such as normal tensors, see [65].

The computation of curvatures on a discrete surface representation such as a triangular mesh

focuses mainly on the edges and vertices of triangles, since for all other points one can find a

neighborhood homeomorphic to a planar object, thus with null curvature. Regarding the point

clouds, methods to estimate the curvatures are often based on moving least squares (MLS) fitting

of algebraic surfaces. We refer to [65, 107] and [156] for an overview of methods for curvature

approximation and to [112] for a detailed comparison among eight representatives of the various

curvature estimator strategies.

Most of these methods are designed only for triangle meshes and not for point clouds, but

there are many algorithms in the literature to obtain a mesh from a cloud (see for example [22]).

For more details on curvature approximation strategies in point clouds, we refer to [48].

18

1.2. COMPUTATIONAL REPRESENTATION AND PROPERTIES OF CURVES AND SURFACES

In our experiments, regarding the estimation of curvatures on meshes, we use the Toolbox

Graph [121], which approximates curvature through the theory of normal cycles [38]. As regards

the computation of curvatures on point clouds, we use the Algebraic Point Set Surface fitting

method [69] provided by Meshlab [37].

1.2.5 Colorimetric properties

The choice of a colour-related description was made with respect to a theory related to human

perception of colour, the so-called colour space Lab (or CIELAB) [85]. The space in question is

colour-opponent: in practice, the distribution in a colour space the "opposite" hues are in opposite

positions in the representation space. For example, thinking of distributing colours in a plane

disk, we define two or more equi-spaced poles on it. On each pair of opposite poles one colour, e.g.

red, is on one side and its opposite, e.g. green, is on the other. The definition of "opposite colours"

and the choice of space is what differentiate the various colour-opponent spaces.

The strength of CIELAB space is its excellent performance in merging (or distancing) colours

that according to human perception are similar (or dissimilar). For example, unlike the RGB

colour system, colours with close coordinates in CIELAB space are perceptually similar, whereas

the same is not necessarily true in RGB space [9]. The way colours are considered opposites for

CIELAB is illustrated in Figure 1.31.

Figure 1.3: The distribution of colours considered "opposites" according to CIELAB.

Given a colour, the coordinates (or channels) of the CIELAB space are L, which is similar

to the "human" concept of luminosity, a, which denotes the amount of red/green, and b, which

denotes the amount of yellow/blue. As can be seen in Figure 1.4, RGB space is distributed in

CIELAB space so that the opposite colours, according to this colour interpretation, are as far

apart as possible and vice versa.

1https://www.linshangtech.com/tech/color-space-tech1439.html

19

https://www.linshangtech.com/tech/color-space-tech1439.html

BACKGROUND MATERIAL

Figure 1.4: RGB space colours (left) represented according to CIELAB coordinates (right).

In some experiments in this thesis, the channel L is used as the surface property that identifies

a decorative pattern.

1.3 The Hough transform for families of curves and surfaces

The Hough transform has been introduced in 1962 [81] originally to recognise straight lines in

images. Then it has been extended to circles and ellipses [53] and later generalised to template

curves even without explicit curve representation [14]. One of the salient features of HT is its

ability to recognise one or more instances of a shape, even partial or in presence of noise, within

an image. This has led the HT to become, for dozen years, one of the basic techniques of pattern

recognition, regularly taught in many computer vision courses. A key turning point is the seminal

work [20] that extended the HT to algebraic objects, thus enabling the use of the HT to larger

classes of curves, surfaces and hypersurfaces. Notice that the HT recognition techniques in

the literature generally deal with hypersurfaces of codimension 1, i.e., plane curves in images,

surfaces in space, etc. [19]. The use of HT for space curves – then the approach to elements of

codimension 2 in the space – is still in its infancy and it has been addressed only in the last few

years.

1.3.1 Preliminary concepts on the HT

The problem to define a method for recognising a (plane/space) curves or surfaces on objects

represented as point clouds or meshes can be formalised as follows: let D be a curve or surface of

interest embedded in Rk, k = 2, 3 and P ⊂D a set of L points, i.e. P = {pl ∈D, l = 1, . . . ,L}, L ≫ n,

the aim is to find the curve or the surface that best fits D. The Hough transform (HT) yields the

formalism and the basis for such a method.

The original HT definition is based on the concept of point-line duality, which is formalized in

the affine plane by the classical duality in the projective plane. It can be summarised as follows:

points on a straight line, defined by an equation, correspond to lines in the parameter space that

20

1.3. THE HOUGH TRANSFORM FOR FAMILIES OF CURVES AND SURFACES

Figure 1.5: An illustrative example of the point-line duality.

intersect at a single point (see Figure 1.5). This point uniquely identifies the coefficients in the

equation of the original straight line.

The duality concept extends to curves and surfaces, both in implicit [152] and parametric

form [20]. In these works, the HT formulation is expressed either in the field of complex numbers

C or the field of real numbers R and in affine spaces over these fields; being mainly interested into

applications, in this thesis, we restrict our notation to R and on real spaces. Specifically, given a

family F = {Ca} of curves or surfaces that depend on a set of parameters a= (a1, . . . ,an) ∈U ′ ⊂Rn,

U ′ an open set of Rn, a general point p in the plane/space corresponds to a locus Γp in the

parameter space U ′.

Definition 1.3.1. Fixed the point p, Γp is called the Hough transform of p with respect to the

family F .

Lemma 1.3.1 (Key Lemma). The following conditions are equivalent:

• for any Ca, Ca′ , we have Ca =Ca′ =⇒ a= a′;

• for any Ca, we have
⋂

p∈Ca Γp = {a}.

Definition 1.3.2. If a family F satisfies one of the two equivalent conditions of the Key Lemma

it is called Hough regular.

The duality concept is fundamental for the HT-based recognition algorithm. In the case the

functions F j are polynomials, it is possible to explicitly verify if the family is Hough regular.

Note that, in practice, the exact intersection is not infinite and
⋂

p∈P Γp =;, since the real

data can be affected by noise or can be inaccurate. Then, we relax the request and compute an

approximation of
⋂

p∈P Γp ≈ {ā}, where ā identifies the curve or the surface Cā ∈F that fits P .

Indeed, the HT translates the recognition problem into detecting which value of the parameters

that determine the family F corresponds to the curve or surface that best fits a given set of

points (such a value may be non-unique) through a voting procedure (see details in Section 1.3.4).

21

BACKGROUND MATERIAL

1.3.2 Mathematical representations of the HT in case of codimension 1 in the
plane and in the space

Following the notations introduced in Section 1.2, to analytically derive the HT for implicit and

parametric representations, let us initially consider the family F with Ca given in the implicit

form:

Ca : Fa(x)= 0

where F is a function with respect to the variables x = (x, y) in an open set U ∈ R2 if Ca is a

plane curve, while x= (x, y, z) in an open set U ∈R3 if Ca is a surface. For each point p, placing

Fa(xp) = Fp(a), the HT of the point p with respect to the family F is given by the implicit

equation

(1.1) Γp : Fp(A)= 0

with Fp a function in an open set of the space of the parameters U ′ in Rn with respect to the

variables A= (A1, ..., An). In practice, the estimation of Γp can be seen as the estimation of the

zero loci of the system in equation (1.1).

Similarly, let us consider the family F with Ca given in the parametric form:

Ca :


f1(a,t)
...

fk(a,t)

t ∈U ,

where f1, . . . , fk are continuous functions in t, with k = 2 and U an open set of R in case of plane

curve, while k = 3 and U an open set of R2 in case of surface. If the curve equation system admits

an analytical solution, the analytic expression of Γp can be derived directly from the parametric

equations of F :

Γp :


A1 = h1(xp,t)
...

An = hn(xp,t)

t ∈U ,

with h1, . . . ,hn continuous functions in t. Note that Γp is expressed in terms of the same parameter

t that appears in the equation of Ca.

1.3.3 Mathematical representations of the HT in case of codimension 2 in the
space

Following the notations introduced in Section 1.2, to analytically derive the HT for implicit and

parametric curve representations, let us initially consider the traditional system of Cartesian

22

1.3. THE HOUGH TRANSFORM FOR FAMILIES OF CURVES AND SURFACES

coordinates (x, y, z) and the family of curves F with Ca given in the implicit form:

Ca :

F1,a(x, y, z)= 0

F2,a(x, y, z)= 0

with F1,a and F2,a functions with respect to the variables (x, y, z) in an open set U ∈R3. For each

point p, placing F1,a(xp, yp, zp)= F1,p(a) and F2,a(xp, yp, zp)= F2,p(a), the HT of the point p with

respect to the family F is given by the implicit equation

(1.2) Γp :

F1,p(A)= 0

F2,p(A)= 0

with F1,p and F2,p functions in an open set of the space of the parameters U ′ in Rn with respect

to the variables A= (A1, ..., An). In practice, the estimation of Γp can be seen as the estimation of

the zero loci of the system in equation (1.2).

Similarly, let us consider the family of curves F with Ca given in the parametric form:

(1.3) Ca :


x = f1(a, t)

y= f2(a, t)

z = f3(a, t)

t ∈U ,

with U an open set of R and f j, j = 1,2,3, continuous functions in t. If the curve equation system

admits an analytical solution, the analytic expression of Γp can be derived directly from the

parametric curve equations of F :

(1.4) Γp :


A1 = h1(xp, t)
...

An = hn(xp, t)

t ∈U ,

with h1, . . . ,hn continuous functions in t. Note that Γp is expressed in terms of the same parameter

t that appears in the equation of the curve Ca.

Section 3.3 details how the Hough transform expressed either in the form of equation (1.2) or

equation (1.4) can be estimated for space curves.

1.3.4 Voting procedure

Given a set of points P = {pl ∈ D, l = 1, . . . ,L} and once a family F is selected, the generalised

HT-based recognition method ([18, 153]) can be summarised in three main steps.

1. Initialisation of the HT space parameters and the accumulator function. A region T of

the parameter space of F is identified by exploiting the geometric characteristics of the

23

BACKGROUND MATERIAL

Figure 1.6: An illustrative example of the voting procedure, considering the profile that outlines
the threads of a screw (on the left); in the middle, the Hough transforms of points in the space
abc; on the right, the recognised curve corresponding to the coefficient ā, b̄ and c̄ identified by
the intersection point in the abc space.

chosen family. Let n be the number of parameters that characterise the curve family F , T

is sampled as follows:

a j,k j = a∗
j +k jδ j, k j = 0, . . . , N j −1; j = 1, . . . ,n

where δ j are the sampling distances from j-th component of a, a∗ = (a∗
1, ...,a∗

n) an estimate of

the parameters and N j indicates the number of samples considered for the j-th component.

Then, the cell centred in one of the points a j,k j is denoted as follows:

c(k1, . . . ,kn)= ∏
j,k j

[a j,k j −
δ j

2
,a j,k j +

δ j

2
).

Note that this notation is coherent with the notation used in [109] for families of curves

with two parameters and extends to curves with n parameters.

Assuming the set P is made of L points, the HT accumulator function H := H (L) of

dimension
∏n

j=1 N j is defined and initialised as Hk1,...,kn = 0 for each k j = 0, . . . , N j, j =
1, . . . ,n.

2. Estimation of the accumulator function. The estimation of the accumulator function H , in

the discretized form of a matrix, is crucial because every entry of this matrix corresponds

to the number of times that Γpl , varying pl ∈ P , crosses the corresponding cell of the

discretization. Therefore, the ideal solution to the HT problem is to detect the cell of H

that is crossed by the greatest number of points pl . The Hough transforms of a set of points

P are then evaluated and the matrix H is updated by placing each entry of the matrix

equal to the number of transforms passing through the cell corresponding to this entry:

H (l)
k1,...,kn

=
 H (l−1)

k1,...,kn
+1 if (Γpl ∩ c(k1, . . . ,kn)) ̸= ;

H (l−1)
k1,...,kn

if (Γpl ∩ c(k1, . . . ,kn))=;.

To estimate H , two different approaches are used, depending on whether the family F is

represented in parametric or implicit form.

24

1.3. THE HOUGH TRANSFORM FOR FAMILIES OF CURVES AND SURFACES

3. Identification of the potential fitting curve or surface. Given the accumulator matrix H , let

us consider ā= argmaxk1,...,kn Hk1,...,kn , which identifies the parameters of the curve or the

surface Cā within the family that best approximates the set of points P . Local maxima

can be non-unique, and then more solutions can be found by the HT. In this case, different

quality measures are used to determine the best one.

An illustrative example of this procedure is provided in Figure 1.6. Specifically, considering

a 3D model of a screw and a set of points that characterise one of its threads it is possible to

recognise the profile by selecting the family of cylindrical helices (see Section 3.2). As shown

in Figure 1.6, to each point of the profile corresponds a curve on the parameter space. The

coordinates of the intersection point of these curves correspond to the coefficients of the equation

of the recognised cylindrical helix.

25

C
H

A
P

T
E

R

2
RECOGNITION, EXTRACTION AND REPRESENTATION OF PLANE

CURVES

The characterisation and recognition of curve patterns on surfaces is a well-known problem

in computer graphics. Feature curves are useful for visual shape illustration [92] and

perception studies support these curves as an effective choice for representing the salient

parts of a 3D model [39, 72].

The problem faced in this chapter is focused on the extraction of feature curves on 3D shapes

that can be projected onto the regression plane and on images, then the HT-based recognition

approach can take advantage of a rich dictionary of families of plane curves [150]. In this context,

we first introduce the dictionary available in our template (Section 2.2), made of both simple

and compound plane curves, and we detail the main steps of our method (Section 2.3) dealing

with implicit and parametric representations. Then, in Section 2.4 we exhibit some tests of our

approach on real objects and in Section 2.5 we provide a comparative analysis of the two strategies.

Finally, we show two examples of applications that exploit the mathematical representations of

curves provided by our algorithm (Section 2.6).

2.1 Previous work

Plane curves fitting. Most methods for feature curve detection focus on the curve fitting

problem, i. e., they look for the curve that fits best a profile. There are many existing works

for extracting feature curves from meshes. Methods for feature curves detection aim at finding

curve segments that represent characteristic shape features (e.g., ridge/valleys, crest lines, sharp

lines, demarcating curves, etc.) [34, 39, 71, 77, 92, 94, 161]. Even if these curves often undergo

smoothing operations (for instance, based on Laplacian smoothing [77] or energy minimisation

27

RECOGNITION, EXTRACTION AND REPRESENTATION OF PLANE CURVES

[116]), their profile is often identified by a set of ordered points [34, 77, 161] or by piecewise

splines of low degree polynomials, e.g., [10, 58]. However, low degree polynomials cannot span a

large number of points, therefore many small segments need to be blended together to build the

desired curve, and such a decomposition is not unique, for instance, it depends on the starting

point. Due to the ease of construction, spline interpolation is frequently used to approximate

data [145]. B-splines are now a popular tool in CAGD and offer a common method for handling

spline interpolation [30]. Other generalisations to non-polynomial splines include non-uniform

rational B-splines (NURBS) [122] and generalised splines [29], which also permit trigonometric

or exponential bases.

Another important class of curves are Pythagorean–hodograph (PH) curves, which have

become an active research area in recent years [7, 59, 129]. Finally, regarding the curve fitting it

is worth mentioning subdivision schemes [54], that are widely used in various applications such

as computer graphics and solid modeling.

Hough Transform for plane curves. Since its original definition for straight line detection

[81], the HT has been extensively used for the recognition of circles and ellipses in [53] and then

generalised to the identification of non-analytic profiles in images [14]. This generalisation of the

HT is able to detect an arbitrary (but fixed) shape using a look-up table to drive the template

matching, still retaining the HT robustness. Nevertheless, this HT generalisation adopts a brute

force approach that considers all the possible orientations and scales of the input shape. Thus, the

number of parameters in its process is considerably high. Further, being based on a single-shape

template it cannot adequately handle similar shapes, as in the case of different instances of the

same shape, which are comparable but not identical, e.g. petals and leaves. For an extended

survey on the HT theory and its extensions, we refer to [114].

The theoretical foundations introduced in [20] and [18] have been laid to extend the HT

technique to the detection of special classes of curves whose algebraic forms are known, but

significantly more complex than straight lines or conics. Specifically, irreducible algebraic plane

curves like elliptic curves, curves with 3 convexities, Wassenaar curves, conchoids of Slüse and

piriform curves have been considered and the standard line and conic detection algorithm has

been extended to detect these curves [109]. In addition, also collections of different algebraic

pieces from the same family or low-degree piecewise polynomial curves have been introduced in

[40, 131].

To deal with real data sets, an approximation strategy of the HT for algebraic curves has been

defined, for instance, we refer to [109, 153]. There is software freely available for plane curves

represented in both parametric form http://mida.dima.unige.it/g_software_htbone.html

according to the algorithm [18, 109] and in implicit form https://github.com/CNR-IMATI/

FeatureExtraction as detailed in [153, 154].

28

http://mida.dima.unige.it/g_software_htbone.html
https://github.com/CNR-IMATI/FeatureExtraction
https://github.com/CNR-IMATI/FeatureExtraction

2.2. FAMILIES OF PLANE CURVES

2.2 Families of plane curves

The HT-based recognition procedure looks for the curve Ca that better fits a set of points P

within a selected family of curves F . Therefore, we need to define a dictionary of curves in which

it is possible to choose the family of curves most appropriate for the recognition process. In this

section, we describe the library of families of mathematical plane curves developed in our system.

In [154], the first set of families of mathematical curves suitable for recognising features on

surfaces was already proposed, namely the citrus curve, the Archimedean spiral, the Lamet curve,

the m-convexities curve, and the geometric petal curve of type (A). This library also includes

basic families of curves like straight lines, circles and ellipses. Then, we have extended this

dictionary to eight additional families of curves in [137]: the geometric petal curve of type (B), the

elliptic curve, the lemniscate of Bernoulli, the egg of Keplero, the mouth curve, the astroid and the

bullet-nose curve.

In Sections 2.2.1 and 2.2.2 we detail the families of plane curves composing our dictionary.

Note that the dictionary is flexible and easily extendable according to application needs by

choosing the appropriate families of curves in an atlas such as [150]. We have included those

suitable for our case studies.

2.2.1 Simple plane curves

For each curve in our library, we highlight the parameters that drive the HT and show how the

knowledge of the main geometric characteristics of each family allows estimating a priori these

parameters in which a varies for the set P . Indeed, we use the bounding box of the set P to

evaluate which curve parameters would generate a curve tangent to the bounding box. In the

following, the lengths of the horizontal and vertical edges of the bounding box of P are denoted

as D1 and D2. In the same way, we define the minimum and the maximum distances of points

from the origin, respectively, R1 and R2.

These a priori estimates are considered as a kind of centre of the parameter space: a window

of the parameter space is automatically selected and opportunely discretized into cells to detect

the value of a corresponding to the best fitting curve. Note that, according to the notation in

Section 1.3.1, a is a vector of parameters: in the examples listed in this section a has dimension

one or two (i.e., one or two scalar parameters).

In the following, for each curve we show its equation, parameters and a representation with

specific parameters. When convenient, the implicit representation is in polar coordinates instead

of the traditional Cartesian ones.

• The citrus curve has the implicit and parametric equations:

I : a4b2 y2 +
(
x− a

2

)3 (
x+ a

2

)3 = 0, P :

x = t− a
2

y=±
√

(a−t)3 t3

a4b2

29

RECOGNITION, EXTRACTION AND REPRESENTATION OF PLANE CURVES

with a and b real parameters (with respect to the previous notation a= (a,b), the double

notation in the following will be omitted). It is a symmetric and limited curve, contained

in the rectangle [− a
2 , a

2]× [− a
8b , a

8b]. The parameters a and b can be estimated through the

size of the bounding box of the set of points P . The parameters a and b are limited by the

relation a ≈ D1 and b ≈ a
4D2 ; in particular, b determines how the curve squeezes along the

y axis.

• The Archimedean spiral is expressed in the form:

I : ρ−a−bθ = 0, P :

x = (a+bt)cos t

y= (a+bt)sin t

with a and b real parameters and the implicit representation in polar coordinates. This

curve is connected and not limited, with a singularity at the point (a,0). Two consecutive

turnings of the spiral have a constant separation distance, which is equal to 2πb and,

therefore, the k-th turning of the spiral is contained in a region bounded by two concentric

circles of radius a+2(k−1)πb and a+2kπb. Therefore the parameters a and b depend on

the length of the edges of the bounding box of the set P and the number of turnings of the

spiral k.

• The Lamet curve has implicit and parametric equations:

I : bxm +am ym = amb, P :

x = at

y=± (b−btm)
1
m

with a,b ∈R>0 and m ∈N. It is a curve of degree m and represents a rectangle with rounded

corners, which increases when m grows. This curve is connected, closed and equipped with

two symmetry axes (the x axis and the y axis). Furthermore, it is contained in a rectangle

of edges [−a,a]× [−b
1
m ,b

1
m]. In our applications, the length of the edges of the bounding box

of the set P allows the computation of the parameters a and b as a ≈ D1
2 and b ≈ (D2

2)m.

• The m-convexities curve is defined in implicit form (in polar coordinates) and in parametric

form by the equations:

I : ρ = a
1+bcos(mθ)

, P :

x = a
1+bcos(mt) cos t

y= a
1+bcos(mt) sin t

with a,b ∈R>0, b < 1 and m ∈N+, m ≥ 2. The parameter a plays the role of the scale factor,

while b regulates the fineness of the convexities. This curve is connected and bounded. It has

m symmetry axes and it is contained in the region between two concentric circumferences

of radius a
1+b and a

1−b . To estimate the parameters, we use the maximum and the minimum

radius (respectively, R2 and R1) of the set P written in polar coordinates.

30

2.2. FAMILIES OF PLANE CURVES

• The geometric petal curve of type (A) is defined in implicit form (in polar coordinates) and

in parametric form by the equations:

I : ρ = a+bcos2n θ, P :

x = (
a+bcos2n t

)
cos t

y= (
a+bcos2n t

)
sin t

with n ∈N+ e a,b ∈R, which for our purposes is reduced to the case b =−a. It is a bounded

and symmetrical curve, with a singularity in the origin, and completely contained in a

circle of radius
p

2a . Replacing a with c2, we get the curve in Cartesian coordinates, with

the usual substitution ρ =
√

x2 + y2 and cos(θ)= xp
x2+y2

, of equation

(x2 + y2)2n+1 − c4[(x2 + y2)n − x2n]2 = 0.

This curve is bounded by the rectangle [− 2n
2n+1 c2p[2n] 1

2n+1 , 2n
2n+1 c2p[2n] 1

2n+1]× [0, c2]. In

this case, it is convenient to use the equation in polar form. Remembering the substitution

of a with c2, a limit for the parameter a is given by the length of the vertical edge of the

bounding box of the set P , therefore a ≈ D2.

• The geometric petal of type (B) is defined in implicit form (in polar coordinates) and in

parametric form by the equations:

I : ρ = a+bcos2nϕ, P :

x = (a+bcos2nt)cos t

y= (a+bcos2nt)sin t

with a > 0, b > 0 and n ∈N. This curve is contained in a circle with radius a+ b and the

origin is the center of symmetry, which becomes a singular point if a ≤ |b| while if a > |b|
there are no singularities. As for the m-convexities curve, the maximum and the minimum

radius (respectively, R2 and R1) of the points written in polar coordinates are used to

estimate a and b. Note that this family of curves can deal with an even number of petals,

differently from the m-convexities one.

• The lemniscate of Bernoulli is an algebraic curve in the form of a lying eight. Its implicit

and parametric equations are:

I :
(
x2 + y2)2 = 2a2 (

x2 − y2)
, P :

x = a sin t
1+cos2 t

y= a sin tcos t
1+cos2 t

with a positive real parameter. It is a symmetric and bounded curve, contained in the

rectangular region [−p2 a,
p

2 a]× [−a
2 , a

2]. Then the parameter a can be estimated as a ≈p
2

2 D1. For convenience, in this case we adopt the equation of the curve in polar form

ρ2 = 2a2 cos2θ.

31

RECOGNITION, EXTRACTION AND REPRESENTATION OF PLANE CURVES

• The egg of Keplero has the implicit and parametric equations:

I : (x2 + y2)2 = ax3, P :

x = a
(1+t2)2

y= at
(1+t2)2

with a ∈R, a > 0. It is symmetric with respect to the x−axis and bounded, in particular, it is

contained in the rectangle [0,a]× [−3
p

3
16 a, 3

p
3

16 a]. Therefore, the value of the parameter a

coincides with the length of the horizontal edge of the bounding box of the set P .

• The mouth curve has has the implicit and parametric equations:

I : a4 y2 = (
a2 − x2)3

, P :

x = acos t

y= asin3 t

whit a real positive parameter which is half the length of the mouth. It is a symmetric and

bounded curve, contained in the square [−a,a]× [−a,a]. Even in this case, the parameter a

is estimated through the length of the edges of the bounding box of the set P . This curve

has a shape similar to the citrus curve, but it extends more along the y−axis.

• The elliptic curve has implicit and parametric equations:

I : y2 = x3 +ax+b, P :

x = t
a

y=±
√

t3

a3 + t+b

with a and b real parameters. It is symmetric with respect to the x-axis and unbounded.

We only consider the case in which the curve is not singular, i.e., when the determinant

4a3 +27b2 is positive. The parameters a and b have specific geometric interpretations: the

parameter b is the square of the ordinate of the intersection points of the curve with the

y-axis, while the parameter a appears in the abscissas of the points of maximum of the

semi-curve y=
p

x3 +ax+b .

• The bullet-nose curve has implicit and parametric equations:

I : a2 y2 −b2x2 = x2 y2, P :

x = acos t

y= bsin t

with a > 0 and b > 0. It is symmetric with respect to the origin and unbounded. The

parameters a and b are estimated through the lengths of the minimum bounding box of the

set P , specifically the horizontal length with regard to a and the vertical one with regard

to b.

• The astroid is a bounded curve given by the equations

32

2.2. FAMILIES OF PLANE CURVES

I :
(
x2 + y2 −a2)3 +27a2x2 y2, P :

x = acos3 t

y= asin3 t

with a > 0. It is contained in the rhombus of vertices (a,0), (0,a), (−a,0) and (0,−a). In

applications, an estimate of a can be obtained with respect to both the maximum abscissa

and the ordinate of the set P .

Table 2.1 summarises the mathematical expression of the plane curves listed in this section

and provides a graphical example for each of them.

2.2.2 Compound plane curves

Combining the simple curves listed in Section 2.2.1, it is possible to recognise complex patterns

made of several elements. In these patterns, more families of curves or more occurrences of

the same family might be present, possibly with different parameters. We address the multiple

occurrences of curves in two different ways, as explained in [135]. The first approach builds a

new family of curves by combining the equations of the corresponding curve families. In the case

of implicit representation, the new family is built through the product of the equations of the

curves composing it. For the parametric representation, the new family of curves is formed by

the union of parametric equations of the curves that compose it. The use of the curve product or

union is very simple and yields a strategy to enrich the dictionary of curves, but increases the

number of parameters. The idea is that the simultaneous detection of two or more curves limits

the ambiguities. Figure 2.1(b) shows the outcome of the recognition of a rosette in all its parts in

terms of the product of a circle and a geometric petal of type (B) with a > |b|. In this case, the

family used is defined by the implicit and parametric equations:

I :
(
ρ−a−bcos2nϕ

)(
ρ− r

)= 0, P :

x = (a+bcos2nt)cos t

y= (a+bcos2nt)sin t
∪

x = r cos t

y= rsin t
.

Figure 2.1: An example of recognition of a complex pattern through the product of curves
composing it (courtesy of [132]).

The second method looks for the rules and parameters that characterise a pattern and

replicates them, for instance repeating a pattern by translation, reflection, or rotation rules. In

33

RECOGNITION, EXTRACTION AND REPRESENTATION OF PLANE CURVES

Table 2.1: A set of plane curves expressed in both implicit and parametric forms.

citrus curve Archimedean spiral Lamet curve

I: a4b2 y2 + (
x− a

2
)3 (

x+ a
2
)3 = 0 I: ρ−a−bθ = 0 I: bxm +am ym −amb = 0

P:

x = t− a
2

y=±
√

(a−t)3 t3

a4b2

P:

{
x = (a+bt)cos t
y= (a+bt)sin t

P:

{
x = at

y=±(
b−btm) 1

m

m-convexities curve geometric petal A geometric petal B

I: ρ− a
1+bcos(mθ) = 0 I: ρ−a+acos2n θ = 0 I: ρ−a−bcos2nϕ= 0

P:

{
x = a

1+bcos(mt) cos t

y= a
1+bcos(mt) sin t

P:

{
x = (

a−acos2n t
)
cos t

y= (
a−acos2n t

)
sin t

P:

{
x = (a+bcos2nt)cos t
y= (a+bcos2nt)sin t

lemniscate of Bernoulli egg of Keplero mouth curve

I:
(
x2 + y2)2 −2a2 (

x2 − y2)= 0 I:
(
x2 + y2)2 −ax3 = 0 I: a4 y2 − (

a2 − x2)3 = 0

P:

{
x = a sin t

1+cos2 t
y= a sin tcos t

1+cos2 t
P:

x = a
(1+t2)2

y= at
(1+t2)2

P:

{
x = acos t
y= asin3 t

elliptic curve bullet-nose curve astroid

I: y2 − x3 −ax−b = 0 I:a2 y2 −b2x2 = x2 y2 I: (x2 + y2 −a2)3 +27a2x2 y2

P:

x = t
a

y=±
√

t3

a3 + t+b
I:a2 y2 −b2x2 = x2 y2 P:

{
x = acos3 t
y= asin3 t34

2.3. A METHOD FOR RECOGNISING PLANE CURVES

this case, the parameters that characterise a single pattern and the rules for their aggregation

and repetition are learned. In particular, the method can recognise the decorations made of

elements that are repeated in the space in a geometric way, by locating the individual components

and then aggregating them according to decoration-specific rules. Figure 2.2 illustrates the

recognition of a repeated pattern. The pattern is made of two elements: the oval-like curve and

the half of a mouth-like curve. The pattern is then horizontally repeated to form a frieze of

four elements. The parameter a of the mouth-like curve corresponds to half of the curve width,

therefore the amplitude of the curve is 2a. Then, we use the parameter 2a obtained for the

recognition of a single element to infer the entity of the horizontal translation and to recognise

the entire moulding.

Figure 2.2: An example of recognition of a complex pattern through the use of repetition rules
(courtesy of [132]).

2.3 A method for recognising plane curves

In this section, the main steps of the algorithm for the HT-based recognition of plane curves

are briefly summarised. The input of our method is a 3D model, from which we extract feature

points that can be projected onto the plane. As a working assumption, we assume that the

input model can be locally represented by an explicit function and therefore locally flattened. An

overview of methods for extracting feature points is presented in [39, 94], while the SHREC19

benchmark presents an evaluation of methods for feature curve estimation [113]. Note that the

curve recognition method is independent of the technique adopted to select the feature points

and the data representation (both meshes or point clouds).

Our approach works in four main steps, namely the extraction of the feature points; the

projection of the potential feature points on a plane; the HT curve recognition; and an evaluation

step to determine the quality of the approximation. It requires in input a family of curves and

some thresholds to assess which points are significant or not, to establish if a set of feature points

can be grouped or not, and to assess the quality of the recognition result.

1. Extraction of the feature points. Unless point clusters are provided directly, a 3D model

(a mesh or a point cloud) is preprocessed to identify sets of feature points. In the case of

geometric curves, the mean curvature is used as the filter criterion: for triangle meshes

the algorithm in Toolbox Graph package [121] is applied; for point clouds, the polynomial

35

RECOGNITION, EXTRACTION AND REPRESENTATION OF PLANE CURVES

fitting of osculating jets provided by MeshLab [37] is used. Depending on the type of feature

(if a ridge or a groove) the high or low curvature values are selected through the analysis of

a histogram of the curvature distribution and the points corresponding to the histogram

queues (the size of the queue is an input parameter) are kept. In the case of colorimetric

decorations, we adopt the L-channel (luminosity) of the CIELAB space [85] to determine

which points are selected.

Specifically, in the range of variation of the values assumed by the mean curvature or the

luminosity, feature points are defined as points whose value falls within the first m% or the

last M% of the values. The thresholds m and M influence the number of feature points; in

our implementation, the usual values are 15% and 85%, respectively.

The feature points are then grouped into connected components through a clustering

operation. Our implementation adopts the method Density-Based Spatial Clustering of

Application with Noise DBSCAN, [57], which aggregates nearby points with a certain

density and eliminates the isolated ones considered noise. This clustering choice permits

the aggregation into groups of points of even irregular shape but also aggregate curves that

intersect; in the latter case, another clustering strategy could be adopted or a composite

curve should be considered. The DBSCAN algorithm requires two parameters: the threshold

used as the radius of the density region (a real positive number), and the minimum number

of points necessary to form a region (a positive integer). In our implementation, we use

the DBSCAN routine provided in MATLAB [111]. The outcome of this preprocessing phase

is a set of num clusters P i of feature points, i = 1, . . . ,num. Each cluster of points P i is

supposed to represent a curve or some of its parts.

2. Projection on the regression plane. This step consists in reducing the three-dimensional

problem to a two-dimensional one, projecting every single cluster P i on a plane. Even

if every point on a surface admits a neighbourhood that is homeomorphic to a disk, this

method holds only for curves that can be flattened. Each cluster is automatically projected

into its regression plane using the Matlab function regress; in case the estimation of

the normal of a cluster is numerically unstable, an alternative method for the plane

approximation is the RANSAC algorithm [62]. Then, the minimal bounding box is used to

determine its main axes and estimate its size. Subsequently, the points of every cluster are

translated and/or rotated to place them in the default position of the curve family selected

for recognition.

3. Recognition of the feature curve. The generalised HT technique described in Section 1.3.4

is applied to every cluster P i. The estimation of the accumulator function H i changes

according to the representation of the family F . Finally, the points in the cluster that are

close to the curve recognised Cā for less than a user-defined threshold (ε) are selected.

36

2.3. A METHOD FOR RECOGNISING PLANE CURVES

4. Evaluation of the goodness of fit. To determine if the curve identified at the previous step

satisfactorily approximates a set of feature points P i, the notion of Goodness of Fit (GoF)

introduced in [109] is used. Formally, for each point p ∈P i let us consider the Euclidean

distance d from the curve Cā recognised in the previous step defined as follows:

d(p,Cā)= infpc∈Cā∥pc −p ∥2.

Then the GoF is defined as:

GoF := d1 +d2 + ...+d|P i |
|P i|

,

where |P i| is the cardinality of the set P i. The curve recognised is a good approximation of

the profile outline if the value of the GoF is smaller than a given threshold (for example, an

automatic way to fix such a threshold is to select the 10% of the lowest curve parameter).

Finally, the translation and rotation operations are done backward to identify on the orig-

inal model the initial coordinates of the feature points recognised. The algorithm returns the

parameters of the recognised curve and the vertices of the model closest to the curve identified.

2.3.1 Estimation of the Accumulator Function

The estimation of the accumulator function changes according to the type of representation of the

family of curves. In this section, we describe the method for curves in parametric and implicit

forms.

Estimation of the accumulator function for plane curves in parametric form. For

curves in parametric form, the generic analytical expression of Γp needs to be derived directly

from the parametric curve equations of the family [109]. A particular case of great interest

occurs when the system of parametric equations is linear with respect to the parameters a. In

this case, a general rule for the analytic solution of the system with respect to a is derived and

therefore an explicit expression for Γp in equation (1.4). To this purpose, the Moore-Penrose

pseudo-inverse [68, 120] of the system that defines F is considered. In our experiments we use

the Moore-Penrose inverse of real matrices M† that can be computed using the singular value

decomposition. The advantage of M† is that it can deal with 2×n matrices and provides the least

squares solution to a system of linear equations.

In particular, exploiting the Moore-Penrose pseudo-inverse [120], it is possible to automatically

derive Γp by of the matrix M(t) that defines the coefficients of a. Then, if the family of curves in

parametric form admits a matrix representation as

(x(t), y(t))= M(t)a,

37

RECOGNITION, EXTRACTION AND REPRESENTATION OF PLANE CURVES

where M(t) is a matrix 2×n that depends on the variable of the parametric equations t, Γp can

be calculated directly

Γp : A(t)= M†(t)(xp, yp).

Note that the parameter t that appears in the parametric formulation of Γp is the same as in the

parametric equation of the family of curves F . Using the notation introduced in Section 1.3.4,

the condition of crossing a cell c(k1, . . . ,kn) is translated into the following inequality

(2.1) a j,k j −
δ j

2
≤ A j(t)< a j,k j +

δ j

2
.

If the inequality is verified for at least one value of the parameter t for each component j of

A= (A1, ..., An), the value of H i corresponding to c(k1, . . . ,kn) increases by 1.

Note that, if the family of curves is formed by the union of parametric equations of the curves

composing it, the evaluation of the intersection between the cells of the parameter space and the

HT of the points is slightly different. In particular, considering the family of curves represented

by the union of q parametric equations, the system x= M(t)a has to be solved for each system

of equations that make up the family of curves by obtaining q results As = (A1s , ..., Ans), with

s = 1, .., q. The inequality (2.1) has to be verified for at least one parameter t for each component j

and for at least one value of s.

Estimation of the accumulator function for plane curves in implicit form. In the case

of plane curves expressed in implicit form, Γp is a hypersurface, and it can be seen as the zero loci

of its implicit function. Then, Γp crosses the cell c(k1, . . . ,kn) if its evaluation on the cell centre is

zero. Indeed, exploiting the local approximation of the zero loci of a set of analytic functions in

terms of series of Taylor, an algebraic theoretical result is implemented based on comparing the

evaluation of the functions present in Γp at the cell centres with two theoretical bounds. These

bounds depend on the Jacobian and Hessian matrices of these functions and the pseudo-inverse

of the Jacobian.

Exploiting the notation introduced in Section 1.2 and referring to [153], we consider Fp(A)

and Fp(ȧ), with ȧ the point center of the selected cell. This cell is a subset of the (∞,E)-unit

ball centred at point ȧ, that is B(∞,E) = {A ∈Rn|∥(A− ȧ)∥(∞,E) ≤ 1}, where ∥·∥(∞,E) is the weighted

infinite norm with respect to the positive diagonal matrix E with entries the positive real numbers
1
ε1

, . . . , 1
εn

. Then, we fixed εmin = minε1, . . . ,εn and εmax = maxε1, . . . ,εn and we denote JacFp(A)

and HFp(A) the Jacobian and the Hessian matrices of F. Finally, we indicate H the value

H = maxA∈B(∞,E){∥HFp(A)∥∞} and J the value J = supA∈D(ȧ,R)∥Jac†
Fp

(A)∥∞, with D(ȧ,R) = {A ∈
Rn |∥(A− ȧ)T∥∞ < R}, R <min{εmin,

∥JacFp (ȧ)∥1

H } and Jac†
Fp

(A) the pseudo-inverse of the Jacobian

JacFp(A). If:

• |Fp(ȧ)| > ∥JacFp (ȧ)∥1εmax+ H
2 ε

2
max =: B1, then Γp does not cross the cell and the correspond-

ing entry of H i does not increase;

38

2.4. TESTING AND VALIDATING THE METHOD ON DATA FROM REAL OBJECTS

• |Fp(ȧ)| < 2R
J(c+pn HJR) =: B2, with c =max2,

p
n , then Γp crosses the cell and the correspond-

ing entry of H i increases by 1;

• B2 < |Fp(ȧ)| < B1 the corresponding entry of H i increases by a value of indeterminacy ξ.

By convention, this value of indeterminacy is fixed at 0.5.

The implementation of the method for curves in implicit form requires the symbolic computa-

tion that we handle with the CoCoA library [6].

2.3.2 Computational cost

The cost of the HT recognition algorithm is dominated by the size of the discretization of the region

of the parameter space. Following the notation introduced in Section 1.3.4, such a discretization

consists of M =∏n
j=n N j elements, where n is the number of parameters (in the curves proposed,

n = 1,2,3) and N j is the number of subdivisions for the jth parameter. Since the accumulator

function H i has the same dimension as T , the evaluation of H i requires O(M) operations

for each point. Therefore, the computational complexity for each cluster is O(ML), where L

represents the number of elements of P i on which we evaluate the HT accumulator function.

Moreover, as described in [153], in the case of curves in the implicit form we need to evaluate,

once for each curve, the symbolic expression of the Jacobian, the Moore-Penrose pseudo-inverse

and the Hessian matrices which have the same order of complexity of M and, therefore, the cost

of the HT-based recognition is O(M) for each point. Then, the computational complexity for each

cluster is O(ML). In summary, the algorithm has the same theoretical complexity for curves in

implicit and parametric form, but, in the first case, it resorts to using symbolic computations

(managed with CoCoA) that, in practice, could become a computational bottleneck for densely

sampled curves.

2.4 Testing and validating the method on data from real objects

This section presents some results we obtained by the recognition method described in Section 2.3

on a set of models collected from the web and various repositories, in particular the benchmark

proposed in the SHape REtrieval Contest SHREC’19 track on feature curve extraction [113], the

VISIONAIR shape repository [1], the STARC repository [2], and the ornaments in the Regency

collection. The original models of the ornaments from the Regency collection are courtesy of

professor K. Rodriguez Echavarria. All models are represented as triangle meshes or point clouds.

Figure 2.3 shows some examples of recognition of different patterns using the single mathe-

matical curves listed in Section 2.2.1. In these examples, the feature points are extracted using

different thresholds of the mean curvature. In the right column, we show the projected points

and the curve that best approximates the profile P they outline. The red points are the closest

to the curve with respect to the threshold ε, as detailed in Section 2.3. Backward operations

39

RECOGNITION, EXTRACTION AND REPRESENTATION OF PLANE CURVES

are performed on these points to obtain the initial coordinates of the corresponding vertices.

The outcome of the recognition algorithm is shown in the next column: the recognised vertices

are highlighted on the model. The models in Figure 2.3(a,d-f) have a known unit of measure

(millimetres): depending on the curve, the parameters a and b give a precise estimation of the

size of the curve. The curves and their parameters are: (a) an Archimedean spiral with a = 10.67

and b = 5.51, (b) a geometric petal curve of type (A) with a = 7.85, c = 0.56 and n = 50, (c) a

m-convexities curve with a = 8.51, b = 0.30 and m = 5, (d) an egg of Keplero with a = 8.87, (e) a

mouth curve with a = 55.67, (f) an elliptic curve with a = 28.38 and b = 76.05. The models in the

first column ((a), (b), (c)) have been proposed in the SHape REtrieval Contest SHREC’19.

(a) (d)

(b) (e)

(c) (f)

Figure 2.3: Recognition of various feature curves: in (a) an Archimedean spiral; in (b) a geometric
petal of type (A); in (c) a 5-convexities curve; in (d) an egg curve; in (e) a mouth curve; in (f) an
elliptic curve. For each pair of pictures, we show on the left the projected points, the curve that
best fits them and we highlight in red the points closest to it. This latter set of points is then
shown on the original model on the right.

The track of the SHREC’19 had a twofold purpose: the main request was to propose a method

able to extract the feature curves and to highlight one or more subsets of vertices of the meshes

in the dataset; the second and optional task was to find similarities among the feature curves

extracted across all the models. The results obtained by the HT-based method have been evaluated

by the organizers through evaluation measures and compared to those of the other participants.

40

2.5. A COMPARATIVE ANALYSIS FOR PLANE CURVES

The analysis showed that a good balance between precision and vertex clustering was obtained

by the HT-based method, which recognised most of the expected feature curves, balancing the

number of vertices recognised and the curve fragmentation (with respect to the ground truth).

Furthermore, this method was also able to answer the optional task, finding similarities between

curves of the same family, belonging to the same or different models.

2.5 A comparative analysis for plane curves

In this section, we propose a comparative analysis between the methods for plane curves in para-

metric and implicit form for the estimation of the HT, in terms of the quality of the approximation

and computational time.

Quality measures. In Section 2.3 we have proposed the GoF measure as the termination

criterion of our method. In addition, here we quantify the quality of the HT approximation

obtained with two other distances, namely the direct Hausdorff distance and an average of the

distance among the characteristic points and the fitting curve, called mean(Dknn).

The Direct Hausdorff distance from the points a ∈ A ⊂R3 to the points b ∈ B ⊂R3 is defined as

follows:

(2.2) ddHaus(A,B)= max(a∈A)min(b∈B)d(a,b),

with d the Euclidean distance.

The mean(Dknn) distance between two sets of points A ⊂ R3 and B ⊂ R3 searches for the k

nearest neighbors in B to each point in A using a three dimensional Kd-tree with the Euclidean

distance [64]. In particular, in our test we have put k = 1, then we search for the nearest neighbor

in B for each point in A and we get a set of distances Dknn. Then, the mean(Dknn) is calculated

by averaging this set.

We also tested the Fréchet distance [56], which has been proposed to measure how two curves

match also in terms of their curve parameterization. Unfortunately, when dealing with curves

on real models, we noticed that the dependency of this measure on the curve parameterization

makes it unsuitable for comparing a mathematical curve with an unordered cluster of points.

Comparative analysis. Tables 2.2, 2.3 and 2.4 compare the HT-based algorithms in implicit

and parametric form for the families of plane curves shown in Table 2.1 when the data are

samples on an exact mathematical expression of a curve or a random perturbation error of the

5% of the diagonal of the curve bounding box. The parameters of a mathematical curve and

those recognised by the HT-based algorithm on these samples are listed in Table 2.2, while the

quantitative distances between the identified curves and the samples are shown in Tables 2.3

and 2.4. Specifically, the parameters of the mathematical curves, those recognised by the HT

algorithm on samples of the exact mathematical curve, and the ones of the same curve perturbed

41

RECOGNITION, EXTRACTION AND REPRESENTATION OF PLANE CURVES

with noise are listed in Table 2.2. In each column, we report the family of space curves, the

parameters of the mathematical curve, and the curve parameters that differ from the original

ones as recognised by the HT algorithms for the implicit and parametric curve expressions

respectively on exact curve samples and perturbed curve samples. The results in Table 2.2 show

that the algorithm in implicit form identifies exactly the parameters corresponding to the original

curves, while the parametric version gets the exact parameters only in four cases.Then, the

implicit version obtains a better approximation than the parametric one considering the same

discretization of the parameter space.

Table 2.2: Comparison between the parameters of the mathematical curve and those recognised
by our algorithm over exact or perturbed curves with respect to both implicit and parametric
curve formulation. The values in bold represent the target parameters. The symbol = indicates
when the parameter identified by the HT-based algorithm equals the target one.

Mathematical Curve HT on exact curve samples HT on perturbed samples
Curve Parameters implicit parametric implicit parametric

(1) citrus curve
a=2 = = a = 1.92 a = 2.120
b=1 = = b = 1.020 b = 1.010

(2)
Archimedean a=1 = a = 1.040 a = 0.98 a = 1.070

spiral b=1 = b = 0.990 b = 1.020 b = 0.97

(3)
Lamet curve a=2 = = a = 2.040 1= 860

m = 16 b=1 = b = 0.990 b = 0.960 b = 1.02

(4)
m-convexities curve a=0.2 = = a = 1.96 =

m = 5 b=0.1 = b = 0.106 = b = 0.094

(5)
geometric petal A a=2 = a = 1.95 = a = 1.92

n = 10

(6)
geometric petal B a=1 = a = 1.030 a = 1.010 a = 1.010

n = 3 b=1 = b = 0.970 b = 0.990 b = 1.010
(7) lemniscate of Bernoulli a=2 = a = 1.95 = a = 2.1
(8) egg of Keplero a=2 = a = 1.96 a = 1.980 a = 1.980
(9) mouth curve a=1 = = a = 0.98 a = 0.94

(10) elliptic curve
a=2 = = a = 2.040 =
b=4 = = = b = 3.88

(11) bullet-nose curve
a=4 = a = 3.960, a = 4.016 a = 4.0480
b=2 = b = 1.980 b = 1.980 b = 2.056

(12) astroid a=2 = = a = 2.040 a = 1.960

In the columns of Tables 2.3 and 2.4 we list, from left to right, the family of curves; the GoF,

the ddHaus, the mean(Dknn) distances; the computational time in seconds; all these measures

are reported for both the implicit and parametric curve expressions. Finally, in the rightmost

column, we indicate the number of points L in each cluster. The measurements in Table 2.3 refer

to the quality of the HT approximation when applied to a set of L points uniformly sampled on a

mathematical curve. We evaluate the quality of the curve approximation by uniformly sampling

the curve recognised with 200 points (in general, these points do not correspond to the L samples

used to fit the curve) and estimate the GoF, mean(Dknn) and direct Hausdorff distances between

these samples and the original set of points. For simplicity of notation in the Tables, we represent

42

2.5. A COMPARATIVE ANALYSIS FOR PLANE CURVES

with 0.0 a distance when its value is close to the machine precision.

Table 2.3: Quality measures and computational time for the HT-based recognition algorithm
for the same plane curve in implicit (I) and parametric (P) form. L represents the number of
characteristic points.

Curve GoF ddHaus mean(Dknn) Time (s)
L

I P I P I P I P

(1) 0.0 0.0 0.0 0.0 0.0 0.0 8 0.5 68
(2) 0.0 0.014 0.0 0.084 0.0 0.035 10 1 63
(3) 0.0 3∗10−4 0.0 6∗10−4 0.0 6∗10−4 20 0.5 68
(4) 0.0 0.001 0.0 0.002 0.0 0.001 8 0.5 63
(5) 0.0 0.061 0.0 0.050 0.0 0.074 0.8 0.5 63
(6) 0.0 8∗10−4 0.0 0.060 0.0 0.027 15 1.5 126
(7) 0.0 0.014 0.0 0.070 0.0 0.040 0.7 0.3 63
(8) 0.0 0.005 0.0 0.050 0.0 0.011 1 0.4 84
(9) 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.3 63
(10) 0.0 0.0 0.0 0.0 0.0 0.0 15 0.5 104
(11) 0.0 0.006 0.0 0.061 0.0 0.027 13 1 80
(12) 0.0 0.0 0.0 0.0 0.0 0.0 1 0.5 63

Table 2.4: Quality measures and computational time for the HT-based recognition algorithm for
the same plane curves of Table 2.3, perturbed by the 5% of the diagonal of the curve bounding
box. The curve numbers are the same as in Table 2.2. L represents the number of characteristic
points.

Curve GoF ddHaus mean(Dknn) Time (s)
L

I P I P I P I P

(1) 0.025 0.028 0.075 0.076 0.031 0.031 8 0.5 68
(2) 0.030 0.031 0.237 0.333 0.089 0.135 8 0.5 63
(3) 0.015 0.027 0.101 0.178 0.041 0.051 20 0.5 68
(4) 0.004 0.007 0.015 0.015 0.008 0.008 8 0.5 63
(5) 0.002 0.019 0.010 0.063 0.002 0.039 0.8 0.5 63
(6) 0.014 0.019 0.070 0.075 0.033 0.037 15 1.5 126
(7) 0.018 0.038 0.063 0.171 0.039 0.089 0.7 0.3 63
(8) 0.015 0.015 0.078 0.078 0.028 0.028 1 0.4 84
(9) 0.016 0.027 0.078 0.114 0.036 0.055 0.9 0.3 63
(10) 0.034 0.049 0.485 0.317 0.049 0.054 15 0.5 104
(11) 0.060 0.062 0.151 0.154 0.060 0.062 13 1 80
(12) 0.007 0.045 0.179 0.097 0.024 0.04 1 0.5 63

Similarly, the measures in Table 2.4 report the distances of the HT curve approximation with

respect to a set of L randomly perturbed samples of a smooth curve; note that these L points do

not exactly lie on the original curve. The GoF measure and the mean(Dknn) highlight that, even

43

RECOGNITION, EXTRACTION AND REPRESENTATION OF PLANE CURVES

in this case, better precision is achieved by the HT-based algorithm for approximating curves in

implicit form with respect to the parametric ones. On the other hand, the algorithm for curves in

parametric form is computationally more efficient. Moreover, in general practice, the family of

curves in implicit form allows one to recognise globally the profile and thus makes it easier to

complete the missing parts. On the other hand, the parametric form allows for identifying more

precisely the portion of the curve that best approximates the profile.

The experiments are performed on the same laptop equipped with an Intel Core i7 processor

(at 1.3 GHz). All the routines are implemented in MATLAB [111], except for the symbolic

calculations implemented on the open source toolkit CoCoA [6]. We also tested the use of the

symbolic computation part in MATLAB, but CoCoA was more efficient, although it is less

developed.

2.6 Applications

We applied our plane curves recognition method to two specific domains, that is cultural heritage

finds (Section 2.6.1) and artistic or design motifs (Section 2.6.2). In both domains, the recognised

parameters have an important role. In the first case, they are used to compare the decorations

present on the surface of different archaeological fragments [135], then it is possible to assess

if they could be part of the same ornament. In the second, the curves in parametric form can

be used as an input for the interactive visualization and manipulation of the symbols through

a multi-touch smart table [137]. Some of these motifs are graphic elements obtained from the

composition of mathematical curves and can be recognised through our method.

2.6.1 Recognition of decorations in archaeological finds

In this section, we present some examples that show how to translate archaeological knowledge

into effective algorithms. The models were proposed within the GRAVITATE project [3], which

had the specific purpose to support the archaeologist’s knowledge with automated mathematical

tools. Many fragments exhibit decorations composed of feature curves organised according to

specific distribution rules; the aim is to encode these patterns into routines that can be applied

to parts having a different overall shape, structure and functionality. To this end, in the first

part, we present examples of aggregation techniques that automatically recognise and annotate

compound curves and frets (both floral and Greek-like styles), while the second paragraph shows

how to use the method for addressing decoration compatibility measures.

Recognition of compound curves. Figure 2.4 represents the HT fitting of parts of two Greek

frets, respectively with 8 (Figure 2.4(a) and its complementary Figure 2.4(c)) and 6 (Figure 2.4(b))

straight lines. In this case, the lines are orthogonal to the Cartesian axes and therefore, the

degree of the HT curves is still limited. However, in general, the product approach can produce

44

2.6. APPLICATIONS

curves of a very high degree. For instance, to recognise as a unique element the 6-petal flower

depicted in Figure 2.5 it needs the product of 6 citrus curves of degree 3, thus generating the HT

transform for a family of curves of degree 18. The higher the curve degree, the higher the number

of parameters and, as a consequence, the computational effort.

(a) (b) (c)

Figure 2.4: Recognition of Greek fret elements with 8 (a) and 6 (b) straight lines, respectively. In
(c) the recognition of the element complementary to (a).

While [154] limited the recognition of compound curves to the product of curves, here some

automatic rules and parameters that characterise style elements are introduced. In particular,

the method can recognise the decorations made of elements that are geometrically repeated in the

space, by locating the individual components and then aggregating them according to decoration-

specific rules. For instance, for the 6-petal flower of Figure 2.5(a) that characterises many

fragments of votive statues from the Salamis island [89] (approximately 50 fragments), every

single petal is first recognised. Given the peculiarity of the decoration (light on a dark background),

the vertices corresponding to a high value of luminosity are selected in the preprocessing step.

The resulting clusters are shown in Figure 2.5(b). These clusters are then processed in the

recognition step, using a family of citrus curves that better fit their petal-like shape. Since this

decoration is hand-made and comes from an abraded fragment, the petals have slightly different

sizes and shapes. In Figure 2.5(c), the numbers in the petals represent the petal labels while the

measures of the two main axes are detected based on the parameters of the six fitting curves

obtained with the HT as shown in Figure 2.5(d).

In particular, the recognised parameters appear in the coordinates of the salient points of this

curve, i.e. the endpoints of the curve symmetry axes, that is (± a
2 ,0) and (0,± a

8c) (Figure 2.5(c)).

Then it is possible to evaluate the rays of the circular crown within which the salient points have

to lie if the petals belong to the same flower (see Figure 2.6(a)). In this way, 6-petals flowers even

incomplete can be identified and annotated (see Figure 2.6(b,c)).

Finally, it is possible to recognise and annotate repeated decorations. Based on the petal

contiguity, the single flowers are annotated to recognise the whole floral band and automatically

annotate it, the flowers and the petals. Note that most of the petals belong to two flowers, as

detailed in Figure 2.7 on an example of a floral band, thus making explicit which flower is close

to another.

45

RECOGNITION, EXTRACTION AND REPRESENTATION OF PLANE CURVES

(a) (b)
a a

4c GoF
Petal 1 0.8660 0.3015 0.0198
Petal 3 0.7740 0.2526 0.0202
Petal 6 0.9940 0.2784 0.0404
Petal 9 0.5400 0.2551 0.0265
Petal 10 0.7530 0.3175 0.0158
Petal 12 0.8900 0.2761 0.0265

(c) (d)

Figure 2.5: An archaeological fragment (a). Petal-like clusters (b) recognised with citrus curves
(c). Measures and GoF of the six citrus curves (d).

(a) (b)

(c)

Figure 2.6: A pictorial representation of the criteria adopted to detect which petals belong to the
same flower(a), and some examples of flowers recognised on two different fragments (b,c).

Petals
Flower 1 1, 3, 6, 9, 10, 12
Flower 2 5, 6, 11, 13, 15, 16
Flower 3 4, 14, 15, 18
Flower 4 2, 5, 12, 17
Flower 5 2, 4, 8, 11

(a) (b)

Figure 2.7: A detail of floral band annotation. Each petal is numbered (a) for each flower we list
its petals (b).

46

2.6. APPLICATIONS

Similarity of feature curves. The curve parameters obtained with the HT technique are

indicators of the most representative curve and therefore they can be used to compare elements

even if recognised on different objects. Indeed, thanks to the distinctive power of the HT parame-

ters, a distance between the two curves C1 and C2 is defined as the norm L1 of the parameters

corresponding to these curves, i.e., d(C1,C2)= ||λC1 ,λC2 ||1, where λC1 and λC2 are the parameters

of the curves C1 and C2, respectively. Note that such a notion of distance assumes that the curve

parameters are homogeneous in terms of the measured properties; this implies that the distance

between two feature curves is computed if they belong to the same family.

These estimates provide insights into the style compatibility of the objects themselves. Figure

2.8 shows an example of the curve rating obtained on the spiral-like details of the models

contained in the SHREC’19 benchmark on feature recognition [113]. For recognising these

elements the family of Archimedean spirals is considered; the parts are sorted in increasing order

of distance from the leftmost one (that acts as the query element). In particular, the two closest

spirals (see Figures 2.8(a,b)) could be part of the same ornament, even if located in different

model areas, see in Figure 2.9 a possible reconstruction.

query d=0.0638 d=0.1529 d=0.3391 d=0.4705 d=0.7976 d=1
(a) (b) (c) (d) (e) (f) (g)

Figure 2.8: (a) A query element. In (b-g) the retrieved elements are ordered with respect to their
increasing distance.

Figure 2.9: Comparing the parameters of the recognised curves (Figures 2.8(a,b)) it is possible to
associate two different fragments as parts of the same moulding.

Figure 2.10 and Table 2.5 sketch the effective usefulness of the method for fragment re-

association. Starting from four different fragments (Figure 2.10(a)), potentially coming from

different votive statues, but with the same stylistic character of a floral band, these fragments are

compared in terms of the distance among the 6-petal flowers in each decoration. These fragments

contain 3, 2, 1, and 2 complete 6-petal flowers, respectively.

To automatically assess the HT parameters of a 6-petal flower, the family of geometric petal

(type B) curves is adopted. As it can be seen in Figure 2.10(b), the recognition is not always

perfect as the flowers have been drawn by hand and then inaccurate, while the family of curves

47

RECOGNITION, EXTRACTION AND REPRESENTATION OF PLANE CURVES

(1) (2) (3) (4)
(a) (b) (c)

Figure 2.10: (a) Four different fragments with the same stylistic character of a floral band; (b) the
6-petal flower is recognised with a geometric petal (type B) curve; (c) a visual representation of
the distance among the models shown through a dendrogram plot.

follows precise geometric rules. Despite this, the parameters recognised give enough information

on the size of the flowers, allowing the production of a similarity matrix, see Table 2.5(a) for

numerical details on the distances among the 6-petal flowers on these 4 fragments. To highlight

that in this specific case the floral band is hand-crafted and the decorative elements slightly differ

even on the same surface, Table 2.5(a) shows the distances among all the flowers recognised on

the four models. To compare the models the distances of the flowers that make up their floral

bands are averaged or the minimum of them is taken (Table 2.5(b,c)). Starting from the similarity

scores obtained, it is possible to conclude that the floral bands recognised on the fragments (1),

(3) and (4) are compatible, and therefore they could belong to the same part of a statue, while

the one in the fragment (2) is different, for instance by simply clustering the fragments based on

the distance matrices in Table 2.5. Figure 2.10(c) visually depicts the distance among the models

using hierarchical clustering, a dendrogram plot, which consists of many U-shaped lines that

connect the models in a hierarchical tree. The height of each U represents the distance between

the two connected models.

Table 2.5: The similarity matrix among the 6-petal flowers recognised on the four fragments
in Figure 2.10(a). The following naming convention is adopted: the first number represents the
flower label and the second one corresponds to the model number.

Similarity scores among 6-petal flowers
2_1 3_1 1_2 2_2 1_3 1_4 2_4

1_1 0.204 0.076 0.553 0.461 0.052 0.266 0.087
2_1 0 0.128 0.757 0.665 0.256 0.062 0.215
3_1 - 0 0.629 0.537 0.128 0.190 0.087
1_2 - - 0 0.092 0.504 0.722 0.543
2_2 - - - 0 0.412 0.630 0.451
1_3 - - - - 0 0.318 0.139
1_4 - - - - - 0 0.179

(a)
Fragment similarity scores (mean)

2 3 4
1 0.6008 0.1457 0.1509
2 0 0.4579 0.5863
3 - 0 0.2286

(b)

Fragment similarity scores (min)
2 3 4

1 0.4615 0.0524 0.0617
2 0 0.4508 0.4508
3 - 0 0.1391

(c)

48

2.6. APPLICATIONS

2.6.2 Recognition of motifs and symbols

This section describes how we applied our method to recognise three symbols, as shown in [137].

In this case, the feature points are extracted from an image by an edge detection method, e.g.,

the Canny edge detection algorithm [33]; then in this case the projection of points is not required

since they are planar. All these motifs can be represented as a union of parametric curves. The

first one is the symbol of Toyota (Fig. 2.11(a)), made up of several occurrences of the same type of

curve, ellipses in this case. Then a family composed by the union of three ellipses is considered, of

which two are centred in the origin and the third one shifted by half the length of the semi-axis

minor of the external ellipse:x = acos t

y= bsin t
t ∈ [0,2π] ∪

x = a1 cos t

y= b1 sin t+ b
2

t ∈ [0,2π] ∪

(2.3)

x = a2 cos t

y= b2 sin t
t ∈ [0,2π].

The second symbol represents the logo of the Mathematical Olympiad (Fig. 2.11(b)) and it has

been recognised using a family of curves expressed in parametric form by the union of a circle

centred in the origin and a lemniscate of Bernoulli:

(2.4)

x =p
2 a sin t

1+cos2 t

y=p
2 a sin tcos t

1+cos2 t

t ∈ [0,2π] ∪
x = bcos t

y= bsin t
t ∈ [0,2π].

Finally, the recognition of artwork is tackled. It is named Third Paradise1 and it is created

by the artist Michelangelo Pistoletto (Fig. 2.11(c)). A first attempt to recognise the symbol with

a composition of curves was presented in [133]. In this work, the purpose was not to reproduce

the motif exactly but only to recognise it, using a family of curves expressed in an implicit form

composed of the product of two eggs of Keplero and one mouth curve, then with the family of

equation (see Fig. 2.12(a)):

(((x+a)2 + y2)+b(x+a)3) (a4 y2 − (a2 − x2)3)

(((x−a)2 + y2)2 −b(x−a)3)= 0.

To fit more accurately the shape of the motif, in [137] the external curves are modified with a

lemniscate of Bernoulli, and the central part is replaced with a citrus curve (see Fig. 2.12(b)):x =p
2 a sin t

1+cos2 t

y=p
2 a sin tcos t

1+cos2 t

t ∈ [0,2π] ∪
x = t− a

2

y=±
√

(a−t)3 t3

a4b2

t ∈ [0,a]

1http://terzoparadiso.org/en/what-is

49

http://terzoparadiso.org/en/what-is

RECOGNITION, EXTRACTION AND REPRESENTATION OF PLANE CURVES

(a) (b) (c)

Figure 2.11: Examples of recognition of complex motifs: (a) the symbol of Toyota (courtesy of the
Toyota Company); (b) the symbol of the Mathematical Olympiad; (c) the Third Paradise.

(a) (b) (c)

Figure 2.12: The sequence of the three different mathematical representations of the Third
Paradise used in the recognition process.

and, starting from the parametric equations of these curves, the coefficients and exponents are

changed to approximate better the curvature and shape of each component. At last, the most

accurate representation is given by a family of curves expressed in parametric form and composed

of the union of six curves:

(2.5)

x =±113
100 a sin

7
5 t

1+cos2 t ±a

y= 363
250 a sin tcos t

1+cos2 t

t ∈ [0,π] ∪
x =±at

6
5 ∓a

y=±4a(2−t)t
5

t ∈ [0,1].

The mathematical representation of the motif represented with Eq. (2.5) is shown in Fig. 2.12(c).

This improved approximation allowed us to meet the demands of the project [4], whose

purpose was to create an interactive experience for museum visitors focusing on the case study

of the Third Paradise. The formulation of the three curves in parametric form has been used as

an input for the interactive visualisation and manipulation of the symbols by their geometrical

features: users can manipulate the curves such that the proportions and dimensions are modified

by varying the constitutive parameters of the equations. By changing the dimensions of the curve

or modifying colour and thickness, they can visualise different variations of the symbol, explore

the geometry, and deform it. Ta.Bi2 is used for this purpose, a multi-touch smart table optimised

to display and control 2D content. In addition to the traditional finger touch, Ta.Bi is able to

recognise specific tangible objects on its surface, called "tags" (Fig. 2.13(a)), by means of the

"tangible bit" principle [87]. An example of this application is shown in Figure 2.14: starting from

2https://tabi.spxlab.com/

50

https://tabi.spxlab.com/

2.7. CONCLUDING REMARKS

the computation of the intersection points between the ellipses defined in 2.3, it is possible to

colour the parts of the curves that correspond to each letter of "Toyota" and create an animated

sequence on the interactive table.

(a) (b) (c)

Figure 2.13: In (a) the smart table Ta.Bi with tags. In (b) and (c) some examples of symbol
manipulation varying the value of the parameter a of equation 2.5.

Figure 2.14: The letters of the word "Toyota" are highlighted inside the symbol.

Another example is shown in Figure 2.13(b,c) considering the artwork Third Paradise. In

particular, by analytically computing the area of the curves with the integral calculation, it is

possible to obtain that the area of the central curve (Acentre) corresponds to the sum of the areas

of the two lateral curves (Aright, Ale f t), up to small approximation errors. Therefore, according to

the experimental result, the constraint is Acenter = Aright + Ale f t and in this way, naming acenter,

aright and ale f t the parameters of the corresponding curves, it is possible to operate constraint-

based deformations. More specifically, if the user modifies one of the lateral curves, also the

central one will change in such a way that its area is still the sum of the areas of the two lateral

curves. The user can modify the two lateral curves by applying consecutive transformations as

desired, even exasperating the constraint until the curves come out of the screen, as it is shown

in Figure 2.13.

2.7 Concluding remarks

The case studies shown in Section 2.6.1 were given by the GRAVITATE European project [3].

The aim of this project was to provide a set of tools to increase and promote the use of semantic-

51

RECOGNITION, EXTRACTION AND REPRESENTATION OF PLANE CURVES

based solutions for responding to archaeological research queries. In addition, it was required to

automatically find similarities between fragments scattered in different museums, with the goal

of virtually reconstructing the artefacts.

The case study related to the Third Paradise artwork (Section 2.6.2) is developed in the

INTER-CH project [4], whose goal was to create an interactive experience for museum visitors to

communicate the message and content of the artwork in an innovative way.

The method and the results on plane curves presented in this chapter have been developed

during the first year of my PhD. The dictionary expansion can be found in [133] and the work

was presented at the Smart Tools and Applications in Graphics conference 2019 (STAG 2019).

The results regarding the application to the archaeological domain are presented in [135], in

which we show more examples of compound curves and similarity analysis. Finally, in [137] we

introduce the application to the recognition of motifs and their visualization and manipulation on

a multi-touch smart table. Specifically, more examples of the deformation of symbols are shown,

exploring their geometrical features through the parametric formulation of curves. The work was

presented at Smart Tools and Applications in Graphics conference 2020 (STAG 2020).

In conclusion, this technique is useful in some application contexts, such as the recognition of

geometric patterns in archaeological finds, the analysis of brand logos, and the interpretation

of artistic elements. Indeed, the method we developed offers many advantages: it can recognise

a pattern of feature curves, even in the presence of noise and partial data; it provides the

parameters and the equations of the recognised feature curves, and then it can detect the

similarity of decorations and permits the exploration of their geometry. Furthermore, in the

case of archaeological finds, the outcome of this method can be used to support the automatic

annotation of the digital fragments models.

In addition, our curve recognition method was the only technique proposed in the SHREC’19

retrieval contest [113] able to deal with feature curve comparison. In the literature, other methods

are either specific to a family of curves (e.g., spirals [72] or parabolic curves [105]) or focus on

local curve fitting (e.g., spline-based curve fitting).

However, our method requires to have in input the family of curves to be used for the

recognition, it needs to know a priori what kind of patterns to look for. This suggestion can be

provided by the user through a template or by choosing in a curves catalogue the one or the ones

most similar to what is sought. In the archaeological domain, this suggestion can come directly

from the expert, through a template or a drawing, or from the technical documentation associated

with the find.

2.8 Related publications

• E.Moscoso Thompson, G. Arvanitis, K. Moustakas, N. Hoang-Xuan, E. R. Nguyen, M. Tran,

Thibault Lejemble, Loic Barthe, Nicolas Mellado, C. Romanengo, S. Biasotti, B. Falcidieno,

52

2.8. RELATED PUBLICATIONS

SHREC’19 track: Feature Curve Extraction on Triangle Meshes, EG19 Workshop 3DOR19

proceedings, 2019.

• C. Romanengo, S. Biasotti, B. Falcidieno, HT-based Recognition of Patterns on 3D Shapes

Using a Dictionary of Mathematical Curves, STAG2019 proceedings, 2019 – orally presented

work.

• C. Romanengo, S. Biasotti, B. Falcidieno, Recognising decorations in archaeological finds

through the analysis of characteristic curves on 3D models, Pattern Recognition Letters, vol.

131, pp. 405-412.

• C. Romanengo, E. Brunetto, S. Biasotti, C. E. Catalano, B. Falcidieno, Recognition, Mod-

elling and Interactive Manipulation of Motifs or Symbols Represented by a Composition of

Curves, STAG2020 proceedings, 2020 – orally presented work.

53

C
H

A
P

T
E

R

3
RECOGNITION, EXTRACTION AND REPRESENTATION OF SPACE

CURVES

In this chapter, we address the problem of recognising space curves on the surface of 3D

digital models (meshes and point clouds) and providing their mathematical representation.

When 3D models are acquired by scanning real objects, the resulting geometry does not

explicitly encode these curves, especially when it is affected by noise, due to measurement

uncertainty and sampling resolution, or misses some parts, due to the occlusion during the

acquisition or other factors. For these purposes, we make use of the Hough transform, which

is well known for recognising curves in the plane and surfaces in space but has not yet been

sufficiently explored for space curves. Compared to the previous chapter, the challenge addressed

here is how the HT can practically deal with space curves, i.e., the codimension 2 case in the

space.

In the first part of this chapter, we introduce the dictionary available in our method (Section

3.2), dividing it into two classes, and we detail the main steps of our approach (Section 3.3)

dealing with both implicit and parametric equations. In Section 3.4, we show some tests on digital

models of real objects, while in Section 3.5 we provide a comparative analysis of the two strategies,

in implicit and parametric representations. Finally, we show an example of the application of

our algorithm that exploits the parametric expression of curves provided by our algorithm and

inserts them directly into the model (Section 3.6).

3.1 Previous work

Space curve fitting. Beyond the context of the HT, space curve fitting is still an open problem.

Whilst the fitting problem is largely addressed in the literature for plane curves [58, 122]

55

RECOGNITION, EXTRACTION AND REPRESENTATION OF SPACE CURVES

less effort has been made for space curves, probably because there are not the large curve

atlases available on the contrary for plane curves [150]. Moreover, only a few techniques are

extensible to this problem. Indeed, projections onto planes of particular families of curves have

often been used in this context as well. For instance, we mention the piece-wise splines of low-

degree polynomials like the spline approximation in [42]; however this approach needed a local,

planar curve interpolation, therefore it was not able to recognise entire curves and to complete

missing parts. Piece-wise splines of low-degree polynomials are the most common curves that

can be combined to construct a space curve [63], for instance, cubic B-spline curves [149]. Often,

point interpolation is combined with provided tangent and curvature information in the curve

points/knots, such as in the geometric Hermite interpolation problem [86, 118, 158] or minimal

variation of curvature constraints [130], or exact measurement of the arc-length [8, 59, 60].

Some methods fitted the data with some specific family of curves, such as Samper et al. did in

[141], for studying the best curve fitting the Gaudí architecture among three conical and three

hyperbolic-cosine curve types; Harary and Tal did in [73] and [72], for fitting line drawings and

silhouettes with, respectively, 3D Euler spirals and natural 3D spiral; Lv et al. did in [106] with

nose curves defined as geodesic curves crossing the nose bridge on triangle meshes. However,

these methods define only specific case-driven solutions and algorithms for setting the curve

parameters.

To the best of our knowledge, also methods based on a learning process are limited to planar

curves or curves that are projected on a plane, and to curves represented as groups of poly-

lines. For instance, approaches based on co-occurrence analysis relied on an interactive learning

phase or assumed there are repetitions for every type of curve to be identified and sketched [66].

Due to the characteristics of the detected curves, this kind of methods was adopted mainly for

recognising parts of buildings (such as windows, doors, etc.) and features in architectural models

that are similar to strokes. However, low-degree polynomials cannot span a large number of

points, therefore many small segments need to be blended together to build the desired curve

[98], and such a decomposition is not unique, for instance, it depends on the starting point.

Hough Transform for space curve. The use of HT for space curves – i.e. the approach to

elements of codimension 2 in space – is still in its infancy, and it has been addressed only in the

last few years, but most of the proposed methods do not exploit the large variety of possible curves.

For instance, in [117] the HT has been employed to identify recurring straight line elements

on the walls of buildings. In that application, the HT is applied only to planar point sets and

line elements are clustered according to their angle with respect to the main wall direction; in

this sense, the Hough aggregator is used to select the directions of the feature lines (horizontal,

vertical, slanting) one at a time. A first attempt to recognise curvilinear space profiles from their

plane projections is provided in [143]. A relevant part of the described procedure consists in the

definition of a suitable projection of a 3-dimensional image onto a coordinate plane. To test the

56

3.2. FAMILIES OF SPACE CURVES

methodologic validity of this approach, it is applied to the recognition of a given Viviani’s curve

and of a spherical curve with three convexities.

3.2 Families of space curves

As in the case of plane curves, the method for space curves requires in input a family of curves F .

Therefore, we define a dictionary of space curves dividing it into two classes of curves suitable for

our case studies. Type I curves are families of space curves equipped with a known representation.

In Section 3.2.1 the families of curves belonging to type I are listed. The set of space curves with

an explicit representation is quite limited, while in the literature there is a large variety of plane

curves [150]. We take advantage of this richness by considering as a second type of space curves

(type II curves) the intersection of a paraboloid and a cylinder having a plane curve as its directrix.

Section 3.2.2 describes how to obtain type II curve representations.

3.2.1 Space curves of type I

The space curves listed in this section have an explicit representation. Although non-exhaustive,

this list constitutes the first set of space curves suitable for curve recognition. For each curve, the

main geometric characteristics and the parameters that drive the HT are highlighted.

• The helix of implicit and parametric equations

I :

b2x2 (z
c
) 2m

s +a2 y2 (z
c
) 2n

s −a2b2 (z
c
) 2m

s
(z

c
) 2n

s = 0

x−a
(z

c
) n

s cos
((z

c
) 1

s
)
= 0

, P :


x = atn cos t

y= btm sin t

z = cts

is a space curve that depends on three real positive parameters a, b and c, with c ̸= 0. Using

different values of n and m, different families of curves are obtained. The helix curve is an

unbounded, connected curve. It is a space curve that always lies on a symmetrical surface

with respect to the z−axis. In the special case of the cylindrical helix corresponding to the

selection of the parameters n = m and a = b, we take advantage of the cylindrical system of

coordinates. The curve is formulated as follows:ρ−aθn = 0

z− cθs = 0.

• The sphero-cylindrical curve is a space curve corresponding to the intersection of a sphere,

centred in the origin O and radius a, with the elliptical cylinder with half-axes of lengths b

and c (respectively x−axis and y−axis) and axis of symmetry at distance d from O. The

57

RECOGNITION, EXTRACTION AND REPRESENTATION OF SPACE CURVES

implicit and parametric equations of this curve are:

I :

x2 + y2 + z2 −a2 = 0

c2 (x−d)2 +b2 y2 −b2c2 = 0
, P :


x = d+bcos t

y= csin t

z =±
√

a2 − (d+bcos t)2 − c2 sin t2

.

It depends on four real positive parameters a, b, c and d. The hippopede is a special case of

the sphero-cylindrical curve, in which the distance d of the cylinder axis from the origin O

is equal to a−b.

• The curve called clelia is obtained, in its generalised form, by intersecting a Plücker’s conoid

z = asinnθ with an ellipsoid of centre O and x, y−half-axes of equal length a. The implicit

(in cylindrical coordinates) and parametric equations of this curve are:

I :

ρ−acosnθ = 0

z−bsinnθ = 0
, P :


x = acosntcos t

y= acosntsin t

z = bsinnt

.

It depends on two positive real parameters a and b.

• Another space curve of type I is a curve that resembles the edge of a curved circular pancake

then called the pancake curve. It is obtained by intersecting a cylinder with a parabolic

cylinder having perpendicular axes. The implicit and parametric equations of this curve

are:

I :

x2 + y2 −a2 = 0

a2z−b
(
2x2 −a2)= 0

, P :


x = acos t

y= asin t

z = bcos2t

.

This curve depends on two real positive parameters a and b.

Table 3.1 summarises the spatial curves described so far with their implicit and parametric

equations.

3.2.2 Space curves of type II

We define a larger variety of space curves by taking advantage of the richness of plane curves. To

do that, the space curve representation proposed in this section is modelled as the intersection

of a paraboloid and a cylinder with a plane curve (presented in Section 2.2.1) as its directrix.

Therefore, space curves of type II are those curves that can be recognised through such a ploy

that uses simpler primitives. This approach generalises the idea of projections of points on the

regression plane (see Chapter 2) and improves the quality of the approximation of the spatial

profile.

58

3.2. FAMILIES OF SPACE CURVES

Table 3.1: A set of space curves of type I expressed in both implicit and parametric forms.

helix curve sphero-cylindrical curve

I:

b2x2 (z
c
) 2m

s +a2 y2 (z
c
) 2n

s −a2b2 (z
c
) 2m

s
(z

c
) 2n

s = 0

x−a
(z

c
) n

s cos
((z

c
) 1

s
)
= 0

I:

{
x2 + y2 + z2 −a2 = 0
c2 (x−d)2 +b2 y2 −b2c2 = 0

P:


x = atn cos t
y= btm sin t
z = cts

P:


x = d+bcos t
y= csin t

z =±
√

a2 − (d+bcos t)2 − c2 sin t2

clelia pancake curve

I:

{
ρ−acosnθ = 0
z−bsinnθ = 0

I:

{
x2 + y2 −a2 = 0
a2z−b

(
2x2 −a2)= 0

P:


x = atn cos t
y= btm sin t
z = cts

P:


x = acos t
y= asin t
z = bcos2t

In practice, a constructive strategy to build new families of space curves is proposed. To limit

the number of parameters that define a quadric surface, the set of points P is roto-translated in

the origin of the Cartesian coordinates and we use families of paraboloids, represented in the

form: z = cx2 +d y2. To do this, the regression plane of the set P is calculated and then rotated

so that the normal of the regression plane coincides with the z axis of the Cartesian coordinate

system. The generic parametric equation of this type of space curve is

(3.1)


x = f (a,b, t)

y= g (a,b, t)

z = c (f (a,b, t))2 +d (g (a,b, t))2

59

RECOGNITION, EXTRACTION AND REPRESENTATION OF SPACE CURVES

(a) (b)

Figure 3.1: In (a) an example of an intersection between a hyperbolic paraboloid and a cylinder
with a mouth curve as its directrix, with the same axis; in (b) an example of the intersection
between an elliptical paraboloid and a cylinder with a Lamet curve as its directrix, with the same
axis.

where (f (a,b, t), g(a,b, t)) is a parametric representation of a family of plane curves. Note that

plane curves are a special case of this class, in which the paraboloid corresponds to a degenerate

quadric surface. An implicit representation of type II space curves can be derived directly from

the parametric expression or it can be constructed as an intersection of the cylinder generated

from a plane curve and the surface (z− cx2 −d y2 = 0). Figure 3.1 provides two examples of type

II curves.

3.3 A method for recognising space curves

Some working hypotheses are assumed by our HT-based recognition method for space curves. In

case a curve Ca is in parametric form, it is assumed that the system defining Ca with respect to

the Cartesian coordinates x, y, and z can be analytically solved with respect to the parameter

variables a= (a1, . . . ,an). In the case of curves in implicit form, it is assumed that the functions

F1 and F2 in the definition of Ca and Γp are analytical with respect to the Cartesian coordinates

x, y, z and the parameter variables a= (a1, . . . ,an), n ≥ 2.

Also, in this case, the method is independent of the technique adopted to select the feature

points and the data representation (both meshes or point clouds).

In this section, the four main steps of the algorithm for our HT-based space curve recognition

are briefly summarised. It requires as input a family of curves, some thresholds to establish if a

set of feature points can be grouped or not and to assess the quality of the recognition result, an

array ∆i = (∆i,1, ...,∆i,n) of integers to define the size of initial discretisation of T .

1. Extraction of the feature points. Unless point clusters are provided directly, a 3D model (a

mesh or a point cloud) is preprocessed to identify sets of feature points as shown in the first

step of the method for plane curves described in Section 2.3. In this case, only the mean

curvature is used as the filter criterion and then, the points are then grouped into connected

components through a clustering operation, adopting the method Density-Based Spatial

60

3.3. A METHOD FOR RECOGNISING SPACE CURVES

Clustering of Application with Noise DBSCAN, [57]. The outcome of this preprocessing

phase is a set of num clusters P i of feature points, i = 1, . . . ,num.

2. Recognition of the feature curve. The generalised HT technique described in Section 1.3.4

is applied to each cluster P i. In this case, considering the notation introduced in Section

1.3.4, the parameter space T =∏n
j=1[(1− p̄)a∗

j , (1+ p̄)a∗
j] is divided into intervals of length

δ j derived from the input array ∆i as δ j = 2p̄
(∆i) j

a∗
j , where p̄ is a percentage which is set

differently depending on the family considered (a typical value is 0.1). The estimation of

the accumulator function H i changes according to the representation of the family F .

3. Evaluation of the approximation accuracy. To automatically determine if a curve Cā satis-

factorily approximates the cluster of points P i, we define the Mean Fitting Error (MFE)

as:

(3.2) MFE(P i,Cā) := 1
|P i|

∑
p∈P i

d(p,Cā)/l i,

where d is the Euclidean distance and l i is the diagonal of the minimum bounding box

containing P i. Note that the MFE provides an estimation of the deviation between Cā

and P i and it is a size-independent percentage. The smaller it is, the better the curve

approximation. If H i presents two or more local maxima, this distance has to be calculated

for each potential curve solution. The curve having the lowest error is kept.

4. Goodness of the approximation and refinement strategy. The output of the first three steps

is the best fitting curve Cā ∈F and the quality of the approximation MFE. The value of

the MFE has to be compared with the fitting threshold ε (typical values of ε are 3−5%). In

the case the value of MFE is smaller than ε the curve is a good solution, while if the MFE

is greater than 2ε the family F is excluded and the algorithm starts again by selecting

another family of curves of our dictionary. Finally, if MFE ∈ (ε,2ε) a new denser sampling of

the parameter space is considered unless the values (∆′
i) j exceed a value C that represents

the highest possible refinement for each parameter (in our experiments, we observed that a

good choice for the value C is 256). In particular, for curves expressed in implicit form the

refinement could adaptively split only the cells with uncertainty, while in the case of curves

in parametric form, all cells are bisected (i.e., ∆′
i = 2∆i). The refinement process repeats

until MFE ∈ (ε,2ε) and (∆′
i) j is smaller than C for all j. The refinement process successfully

ends if a curve Cā ∈ F with MFE≤ ε is found. A new family of curves F ′ is selected if

the values of the array ∆′
i become too large or MFE> 2ε. Note that in the plane curve

recognition algorithm (Chapter 2), only the GoF has been considered for the evaluation of

the approximation accuracy. However, using the MFE makes the algorithm more automatic,

since it does not require any input parameter.

Figure 3.2 provides an illustrative pipeline of our method.

61

RECOGNITION, EXTRACTION AND REPRESENTATION OF SPACE CURVES

(a) (b) (c) (d) (f)

Figure 3.2: In (a) a 3D model of a screw; in (b) the clusters of points which correspond to a
mean curvature value less than 0.1. The column on the right lists some of the clusters found,
identified by a number and a colour (black for cluster #1). In (c) the cluster P1 represented with
the minimum bounding box (in red) that contains it; in (d) the accumulator function H i; in (f)
the recognised curve, corresponding to the maximum value of H i.

3.3.1 Estimation of the Accumulator Function

The estimation of the accumulator function changes according to the type of representation of the

family of curves. In this section, we provide a description of the method for curves in parametric

and implicit form.

Estimation of the accumulator function for space curves in parametric form. In case

the family of curves F is represented in parametric form, it is supposed that the system of

equations can be analytically solved with respect to the parameters a and the expressions of Ca

and Γp are known. Note that, the voting algorithm, originally proposed in [109] for families of

plane curves with only two parameters, here is formulated to deal also with space curves with an

arbitrary number of parameters.

Given a family of curves in the parametric form represented as follows:

x(t)= M(t)a

where x(t) = (x(t), y(t), z(t))T , a = (a1, ...,an)T and M(t) is a matrix 3× n that depends on the

variable of the parametric equations t, then ΓP can be calculated using the Moore-Penrose

pseudo-inverse, as:

(3.3) A(t)= M†(t)xp.

In practice, we solve the system in equation (3.3) for each cell of the space of the parameters

T . The solution of the linear system can be optimised when the matrix M(t) is invertible. In

particular, in case of space curves, this means that the matrix M(t) is 3×3 and its determinant

is not zero, thus implying that the parameters a must be of the form a = (a1,a2,a3). In these

cases, several optimisations can be put in place, for instance, using Cramer’s rule as in [134]

or other direct methods. Using the notation introduced in Section 1.3.4, the evaluation of the

62

3.3. A METHOD FOR RECOGNISING SPACE CURVES

intersection is translated into an inequality between the components of the sample points of Γp

and the coordinates of the endpoints of the cells for each component:

a j,k j −
δ j

2
≤ A j(t)< a j,k j +

δ j

2

k j = 0, . . . , N j −1. This inequality must be verified for at least one parameter t for each component

j of A= (A1, ..., An).

Estimation of the accumulator function for space curves in implicit form. When space

curves are represented in implicit form, we consider that Γp can be evaluated through the zero

loci of its implicit functions and Γp crosses the cell c(k1, . . . ,kn) if its value on the point centre of

the cell is zero.

Indeed, for estimating if Γp crosses c(k1, . . . ,kn), we take advantage of the local approximation

of the zero loci of a set of analytic functions in terms of series of Taylor, following the strategy

defined in [152], where it has been formally proven that for each cell c(k1, . . . ,kn), a bound of

Γp depends on the norms of the Jacobian and Hessian matrices of F and the Moore-Penrose

pseudo-inverse of the Jacobian matrix.

Referring to the equation (1.2), for each point p we consider the vectors Fp(A)= (F1,p(A),F2,p(A))

and Fp(ȧ) = (F1,p(ȧ),F2,p(ȧ)), namely ȧ the point center of the considered cell, and B = {A ∈
Rn|∥(A− ȧ)∥∞ ≤ ε} the ball centered at point ȧ of radius ε = max j=1,...,n(δ j). Then our cell is a

subset of B whose interior coincides with the interior of B. Then, let us consider the Jacobians

JacF1,p (A) and JacF2,p (A) and the Hessian matrices HF1,p (A) and HF2,p (A) of, respectively, F1,p(A)

and F2,p(A). Let us fix

JacF (A)=
(
JacF1,p(A)

JacF2,p(A)

)
, J =

(
JacF1,p(ȧ)

JacF2,p(ȧ)

)
and H∞ = ∥(H1,H2)∥∞

with H1 =maxA∈B{∥HF1,p(A)∥1} and H2 =maxA∈B{∥HF2,p(A)∥1}.

Finally, let us fix J∞ =maxA∈B{∥Jac†
Fp

(A)∥∞}.

If:

• ∥Fp(ȧ)∥∞ > ∥J∥∞ε+ 3
2ε

2H∞ =: B1, then Γp does not cross the cell;

• ∥Fp(ȧ)∥∞ < 2R
J∞(2+6RJ∞H∞) =: B2, with R <min{ε, σp

6 H∞ } and σ the minimum singular value

of J, then Γp crosses the cell;

• B2 < ∥Fp(ȧ)∥∞ < B1, then neither Theorems 3.2 and 4.6 in [152] can be applied; this indeter-

minacy is reported in the accumulator function adding ξ instead of 1 in the corresponding

entry.

Since the above quantities depend on the Jacobian and the Hessian matrices, the cell

c(k1, . . . ,kn) that contributes to the computation of H must be a point for which these values are

63

RECOGNITION, EXTRACTION AND REPRESENTATION OF SPACE CURVES

non-trivial. In our implementation, we use the system CoCoA [6] for the symbolic manipulation of

polynomials and matrices, since it gives an exact estimation of the zeros of a curve in an implicit

form on the cells of the parameter space. Note that, compared to previous works [19, 154], in

our implementation, it is necessary to manage a vector of functions and therefore the non-trivial

calculation of the Jacobian and Hessian matrices.

3.3.2 Computational complexity

As for the case of plane curves, the complexity of the algorithm depends on the size of the

discretization of the parameter space T . As previously discussed, T is subdivided into M =∏n
j=1δi, j cells, with n the number of parameters of the family F , and the accumulator function

H i has the same dimension of T . The evaluation of H i requires O(M) operations for each point

pl , l = . . . ,L, in a cluster P i. Then, the computational complexity for each cluster is O(ML).

The theoretical complexity is the same for curves in implicit and parametric form, but in

practice, the first case requires symbolic computations, that can slow down considerably the

algorithm. Indeed, in this case, we need to evaluate, once for each point of the curve, the symbolic

expression of the Jacobian, the Moore-Penrose pseudo-inverse and the Hessian matrices because

these entities are involved in the determination of the zero sets of an implicit function. For curves

expressed in parametric form, the estimation of the HT accumulator function corresponds to the

explicit estimation of Γp, which is done either solving a linear system or analytically solving the

system a priori and, therefore, it corresponds to the evaluation of a set of inequalities.

In conclusion, the computational complexity seems to be the same as the plane curves method

introduced in Section 2.3. However, in the implementation of the method for space curves in

the implicit form, it is necessary to manage a vector of functions and therefore the non-trivial

calculation of the Jacobian and Hessian matrices.

3.4 Testing the method on digital models of real objects

The examples of models selected here are mainly meshes because the repositories considered

are mainly made up of these models. The models shown here represent man-made objects,

natural objects, and industrial components, mainly stored in various repositories (e.g. Visionair

[1], Sketchfab1 and the STARC [2] repository). For these models, a representation in smooth

patches such as B-splines or other CAD representations is not available, therefore, the exact,

mathematical formulation of their space curves is not known. Figure 3.3 shows the results

obtained by applying our method to eight 3D models. Once the feature points are aggregated in

clusters, the curve recognition method described in Section 3.3 is applied to each group. The two

columns show, respectively, the set of feature points identified by the clustering step with the

recognised curve and the points highlighted on the corresponding model. In particular, Figures

1https://sketchfab.com/

64

https://sketchfab.com/

3.4. TESTING THE METHOD ON DIGITAL MODELS OF REAL OBJECTS

3.3 present some examples of recognition by means of families of classical space curves. The

feature points in Figures 3.3(a,d,f,g,h) are approximated with a family of helices (see Section

3.2) with different values of n, m and s: n = 2
5 , m = 1

5 , s = 16
25 for Figure 3.3(a), n = m = 1

2 , s = 3
2

for Figure 3.3(d), n = m = 1
2 , s = 1 (that is a parabolic helix) for Figure 3.3(f), n = 1, m = 3

5 and

s = 7
10 for Figure 3.3(g) and n = m = 3

2 , s = 9
4 for Figure 3.3(h). The points selected on the model

in Figure 3.3(b) are recognised with a clelia curve with n = 4
5 , while the points selected on the

model in Figure 3.3(c) are recognised with a pancake curve. Finally, the points in Figure 3.3(e)

are approximated with a family of sphero-cylindrical curves, called hippopede in the special case

in which d = a−b.

(a) (e)

(b) (f)

(c) (g)

(d) (h)

Figure 3.3: Results obtained by the recognition method applied to some 3D models. In (a, d, f, g,
h) various types of helices, in (b) a clelia curve and in (c) a pancake curve.

65

RECOGNITION, EXTRACTION AND REPRESENTATION OF SPACE CURVES

Note that all the curves used in the experiments of this section have a parametric representa-

tion, which is linear with respect to the parameters a, with the exception of the sphero-cylindrical

and hippopede ones, recognised in the examples in Figure 3.3(e). In these cases, the expression of

Γp needs to be derived family by the family of curves. As an example, the parametric expression

of Γp is obtained by solving the system of equations that corresponds to the hippopede curve:

Γp :


A =

√
x2

P + y2
P + z2

P

B =− xP
1−cos t +

√
x2

P+y2
P+z2

P

1−cos t

C = yP
sin t

.

Figure 3.4 shows some examples of feature points recognised with a family of curves of type

II obtained as projections of families of plane curves on particular types of surfaces. The feature

points in Figures 3.4(a,b) are approximated with a family of curves obtained by the intersection of

a circular paraboloid and a cylinder with a 5−convexities and 20−convexities curve, respectively,

as directrix:

I :

ρ−
a

1+bcos5t = 0

z− cρ2 = 0
, P :


x = a

1+bcos5t cos t

y= a
1+bcos5t sin t

z = c
(a

1+bcos5t
)2

where the implicit equations are expressed in cylindrical coordinates. Their use implies a reduc-

tion of the degree of the curve and provides a general formula since the equation in Cartesian

coordinates has to be derived based on the number of convexities.

The points in Figure 3.4(c) are recognised with the family of curves of equations:

I :

bxm +am ym −amb = 0

z− cx2 − cy2 = 0
, P :


x = at

y=± (b−btm)
1
m

z = ca2t2 + c (b−btm)
2
m

obtained as the intersection of a paraboloid and a cylinder with a Lamet curve as its directrix.

The feature points in Figures 3.4(d) are approximated with a family of curves obtained by the

intersection of a circular paraboloid and a cylinder with a geometric petal of type (A) as directrix:

I :

ρ−a+bcos2n θ = 0

z− cρ2 = 0
, P :


x = (

a+bcos2n θ
)
cos t

y= (
a+bcos2n θ

)
sin t

z = c
(
a+bcos2n θ

)2

where, also in this case, the implicit equations are expressed in cylindrical coordinates.

In particular, the recognition of space curves with families of type II extends the approach

described in Chapter 2, which detects families of space curves necessarily projecting them on a

plane. It also improves the approximation by adding the possibility of using surface primitives,

66

3.5. A COMPARATIVE ANALYSIS FOR SPACE CURVES

(a) (c)

(b) (d)

Figure 3.4: Results obtained by our method on some 3D models.

such as paraboloids. Considering the recognised curves of the models presented in Figure 2.3(b,c)

and Figure 3.4(d,a), respectively, the use of a paraboloid better fits the set of feature points when

the surface is curved, in particular in the star extremities and in the inner part of the eye. This

result is also demonstrated by the value of the MFE: in Figure 3.4(d) it is 0.0131, while in Figure

2.3(b) it is 0.0180; in Figure 3.4(a) it is 0.0116, while in 2.3(c) it is 0.0129.

3.5 A comparative analysis for space curves

This section provides a comparative analysis between the methods for space curves in implicit and

parametric forms. Tables 3.2, 3.3 and 3.4 compare the HT-based algorithms for the same families

of space curves listed in Section 3.2, when the data are sampled on an exact mathematical

expression of the curve or sampled on a random perturbation error of the 5% of the diagonal of

the curve bounding box. Specifically, Table 3.2 lists the parameters of the mathematical curves,

those recognised by the HT algorithm on samples of the exact mathematical curve and the ones of

the same curve perturbed with noise. The results in Table 3.2 show that the algorithm in implicit

form identifies exactly the parameters corresponding to the original curves, while the parametric

version gets the exact parameters only in the case of sphero-cylindrical curves because the HT of

these families is analytically solved and no approximations are introduced with the estimations

of the Moore Penrose pseudo-inverse.

The quantitative distances between the identified curves and the samples are shown in

67

RECOGNITION, EXTRACTION AND REPRESENTATION OF SPACE CURVES

Table 3.2: Comparison between the mathematical curve parameters and those recognised by
our algorithm over exact or perturbed curves, with respect to both the implicit and parametric
formulation. The labels of the parameters are those used in the curve formulation in Section 2.2.
The values in bold represent the target parameters. The symbol = indicates when the parameter
identified by the HT-based algorithm equals the target one.

Mathematical Curve HT on exact curve samples HT on perturbed samples
Curve Parameters implicit parametric implicit parametric

(1) conical helix
a= 1.5 = a = 1.485 = a = 1.485
b= 1.5 = b = 1.515 = b = 1.515
c= 1 = = = c = 0.990

(2) parabolic helix
a= 1.5 = a = 1.495 = a = 1.490
b= 1.5 = = = b = 1.510
c= 1 = = = =

(3)
cylindrical a= 2 = a = 1.980 = a = 1.960

helix b= 1 = b = 0.990 = b = 0.980

(4) pancake curve
a= 2 = a = 1.980 = a = 1.980
b= 1 = b = 1.010 b = 1.04 b = 1.060

(5) clelia, n = 0.8
a= 2 = a = 1.980 = a = 1.940

b= 2.1 = = b = 2.058 b = 2.058

(6)
sphero- a= 2 = = = =

cylindrical curve b= 1 = = b = 1.060 b = 0.910
k = 2 c= 0.5 = = c = 0.490 =

(7) hippopede
a= 2 = = = =
b= 1 = = = b = 1.020

c= 0.9 = = c = 0.918 =

Tables 3.3 and 3.4, considering the same measures of Section 2.5. More in detail, in the columns

of Tables 3.3 and 3.4 we list, from left to right, the family of curves; the GoF, the ddHaus, the

mean(Dknn) distances; the computational time in seconds. All these measures are reported for

both the implicit and parametric curve expressions. Finally, in the rightmost column, we indicate

the number of points L in each cluster. The measurements in Table 3.3 refer to the quality of the

HT approximation when applied to a set of L points uniformly sampled on a mathematical curve.

We evaluate the quality of the curve approximation by uniformly sampling the curve recognised

with 200 points (in general, these points do not correspond to the L samples used to fit the curve)

and estimate the GoF, mean(Dknn) and direct Hausdorff distances between these samples and

the original set of points. For simplicity of notation in the Tables, we represent with 0.0 a distance

when its value is close to the machine precision.

Similarly, the measures in Table 3.4 report the distances of the HT curve approximation with

respect to a set of L randomly perturbed samples of a smooth curve; note that these L points do

not exactly lie on the original curve. The GoF measure and the mean(Dknn) highlight that, even

in this case, better precision is achieved by the HT-based algorithm for approximating curves in

implicit form with respect to the parametric ones. On the other hand, the algorithm for curves in

68

3.5. A COMPARATIVE ANALYSIS FOR SPACE CURVES

parametric form is computationally more efficient. Additionally, in practice, the family of curves

in implicit form makes it simpler to complete the missing parts because it enables global profile

recognition. The parametric form allows more accurate identification of the area of the curve that

most closely resembles the profile.

The experiments are performed on the same laptop equipped with an Intel Core i7 processor

(at 1.3 GHz). All the routines are implemented in MATLAB [111], with the exception of the sym-

bolic calculations that are implemented on the open source toolkit, CoCoA [6]. The computational

time of the HT-based recognition algorithm for curves in parametric form can be further opti-

mised when a family of space curves can be expressed with three, linear, independent parameters.

In this case, we can use more efficient linear system solvers rather than the Moore-Penrose

pseudo inverse; for instance, we experimentally observed that if the analytic system derived from

the curve equations is solved with Cramer’s rule as proposed in [134] the computational time

decreases by 60% for a set of 400 feature points.

Table 3.3: Quality measures and computational time for the HT-based recognition algorithm for
the same skew curves in implicit (I) and parametric (P) form. L represents the number of feature
points. The curve numbers are the same as in Table 3.2.

Curve GoF ddHaus mean(Dknn) Time (s)
L

I P I P I P I P

(1) 0.0 0.094 0.0 0.186 0.0 0.095 178 7 63
(2) 0 0 0.001 0.0 0.017 0.0 0.001 180 7 63
(3) 0.0 0.062 0.0 0.127 0.0 0.067 170 1.5 63
(4) 0.0 0.021 0.0 0.022 0.0 0.021 178 1 63
(5) 0.0 0.012 0.0 0.020 0.0 0.013 850 15 315
(6) 0.0 0.0 0.0 0.0 0.0 0.0 1700 4 64
(7) 0.0 0.0 0.0 0.0 0.0 0.0 1000 4 64

Our experiments confirm that the GoF distance generally provides a more satisfactory

convergence rate. Indeed, such a distance has been tailored for contours in images that might

be affected by some noise and outliers; indeed, it happens that some points of a cluster P i do

not really lie on the profile we are looking for [109]. For this reason, the GoF distance was

designed to be evaluated only on the most representative feature points. The mean(Dknn) yields

an interpretation of the distances similar to the GoF, but differently from the GoF, it averages

the distances between the fitting curve and the closest feature points. As displayed in Table 3.3,

the GoF and the mean(Dknn) qualitatively reflect the same property when a uniform sampling of

a mathematical curve is fitted with a smooth curve, while the average becomes more sensitive

to perturbations when the curve samples are affected by some noise, see Table 3.4. On the

contrary, the Hausdorff distance is designed to measure if two sets of points are globally close and

69

RECOGNITION, EXTRACTION AND REPRESENTATION OF SPACE CURVES

Table 3.4: Quality measures and computational time for the HT-based recognition algorithm for
the same mathematical curves of Table 3.3, perturbed by the 5% of the diagonal of the curve
bounding box. The curve numbers are the same as in Table 3.2. L represents the number of
feature points.

Curve GoF ddHaus mean(Dknn) Time (s)
L

I P I P I P I P

(1) 0.045 0.127 0.351 0.261 0.043 0.125 178 7 63
(2) 0.038 0.044 0.805 0.540 0.039 0.047 180 7 63
(3) 0.046 0.129 0.258 0.334 0.049 0.125 170 1.5 63
(4) 0.044 0.052 0.182 0.175 0.046 0.053 178 1 63
(5) 0.034 0.056 0.168 0.178 0.043 0.057 850 15 315
(6) 0.013 0.015 0.203 0.326 0.040 0.048 1700 4 64
(7) 0.048 0.014 0.160 0.168 0.048 0.053 1000 5 64

depends on the extrema kept by the Euclidean distance. As confirmed by our tests, this distance

is sensitive to outliers and data perturbation, while it well reflects if two dense curve samples

approximate each other.

3.6 Curve insertion into 3D meshes

Here we show how the recognised feature curves on the surface of a 3D model and their parametric

equations can be exploited to locally remesh the model itself by inserting these curvilinear

elements in a constrained way.

In the literature, when a feature curve is represented as a sequence of vertices on the mesh,

if the points lie on mesh elements (edges or faces) these elements are split, and the points

are inserted into the model constraining the curve edges to become mesh elements [34]. If the

curve is a smooth curve and the underlying triangle mesh is dense enough, e.g., an Euler spiral

detected over the laser scan reconstruction of an archaeological artefact [75], a visually pleasing

representation of the curve can be obtained by opportunely moving the mesh vertices to fit the

closest point on the spiral. In this case, the local mesh connectivity does not vary and only the

vertices coordinates are modified to belong to the curve. Of course, this strategy is suitable to

deal only with dense and well-shaped meshes. If the curve crosses some missing parts, as in the

case of archaeological findings, a local retriangulation strategy can be considered; for instance,

in [74] an ad-hoc hole-filling strategy was proposed in the case of the Euler spiral curve taking

advantage of the feature curve properties (in the case of the Euler spiral, the tangent and the

curvature are constant everywhere along the curve). In this case, a bridge of triangles is built

along the curve segment to cross the mesh missing part and create two simpler holes that are

then filled with a standard hole filling method [101].

70

3.6. CURVE INSERTION INTO 3D MESHES

Most of the methods that consider the insertion of a curvilinear constraint into a surface

mesh, usually approximate the curve segments with linear edges. On the contrary, here we

propose the use of both linear and curvilinear elements to exactly represent the curve segments.

In this direction, the application is inspired by the seminal work in [83], where 2D curved

triangle elements are inserted into a flat mesh. Differently from this method, thanks to the

curve recognition method that acts directly on space curves, the method directly edits the surface

of a 3D model, proposing a locally constrained re-mesh algorithm similar to the one used for

sharp edges in [12]. Moreover, thanks to the flexibility of the HT, we are able to consider also

non-polynomial curves thus exactly approximating also circles and ellipses, which would require

NURBS approximations and was impossible with the Bézier curves used in [83]. If we are dealing

with 3D models obtained from dense laser scans, our method permits the creation of meshes

generally coarser than the original one and that exactly represent the curve recognised by the

HT. However, our method can also be successfully used to thicken feature curves in very coarse

models.

(a) (b) (c) (d) (e)

Figure 3.5: An overview of the curve insertion method. In (a) a 3d model of a vase with its feature
curves is highlighted in red. In (b) its initial triangulation with the blue vertices corresponds to
2 clusters of points extracted by our method. In (c) a detail of the 2 feature curves (notice that
these curves are characterised by a stripe of thin triangles). In (d) the insertion into the model of
the two recognised curves and a detail (e) of the curve tessellation obtained near them.

In Figure 3.5 we show an overview of our method. In the following section we detail the steps

of our method.

3.6.1 Feature curves insertion method

Once a set of feature curves has been recognised, it is possible to explicitly insert them as

constraints into a 3D model, either to modify the local mesh tessellation or to emphasise some

specific characteristic, or to complete some missing parts. In this phase, smooth, curve elements

are inserted within a linear, triangle mesh, thus creating a hybrid mesh representation.

For the feature curve insertion phase, some restrictions are imposed on the type of surfaces we

are able to manage. First, the model mesh M is considered orientable and 2-manifold everywhere,

a fact that is not necessary for HT-based curve recognition. Then it is imposed that every point p
on the curve Cā is closer than β to M and the intersection between M and a ball centred in a

point p of the curve (p ∈Cā) of radius β is a simply connected component. In the experiments, β is

71

RECOGNITION, EXTRACTION AND REPRESENTATION OF SPACE CURVES

(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Figure 3.6: Pipeline of the curve insertion algorithm: (a,b) in blue we highlight the boundary
B obtained after the removal of the vertices close to Cā for two feature curves recognised in
the objects of Figure 3.5 and Figure 3.3(c), respectively; (c) identification of the vertices of the
boundary B of (a), highlighted in the picture with small blue dots; (d) the samples on the curve Cā
are shown with red dots; (e,f,g) insertion of the new vertices and the local triangulation criteria;
(h) the final triangle mesh with curvilinear elements and in (i) a detail of the curve elements for
the red curve in Figure 3.5(e)

.

selected in the range of 1%−5% of the diameter of the bounding box of the model. Intuitively, we

do not consider surfaces that are self-intersecting or almost bow on themselves and it is imposed

that the curve projection on the mesh is locally injective.

The presented curvilinear meshing algorithm locally re-paves the part of the mesh closest to

the fitting curve. The method can be summarised in the following steps: i) to identify the vertices

of the mesh that are close to the curve to be inserted; ii) to remove the triangles that are incident

to these vertices in order to create a hole around the curve; iii) to detect the boundary of the hole

created in the mesh; iv) to sample the smooth curve so that a set of curve edges is created; v) to

generate a valid mesh by sewing the curve samples and the boundary previously generated.

In Figure 3.6 we show the pipeline of the method whose five steps are detailed in the following.

1. Identification of the vertices close to the recognised curve. Once the curve Cā that best

approximates a set P of feature points is identified, the vertices of the mesh that are at a

lower distance to Cā than a threshold β are selected, which depends on the bounding box

size of the mesh itself.

2. Mesh cutting around the curve. The vertices identified in the previous step are removed

from the mesh together with the faces incident to them. Therefore a mesh M ′ with a hole

is obtained (see Figure 3.6(a,b) showing the resulting meshes for two curves recognised in

the objects of Figure 3.5 and Figure 3.7(c) respectively).

72

3.6. CURVE INSERTION INTO 3D MESHES

3. Detection of the hole boundary. Then, the vertices on the hole boundary B are identified

(see Figure 3.6(c) for the hole in 3.6(a)). Note that, as shown in the Figures 3.6(a,b) the

boundary B can be made of one or two connected components. In particular, the second

case happens if Cā is closed.

4. Curve sampling. Since we have the parametric equation of Cā, it is possible to sample it

in a preferred way, without any restriction. In our settings, the curve is sampled to obtain

a number of samples equal to a percentage of the number of vertices of the boundary,

varying such a percentage from 30% to 50%, as shown for example in Figure 3.6(d). These

percentages are selected because the examples presented in this section are dense meshes

obtained from laser scans; on the contrary, if dealing with very coarse meshes or models

from sketches it is possible to over-fit the curve and even choose percentages higher than

100%. These samples will become the endpoints of the new curve edges.

5. Generation of a valid mesh. To fill the hole boundary, an approach similar in spirit to the

surface tiling from contours [15] is adopted, sewing, alternatively, points on the curve Cā

and the mesh boundary B. Starting from the first sample q on Cā, for each connected

component of the boundary B, the vertex on B the closest to q is selected and all the

vertices of that component are ordered according to the model normal and counterclockwise

with respect to the curve Cā. To simplify the notation, we indicate with q+1 the vertex

following q with respect to the considered sorting. Starting from q and from the first point

of the ordered boundary vertices r, a new triangle t = (q,r,w) is inserted by choosing the

new vertex w between the vertices q+1 and r+1, selecting them on the basis of an edge

length criterion. In particular, the new vertex is chosen by computing the lengths of the

edges (q,r+1) and (r,q+1) and the vertex belonging to the smaller edge is selected (Figure

3.6(e)). Furthermore, if the edge (r,r+2) is not an edge of M ′, the length of the edges

(q,r+1) and (r,q+1) are compared also with the length of (r,r+2) to possibly insert also

t = (r,r+1,r+2) as a new triangle of the final mesh (in this case we assume there is a kind

of loop on B), as shown in Figure 3.6(f,g). In case the length of the new edge exceeds a

prescribed threshold, the new vertex is chosen by computing the width of the angles and

choosing the largest minimum angle. The process is iterated till the last sample of Cā is

reached.

Once the last sample on Cā is reached, if B has a single connected component, the vertex

of B the closest to this point is found and the previous steps are repeated by scrolling the

indices of the curve in a decreasing way, obtaining a triangle mesh with curve elements

such as in the example in Figure 3.6(h). Otherwise, the sewing operation is repeated for the

second connected component of B, as shown in Figure 3.7(c)(right). The holes generated

by edge loops are filled during the visit of B by adopting a standard hole-filling approach,

such as the one implemented in [11].

73

RECOGNITION, EXTRACTION AND REPRESENTATION OF SPACE CURVES

Since the explicit formulation of Cā is known, the edges between two curve samples can be

represented directly as curve segments. Then, a new representation of the initial mesh that

contains both curvilinear and linear elements is proposed. The curve triangulation is stored using

the standard .off format for the linear elements and a parametric representation of the curve

elements is added. Specifically, for each curve segment the coordinates of the starting point, the

curve parametrization and the range of the curve parameter t are stored. Apart from this coding,

to visualise the results, the curve triangles as polygonal elements are plotted in MATLAB, as

shown in Figure 3.6(i) and in the third column of Figure 3.7.

3.6.2 Curve insertion examples

Figure 3.7 presents some examples of the presented curved triangles re-meshing algorithm. The

central column represents the original triangulation while in the right column we highlight

the new triangles and the new curve elements. In Figure 3.7(c) the outcome of the insertion of

two circles is presented (in this case the new elements are depicted in red and blue). Further

examples of the outcome of this method are available in Figure 3.5; in particular, Figure 3.5(d)

presents the insertion into the model of two curves and the curve tessellation obtained.

As shown in Figure 3.7(b), the HT permits the recognition of curves even partially corrupted.

In the example in Figure 3.8, the same curve approximates a profile before and after the missing

part. Figure 3.8(b) show three curves recognized on the model. Figure 3.8(c) shows the repairing

effect of the curve mesh tessellation obtained with our method when the three curves recognised

around the abraded part are used to conjoint the profiles. As depicted in Figure 3.8(c) the new

model gives a pleasant continuation of the curvilinear borders of the decoration.

Finally, in Figure 3.9 an example of curve insertion for a decorative pattern corresponding

to a set of floral petals is shown. In this case, the curves represent the border of a coloured

pattern; the colour information is stored in the mesh vertices as RBG values. In this case, the

curve recognition is done by grouping the vertices according to their colorimetric information,

see for instance the six petals in the floral band decoration in Figure 3.9(b). Then, the decorative

elements are inserted as curves in the mesh. As shown in Figure 3.9 the overall model geometry

does not change but the local connectivity is modified to follow the decorative elements. The views

in Figures 3.9(c,d) show the mesh tessellation before and after the curve insertion. As visible

in the detail, the petals are quite deteriorated and irregular because hand made, in particular,

since one of the broken petals reaches the fragment fracture, the curve element is recognised and

inserted as an open curve.

Table 3.5 compares the mesh properties of the models considered so far, before and after

our curve insertion. The number of vertices in the second column of Table 3.5 corresponds to

the difference of vertices of the final mesh in the area affected by the feature curves insertion;

the average edge length and the width of the minimum angle are evaluated on the stripes of

triangles removed and the new patches inserted. All the models considered in the examples

74

3.6. CURVE INSERTION INTO 3D MESHES

(a)

(b)

(c)

Figure 3.7: Some examples of feature curve insertion. The first two columns show some 3D models
and their original triangulation. The last column highlights the new triangles and the curvilinear
elements.

(a) (b) (c)

Figure 3.8: Visual comparison between the initial mesh (a) and the one obtained after the feature
curves insertion (c) along the border of the decoration. The three inserted curves are highlighted
in different colours on the mesh (b).

75

RECOGNITION, EXTRACTION AND REPRESENTATION OF SPACE CURVES

(a) (b) (c) (d)

Figure 3.9: (a) A model with a colour decoration of a flower and (b) its petals recognised on it. (c)
The original mesh tessellation does not reflect any decorative element. (d) The mesh after the
insertion of the feature curves, with a detail around the curves inserted.

contain about 10K vertices with the sole exception of the model in Figure 3.5(a) which contains

about 2.5K vertices. The number of vertices removed is proportional to the extension of the curve

on the model. The absolute value of the edge length varies from model to model because they

have different units of measure and normalisation. Anyway, considering the percentage of the

increment of the edge length before and after the curve insertion, it is possible to notice that the

edge length always grows more than 15%, also in the case the curve does not correspond to a

geometric feature but to a colorful decoration. Similarly, the minimum angle in the triangle strip

increases of more than 40%.

Table 3.5: Statistics on the mesh properties before and after a curve insertion. The number of
vertices refers to the decrease in the mesh vertices after inserting a feature curve. The average
edge length and the minimum angle width are reported only for the region modified by our
algorithm. The models have different sizes: the models in Figures 3.5(a) and 3.7(c) are normalised
in a unit sphere (radius 1); the unit measures are millimetres, metres and centimetres for the
models in Figures 3.7(a), 3.7(b) and 3.9(a), respectively.

Model # vertices initial average final average initial minimum final minimum
removed edge length edge length angle angle

Figure 3.5(a) 45 0.0367 0.0420 0.0785 0.3120
Figure 3.7(a) 598 0.0112 0.0218 0.0426 0.0616
Figure 3.7(b) 71 9.8∗10−4 0.0014 0.0335 0.2059
Figure 3.7(c) 379 0.0090 0.0140 0.0626 0.1100
Figure 3.9(a) 89 0.1196 0.1423 0.0062 0.0200

The result of our method is an improvement of the original model; for example, Figure 3.8(c)

shows the repairing effect of a model of a fragment, while Figure 3.7(c) provides the restoration of

sharp edges that had probably been lost after a series of remesh operations. Also, Figure 3.6(c,e)

shows that the strips of thin triangles have been replaced by two sharp edges well-defined.

76

3.7. CONCLUDING REMARKS

3.7 Concluding remarks

Some of the models of fragments were given by the GRAVITATE project European project [3].

The method and the results presented in this chapter have been obtained during the first and the

second year of my PhD. The division of the dictionary of space curves into type I and type II curves

are exhibited in [138], while the description of two approaches in parametric and implicit form is

provided in [136]. Finally, the method and the results of the space curves insertion on the surface

of a 3D model are presented in [134] and it was presented at the Shape Modeling International

conference (SMI 2020). Some of these results have been discussed with some experts at the

Doctoral Consortium 2021, which took place at the Eurographics’2021 conference.

The proposed method extends the approach in Chapter 2: indeed, it detects families of space

curves without necessarily projecting them on a plane and it also improves the approximation

using a surface primitive as a projecting surface, such as a paraboloid. Figure 3.10 compares

the HT-based recognition of the feature curves extracted from the 3D models provided on the

first row, considering the projection on a paraboloid (in (a) and (c)) or a plane (in (b) and in (d)).

The use of a paraboloid provides a better fitting of the set of feature points when the surface

is curved, in particular in the star extremities and the inner part of the eye. This result is also

demonstrated by the value of the MFE.

(a) (b) (c) (d)

Figure 3.10: Approximation of curves projected, respectively, on a paraboloid and on a plane: in
(a)-(b) using a geometric petal curve; in (c)-(d) using an m-convexities curve (see [150]).

In conclusion, the proposed method has several advantages. First, it permits the use of both

the parametric and the implicit form in a single flow. Furthermore, the use of the HT naturally

leads to a curve recognition pipeline robust to noise, outliers and missing data. Thanks to these

characteristics, it is particularly suitable for the analysis of digital models deriving from 3D scans.

In addition to archaeological fragments, the method has been tested on digital models used in

real application contexts, such as CAD objects and objects scanned for reverse engineering.

77

RECOGNITION, EXTRACTION AND REPRESENTATION OF SPACE CURVES

Moreover, the recognised curves can become the key driving the model simplification and

inserting curve elements directly into the model. Note that, in this application, the parametric

representation adds large flexibility in the way the curves are sampled and in their possible

subdivision into smaller segments. Unlike traditional techniques that insert a feature curve in

the model as a piecewise-linear curve, to keep low the number of model elements, we propose

a new representation that contains both curve and linear elements. In particular, the curve

elements we consider can also be non-algebraic curves and transcendental or exponential curve

segments: in this way, we overcome the limitation of using only Bézier segments that are not able

to exactly represent circles or ellipses. Different from spline-based methods that obtain a better

local approximation, our approach provides a global representation of the recognised curves and

is more suitable for recognition.

3.8 Related publications

• C. Romanengo, B. Falcidieno, S. Biasotti, Hough transform based recognition of space curves,

Journal of Computational and Applied Mathematics (2022), vol. 64, pp. 284–297.

• C. Romanengo, S. Biasotti, B. Falcidieno, Hough Transform for Detecting Space Curves

in Digital 3D Models, Journal of Mathematical Imaging and Vision (2022), vol. 415, pp.

114504.

78

C
H

A
P

T
E

R

4
PIECE-WISE CURVE APPROXIMATION USING THE HOUGH

TRANSFORM

The traditional HT-based recognition algorithm requires the pre-knowledge of which family

of curves to look for. To overcome this limitation, we were inspired by the work [40]

that applies a method based on the HT for recognising curvilinear profiles in digital

images considering polynomial pieces of degree between 3 and 6. In this chapter, we define a

method for the piece-wise curve approximation of curvilinear profiles in point clouds, able to deal

with both planar and spatial profiles. Specifically, we create a segmentation of the initial profile

made of subsets of regular points and we provide a piece-wise curve approximation, composed of

parametric polynomial curves whose degree is 3 or 4 (see Section 4.1). If the profile is planar, then

only one projection of the feature points is required for the approximation. In case the profile

is spatial since the segmentation is composed of sets of regular points, we can use the results

provided in https://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/node6.html, for

which a regular space curve can be seen as the intersection of two cylinders. Then, we consider

two projections to approximate the profile (see Section 4.2). In this thesis, we consider profiles

whose projection onto the planes does not collapse to a point, postponing these particular cases to

a later study.

4.1 Pipeline of the piece-wise curve approximation method

Given a point cloud P , we preprocess it in a way similar to the preprocessing strategy described

in Section 2.3. The result is a set of clusters P i, i = 1, . . . ,n with spatial coordinates (x, y, z) (see

for example Figure 4.4(a)). The following procedure is considered for each cluster P i.

1. Projection. First, principal components analysis (PCA) is applied to P i to find the best fitting

79

https://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/node6.html

PIECE-WISE CURVE APPROXIMATION USING THE HOUGH TRANSFORM

(a) (b)

Figure 4.1: The smoothing step for a point p of P i. In (a) the set N (p) is highlighted in red, while
the first PCA component v is designed in blue. In (b) the point p is in blue and its projection point
is in green.

plane of the set of points P i. The first two eigenvectors are used to define the projection

plane to reduce the problem in the 2-dimensional space. P i is rotated and translated, to

make the projection plane coincident with the plane z = 0. In case the variation in the

z−coordinates of the points is less than a certain threshold, that is a percentage of the

lengths of the axis-aligned bounding box, the profile is considered planar, so we consider

only this projection (see Section 4.2.2). Otherwise, the profile is considered spatial, and then

the second projection given by the components of the PCA will be considered (see Section

4.2.3).

2. Normalisation. On the plane identified in the previous step, the profile is represented using

two Cartesian coordinates, for simplicity we denote as x and y these coordinates and as

P ′
i the set of planar points. Then, P ′

i is centred in the origin of the Cartesian axes and

normalised, so that all points lie within the unit circle (see for example Figure 4.4(b)). Our

method benefits from normalisation because it restricts the range of variation for most

parameters.

3. Smoothing the feature points. Since the set of points P ′
i may be affected by noise, we

adopt a local smoothing filter similar to [41]. Specifically, given a point p ∈P ′
i , we select

a neighborhood of p identified by N (p)= {p′ ∈P ′
i | |∥p′−p∥2 < ϵ}, where ϵ is fixed starting

from the mean distance among points of P ′
i . Then, the cross-correlation coefficient ρ of

N (p)x and N (p)y is computed to evaluate how N (p) is distributed along a line. High

absolute values of ρ indicate that there is a linear relationship between N (p)x and N (p)y,

therefore we fix 0.7 as a good threshold for the absolute value of ρ (as suggested in [41]).

If ρ is under this threshold, we iteratively add points closest to p to N (p). Once a good ρ

value is reached, the point p is projected into the line passing through the mean point p̄ of

N (p) and aligned with a vector v, the first PCA component for N (p). An example of this

step is shown in Figure 4.1 and the final result is provided in Figure 4.4(c).

80

4.1. PIPELINE OF THE PIECE-WISE CURVE APPROXIMATION METHOD

4. Classification of the feature points. To identify intersection points, we use an algorithm

strategy that, given the point cloud P ′
i , returns a function branch_number : P ′

i → N

assigning to each p ∈ P ′
i the number branch_number(p) of “branches” originating in p.

The points assuming values strictly greater than 2 will be identified as intersection points

of different curves.

The function branch_number is computed as follows. Given a threshold value δ> 0, we

define the graph G = (P ′
i ,E) as the undirected graph whose:

• nodes coincide with the points of P ′
i ;

• edges consist of the pairs of points in P ′
i having a Euclidean distance lower than δ.

Given a node p of G and two threshold values δ1,δ2 with 0< δ1 < δ2, we define the subgraph

Gp = (Pp,Ep) of G whose:

• set of nodes Pp consists of the nodes q ∈P ′
i such that δ1 < ∥p− q∥2 < δ2;

• set of edges Ep consists of the edges (q,r) ∈ E such that both q,r ∈Pp.

The value branch_number(p) is defined as the number of (not too small) connected compo-

nents of Gp.

The approach clearly depends on the choice of the parameters δ,δ1,δ2. Preliminary evalua-

tions show that there exists a suitable choice of these parameters providing (even in the

presence of noise) a quite limited (w.r.t. the actual number) number of points p assuming

branch_number(p) value strictly greater than 2. The points p with branch_number(p)=
2 are classified as regular points. End-points, if they exist, have branch_number(p) =
1 An example of the application of this procedure is provided in Figure 4.2. Finally,

we use this point classification to sort the points of P ′
i . Starting from a point such

that branch_number(p) > 2, we visit the graph following a path made of points with

branch_number(p)= 2 until we reach another point with branch_number(p)> 2 or the

same point (loop). As we visit the graph, the paths found are discarded from further visits

and are seen as sets P ′
i j

, j = 1, . . . , J, of ordered points (the order is induced by the visit

priority).

5. Segmentation. We use a variation of the Douglas-Peucker algorithm [52] to segment each

ordered set of points P ′
i j

detected in P ′
i . The variation allows us to deal also with a closed

curve as shown in Figure 4.3(b). We first select two points p1 and p2 of P ′
i j

. In case the

curve is open, we choose the first and the last point of the sorted P ′
i j

, while if the curve is

closed, we select the first and the middle point of the sorting. Then, the error induced over

the line that connects p1 and p2, denoted by p1p2, that approximates the portion (p1,p2)

is computed as ε=maxp∈(p1,p2) d(p1p2,p), where d is the point-line distance. The farthest

point of P ′
i j

from the line p1p2 is denoted as p3 and the set {p1,p2,p3} is a first sampling

81

PIECE-WISE CURVE APPROXIMATION USING THE HOUGH TRANSFORM

(a) (b)

(c) (d)

Figure 4.2: Example of a search for a point of self-intersection. In (a) the graph G associated to
the input point cloud; in (b,c) a node p in violet and the vertices of the subgraph Gp in orange;
in (d) the points with branch_number(p)= 4 in red, the points with branch_number(p)= 3 in
green and the points with branch_number(p)= 2 in blue.

of P ′
i j

. The same procedure is iterated to the sub-portions (p1,p3) and (p2,p3) until the

approximation error ε falls below a certain fixed threshold, which in our context is set as a

percentage of the length of P ′
i j

(see Figure 4.3). In case the curve is closed, the iterations

are applied also to the portion (p2,p1) and iterated to its sub-portions. Applying this method

to each ordered set P ′
i j

, the result is a sampling {p1, . . .pK } of P ′
i and consequently K −1

subsets Sk = (pk,pk+1) of P ′
i if the profile is open, such that P ′

i =
⋃K−1

k=1 Sk, or K subsets Sk

if the curve is closed, such that P ′
i =

⋃K
k=1 Sk. An example of this result is shown in Figure

4.4(d). Note that each subset Sk is a set of points that outlines a regular plane curve.

6. HT-based recognition method. The HT-based recognition method is applied to each subset

Sk, using specific families of curves. The result is a set of pieces of curve C ′
k, k = 1, . . . ,L,

such that
⋃L

k=1 C ′
k, L = K −1 (open profile) or L = K (closed profile), correctly approximates

P ′
i (see for example Figure 4.4(e)).

In case the profile considered is spatial, the second projection given by the PCA is applied and

all steps of the pipeline are repeated, except for the segmentation step, which is repeated on the

second plane only if necessary, i.e. splitting the segments if they contain non-regular points in the

second plane. Then, they are good candidates to be approximated through the two projections.

82

4.1. PIPELINE OF THE PIECE-WISE CURVE APPROXIMATION METHOD

(a)

(b)

Figure 4.3: The first three steps of the Douglas-Peucker algorithm considering an open, in (a),
and a closed, in (b), profile.

(a) (b) (c)

(d) (e)

Figure 4.4: A visual illustration of the steps of our algorithm. In (a) the result of the clustering
method: for the following steps we select Cluster #5. In (b) the projection on the (x, y)−plane and
the normalization. In (c) the smoothing operation; in (d) the result of the segmentation; finally, in
(e) the output of the algorithm.

83

PIECE-WISE CURVE APPROXIMATION USING THE HOUGH TRANSFORM

4.2 Description of the feature approximation method

In this section, we elaborate on the sixth step of the algorithm described in the previous one.

Specifically, in Section 4.2.1 we highlight the variations from the classical HT-based recognition

algorithm, while in Section 4.2.2 and 4.2.3 we illustrate how the method works considering,

respectively, the only (x, y)−projection and the combination of the (x, y)−projection and the second

projection given by the components of the PCA. In the second case, we exploit the fact that

a regular space curve can be seen as the intersection of two cylinders. Specifically, given a

curvilinear spatial profile, we can consider two cylindrical projections and approximate the plane

profile with a plane curve in order to create the cylinders, projecting the detected curves along

the direction perpendicular to each projection plane. This fact is guaranteed by the condition of

regularity: let us consider the implicit form of a space curve

I :

 f (x, y, z)= 0

g(x, y, z)= 0
.

If the functions f and g satisfy the regularity condition f y gz − fz g y ̸= 0, then the system can be

written as

I :

y=Y (x)

z = Z(x)

for the implicit-function theorem. Therefore, the explicit equation of a space curve can be ex-

pressed as a curve intersection of two cylinders projecting the curve onto the xy and xz planes.

We refer to https://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/node6.html for

details. Note that, for simplicity, we detail only one type of representation, making explicit

x.

The fifth step of our pipeline ensures that the segments that we are going to approximate

outline regular plane curves. However, we show that the regularity of the projected curve also

guarantees the regularity of the original curve in the space. Indeed, let us consider a generic

space curve γ(t)= (f1(t), f2(t), f3(t)) and, for simplicity of notation, we suppose its projection onto

the plane (x, y) given by γx,y(t) = (f1(t), f2(t)) is regular. Similar reasoning holds for the other

plane. The regularity of γx,y is equivalent to the condition f ′1(t)2 + f ′2(t)2 ̸= 0 for all t ∈ I. Then, it

is also true that

f ′1(t)2 + f ′2(t)2 + f ′3(t)2 ̸= 0 for all t ∈ I

because f ′3(t)2 ≥ 0, which corresponds to the regularity condition of the space curve γ. Conse-

quently, the fifth step of our pipeline guarantees that the spatial segments approximated through

the two projections outline regular space curves.

4.2.1 Variation from the standard HT

The algebraic families of curves that we use for the HT-base recognition process are:

84

https://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/node6.html

4.2. DESCRIPTION OF THE FEATURE APPROXIMATION METHOD

Figure 4.5: 216 curves of the families F3,x in blue and 216 curves of the families F3,y in black
with parameters included in the range [−1,1].

Fg,x := {C g
a : x = ag yg +ag−1 yg−1 +·· ·+a1 y+a0} g = 3,4

Fg,y := {C g
b : y= bgxg +bg−1xg−1 +·· ·+b1x+b0} g = 3,4.

The choice of two families allows for a wider variety of possible curves (see Figure 4.5). Note that

considering these two families of curves, the parameters for the HT can be 4 or 5, but in the steps

of our algorithm some of these are fixed, imposing conditions of continuity and/or G1−continuity.

In the standard HT-based method each entry of the accumulation matrix increases by 1, each

time the HT of a point intersects the corresponding cell, so all points have the same weight. In our

method, we give each point a particular weight, which is a variation of the one proposed in [40].

Specifically, we give greater weight to the extreme points of the segment we want to approximate.

Given p0 the starting point of the segment, the weight of a generic point p is:

ωp0(p) := 1

exp(|||p0 −p||2 −dist|2)

with || • ||2 the L2 norm and dist the mean of the distances of all points of the segment from the

starting point p0.

In this case, we use the point-distance weighted HT and then, given a starting point p0,

each entry of the accumulation matrix increases by ωp0(p), each time the HT of p intersects the

corresponding cell.

4.2.2 Approximation method considering one projection

To each subset Sk, the HT-based recognition method is applied using the families of curves Fg,x

and Fg,y introduced in Section 4.2.1. The one recognised with a lower value of MFE (between Sk

and a sample of the curve, as defined in Eq. (3.2)) is kept, and considered as the recognised curve

for the segment Sk. In Figure 4.6(a,b) the two families have produced two different results, but

the one shown in Figure 4.4(a) has a lower value of MFE. Note that, if the minimum value of the

85

PIECE-WISE CURVE APPROXIMATION USING THE HOUGH TRANSFORM

MFE is higher than a threshold, the Douglas Peucker algorithm is applied to refine the input

segment.

We impose some conditions on the two families of curves to ensure that the outcome of the

algorithm is a G1−continuous curve, eventually containing some singular or intersection points,

in which the continuity is C0. These conditions change according to the position of the segments,

that is initial, central or final.

If the segment considered is the initial one S1, we only impose the passage to the initial point

p1, then the parameters a0 and b0 are fixed for the respective family:

a0 = xp1 −ag yg
p1 −·· ·−a1 yp1 , b0 = yp1 −bgxg

p1 −·· ·−b1xp1 .

We denote the resulting piece of curve as C1. In case the set of points Sk represent a central

segment, we call pk the final point of the previous curve Ck−1 and the new starting point of this

step. Then we compute uk the unit tangent vector of Ck−1 in pk to impose the G1−joined as

follows:

a0 = xpk −ag yg
pk −·· ·−a1 ypk , b0 = ypk −bgxg

pk −·· ·−b1xpk ,

a1 = 1
tan(uk)

− gag yg−1
pk −·· ·−2a2 ypk −a1,

b1 = tan(uk)− gbgxg−1
pk −·· ·−2b2 ypk −b1

where tan(uk) denotes the tangent of the angle between uk and the x−axis. We denote the

resulting piece of the curve as Ck. Finally, in case the segment is the final SL, the procedure

changes based on whether the global curve is open (L = K −1) or closed (L = K). If it is open, the

imposed condition is the same as the central segment, while if the curve is closed, we consider

the families Fg,x and Fg,y with g = 4 and we impose conditions of C0−continuity on both the

initial and the final points. The only remaining free parameter to be recognised with HT is a4.

For each curve, the algorithm returns a vector containing its geometrical information:

[1a b c d e] (with a = b4, b = b3, c = b2, d = b1 and e = b0) if the curve belongs to the family

Fg,y or [2a b c d e] (with a = a4, b = a3, c = a2, d = a1 and e = a0) if the curve belongs to the family

Fg,x.

In case the profile is planar, to each curve C ′
k, translations and/or rotations are applied

backwards in order to have a good approximation of the original cluster of points P i. Otherwise,

the algorithm proceeds with the step described in Section 4.2.3.

4.2.3 Approximation method considering two projections

Upstream of the results obtained from the algorithm described in Section 4.2.2, if the feature

points describe a space curve there are still steps to be taken. Starting from the roto-translated

point cloud P i, it is possible to consider the second projection suggested by the PCA obtaining a

new planar point cloud P ′′
i (see for example Figure 4.7(a)). In order not to make the notation too

86

4.2. DESCRIPTION OF THE FEATURE APPROXIMATION METHOD

(a) (b)

Figure 4.6: Curves recognised by the HT-based recognition algorithm for the first segment of P i
of Figure 4.4 considering the families Fg,y (a) and Fg,x (b).

heavy, in this section we will consider the (x, z)−projection. At first, the smoothing step of the

algorithm in Section 4.2.2 is applied to P ′′
i in order to obtain a noiseless point cloud, as shown in

Figure 4.7(b). Then, we consider the same segmentation P ′′
i =⋃L

k=1 Sk, with L = K −1 or L = K ,

and we apply the HT-based recognition method to each segment Sk using the following families

of curves:

Gg,x := {C g
c : x = cgzg + cg−1zg−1 +·· ·+ c1z+ c0} g = 3,4

Gg,z := {C g
d : z = dgxg +dg−1xg−1 +·· ·+d1x+d0} g = 3,4.

An example of these types of curves is provided in Figure 4.7(c,d). The recognised curve with a low

value of MFE is denoted as C ′′
k . If the minimum value of the MFE is higher than a threshold, the

Douglas-Peucker algorithm is applied to the input segment to divide it into regular sub-segments.

The result is a set of curves C ′′
k , k = 1, . . . ,L, such that

⋃L
k=1 C ′′

k (L = K −1 or L = K) correctly

approximate P ′′
i . For each curve, the algorithm returns a vector containing its geometrical

information: [1 f h i l m] (with f = d4, h = d3, i = d2, l = d1 and m = d0) if the curve belongs to the

family Gg,z or [2 f h i l m] (with f = c4, h = c3, i = c2, l = c1 and m = c0) if the curve belongs to the

family Gg,x.

At this point, the curves C ′
k and C ′′

k , have to be combined to obtain a unique curve Ck that

represents the segment Sk in the space. We consider three possibilities:

• C ′
k ∈Fg,y and C ′′

k ∈Gg,z:

Ck :


x = t

y= at4 +bt3 + ct2 +dt+ e t ∈ [min(Skx),max(Skx)]

z = f t4 +ht3 + it2 + lt+m

• C ′
k ∈Fg,x and C ′′

k ∈Gg,z:

87

PIECE-WISE CURVE APPROXIMATION USING THE HOUGH TRANSFORM

(a) (b) (c) (d)

(e) (f) (g)

Figure 4.7: A visual illustration of the steps of our algorithm in case of space curve approximation.
In (a) the projection on the (x, z)−plane and the normalization. In (b) the smoothing operation; in
(c,d) the curves recognised by the HT-based recognition algorithm for the first segment considering
the families Gg,z (c) and Gg,x. In (e) the approximation of all segments. Finally, in (f) the output
of the algorithm on the input point cloud P .

Ck :



x = at4 +bt3 + ct2 +dt+ e

y= t

z = f (at4 +bt3 + ct2 +dt+ e)4 + . . .

· · ·+h(at4 +bt3 + ct2 +dt+ e)3 + . . .

· · ·+ i(at4 +bt3 + ct2 +dt+ e)2 + . . .

· · ·+ l(at4 +bt3 + ct2 +dt+ e)+m

t ∈ [min(Sky),max(Sky)]

• C ′
k ∈Fg,y and C ′′

k ∈Gg,x:

Ck :



x = f t4 +ht3 + it2 + lt+m

y= a(f t4 +ht3 + it2 + lt+m)4 + . . .

· · ·+b(f t4 +ht3 + it2 + lt+m)3 + . . .

· · ·+ c(af t4 +ht3 + it2 + lt+m)2 + . . .

· · ·+d(f t4 +ht3 + it2 + lt+m)+ e

z = t

t ∈ [min(Skz),max(Skz)]

An example of
⋃L

k=1 Ck is shown in Figure 4.7(f). To each curve Ck, translations and/or rotations

are applied backward to have a good approximation of the original cluster P i (see Figure 4.7(g)).

88

4.3. EXAMPLES

4.3 Examples

Figure 4.8 provides some results of our piece-wise curve approximation method applied to point

clouds extracted from the models shown in the first column. In the central columns, we exhibit

the two projections, except for the model in the first row, which needs only one projection since

the profile is planar. The final column shows the resulting curve on the initial model. Part of the

proposed models come from the Visionair 3D Shape Repository [1] and the ABC dataset [91].

4.4 Feature-preserving point cloud simplification and
resampling

The outcome of the piece-wise approximation method can be used by a point cloud simplification

algorithm to drive a constrained point cloud simplification and resampling. The simplification

process that we consider aims at drastically reducing the number of points representing the

original point cloud while preserving the identified curves. Given a point cloud P , the previous

steps of the proposed process allow us to identify the feature curves of P . Specifically, for each

identified curve C i the previous steps provide us:

• a decomposition of the curve C i in sub-curves C i
1,C i

2, . . . ,C i
L, each of which is described in

terms of its parametric equation, starting and ending points;

• a collection of points P i ⊆P representing the points of P identified as points of the curve

C i. Each point p ∈P i is properly labelled according to the specific sub-curve C i it belongs

to.

The considered curve-preserving simplification process is a decimation algorithm considering

at any new iteration a pair u,v of points of P and properly replacing them with a new point

w. The decimation process is driven by a density function to first remove vertices belonging to

regions of P with high density and takes advantage of a graph representation of the point cloud

P . Each removal aims to preserve the identified curve C i.

4.5 Concluding remarks

The experimental examples provided in this chapter come from the Visionair 3D Shape Repository

[1] and the ABC dataset [91]. The presented method was developed at the end of the third year

of my PhD, to overcome the limitation of the traditional HT for curves that requires the pre-

knowledge of the family to be used for the recognition. Indeed, it permits to approximate feature

points extracted from a point cloud with pieces of plane and space curves given by specific

polynomials. Except for the correspondence of the specified singular points, where the order of

continuity is C0, the output curve is composed of polynomial pieces with the order of continuity G1

89

PIECE-WISE CURVE APPROXIMATION USING THE HOUGH TRANSFORM

initial model first projection second projection final curve on the model

Figure 4.8: Some results of our piece-wise curve approximation method. In the first column the
original model from which the point cloud is extracted. In the central columns the resulting
approximation of two projections. In the final column, the outcome curves are highlighted on the
model.

90

4.5. CONCLUDING REMARKS

(a) (b) (c)

(d) (e) (f)

Figure 4.9: An example of a decimation process performed on a point cloud. In (a), the input point
cloud with the feature points is highlighted in red. In (b) - (f), the output is obtained by reducing
the number of points by a factor of 10, 20, 50, 100, and 200, respectively.

in each projection. We have yet to investigate the problem of the type and the order of continuity

from the spatial point of view of the resulting curve approximation. The resulting curves can be

input to some point cloud simplification algorithm to drive a constrained point cloud simplification

and resampling.

Currently, the presented method does not include the case of lines orthogonal to each other

and parallel to the axes of the projection plane, such as the edges of a cube parallel to the

Cartesian axes. A relevant part of our ongoing research activity is devoted to extending our

approach by including these particular cases, as well as more complex examples that also contain

self-intersection points.

91

C
H

A
P

T
E

R

5
RECOGNITION, EXTRACTION AND REPRESENTATION OF GEOMETRIC

PRIMITIVES

CAD models are among the most common medium to convey dimensional and geometrical

information on designed objects or components. In several situations, unfortunately, the

CAD model of an object is not available, it does not even exist, or it no longer corresponds

to the real geometry of the manufactured object itself.

A strategy to retrieve an object’s digital model, when this is not available, is to acquire 3D data

directly on the object and to use the obtained information to build a digital representation. The

reconstruction of digital models from measured data has been a long-term goal of engineering and

computer science in general; this process, usually called Reverse Engineering, aims at generating

3D mathematical surfaces and geometric features representing the geometry of real parts. Many

methods address this problem and we refer to [88], a survey that groups a large part of the

approaches presented so far.

Our goal is to define model fitting algorithms that, given a set of points, find the most likely

model primitives that generated those points. In this chapter, we first address the problem

of recognition and fitting simple geometric primitives from segmented point clouds (Section

5.3.1). Then, we face the problem of recognition and fitting primitives from the entire point cloud

representing a CAD object (Section 5.4.1).

The methods proposed in this chapter have been compared with other methods in [139] and

[140]. The first mentioned paper is the result of an international contest: the SHREC (Shape

Retrieval Challenge), using appropriately built benchmarks. The details of this activity are

described in Appendix A.

93

RECOGNITION, EXTRACTION AND REPRESENTATION OF GEOMETRIC PRIMITIVES

5.1 Previous work

Representing an object with a set of geometric components is a long-standing problem in computer

vision, computer graphics and CAD. As we are interested in recognising (simple or complex) geo-

metric primitives in the manufacturing domain, here we focus our attention on those approaches

that share the same goal.

A considerable variety of algorithms have been devised to decompose digitalised point clouds

or meshes representing CAD objects into regions approximated by primitives belonging to some

given sets. According to [88], these approaches can be grouped into four families: stochastic,

parameter space, clustering and learning techniques. The first group includes the RANSAC

method [144] and its optimizations. The second family includes Hough-like voting methods and

parameter space clustering, e.g., [102]. The third class gathers all the other clustering techniques,

and can be classified into three main types: primitive-driven region growing, e.g., [13]; automatic

clustering and Lloyd-based algorithms, e.g., [159]; primitive-oblivious segmentation, e.g., [96].

Finally, with the growing popularity of deep learning techniques, supervised fitting methods have

been proposed even for multi-class primitives [99, 155]. We refer to [88] for a comprehensive

historical taxonomy of methods for simple primitive detection, which is beyond the scope of this

thesis.

Despite a large number of available solutions, the problem is far from being solved; novel

approaches have been proposed in the very last few years to address the shortcomings of existing

paradigms or to propose novel directions to move in. An example of a recent approach dealing

with the recognition of geometric primitives is [125]. It consists of a curvature-based partitioning

method that decomposes an input triangle mesh into maximal surface portions; the decomposition

is performed so that each segment corresponds to one of the following seven invariance classes

of surfaces: plane, sphere, cylinder, surface of revolution, prismatic, helix, and complex surface.

The method was adapted to handle point clouds in [140]. In [108], a method for the identification

and fitting of planes and cylinders from unstructured point clouds in manufacturing is presented.

It consists of three subsequent phases: point cloud segmentation; merging of over-segmented

regions and estimation of surface parameters; extraction of cylinders and planes. Being the

method able to handle only two primitive types, its applicability is however restricted. To handle

the increasing availability of acquired data, [124] introduces a region-growing based system for

the segmentation of large point clouds in planar regions. Other approaches, devised to detect only

specific types of primitives, are: [26], which deals with quadric surfaces; [104], which fits surfaces

of revolution; and [21], which extracts cylindrical shapes from non-oriented point clouds.

In the field of deep learning, two methods have shown promising results in the problems

of segmentation and recognition: ParSeNet [148] and HPNet [160]. Beyond their performance,

outstanding merit is their capability of handling – together with the more classical simple

geometric primitives – open and closed spline surfaces. Another learning-based method lately

proposed for fitting primitives is PriFit [147], which learns to decompose a point cloud of various

94

5.2. GEOMETRIC PRIMITIVES

3D shape categories into a set of geometric primitives, such as ellipsoids and cuboids, or deformed

planes. However, the natural flexibility of supervised learning approaches in identifying geometric

primitives comes with a considerable cost: the need of having gigantic labelled training sets,

whose difficulty of gathering limits their current application.

As for the methods that use the Hough transform to identify geometric primitives, they were

limited, until recently, to planes [28, 102], combinations of linear subspaces [61], spheres [32] and

circular cylinders [126]; in the case of cylinders, however, the rotational axis needs to be known

before the application of the HT. The recent advances in the use of the algebraic functions [20]

are paving the road to a larger use of the HT for recognising more complex families of geometric

primitives. To the best of our knowledge, the sole approach that exploit this idea were proposed

in [19], for the recognition of an ellipsoid in a free-form model.

5.2 Geometric primitives

In this section, we present the geometric primitives we use in the recognition process. Specifically,

in Section 5.2.1 we first show a dictionary of simple geometric primitives, while in Section 5.2.2 we

provide a set of complex geometric primitives. For each primitive type, we specify the constraints

used to obtain the corresponding standard forms. The expression standard form – sometimes

referred to as canonical form – refers to a standard way of presenting some sets of mathematical

objects. A standard form is usually expected to be simpler than the elements it is equivalent

to. For instance, such (simplified) expressions usually require less memory and possess nice

features, which make cleaner and more precise an algorithm design [36]. In analytic geometry,

standard forms can help study curves and surfaces. Conics and quadrics can be classified by

their orbits under roto-translation. Their general implicit equation can be greatly simplified by a

suitable rotation – which eliminates mixed terms – and a suitable translation – which removes

one or more monomials of degree 1; from a purely geometric perspective, vertices and centres

are translated to the origin of the coordinate system, while axes are aligned to the coordinate

axes. When dealing with parametric representations, standard forms allow to set of some of

the parameters. The number of parameters is reduced, in both implicit and parametric cases. A

similar argument can be applied to tori and, more in general, to surfaces of revolution.

5.2.1 Simple geometric primitives

This section introduces the parametric equations used for planes, cylinders, cones, spheres, and

tori. For each primitive type, we specify the constraints used to obtain the corresponding standard

forms, except for the planes that are represented with the Hesse normal form. Figure 5.1 shows

an example of the simple geometric primitives considered with their attributes that we call

geometric descriptors.

95

RECOGNITION, EXTRACTION AND REPRESENTATION OF GEOMETRIC PRIMITIVES

Planes. We consider the Hesse normal form

(5.1) xcosθsinφ+ ysinθsinφ+ zcosφ−ρ = 0,

where: x, y and z are the Cartesian coordinates of a sample point; θ ∈ [0,2π) and φ ∈ [0,π] are

the polar coordinates of the normal vector to the plane; ρ ∈R≥0 is the distance from the plane to

the origin of the coordinate system.

Spheres. The points on the sphere of radius r > 0 and center c ∈R3 can be parametrised as

p(u,v)= c+ r cos(v) (cos(u)e1 +sin(u)e2)+ rsin(v)e3,

where {e1,e2,e3} denotes the standard basis for R3. The standard form is obtained by setting

c= 0.

Cylinders. The parametric equations of a cylinder may be written as

p(u,v)= l+ r cos(u)v1 + rsin(u)v2 +va,

where: l is the location vector defining the base plane; r is the cylinder radius; a is a unit vector

that gives the direction of the rotational axis; v1 and v2 are chosen so that {v1,v2,a} forms an

orthonormal basis. We define the standard form by setting l = 0, vi = ei for any i, and a = e3.

Note that this choice is purely individual, as one could impose any of the vectors ei to be the

standard rotational axis.

Cones. Cones can be parametrically represented by

p(u,v)= l+ (r+vsin(α)) (cos(u)v1 +sin(u)v2)+vcos(α)a,

with l, vi and a having the same geometric meaning as for the cylinders, while r denotes the

radius of the circle found by intersecting the cone and the base plane, and α gives the half-angle

at the apex of the cone. We call standard form any parametrization obtained by imposing vi = ei

for any i, a= e3, and by moving the cone vertex to the origin; note that the latter corresponds to

set r to zero (which means that the cone vertex lies on the base plane) and further impose l= 0.

Tori. Tori are parametrised as

p(u,v)= c+ (rmax + rmin cos(v)) (cos(u)v1 +sin(u)v2)+ rmin sin(v)a,

where rmin and rmax are the minor and the major radii, c is the center of the torus, a is its

rotational axis, and v1 and v2 are the remaining axes of the torus coordinate system. The

standard forms are here expressed by setting c= 0, vi := ei for any i, and a := e3.

96

5.2. GEOMETRIC PRIMITIVES

Figure 5.1: Simple geometric primitives: plane, cylinder, cone, sphere and torus respectively,
along with their attributes (geometric descriptors).

5.2.2 Complex geometric primitives

In addition to the simple geometric primitives of Figure 5.1, in this section we introduce a set

of complex geometric primitives (general cylinders and cones, surfaces of revolution, convex

combination of curves, helical surfaces). To the best of our knowledge, these primitives have never

been used before for recognition by using the HT.

For the sake of simplicity, some of the surfaces are here presented in their standard form

or with respect to some specific axes; nevertheless, one can easily generalise these equations by

applying a generic transformation of the special orthogonal group SO(3).

• General cylinders. A cylinder is a surface traced by a straight line of fixed direction, the

generatrix, while moving along a curve, the directrix. Given a curve (x(u), y(u), z(u)) :=
(f1(a,u), f2(a,u), f3(a,u)) and a direction (l,m,n), the parametric representation of the

corresponding cylinder is given by:
x = f1(a,u)+ lv

y= f2(a,u)+mv

z = f3(a,u)+nv

.

Note that a general cylinder depends on the parameters defining generatrix and directrix.

The dictionary of curves to be considered as directrix is extremely rich, see [150]. As an

example, Table 5.1(a) considers a 5−convexity curve as a directrix.

• General cones. A cone is a surface traced by a straight line, the generatrix, while glid-

ing along a curve, the directrix, and passing through a fixed point, the vertex. Given a

parametrized curve (x(u), y(u), z(u)) := (f1(a,u), f2(a,u), f3(a,u)) and a point V = (xV , yV , zV),

the parametric representation of the corresponding cone is given by:
x = xV + (f1(a,u)− xV)v

y= yV + (f2(a,u)− yV)v

z = zV + (f3(a,u)− zV)v

.

97

RECOGNITION, EXTRACTION AND REPRESENTATION OF GEOMETRIC PRIMITIVES

As in the case of cylinders, we can exploit the dictionary of plane curves to create families

of cones. Then, a general cone depends on the parameters that define the curve and the

components of the vertex. Table 5.1(b) shows a cone generated by a 5−convexity curve.

• Surfaces of revolution. A family of surfaces of revolution can be created by rotating a

family of curves around an axis of rotation. For example, given the family of plane curves

(x(u), y(u), z(u)) := (f1(a,u),0, f2(a,u)) and the z−axis, we obtain the parametric equations


x = f1(a,u)cosv

y= f1(a,u)sinv

z = f2(a,u)

.

One of the most known examples is the torus; another example is given by ellipsoids, which

are obtained by rotating an ellipse with respect to one of its principal axes. Table 5.1(c)

shows the case of a surface obtained by rotating the curve (x(u), y(u), z(u)) := (au,0,b/u5)

around the z−axis.

• Convex combination of curves. It is possible to define surface primitives by considering

the convex combination of a pair of parametrised curves (f1(a,u), f2(a,u), f3(a,u)) and

(g1(b,u), g2(b,u), g3(b,u)). This family has the following parametric equations:


x = vf1(a,u)+ (1−v)g1(b,u)

y= vf2(a,u)+ (1−v)g2(b,u)

z = vf3(a,u)+ (1−v)g3(b,u)

,

where v ∈ [0,1]. Note that the primitive parametrisation depends on the same parameters

which define the pair of curves, i.e., a and b. A planar example is given by the annulus,

i.e., the region bounded by two concentric circles. A helical strip can be obtained by cutting

and bending an annular strip; this corresponds to considering a convex combination of two

helices of equal slope but different radii. An example of a helical strip is provided in Table

5.1(e).

• Helical surfaces. Table 5.1(d) presents a family of equations obtained by modifying the

parametrisation of a circular cylinder. Precisely, the radius R here varies between [R1,R2],

where R1 > 0, by a cosine function; when radii are fixed, the slope of the output surface is

controlled by the parameters in z(u,v). Note that the radius variation can be adapted to

other shapes (e.g., the triangle wave function).

98

5.3. RECOGNITION AND FITTING PRIMITIVES FROM 3D SEGMENTED POINT CLOUDS

Table 5.1: Parametric representation of some complex geometric primitives.

(a) (b) (c) (d) (e)
generalised generalised surface of helical helical

cylinder cone revolution surface strip


x = acosu

1+bcos(5u)

y= asinu
1+bcos(5u)

z = v


x = avcosu

1+bcos(5u)

y= avsinu
1+bcos(5u)

z = Av+B


x = aucosv
y= ausinv
z = b

u5


x = R(u)cosv
y= R(u)sinv
z = k1(u+nv)+k2

,

where

R(u) := R1 + R2 −R1

2
(cosu+1),

n ∈Z


x = R(u)cosv
y= R(u)sinv
z = v

,

where

R(u):=au+(1-u)b

5.3 Recognition and fitting primitives from 3D segmented point
clouds

We propose a new method based on the Hough transform that, given a segmented point cloud

P =⋃num
i=1 P i representing a man-made object, recognises simple geometric primitives (see Section

5.2.1) and their interrelationships. Specifically, we introduce a novel technique able to provide an

initial estimate of the geometric parameters characterising each primitive type. By using these

estimates, we localise the search for the optimal solution in dimensionally-reduced parameter

spaces, thus making it efficient to extend the HT to more primitives than those generally found

in the literature, i.e., planes and spheres.

5.3.1 Description of the method

In the following, we detail the steps of our method to recognise and fit geometric primitives in

a segmented point cloud presented in [128], denoting with P i each segment. We first describe,

for each family of geometric primitives introduced in Section 5.2.1, how to compute the initial

estimates and then, we show how to exploit the parameters estimation in the method flow. The

result in the output is a set of geometric descriptors characterising each recognised primitive.

Finally, we provide details on a post-processing step that uses geometric descriptors to find

relationships between different primitives of the same type.

Segment centring and normal estimation via local HT fits. The following steps are

performed independently from the primitive type; they are preliminary to the computation of our

initial estimates and, subsequently, to our final recognition.

99

RECOGNITION, EXTRACTION AND REPRESENTATION OF GEOMETRIC PRIMITIVES

• Point cloud centering. At first, the input segment P i is centred, i.e., it is translated so that

its barycentre coincides with the origin of the Cartesian coordinate system.

• Point cloud downsampling. The axis-aligned minimum bounding box of P i is split into s

equal-sized boxes. Points within the same box j = 1, ..., s will be replaced (i.e., downsampled)

by the point closest to their barycenter, so as to obtain a uniformly downsampled point

cloud. This step is optional and is meant to handle very dense point clouds to reduce the

execution time.

• Normal estimation. For each p j ∈P i, we select all points within a given distance D w.r.t. the

usual Euclidean metric; we denote this neighbourhood by N j :=N (p j,D). We then apply

the HT technique to N j and select the most voted plane π̂ j, which gives an approximation

of the true tangent plane π j at p j or, equivalently, of the normal vector n j at the same

point. To this end, we consider the Hesse normal form as Eq. 5.2.1, then the normal at p j is

approximated by the vector n̂ j = [cos θ̂ j sin φ̂ j,sin φ̂ j sin θ̂ j,cos φ̂ j], being θ̂ j and φ̂ j estimates

of θ j and φ j obtained via the Hough transform.

• Normal accuracy. As the last step, we compute the accuracy of each candidate tangent

plane by using the Mean Fitting Error MFE(N j,π j), defined as Eq. 3.2. From here on, we

denote MFE(N j,π j) by MFE j and MFE := [MFE1,MFE2, . . .]. Finally, we select the points

corresponding to the lowest entries in MFE, i.e., having the most accurate estimations of

the normal vector. More precisely, the entries are selected through a threshold that depends

on a percentage (a typical value is 2%) of the maximum among the length, width, and

height of the bounding box of P i. Let p1, . . . ,pk denote such points.

Initial estimates. Once the candidate tangent planes have been estimated, we specialize the

processing for each type of primitive. For the sake of clarity, we show the procedure on complete

primitives; however, the method can also deal with parts of primitives.

• Sphere. For each p j ∈P i, we sample a point q j on the (candidate) tangent plane π j. Then,

we consider the1 plane π̃ j passing through p j and having normal vector v j :=n j ×t j, where

t j =p j −q j. A graphical illustration of the three vectors involved is given in Figure 5.2(c):

the blue, green and red vectors are, respectively, n j, t j and v j. The plane π̃ j intersects the

sphere into a set of points outlining a circle, which can be recognised through the classical

HT procedure for circles, and whose approximation is evaluated by the Mean Fitting Error.

In exact arithmetic, π̃ j passes through the sphere centre, which corresponds to the circle

centre as well; in floating-point arithmetic (or when the input segment is perturbed), the

centre and the radius of the circle give an estimate of the centre and the radius of the sphere.

1Despite the existence of infinitely many planes that are perpendicular to π j , here we choose one by fixing a point
on π j and its normal vector.

100

5.3. RECOGNITION AND FITTING PRIMITIVES FROM 3D SEGMENTED POINT CLOUDS

By repeating this procedure for all points in P i – or at least, for a representative subset

of points – we obtain a set of estimates of the sphere centre and radius. By thresholding

the MFE, we can discard low-quality estimates; finally, by averaging over the remaining

centres and radii we obtain the final estimates of the sphere centre and radius, which will

be denoted by ĉ and r̂.

normal

estimation

sphere

slicing

center + radius

estimation

(a) (b) (c) (d)

Preprocessing

Figure 5.2: Initial estimates for a sphere. The preprocessing step centres the point cloud and
approximates the normal vectors at a set of points, see (b). Given a point p j and a point q j on its
tangent plane, (c) shows the vectors n j, t j and v j in blue, green and red, respectively. Finally, (d)
shows the estimate ĉ of the centre.

• Cylinder. For each pair of points p j1 and p j2 , where j1, j2 = 1, . . . ,k and j1 ̸= j2, we consider

the corresponding normal vectors n̂ j1 , n̂ j2 : their cross product, denoted â j1, j2 := n̂ j1 × n̂ j2 , is

an approximation of the rotational axis of the cylinder up to a translation. Figure 5.3(c)

represents a simplified situation, where the two normals (in green and blue) and their cross

product (in red) are positioned so that â j1, j2 determines the rotational axis; note that this

choice is purely illustrative. By iterating over all possible combinations, one can obtain

multiple estimates of the rotational axis; we average over all these estimates and return

the resulting vector, denoted â.

The point cloud P i is now rotated so that â is parallel to the z−axis and, subsequently,

projected onto the xy-plane. To estimate the radius r and the centre c of the projected

points, which outline (arcs of) a circle if the initial point cloud originated from a circular

cylinder, we detect the most voted circle by applying the HT-based recognition process, see

Figure 5.3(d).

• Cone. From basic geometry, we know that, in exact arithmetic, the vertex of a cone can be

found by intersecting (at least) three tangent planes. In case of data perturbation, however,

such an intersection will be most likely empty. To overcome this problem, we define a voting

procedure that exploits the representations of the tangent planes of the points p1, . . . ,pk.

More specifically, since for each tangent plane π j the normal n j and the term ρ j are known,

the voting procedure considers the coordinates x, y and z of the vertex as the parameters

to be estimated. The most voted coordinates correspond to the vertex v̂.

101

RECOGNITION, EXTRACTION AND REPRESENTATION OF GEOMETRIC PRIMITIVES

normal

estimation

axis

estimation

radius

estimation

(a) (b) (c) (d)

Preprocessing

Figure 5.3: Initial estimates for a circular cylinder. The preprocessing step centres the point cloud
and approximates the normal vectors at a set of points, see (b). Given two points p j1 and p j2 , (c)
shows the corresponding normal vectors n̂ j1 and n̂ j2 , in blue and green respectively, and, in red,
their cross product â j1, j2 . Finally, (d) shows the estimate r̂ of the radius.

Then, for each pair of points p j1 and p j2 , where j1, j2 = 1, . . . ,k and j1 ̸= j2, we consider

the corresponding normal vectors n̂ j1 , n̂ j2 and the vectors t̂ j1 :=p j1 − v̂, t̂ j2 :=p j2 − v̂. We

compute the cross products û j1 = n̂ j1 × t̂ j1 and û j2 = n̂ j2 × t̂ j2 . By taking the cross product

between û j1 and û j2 we obtain an estimate â j1, j2 of the rotational axis of the cone, up to a

translation by the cone vertex. A simplified graphical illustration, where a triplet of vectors

n̂ j (in blue), t̂ j (in green) and â j1, j2 (in red) are moved to a rotational axis, is shown in

Figure 5.4(c). By iterating over all possible combinations, one can obtain multiple estimates

of the rotational axis; we average over all these estimates and return the resulting vector,

denoted â. To put the point cloud P i in its canonical form, we apply a roto-translation so

that the vertex v̂ is moved to the origin of the coordinate axes and â coincides with the

z-axis. The estimate α̂ is obtained by computing the angle between the e3 and the vector

[zmax
rmax

,0 ,1], where zmax and rmax are, respectively, the maximum value of the z-coordinates

and the maximum distance from the origin of the projection on the xy-plane of P i.

normal

estimation

axis and vertex

estimation

(a) (b) (c)

Preprocessing

Figure 5.4: Initial estimates for a circular cone. The preprocessing step centres the point cloud
and approximates the normal vectors at a set of points, see (b). The intersection of the tangent
planes estimates the coordinates of the vertex v̂. Given two points p j1 and p j2 , (d) shows the
corresponding blue and green vectors û j1 and û j2 and the resulting cross product â j1, j2 in red.

• Torus. In line with the increase in the number of unknown parameters, this primitive

requires more complex handling, as summarised in the following four steps:

– Upper (or lower) circle recognition. We search for the best fitting plane to the entire

102

5.3. RECOGNITION AND FITTING PRIMITIVES FROM 3D SEGMENTED POINT CLOUDS

point cloud P i, which – unless pathological cases (e.g., very small segments) – inter-

sects the torus in (possibly perturbed arcs of) a circle, as shown in Figure 5.5(c, left).

This circle can be recognised by the standard HT for circles; the parameters found can

be used to generate a new dense set of points, which we will denote by Q; an example

is shown in Figure 5.5(c, right).

– Recognition of small circles. For each of the points p j, j = 1, . . . ,k, we find its nearest

neighbour q j ∈ Q; we then define the vector v j as the cross product between the

estimated normal vector n̂ j at p j and the vector t j :=p j −q j. An example is shown in

Figure 5.5(d, left image): the green, blue and red vectors represent, respectively, t j, n̂ j

and v j. The just-computed vector v j identifies a plane – see Figure 5.5(d, right image) –

that intersects P i in a set of points outlining two circles, up to some data perturbation.

We apply the standard HT to recognise such circles and, more importantly, their radii

and centres. For each recognised circle, we compute its Mean Fitting Error and store

its centre in C if the MFE is below some given threshold. By averaging the circle radii,

we can get an estimate r̂min of rmin.

– Towards axis estimation. We use the HT to find the best fitting plane to C . The normal

vector to this plane is an estimate of the rotational axis of the torus, up to a translation

(see Figure 5.5(e)).

– Recognition of the big circle for centre estimation. Finally, we recognise the circle

outlined by the points in C , see Figure 5.5(f). The centre of the torus is approximated

by the circle centre, which can be also used to fix the rotational axis. The radius of the

circle gives us an estimate r̂max of rmax.

normal

estimation

step

1

step

2

step

3

step

4

(a) (b) (c)

(f) (e) (d)

Preprocessing

Figure 5.5: Initial estimates for a torus. The preprocessing step centers the point cloud and
approximates the normal vectors at a set of points, see (b). In (c) the upper/lower circle recognition,
while (d) shows the plane that identify small circles. Given the centers of small circles, in (e) the
estimation of the axis â and in (f) the estimation of center ĉ of the torus.

103

RECOGNITION, EXTRACTION AND REPRESENTATION OF GEOMETRIC PRIMITIVES

Recognising primitives using the Hough transform. We can now exploit the preprocessing

step and the parameter estimation procedures to apply the HT technique to each segment P i; this

is particularly relevant when no prior information on the primitive type to look for is available.

For each segment, our pipeline returns its type (i.e., plane, cylinder, cone, sphere, torus), and its

geometric descriptors. Figure 5.6 illustrates the flow we follow to recognise primitives using the

HT.

Given a segment P i and a specific family of surfaces F = {Sβ} of the dictionary of surface

primitives (e.g., a family of tori), our method runs in three main steps:

Step 1: Preprocessing and initial estimates. First, the segment P i is preprocessed and then,

we find initial estimates for the current family of surfaces by applying the corresponding

procedure as described previously. The point cloud obtained from the preprocessing step,

here denoted by P ′
i , is roto-translated to put it in the standard position. Note that, by work-

ing on P ′
i rather than on P i, we are able to deal with a dimensionally reduced parameter

space.

Step 2: HT-based surface recognition. The new set of points P ′
i is the input of the classical

HT-based recognition algorithm introduced in Section 1.3.4. Since we use the parametric

representations for the families of primitives, the estimation of the accumulator matrix

is done by adapting to surfaces the strategy devised for plane curves in Section 2.3. In

particular, we compute automatically a sample of Γp through the Moore-Penrose pseudo-

inverse [120] and the intersection is evaluated via an inequality between the components

of the sample of Γp and the coordinates of the cell endpoints. The output consists of the

optimal parameters β̂′, i.e., the parameters that best fit P ′
i w.r.t. the given the family of

surfaces (in canonical position). The initial estimates from the previous step give a hint to

the HT technique about where the optimal solution is, thus eliminating the problem of the

unboundedness of the parameter space.

Step 3: Evaluation of the approximation accuracy. To measure the recognition accuracy of

a specific primitive, we use the Mean Fitting Error MFE(P ′
i ,Sβ̂′), as defined in Eq. 3.2.

When the accumulator function exhibits more global maxima, the Hough transform returns

more optimal solutions; in our case, we keep only the one having the lowest MFE.

When no prior information on the primitive type is available, the three steps above are

repeated for each family of surfaces (in this work: planes, cylinders, spheres, cones and tori); the

surface with the lowest MFE is returned as the best fitting surface Sβ̂′ for the segment P ′
i. We

admit that none of the primitive types at our disposal offers a satisfying fit of the segment if all

the computed MFEs are above a global threshold ε, here defined as the 5% of the main diagonal

of the model bounding box.

Finally, the roto-translation from Step 2 is applied backward in order to obtain the parametric

representation and the geometric descriptors for the segment P i in its original position.

104

5.3. RECOGNITION AND FITTING PRIMITIVES FROM 3D SEGMENTED POINT CLOUDS

Figure 5.6: Pipeline of the method for fitting and recognising primitives using the Hough trans-
form.

Post-processing: primitive aggregation. The parameters provided by the recognition pro-

cess uniquely characterise the segments and can be used as geometric descriptors allowing them

to be aggregated using a clustering approach. The pipeline of such a method is built over two

consecutive steps.

Step 1. Firstly, we apply the algorithm described before to each input segment. This allows us

to label each segment with its most likely primitive type, as well as obtain its parametric

representation and its shape description.

Step 2. Once all segments have been processed, we apply a well-known (hierarchical) clustering

approach – the complete-linkage – to compare clusters and build a dendrogram. The use of

complete linkage is here justified by the need of penalising chaining effects. The method

starts with singletons as clusters and proceeds by merging, step by step, those clusters that

are the closest with respect to the map

D(Ch,C j) := max
τk∈Ch,τl∈C j

d(τk,τl),

where Ch,C j is a given pair of clusters (of segments) and d is a user-defined distance or

dissimilarity. For any pair of segments τ1, τ2 belonging to the same family, several distances

d(τ1,τ2) are possible. For each type of primitive, Table 5.2 lists some simple distances and

105

RECOGNITION, EXTRACTION AND REPRESENTATION OF GEOMETRIC PRIMITIVES

the intuitive concepts they intend to measure, using the notation introduced in Section

5.2.1.

In practice, we have at our disposal a set of distances, each one corresponding to a condition we

are interested to measure. Note that all distances listed in Table 5.2 are metrics and d(τ1,τ2)= 0

implies that the primitives τ1 and τ2 are equal with respect to that criterion.

Table 5.2: Basic distances for the primitives considered in the Section 5.2.1, using the notation
from Figure 5.1. The subscripts 1 and 2 in the parameters refer to the two segments τ1 and τ2.

Primitives Distance d(τ1,τ2) Query

Planes
{ ||a1 ×a2||2 parallel

|a1 · (p1 −p2)| incident

Cylinders


|r1 − r2| equal radii

||a1 ×a2||2 parallel rotational axes
||a1 × (p1 −p2)||2 incident rotational axes

Cones


|α1 −α2| equal apertures
||a1 ×a2||2 parallel rotational axes
||v1 −v2||2 equal vertices

Spheres
{ |r1 − r2| equal radius

||c1 −c2||2 equal centers

Tori


|rmin,1 − rmin,2| equal smallest radii
|rmax,1 − rmax,2| equal largest radii

||a1 ×a2||2 parallel rotational axes
||c1 −c2||2 equal centers

In addition, more complex queries can be formulated by summing simple distances. For

instance, one can check whether two segments lie:

• On the same torus by using the metric d(τ1,τ2) := |rmin,1 − rmin,2|+ |rmax,1 − rmax,2|+ ||a1 ×
a2||2 +||c1 −c2||2.

• On the same torus, up to a translation, by considering the distance d(τ1,τ2) := |rmin,1 −
rmin,2|+ |rmax,1 − rmax,2|+ ||a1 ×a2||2.

• On the same torus, up to a roto-translation, by employing the metric d(τ1,τ2) := |rmin,1 −
rmin,2|+ |rmax,1 − rmax,2|.

Note that the sum of distance is still a distance and that cutting the dendrogram with

increasing thresholds corresponds to weakening the conditions imposed as the query.

5.3.2 Computational complexity

The method includes segment preprocessing and the actual primitive fitting. The segment prepro-

cessing includes the estimation of distances, the axis-aligned bounding box and an approximation

106

5.3. RECOGNITION AND FITTING PRIMITIVES FROM 3D SEGMENTED POINT CLOUDS

of the tangent plane via the HT. For spheres, cones, cylinders and tori, the parameter estimation

includes the recognition of circle(s), again by using the HT. The segment recognition procedure

basically consists of the HT procedure for the surface primitives in standard form. In practice,

both the preprocessing and the fitting procedure mainly depend on the HT, being the other

operations in O(S) or in O(S logS), where S represents the number of points of the segment. The

computational complexity of the HT voting procedure is dominated by the size of the accumulator

function: denoting M the number of cells of the space of parameters, the computational complexity

of the HT recognition on a segment is O(MS). The number of parameters for the HT directly

influences the size of M. In our method, their number is 3 for planes and circles (they are used in

the preprocessing), 2 for tori, and 1 for spheres, cylinders and cones. Through this parameter

reduction, we are able to deal with parametric primitives that would otherwise have 4 parameters

(sphere) or at least 9 parameters (cylinder, cone and torus), as deducible from the representations

in Section 5.2.1. This reduction in parameters makes it possible to apply the HT to primitives

that would otherwise not be computable in practice due to the explosion of the spatial complexity

of the accumulator function.

The preprocessing and the HT recognition steps are repeated for each segment and for each

geometric primitive. It is worth noting that, being each segment and each primitive fitting

performed independently, the task is embarrassingly parallel.

Regarding the clustering step, the implementation of agglomerative hierarchical clustering

requires O(num3) operations, where num is the number of segments given in input (see [43]).

One can think about more effective implementations of complete-linkage clustering, such as the

one suggested in [44], which costs O(num2).

5.3.3 Performance over different datasets

We evaluate the capability of our method to fit and aggregate primitives according to different

correlation queries. For all models, in this section, we show how primitives are aggregated if they

belong to the same geometric primitive or according to different relations, such as co-planarity,

co-axiality, and parallelism. Despite much broader experimentation, we show only some figures

with the most significant relationships found. To better evaluate the behaviour of our method,

we used datasets available online. For all examples, the following thresholds for cutting the

dendrograms have been selected: 10−10 for planes; 10−1 for spheres, cylinders, coni, and tori.

The first dataset we considered was the ABC dataset [91], which contains a collection of one

million CAD models created for research of geometric deep learning methods and applications.

Figure 5.7 presents a point cloud of 22,803 points containing 18 segments: planes, cylinders,

cones, and tori. Segments satisfying the same correlation query are represented by the same

colour. As shown in the images, our method can successfully recognise the primitive type and

use the segment parameters to infer various relations. The expressions “same plane"/“same

cylinder"/“same cone"/“same sphere"/“same torus" are henceforth used to test the (possible)

107

RECOGNITION, EXTRACTION AND REPRESENTATION OF GEOMETRIC PRIMITIVES

presence of segments originating from the same underlying primitive (e.g., to group together toric

segments having the same centre, radii and rotational axis). The mean MFE over all segments is

0.0019.

Model
and planes Cylinders Cones Tori

Original model Same cylinder Same cone Same torus

Same plane Same radius Same radius Same radius

Parallel planes Same rotational
axis

Same rotational
axis

Same rotational
axis

Figure 5.7: A model from [91]: we show segments of the same primitive type exhibiting different
similarities. Colours are used to visually represent primitives sharing the same property.

The point set in Figure 5.8(a) is composed of 13,455 points and contains 26 segments, of

which: 2 are extracted from planes, 8 from cylinders, and 16 from tori. This model is perfectly

handled by our method, without misclassification in any correlation query. The mean MFE

over all segments is 0.0036. The model in Figure 5.8(b) counts 9 segments for a total of 15,726

points. In this example, a pair of segments obtained from the same sphere is present. Again, the

grouping proceeds smoothly, except for two queries where two cylinders with very similar radii

are clustered together. This misclassification can be partly justified by the intrinsic approximation

that voting procedures introduce when discretizing the parameter space. On the other hand, it is

also worth noting that our procedure for (initial) parameter estimation generally exhibits a lower

precision when applied to small and low-sampled segments, due to a higher error in the tangent

plane approximation. In this case, the mean MFE over all segments is 0.0042.

Finally, we test the resilience to increasing noise in Figure 5.9 for a point cloud composed

of 9,723 points and 35 segments. We added synthetic Gaussian noise of fixed mean µ= 0 and

standard deviation σ equals to 0.10, 0.25 and 0.50. We note that, as the noise intensity increases,

some segments start being misclassified; more specifically, when σ = 0.50, two cylinders are

mislabeled as cones and thus wrongly clustered. The mean MFE over all segments in the three

cases is, respectively, 0.0106, 0.0212 and 0.0347.

108

5.3. RECOGNITION AND FITTING PRIMITIVES FROM 3D SEGMENTED POINT CLOUDS

Model
and planes Cylinders Tori

Original model Same cylinder Same torus

Same plane Same radius Same radius

Parallel planes
Parallel

rotational axes
Same

rotational axis

Planes Cylinders
Model

and spheres

Same plane Same cylinder Original model

Parallel planes
Parallel

rotational axes Same sphere

(a) (b)

Figure 5.8: Two models from [91]: segments exhibiting different similarities are shown.

Point cloud Planes Cylinders

(a
)σ

=
0.

10

Same plane Parallel planes Same cylinder Same radius

(b
)σ

=
0.

25

Same plane Parallel planes Same cylinder Same radius

(c
)σ

=
0.

50

Same plane Parallel planes Same cylinder Same radius

Figure 5.9: A model from [91]: a Gaussian noise is applied at three levels of intensity.

109

RECOGNITION, EXTRACTION AND REPRESENTATION OF GEOMETRIC PRIMITIVES

The second dataset we considered for our tests is Fit4CAD [140] (see in the Appendix, Section

A.2). Fit4CAD is a benchmark created specifically for the evaluation and comparison of methods

for fitting simple geometric primitives in point clouds representing CAD objects. This dataset

contains models affected by some point cloud artefacts (e.g., undersampling or missing data).

Exploiting the provided ground truth, we tested our method on the models coming from this

dataset, and we were able to evaluate the results.

Specifically, Table 5.3 reports the value of five common classification measures employed in

[140]: True Positive and Negative Rates (TPR and TNR), Positive and Negative Predicted Values

(PPV and NPV), and accuracy (ACC). The values presented in the table are obtained by averaging

the single measures over all models. The average accuracy ACC is always above 90%; the only

cases where it is below 95% correspond to queries involving tori, suggesting reduced robustness

for the corresponding geometric descriptors. The average TNR is always above 98%, while the

average TPR is always lower than the average TNR. These results show that the method is great

to spot true negatives, while it is less efficient to cluster together segments. This is particularly

an issue for spheres and tori. A possible solution to alleviate this problem would be to allow the

use of user-defined thresholds for the dendrogram. Average PPV and NPV show the degree of

correctness of the method in indicating possible positives or negatives. Again, the method has a

slightly lower performance for tori.

Table 5.3: Average classification performances for different correlation queries on the Fit4CAD
dataset.

Primitive Query PPV TPR TNR NPV ACC

Plane
Same plane 0.998 0.980 1.000 0.999 0.999

Parallel planes 0.975 0.962 0.992 0.994 0.987

Cylinder

Same cylinder 0.995 0.980 0.999 0.999 0.998
Same radius 0.974 0.970 0.995 0.996 0.991

Parallel rotational axes 0.977 0.976 0.991 0.980 0.984
Same rotational axis 0.992 0.985 0.995 0.998 0.995

Cone

Same cone 1.000 0.944 1.000 0.994 0.994
Same aperture 1.000 0.922 1.000 0.981 0.985

Same apex 1.000 0.944 1.000 0.994 0.994
Parallel rotational axes 1.000 0.944 1.000 0.986 0.988

Same rotational axis 1.000 0.833 1.000 0.942 0.952

Sphere
Same sphere 1.000 0.667 1.000 0.976 0.976
Same radius 1.000 0.667 1.000 0.976 0.976
Same center 1.000 0.667 1.000 0.976 0.976

Torus

Same torus 1.000 0.583 1.000 0.958 0.958
Same radii 1.000 0.583 1.000 0.958 0.958

Same center 0.889 0.600 0.985 0.955 0.943
Parallel rotational axes 0.875 0.583 0.993 0.896 0.901

Same rotational axis 0.875 0.583 0.993 0.896 0.901

110

5.3. RECOGNITION AND FITTING PRIMITIVES FROM 3D SEGMENTED POINT CLOUDS

5.3.4 Comparison with the method [127]

We compared our method on the Fit4CAD dataset with [127] because it adopts a pipeline similar

to ours and its implementation is available online.

The method [127] consists of a combination of approximate implicitization – which reduces to

a least squares minimization in its discrete formulation [16] – and hierarchical clustering. Unlike

our method, it uses the coefficients of implicit representations as geometric descriptors; although

computationally efficient, this choice results in problems of instability when point cloud artefacts

are present, as pointed out by the authors. Moreover, [127] only checks which segments lie on the

same surface, but it does not identify the segment type (e.g., cylinder vs. cone), nor formulate

more complex queries.

In Table 5.4, the comparison is drawn for the five classification measures mentioned before.

We can notice a generally better performance of our approach, especially in the case of noisy or

perturbed data. Indeed, polynomial estimations used in [127] have been proven to be particularly

sensitive to data perturbation, while the HT paradigm is popularly known for its robustness. On

the other hand, [127] has lower computational complexity, making it preferable for an initial

inspection when the input is clean or when the user is not interested in other correlation queries.

Table 5.4: Classification performance: comparison between our method and the approach proposed
in [127].

Model Method PPV TPR TNR NPV ACC

Fig 5.7
Ours
[127]

1.000
0.611

1.000
1.000

1.000
0.948

1.000
1.000

1.000
0.951

Fig 5.8(a)
Ours
[127]

1.000
0.739

1.000
0.957

1.000
0.937

1.000
0.996

1.000
0.936

Fig 5.8(b)
Ours
[127]

0.875
0.875

1.000
1.000

0.964
0.964

1.000
1.000

0.969
0.969

Fig 5.9(a)
Ours
[127]

1.000
0.079

1.000
0.988

1.000
0.094

1.000
0.952

1.000
0.160

Fig 5.9(b)
Ours
[127]

1.000
0.076

1.000
1.000

1.000
0.000

1.000
0.000

1.000
0.076

Fig 5.9(c)
Ours
[127]

0.905
0.076

0.905
1.000

1.000
0.000

0.998
0.000

0.998
0.076

Fit4CAD
Ours
[127]

0.995
0.791

0.997
0.992

0.999
0.946

0.999
0.998

0.999
0.950

5.3.5 Tests on point clouds segmented by different methods

To evaluate the performance of our method, we applied it to point clouds segmented with

different techniques. The first set of tests includes segments obtained with the learning technique

presented in [148]. The second set of tests considers segments obtained by applying RANSAC

[144] on industrial scans.

111

RECOGNITION, EXTRACTION AND REPRESENTATION OF GEOMETRIC PRIMITIVES

5.3.5.1 Tests on point clouds segmented by a learning approach

We tested our method on some of the segmented point clouds provided by a learning approach

[148] that are composed of 10,000 points.

Segmentation Primitives

(a) Planes Cylinders Tori

(b) Planes Cylinders Cones

(c) Planes Cylinders

(d) Planes Cylinders Tori

(e) Planes Cylinders Spheres

Figure 5.10: Examples of segmentations from [148]: the original segmentations (first column) are
post-processed by our method to overcome the problem of oversegmentation.

In this case, our technique is useful as post-processing to overcome the problem of over-

segmentation and may confirm or modify the classification of the primitive. Indeed, as shown in

Figure 5.10, the combination of the geometric descriptors identification and clustering procedure

permits aggregate segments belonging to the same primitive. Specifically, Figure 5.10(a) presents

a point cloud divided into 7 segments, where four of them can be grouped two by two since they

112

5.3. RECOGNITION AND FITTING PRIMITIVES FROM 3D SEGMENTED POINT CLOUDS

belong to the same torus. A similar grouping of segments belonging to the same torus is provided

in Figure 5.10(d). Figure 5.10(b) shows a model divided into 4 segments and composed of a plane,

a cylinder and a cone split into two parts, of which one is very small. Our method groups these

two pieces since they belong to the same primitive. In Figure 5.10(c) the point cloud is divided

into 7 segments, where five of them belong to the same cylinder. Finally, in Figure 5.10(e) a point

cloud made of 12 segments is reduced to 9 by grouping four pieces of the same cylinder. The mean

of the MFE over all segments is (a) 0.0097, (b) 0.0102, (c) 0.0036, (d) 0.0048, (e) 0.0061.

5.3.5.2 Tests on industrial scans segmented by the RANSAC technique

We tested the method on two industrial scanned objects used in [100].

Point cloud and planes Cylinders Cones Spheres

Original model Same cylinder Same cone Same sphere

Same plane Same radius Same radius Same radii

Parallel planes
Same

rotational axis
Same

rotational axis Same centre

Figure 5.11: Examples of queries for planar, cylindrical, conical, and spherical segments obtained
from the RANSAC segmentation of a scanned industrial object as provided in [100].

Unfortunately, no ground truth is available for these objects, and we will only report the

average MFE. As a starting point, we used the same input as [100], i.e., RANSAC segmentations

made available online by the authors on their GitHub page. The simplest example, shown in

Figure 5.11, contains 282,534 points and 39 segments. The main axes of planes, cylinders and

cones are found to be parallel. Besides parallelism, this model also exhibits cylinders, cones and

113

RECOGNITION, EXTRACTION AND REPRESENTATION OF GEOMETRIC PRIMITIVES

M
od

el
an

d
pl

an
es

Original model Same plane Parallel planes

C
yl

in
de

rs

Same cylinder Same radius
Same

rotational axis

Sp
he

re
s

Same sphere Same radius Same center

Figure 5.12: Examples of queries for planar, cylindrical, and spherical segments obtained from
the RANSAC segmentation over a challenging point cloud acquired from an industrial object as
provided in [100].

spheres with the same radius. Note that only one segment is wrongly labelled as a sphere instead

of a truncated cone. Note that the same considerations about axis-aligned cylinders are provided

in Figure 14 of [100], but we can also find other types of correlations. For this point cloud, the

mean of the MFE over all segments is 0.0091.

The point set in Figure 5.12 contains 529,006 points for a total of 51 segments, and corresponds

to a machined part. Not only is our approach able to find segments lying on the same plane or

cylinder, but also to identify cylinders having the same radii or axes and spheres characterised

by the same centers. The mean of the MFE over all segments is 0.0120.

5.4 Recognition and fitting primitives from 3D point clouds

In this section, we describe a new method to recognise an input point cloud P representing a

CAD object with geometric primitives via the HT technique. The result is a set of Nseg recognised

segments S j, such that P =⋃Nseg
j=1 S j. This method is an extension of the one described in Section

5.3.1, since it takes in input the entire CAD objects, and it is able to recognise multiple instances

114

5.4. RECOGNITION AND FITTING PRIMITIVES FROM 3D POINT CLOUDS

of the same primitive presented on a single point cloud. Specifically, it contains in a certain step

the procedure described in Section 5.3.1.

5.4.1 Description of the method

The proposed method consists of the following main stages: an initial point cloud preprocessing,

followed by the iteration of a recognition step and a splitting phase, and a final clustering step. A

graphical illustration of its pipeline is given in Figure 5.13.

Point cloud preprocessing. First, the input point cloud P is translated so as to place its

barycenter in the origin of the Cartesian coordinate system. Then, normals at the input points are

estimated as follows: if P is clean, we consider the method presented in [80], via the MATLAB

function pcnormals; while we use the approach shown in [128], in case P is noisy. The point cloud

is rotated so that the most voted direction among the (just-estimated) normal vectors coincides

with the z−axis. This process is necessary to test the existence – as a first check – of primitives

in their standard form (i.e., with centres or vertices in the origin of the Cartesian axes and with

the normal or the principal axis aligned to the z-axis): indeed, it limits the number of parameters

to be estimated by the HT. Finally, P is scaled into a unit cube.

Recognition step. After being preprocessed, P becomes the input of the HT-based recognition

step. Since P can contain different instances of the same primitive type and primitives of

different types, the standard HT procedure must be adjusted to allow such cases. This step can

be summarised as follows:

• Selection of one or more families of primitives. The user can select the families of primitives

to be used for recognition; in its default configuration, the algorithm tests the presence of

simple geometric primitives – one family at a time. By studying the geometric properties of

P and by relating them to the geometric characteristics of the selected family (e.g., bounding

box, radius, diagonal length), it is possible to initialise a region T of the parameter space.

The region T is discretised into cells, which are uniquely identified by the coordinates

of their centre. Then, an accumulator function H , in the discretised form of a matrix, is

initialized. The matrix entries are in a one-to-one correspondence with the cells of the

discretisation performed in the previous step.

• Estimation of the accumulator function. An entry of the accumulator function H is in-

creased by 1 each time the Hough transform Γp of a point p intersects the corresponding

cell. In our case, surfaces are expressed in parametric form; then, to check if and where a

Hough transform intersects some cells we adapt to surfaces the method devised for curves

in Section 2.3. Specifically, if the system of equations defining the family can be solved ana-

lytically with respect to the unknown parameters a, we calculate automatically a sample

115

RECOGNITION, EXTRACTION AND REPRESENTATION OF GEOMETRIC PRIMITIVES

of Γp by exploiting the Moore-Penrose pseudo-inverse [120] of the matrix that defines the

coefficients of a. The evaluation of the intersection is translated into an inequality between

the components of the sample points of Γp and the coordinates of the endpoints of the cells.

• Selection of potential fitting primitives. The cells corresponding to the peak values of

the accumulator function H have to be identified. When the set of points is assumed

to represent a single surface profile, the traditional HT formulation aims at finding the

maximum of the accumulator function H ; when the family of surfaces is not Hough-regular,

there might exist several maxima. On the other hand, if the point cloud is composed

of different primitives, different peaks of H identify potential primitives that might fit

different parts. To select these peaks, we observe that peaks of the accumulator function

corresponding to primitive shapes rise distinctly with respect to their neighbours and

are well-characterised as isolated peaks. Formally said, we proceed by identifying peaks

that have high topological persistence2. In our implementation, peaks that correspond to

primitives are automatically recognised by keeping the local maxima having a persistence

higher than 10% of the maximum value of H , by using the algorithm for persistent maxima

proposed in [24]. The coordinates of the cell centres of the maxima correspond to the

parameters of potentially recognised surface primitives.

• Evaluation of the approximation accuracy. To measure the recognition accuracy of a specific

primitive, we select the set of input points X closer to such a primitive than a given

threshold and study its density via the k-Nearest Neighbor algorithm (see, for example,

[64]). If X is sparse, the recognised primitive is considered a false positive; otherwise, for

each cluster Xi ⊂X we define the Mean Fitting Error MFE(Xi,P), as defined in Eq. 3.2,

where P is the current primitive. What can happen when the selected family of primitives

does not fit any part of the point cloud? There are two possibilities:

– The accumulator function is identically zero, with the result that its persistence is

zero; therefore the selection of potential fitting primitives returns the empty solution.

– The accumulator function H does not present predominant peaks, resulting in false

positives which are identifiable by studying the sparsity of the fitted points.

Given a set of dense points Xi and two candidate primitives P i,1 and P i,2, we first calculate

the fitting errors MFE(Xi,P i,1) and MFE(Xi,P i,2) between each primitive and Xi; the

primitive having lowest error is kept.

2The notion of topological persistence was introduced in [55] for encoding and simplifying the points of a filtration
f by classifying them as either a feature or noise depending on its lifetime or persistence within the filtration. In
practice, given a pair of points p and q, their persistence is defined as f (p)− f (q). Pairing is defined in terms of the
topological connection between the points, for details on topological persistence and saliency, we refer to [51, 55]. In
our case, the domain is represented by the grid of T, the role of filtration is played by the accumulator function H and
we are interested only in the peaks of H .

116

5.4. RECOGNITION AND FITTING PRIMITIVES FROM 3D POINT CLOUDS

Each time a primitive is recognised, the points of P close to the recognised primitive less

than a threshold ε are discarded from P . The value of ε typically ranges from 1% to 3% of

the diagonal of the minimum bounding box of the P , according to the type of primitive.

 primitive type∀

 IF SPARSE𝒫′￼
ELSEIF

 𝒫 = 𝒫′￼

SELECTION
OF A FAMILY

• Plane

• Cylinder

• Sphere

• Cone

• Torus

• …

VOTING
PROCEDURE

RECOGNITION
OF POTENTIAL

PRIMITIVES
APPROXIMATION

ACCURACY
PREPROCESSING

UNRECOGNISED POINTS 𝒫′￼
ELSE

RANSAC

AGGREGATION
INTO CLUSTERS

(DBSCAN)
 𝒫′￼= ⋃

i

𝒫′￼i

SEGMENT
PREPROCESSING

 segment :

SET :=

∀ 𝒫′￼i
𝒫 𝒫′￼i

INPUT 𝒫

POINTS ARE
UNCLASSIFIED

SET OF
RECOGNIZED
SEGMENTS

CLUSTERING

RECOGNITION STEP

SPLITTING PHASE POSTPROCESSING

Figure 5.13: Pipeline of the method.

The algorithm returns the parameters of the geometric primitives and the corresponding

points fitted by them, as well as the set of points that were not fitted by any primitive – denoted

by P ′. Note that if more geometric primitives potentially fit the same region of the point cloud,

we select the one with the minimum approximation accuracy MFE.

Splitting phase. The algorithm chooses the next step according to the resulting P ′:

• If P ′ is sparse, then its points are returned as unclassified.

• If ;⊊ P ′ ⊊ P , i.e., if P ′ is a proper nonempty subset of P , we proceed by aggregating

points in P ′ into clusters P ′
j, with j = 1, . . . , Nclust, by adopting the DBSCAN method [57].

Then, the recognition step mentioned before is iterated over each cluster P ′
j as long as

some geometric primitives are recognised. Before proceeding with a new recognition round,

we preprocess each cluster P ′
j; the preprocessing adopted here differs from that applied to

the entire point cloud P : we exploit the strategy presented in [128] and detailed in Section

5.3.1 to estimate its standard form, thus reducing the number of parameters that have to be

estimated in the new iteration of the recognition step. In case the recognition step involves

complex primitives, the strategy proposed in Section 5.3.1 can be naturally extended since

117

RECOGNITION, EXTRACTION AND REPRESENTATION OF GEOMETRIC PRIMITIVES

they are characterised by the presence of symmetry axes that can be estimated in a similar

way through the use of the normals of points.

• It is possible that, in some steps, no primitive is recognised. This can happen in two cases:

(i) when applying our algorithm to an input point cloud that has no primitives in their

standard form, or (ii) when the estimation of the standard position of some cluster P ′
j fails –

because P ′
j contains more than one primitive. In both cases, we proceed by over-segmenting

the model: in our experiments, we use the RANSAC algorithm proposed in [144], because of

its efficiency and its tendency to over-segment point clouds (see, for example, [96]); however,

we proceed by estimating primitive types and geometric parameters with a new round of

the recognition step, as voting procedures have shown greater robustness to point cloud

artefacts.

This step ends by transforming the parameters found by the Hough transform with respect

to the inverse translations, rotations and scaling applied in the previous steps of the algorithm.

The result of this procedure is the decomposition of an input point cloud P into several subsets,

called segments, in such a way that points of the same segment are well approximated by the

same primitive. We denote these final segments by S j.

Segment clustering based on geometric relationships. After decomposing the input point

cloud into the segments S j, a clustering method is applied to unveil geometric relationships. The

goal of this step is to find maximal primitives (i.e., segments composed also of non-adjacent parts,

belonging to the same primitive) that are not automatically detected in the recognition process

or to find patterns of primitives. Specifically, we aggregate primitives based on their positions,

orientation, and dimension, as described in Section 5.3.1 and in [128] for simple geometric

primitives.

An illustrative example. Figure 5.13 provides a graphical illustration of the pipeline of

our method. The main steps of the algorithm are associated to an example of a point cloud

representing a gear. After preprocessing the point cloud, we start with the first round of the

recognition step – which aims at recognising the presence of primitives in their canonical position.

For the sake of clarity, however, the graphical illustration only focuses on the recognition of

cylinders. Specifically, once the family of cylinders is selected, the corresponding accumulator

function is computed; it exhibits three peaks, which indicate the presence of three potential

solutions: the three cylinders highlighted in the colours red, green and blue. The approximation

accuracy for this type of primitive is less than 1%.

Since some segments (the non-axis-aligned planar segments) are not in their canonical

position, their points are not recognised in the first round of the recognition step. Instead, these

points are collected in P ′ and aggregated into dense clusters in the splitting phase; each of such

clusters is individually studied by a new round of the recognition step and recognised as planar

118

5.4. RECOGNITION AND FITTING PRIMITIVES FROM 3D POINT CLOUDS

segments. However, being these segments studied separately, we lose some geometric information.

We then apply clustering to recognise that some planar segments lie on the same parametric

plane, by exploiting the geometric descriptors provided by the HT.

The final result is a segmentation of 17 segments. It is worth mentioning that the method is

able to group some of the non-adjacent parts, which belong to the same primitive in canonical

position – as in the example of the two external cylinders, and of the axis-aligned planes that

form four couples. However, for primitives not in their canonical position, postprocessing based

on clustering is required.

5.4.2 Computational complexity

In the preprocessing step, our method includes the estimation of the normal vectors and the

individuation of the most voted normal, which is implemented as explained in [80] – in the case of

clean point clouds – and in [128] – in the presence of point cloud artefacts. For a thorough analysis

of the computational complexities of this estimation, the reader is referred to the corresponding

papers.

The formulation of the HT for surface primitives embedded in R3 naturally extends that for

plane curves in R2. In the pipeline presented in the previous section, for each point cloud P (both

in the case of the initial point cloud and of single clusters at subsequent iterations) we apply the

HT by considering the different types of geometric primitives one at a time; thus, the dimension

of the parameter space changes accordingly to the type of primitive considered. The quantization

of a region of interest and the dimension of the parameter space determines the size of the

accumulator function, and dominate both the memory usage and the computational complexity

of the Hough transform: it is, therefore, necessary to balance the samples for each parameter

and their number. To reduce the computational cost, primitives are put in their (estimated)

standard positions in this way the number of parameters does not exceed 3, as explained in

[128]; complementarily, adaptive approaches can be used to further speed up the search (e.g.,

[97]). The overall computational complexity of the HT-based recognition step is O(ML), where M

denotes the number of cells of the parameter space and L represents the number of points (in the

initial point cloud or in a cluster obtained at a subsequent iteration) at which we evaluate the HT

accumulator function. More precisely:

• At the first iteration the HT is applied to the whole input point cloud. Supposing that the

number of families of primitives to be used for the recognition is K and the number of

points in P is N, the overall complexity of the first iteration is O(N
∑K

k=1 Mk), where Mk is

the dimension of the parameter space for the k-th primitive type.

• In the subsequent steps, the HT-based recognition method is applied to each cluster P ′
j

and then the computational cost corresponds to O(
∑Nclust

j=1 N j
∑K

k=1 Mk), where N j denotes

the number of points in cluster P ′
j while Nclust is the number of clusters.

119

RECOGNITION, EXTRACTION AND REPRESENTATION OF GEOMETRIC PRIMITIVES

Notice that, being the recognition step performed independently w.r.t. the primitive type, the

task is embarrassingly parallel. The same applies to the clusters of points obtained in the same

iteration.

Finally, agglomerative hierarchical clustering approaches require, in their naive implementa-

tion, O(N3
seg) operations, where Nseg denotes the number of segments in the output segmentation;

see, for example, [43]. When it comes to complete-linkage clustering, one can consider more

efficient implementations, such as the one proposed in [44], which costs O(N2
seg). Although

the dissimilarity-matrix assembly costs O(N2
seg), one may note that each entry is computed

independently; again, the task is therefore embarrassingly parallel.

5.4.3 Experimental results

5.4.3.1 Simple geometric primitives

As a sanity check, we first apply our method to two models from [91], which were selected because

containing all simple geometric primitives – plane, sphere, cylinder, cone and torus – and because

of the availability of ground truth. A first example is provided in Figure 5.14. The point cloud,

corresponding to the set of vertices of the original triangle mesh, is decomposed in 8 surface

segments: 5 cylinders, 2 planes and 1 sphere. The high accuracy of our method is proved by

comparing the parameters from the HT with those in the database. In the second example,

presented in Figure 5.15, the corresponding point cloud is subdivided into 9 surface primitives: 4

cylinders, 1 torus, 3 axis-aligned planes and 1 cone. Again, we are able to recognise all primitives

up to a small error in the parameters, with respect to those provided in the dataset.

equation code ground truth HT parameters

x2 + y2 = r2

C1 r = 1.50 r = 1.50
C2 r = 8.00 r = 8.00
C3 r = 4.00 r = 4.00
C4 r = 1.50 r = 1.50
C5 r = 5.00 r = 5.00

z = k
P1 k = 20.00 k = 20.00
P2 k = 35.00 k = 35.00

x2 + y2 + z2 = r2 S r = 5.00 r = 5.05

(a) (b) (c)

Figure 5.14: In (a) a mechanical CAD model from the benchmark in [91]; in (b) the vertices of its
triangle mesh decomposed into 8 surface segments; in (c), for each primitive, the HT parameters
are compared with those provided by the database

Figure 5.16(a-b) shows point clouds that can be segmented into complete geometric primitives

without the need for the clustering strategy. The first example, shown in Figure 5.16(a), consists

of 11 segments – 3 cylinders and 8 planes – and it highlights the robustness of our method when it

120

5.4. RECOGNITION AND FITTING PRIMITIVES FROM 3D POINT CLOUDS

equation code ground truth HT parameters

x2 + y2 = r2

C1 r = 15.01 r = 15.01
C2 r = 3.97 r = 3.97
C3 r = 1.28 r = 1.26
C4 r = 29.25 r = 29.25

z = k
P1 k = 12.00 k = 12.00
P2 k = 9.08 k = 9.08
P3 k = 0.00 k = 0.00

(R−
√

x2 + y2)2 + z2 − r2 = 0
T R = 27.25 R = 27.25

r = 2.00 r = 2.00

x2 + y2 +a(z−b)2 = 0
C a =−2.77 a =−2.81

b = 2.19 b = 2.22

(a) (b) (c)

Figure 5.15: In (a) a mechanical CAD model from the benchmark in [91]; in (b) the vertices of its
triangle mesh decomposed into 9 surface segments; in (c), for each primitive, the HT parameters
are compared with those provided by the database

comes to detecting intersecting cylinders, here arranged similarly to a Steinmetz solid. Complete

geometric primitives, each of which is represented by a specific colour, are automatically detected.

Another point cloud, displayed in Figure 5.16(b), contains 5 segments: 2 tori, 1 cylinder and 2

axis-aligned planes. As for the previous case, the HT-based recognition successfully detects all

the primitives, even those made up of non-adjacent parts.

Segments (a) Segments (b)

Figure 5.16: Recognition of CAD point clouds containing only simple geometric primitives. The
identification of maximal segments does not require, in these cases, the application of any
clustering algorithm.

Figures (5.17-5.20) show point clouds wherein the segments produced by the HT approach

are post-processed by the hierarchical clustering. In Figure 5.17(b), the input point cloud is first

segmented into 20 surface primitives via the HT-recognition algorithm (cylinders and planes),

which are then grouped by clustering. As expected, no pair of primitives lying on the same surface

is found. Despite the presence of imperfections in the original model (see Figure 5.17(a)), we are

able to correctly identify repeating primitives, here in the form of circular cylinders of equal radii.

Figure 5.17(c) highlights the similarities identified by clustering cylinders: 4 in light blue, 3 in

121

RECOGNITION, EXTRACTION AND REPRESENTATION OF GEOMETRIC PRIMITIVES

red, 2 in purple and 2 in yellow.

(a) Model (b) Segments (c) Clustering

Figure 5.17: A linkage arm. In (a), the original model is shown, together with a magnification
revealing some imperfections. The segments identified by the HT are shown in (b) in different
colours. (c) draws attention to cylinders, among which we can recognise segments lying on the
same primitive, up to a translation.

Figure 5.18 increases the difficulty by considering a point cloud containing a higher number

of segments, some of which are low-quality as the small holes highlighted in Figure 5.18(a). In

this example, the geometric primitives identified by the HT algorithm are cylinders, cones and

planes. The result is a segmentation in 28 surface segments, see Figure 5.18(b). Note that the

central hole presents some grooves, i.e., a surface detail that was not present as a geometric

feature in the original CAD model; therefore, we recognise it as a cylinder and the HT is able to

ignore the shallow grooves. A final application of clustering makes it possible to identify repeating

primitives, up to translations. Figure 5.18(c) illustrates the similarity between 6 cylindrical holes

(in green) and between other 6 cylindrical segments (in yellow).

Another example of gear is shown in Figure 5.19(a). Here, the total number of extracted

geometric primitives is 68: 19 cylinders; 2 cones; 47 planes, 5 of which are axis-aligned. The result

is presented in Figure 5.19(b). As highlighted by the original model, in this prototypical version

of the NuGear component, cylinders are roughly approximated by a series of planar primitives;

in this specific case, we fit a cylinder instead of many planes, since the former can describe a

much larger area without significantly increasing the error. Clustering identifies here a similarity

between the 12 cylindrical holes – up to translations – and between 2 external cylinders, while

the surface segments identified by non-axis-aligned planes are not clustered in pairs; this is

because the tooth inclination prevents any alignment. Figure 5.19(c) shows this result, colouring

the holes in black and the external cylinders in yellow.

Finally, Figure 5.20(a) shows another mechanical part. The HT decomposition of the input

point cloud consists of 50 surface segments, all of which are tori, cylinders and planes, see Figure

5.20 (b). The clustering method is able to identify the similarity between 8 red cylindrical holes

and between 2 blue cylindrical segments, up to translations – see Figure 5.20(c). Finally, 2 tori

122

5.4. RECOGNITION AND FITTING PRIMITIVES FROM 3D POINT CLOUDS

(a) Model (b) Segments (c) Clustering

Figure 5.18: A carter. In (a), the original model is shown. The surface segments found by means
of the HT approach are depicted in (b), while (c) shows the result of primitive clustering when
one is interested in identifying the same primitive up to a translational transformation. Different
rows correspond to different points of view.

(a) Model (b) Segments (c) Clustering

Figure 5.19: A prototype of the NuGear component, courtesy of STAM S.r.l. (Genoa, Italy). The
original model is shown in (a). The decomposition in clusters of points produced by the HT
approach is given in (b). The output of the additional clustering procedure is shown in (c), it
highlights the similarity between 12 cylindrical holes (in black) and between two cylinders (in
yellow).

123

RECOGNITION, EXTRACTION AND REPRESENTATION OF GEOMETRIC PRIMITIVES

are clustered together, because they lie on the same surface primitive up to roto-translations.

Table 5.5 summarises the characteristics of each point cloud processed in this section and the

mean fitting error for all the simple primitives recognised on it.

(a) Model (b) Segments (c) Clustering

Figure 5.20: A mechanical part. In (a) the original model is shown, while in (b) the decomposition
of the corresponding point cloud into segments produced by the HT. In (c) the result of the
clustering procedure: 8 cylindrical holes, in red, have a high similarity, up to translations; the
same applies for 2 cylindrical segments, in blue; 2 tori, in orange, identify the same primitive, up
to a roto-translation.

Table 5.5: Statistics of the MFES for all models of Section 5.4.3.1. Being the MFE normalized
by definition, we can conclude that the maximum error for the fitting of the simple primitives is
4.48%, which corresponds to the noisy holes in the carter of Figure 5.18.

Model # points # segs min(E i) mean(E i) max(E i)
Fig. 5.14 15,216 8 0.0006 0.0021 0.0046
Fig. 5.15 15,022 9 0.0008 0.0029 0.0051

Fig. 5.16(a) 25,000 11 0.0009 0.0024 0.0056
Fig. 5.16(b) 25,000 5 0.0004 0.0031 0.0059
Fig. 5.17(b) 50,000 20 0.0004 0.0098 0.0300
Fig. 5.18(b) 50,000 28 0.0013 0.0107 0.0448
Fig. 5.19(b) 50,000 68 0.0006 0.0053 0.0178
Fig. 5.20(b) 50,000 50 0.0008 0.0035 0.0057

5.4.3.2 Complex geometric primitives

As anticipated, our method is able to recognise other primitives in addition to the simple ones

shown in Section 5.4.3.1. Here we show some of the complex primitives identified in our experi-

ments.

The first example – shown in Figure 5.21(a) – contains an ellipsoid, which is easily recognised

by our method at the price of an additional parameter in the parameter space; additionally, the

point cloud can be partitioned into 4 planes, 1 torus and 1 cylinder. In the point cloud from Figure

5.21(b), we are able to identify correctly the yellow segment as a surface of revolution from Table

124

5.4. RECOGNITION AND FITTING PRIMITIVES FROM 3D POINT CLOUDS

5.1(c); the remaining points are segmented into 2 cylinders and 2 planes. In the point cloud

shown in Figure 5.21(c), we recognise the gold part as a generalised cone, while the blue and the

green segments are fitted with generalised cylinders: all of the three have the same directrix, a

5−convexity curve. This last point cloud has been segmented into 7 clusters.

Segments (a) Segments (b) Segments (c)

Figure 5.21: Recognition of complex geometric primitives in CAD point clouds. Their identification
does not require, in these cases, the application of any clustering algorithm.

Figure 5.22(a) displays a mechanical part which can be accurately described by combining a

portion of a helical surface, as introduced in Table 5.1(d), with a pair of planes and a pair of a

convex combination of helices, see Table 5.1(e). The result is a segmentation of the point cloud

into 6 primitives, Figure 5.22(b). Two of them are then grouped by the clustering since the helical

strips have the same equation up to a translation, as shown in Figure 5.22(c).

Table 5.6 provides the main characteristics of each point cloud processed in this section and

the mean fitting error for all the simple and complex primitives recognised on it.

(a) Model (b) Segments (c) Clustering

Figure 5.22: A screw-like part. The original model, (a), is sampled. The surface primitives detected
via HT are shown in (b) in different colours: a helical surface (in purple), two planes (in red and
magenta), and two helical strips (in orange and yellow). Although no pair of them lies on the
same parametrised surface, the 2 helical strips have the same equation up to a translation, as
shown in (c) (both in orange).

125

RECOGNITION, EXTRACTION AND REPRESENTATION OF GEOMETRIC PRIMITIVES

Table 5.6: Statistics of the MFES for all models of Section 5.4.3.2. Since the MFE is normalized
by definition, we can conclude that the maximum error for the fitting of the simple primitives is
1,54%, which corresponds to the helical surface of Figure 5.22.

Model # points # segs min(E i) mean(E i) max(E i)
Fig. 5.21(a) 25,524 7 0.0009 0.0042 0.0063
Fig. 5.21(b) 67,777 5 0.0006 0.0031 0.0071
Fig. 5.21(c) 25,000 7 0.0020 0.0053 0.0081
Fig. 5.22(b) 25,000 6 0.0033 0.0086 0.0154

5.4.3.3 Robustness of the pipeline to perturbed data

The use of the HT naturally leads to a robust method for the recognition of mathematical

surfaces, as suggested in the examples of Figures 5.17 and 5.18 – which were characterized

by spurious parts. In the point cloud of Figure 5.23, the HT recognition correctly identifies the

cylinder that fits the central part, without being negatively influenced by the letters in relief

– see the original model in Figure 5.23(a). The point cloud is decomposed into 38 segments:

23 cylinders with different axes, 10 planes, 4 cones, and 1 torus that automatically identifies

the top and bottom of the cylinder with the “GRAYLOC" inscription (see Figure 5.23(b)). The

application of the hierarchical clustering allows us to group together: 8 grey cylindrical holes

(up to roto-translations); 8 purple cylindrical segments; 2 aquamarine circular cylinders; 3 violet

circular cylinders; 2 orange circular cones (up to a reflection); 2 black cones (up to a reflection).

Moreover, the small imperfections of the manufacture on the central part of the body (recognised

by vertical cones, cylinders and tori at the top and bottom) and on the lateral holes do not prevent

the clustering technique from appropriately aggregating the corresponding segments, correctly

dealing with rotations and reflections. However not everything is recognised: the black dots

in Figure 5.23(b) correspond to points that are not fitted by any of the geometric primitives at

our disposal, as they originate from irregular elements that act as a connection between better

defined segments. We label such points as “unsegmented" because of the high mean fitting error.

(a) Model (b) Segments (c) Clustering

Figure 5.23: A clamp connector. In (a) the original model. In (b) the decomposition of the corre-
sponding point cloud into 38 segments is provided by the HT procedure. In (c), the final grouping
is obtained by clustering, consisting of 6 groups of primitives (here, singletons of segments are
transparent).

126

5.4. RECOGNITION AND FITTING PRIMITIVES FROM 3D POINT CLOUDS

Further proof of the robustness of our method applied to raw data is presented in Figure

5.24 and quantitatively analysed in Table 5.7. In this example, we perturb the point cloud of

Figure 5.16(b) by adding zero-mean Gaussian noise of standard deviation: 0.01, 0.05, 0.10 and

0.20. The first row shows the points classified as noise (in black) and the segments found by our

method in the same image, for each level of noise. The second row focuses only on the points that

fit the identified primitives, thus providing a denoised segmentation. The robustness to noise is

quantitatively studied in Table 5.7: the parameters obtained in the original point cloud are there

compared with those found in the perturbed point clouds.

σ= 0.01 σ= 0.05 σ= 0.10 σ= 0.20

Figure 5.24: The point cloud in Figure 5.16(b) is perturbed by adding zero-mean Gaussian noise
of standard deviation: 0.01, 0.05, 0.10 and 0.20. The first row superimposes the points identified
as noise (in black) to the final segments found by our method; the second row depicts the points
that fit the primitives found and provides a denoised segmentation.

Table 5.7: Parameter comparison between the original point cloud from Figure 5.16(b) and the
perturbed versions from Figure 5.24.

Segment Original σ= 0.01 σ= 0.05 σ= 0.10 σ= 0.20
Plane 1 k =−1.28 k =−1.28 k =−1.29 k =−1.28 k =−1.31
Plane 2 k = 1.28 k = 1.28 k = 1.28 k = 1.28 k = 1.26
Cylinder r = 1.80 r = 1.79 r = 1.78 r = 1.79 r = 1.78

Torus 1
R = 1.49 R = 1.49 R = 1.47 R = 1.48 R = 1.56
r = 0.72 r = 0.73 r = 0.70 r = 0.67 r = 0.74

Torus 2
R = 1.05 R = 1.09 R = 1.02 R = 1.17 R = 1.13
r = 0.79 r = 0.78 r = 0.78 r = 0.74 r = 0.80

127

RECOGNITION, EXTRACTION AND REPRESENTATION OF GEOMETRIC PRIMITIVES

5.4.4 Comparative analysis

Figure 5.25 compares our method with the RANSAC-based method introduced in [144], the

patch aggregation approach in [96] and two recent deep learning architectures: ParSeNet [148]

and HPNet [160]. In this comparison, we have focused on models that merely present simple

primitives, to show that even on these our approach gives a great performance; on the other

hand, the capability to handle more complex primitives is undoubtedly an added value of our

method. Similarly to [96], we use different colours to represent different primitive typologies:

red for planes, green for cylinders, blue for cones, black for tori, pink for (open and closed)

B-splines and yellow for unsegmented. For a simple model like the block of Figure 5.25(a),

all methods provide decent decompositions, although RANSAC misclassifies some primitives

while the deep learning frameworks run into problems along sharp edges – because of an

erroneous estimation of the surface normals. For the remaining more complex models, our

method outperforms the competitors. In Figure 5.25(b), our approach is the only one capable of

correctly identifying portions of tori, misclassified by Le and Duan [96] and partly unsegmented

by RANSAC; ParSeNet and HPNet are able to reveal the presence of tori, but the resulting

segmentation is unreliable along sharp edges. Figures 5.25(c-d) show a RANSAC tendency to

over-segment and misclassify complex models. While Le and Duan [96] obtain considerably

improved results, their algorithm misses a thin cylinder (see Figure 5.25(c)) and all the tori

in both models. Being these two objects acquired by low-quality scanners, the corresponding

point clouds (and meshes) are affected by point cloud artefacts which, in turn, leads to erroneous

normal estimates. The resulting segmentations are unreliable and are mostly associated with

spline segments; note that the two architectures were trained on the ABC dataset, which does

not take into account the presence of noise or other types of perturbation in the data. Due to the

lack of freely-downloadable implementations for some methods, it is not possible to present this

comparison other than qualitatively.

To offer a quantitative analysis of the robustness of our pipeline, we compare its performance

with that of three state-of-the-art methods whose implementation was made freely available by

the authors: a direct method approach on a primitive-growing (PG) framework [125], adapted to

handle point clouds as described in [140], and the two learning-based methods from the previous

comparison: ParSeNet (PN) and HPNet (HN). We conduct the study over the whole Fit4CAD

benchmark [140], which contains CAD point clouds defined by simple geometric primitives. In

addition, Fit4CAD contains a selection of meaningful and validated models from [91], converted

from meshes to point clouds. Figure 5.26 summarises the performance of each method over the

test set with respect to the following classification measures: Sørensen-Dice index (DSC), Positive

Predicted Value (PPV), True Positive Rate (TPR), Negative Predicted Value (NPV), True Negative

Rate (TNR) and accuracy (ACC). Given a point cloud, the benchmark defines these measures

by comparing each point cloud segment in the ground truth to the most overlapping segment

returned by a segmentation method, and then by averaging over all segments contained in that

128

5.4. RECOGNITION AND FITTING PRIMITIVES FROM 3D POINT CLOUDS

RANSAC

Le and Duan

ParSeNet

HPNet

Ours

(a) (b) (c) (d)

Figure 5.25: Primitive type recognition: a comparison between our approach, a RANSAC-based
segmentation [144], and the method in [96]. Different colours correspond to different primitive
types: planes (red), cylinders (green), cones (blue), tori (black), splines (pink), and unsegmented
(yellow).

point cloud. Note that, given a point cloud segment in the ground truth, the points inside that

segment are the positives while the points outside that segment are the negatives. We arrive at

the following conclusions:

• Learning-based methods show remarkably high TNRs – said otherwise, the points they

predict as being negative are almost always true negatives. On the other hand, they are

more penalized by NPV: while it is ParSeNet that exhibits the highest variability and the

lowest quartiles, both methods are seriously affected by outliers – with some point clouds

having this score below 0.2. A low NPV means that quite a few points predicted as negative

are false negatives (e.g., common in heavily over-segmented models).

• Our approach performs significantly better than the competitors in terms of TPR, i.e., it

has similar proportions of correct (positive) predictions among positives. When it comes to

the PPV, differences are more modest.

129

RECOGNITION, EXTRACTION AND REPRESENTATION OF GEOMETRIC PRIMITIVES

Figure 5.26: Comparison of our approach (HT) with other three methods: a primitive growing
approach (PG), ParSeNet (PN) and HPNet (HN). The analysis is performed over the Fit4CAD
benchmark [140]

• In terms of accuracy, the four methods reach high scores, with the direct methods being the

less prone to outliers: however, this metric is not completely reliable as this is a naturally

unbalanced binary classification problem. A more reliable measure is provided by the

Sørensen-Dice index (DSC). Our method visibly outperforms the competitors in terms

of the DSC. Intuitively, the higher the DSC, the more accurate segments returned by a

segmentation method are – with respect to the most overlapping segment in the ground

truth; to put it differently, DSC penalises greatly both under- and over-segmentation.

When it comes to execution time, our Hough-based method and the primitive-growing ap-

proach were run on a desktop PC equipped with an Intel Core i9 processor (at 3.6 GHz) and a

Windows 10 operating system. The average execution time, per model, are 286.0 seconds for the

PG-method and 50.7 seconds for our pipeline. ParSeNet and HPNet were run on Google Colab

pro equipped with NVIDIA-SMI 460.32.03 and CUDA 11.2. Regarding the average execution

times, we have 5 seconds for ParSeNet and 257.1 seconds for HPNet (when the preprocessing of

normals is applied).

5.5 Concluding remarks

The methods and the results presented in this chapter have been investigated during the third

year of my PhD. Specifically, the approach shown in Section 5.3.1 is described in [128] and our

implementation is available as a GitHub repository at https://github.com/chiararomanengo/

fitting_geometric_primitives, while its extension exhibited in Section 5.4.1 is submitted for

publication.

In the first part of this chapter, we describe a method able to provide a parametric representa-

tion and several parameters (centres, axes, vertices, etc.) that uniquely define it, thus feeding the

clustering algorithm with a reliable segment description. As the method is applied to segmented

130

https://github.com/chiararomanengo/fitting_geometric_primitives
https://github.com/chiararomanengo/fitting_geometric_primitives

5.6. RELATED PUBLICATIONS

point clouds, the better the presegmentation technique, the better the results obtained. In any

case, it helps to improve the model in case of over-segmentation. Since the method is based on an

aggregation technique, in the case of under-segmentation, it would be necessary to integrate it

with an adaptive splitting strategy.

Thanks to the devised segment preprocessing technique, we can fit geometric primitives in a

standard form (thus limiting the number of parameters needed by the HT) as well as provide an

estimate of the true solution (thus limiting the search for the optimal solution to a specific region

which, in turn, allows us to solve the problem of unboundedness of the parameter space). Our

experiments confirm the robustness of the HT-based method to deal with various types of point

cloud artefacts.

In the second part of this chapter, we address the problem of the recognition of simple and

complex primitives in a point cloud, opportunely extending the family of geometric primitives to

which the HT technique can be applied. Thanks to an opportune preprocessing of the point cloud

and its sub-parts, we can limit the number of parameters that are necessary to represent the

primitive, thus reducing the computational complexity of the HT computation. In addition, the

explicit extraction of position-independent primitive parameters and the use of a hierarchical

clustering strategy permits the identification of maximal and compound primitives, thus reducing

the output over-segmentation. Indeed, differently from spline-based primitives, our strategy is

suited for primitive similarity reasoning and permits the finding of maximal primitives.

Although learning methods have performed very well in recent years, when models present

complex combinations of primitives (such as the examples in Figure 5.25(c,d)), direct methods

perform even better, and our method is very competitive. In addition, our method has been

validated on a whole benchmark and, compared with the others, it turns out to be the best.

5.6 Related publications

• A. Raffo, C. Romanengo, B. Falcidieno, S. Biasotti, Fitting and recognition of geometric

primitives in segmented 3D point clouds using a localized voting procedure, Computer Aided

Geometric Design (2022), vol. 64, pp. 102–123.

• C. Romanengo, A. Raffo, S. Biasotti, B. Falcidieno, Recognising geometric primitives in 3D

point clouds of mechanical CAD objects, submitted.

131

C
H

A
P

T
E

R

6
CONCLUSIONS

In this thesis, we faced the problem of recognising curves and surfaces on 3D digital models

providing their mathematical representation. However, when 3D models are acquired by

scanning real objects, the resulting geometry does not explicitly encode these curves and

surfaces, especially when it is affected by noise, due to measurement uncertainty and sampling

resolution, or missing some parts, due to occlusions during the acquisition or other factors. In

particular, in applications like the digitisation of archaeological artefacts, these objects might

be damaged, and then curves are partially missing. In our recognition approach, we use the

generalised Hough transforms that identify the best fitting curve or surface in a dictionary

containing different families. The HT answers to both the need for robustness to noise and data

incompleteness, and it benefits from the flexibility of the template curve or surface.

At first, in Chapter 2 we focused on the recognition of feature curves on 3D shapes that can

be projected into the plane by using a rich dictionary of families of plane curves. This technique

shows its effectiveness in some application contexts, such as the recognition of geometric patterns

in archaeological finds, the analysis of brand logos, and the interpretation of artistic elements.

Since the parameters and the equation of the recognised feature curves are provided, it is

possible to detect the similarity of decorations and explore their geometry. Indeed, in the case

of archaeological fragments, the outcome of this method can be used to support the automatic

annotation of digital models and to compare the decorations present on the surface of different

fragments. In the case of artistic and design motifs, the curves in parametric form can be used as

an input for the interactive visualisation and manipulation of the symbols through a multi-touch

smart table. However, this method needs to know in advance which kind of patterns to look

for. This suggestion can be provided by the user through a template or by choosing in a curve

catalogue the one or the ones most similar to what is sought. In the archaeological domain, this

133

CONCLUSIONS

input can come directly from the expert, through a template or a drawing, or from the technical

documentation associated with the find.

To overcome the necessity of projecting feature curves on the plane, in Chapter 3 we extend

the previous method to the recognition of space curves. In this vein, we propose a template of

space curves dividing them into two classes. The first type is composed of space curves equipped

with a known representation. Since in the literature the dictionary of space curves is quite limited

and there is a large variety of plane curves rather than space curves, we exploit this richness

by introducing as a second type of space curve the intersection of a paraboloid with a cylinder

that has a plane curve as directrix. This second family improves the approximation by using

a surface primitive as a projecting surface. The use of a paraboloid provides a better fitting of

the set of feature points when the surface is curved, with respect to the previous method that

approximates the curves projecting them onto the regression plane. In this case, in addition to

archaeological fragments, the method has been also tested on digital models coming from real

application contexts, such as CAD objects. The mathematical representation of curves provided

by our method can drive model simplification and can be exploited to add curve elements directly

into the mesh.

However, also this method needs to know a priori what family of curves has to be used for the

recognition. This limitation has been overcome by implementing a method for piece-wise curve

approximation using specific families of polynomial curves of degree 3 or 4, explained in Chapter

4. The proposed method can approximate both planar and spatial profiles, by considering one or

two projections of the feature points, respectively. The result is a curve of continuity G1 on each

projection, except for some specific points, in which the continuity is C0. In this context, we show

as an example of an application a feature-preserving point cloud simplification, and resampling.

Regarding the recognition of surfaces (discussed in Chapter 5), we introduced a dictionary

made of both simple (planes, spheres, cylinders, cones, and tori) and complex geometric primitives

(general cylinder, general cones, surfaces of revolution, helical surfaces, and convex combination of

curves). Then, we describe two strategies. The first approach is applied to a pre-segmented point

cloud and provides the geometric descriptors that uniquely identify each segment. The primitive

fitting is obtained by considering the mathematical representation of families in standard form,

thus limiting the number of parameters needed by the HT. These descriptors are exploited by a

clustering method to find different relations among segments, improving the model in the case of

over-segmentation. The second approach takes in input a whole point cloud representing a CAD

object, that can contain multiple instances of the same primitive, and provides a segmentation

together with the mathematical representations of segments. The output over-segmentation

can be reduced by explicitly extracting position-independent primitive parameters and using a

hierarchical clustering approach to discover maximal and compound primitives. In contrast to

spline-based primitives, our approach is suitable for reasoning about primitive similarity and

enables the search for maximal primitives (i.e., segments composed also of non-adjacent parts,

134

6.1. ONGOING ACTIVITIES AND FUTURE DIRECTIONS

belonging to the same primitive).

Parallel to this, we have developed datasets and metrics to evaluate approaches for identifying

simple geometric primitives in 3D point clouds representing CAD objects as well as in 3D

point clouds representing simple geometric primitives with various types of perturbations. The

benchmarks and the comparisons among our and existing methods are provided in Appendix A.

6.1 Ongoing activities and future directions

Recognition methods based on the HT require to priori know the family of curves or surfaces

to be used. In Chapter 4 we propose the first solution to overcome this limitation in the case of

space curves, by providing a piece-wise polynomial curve approximation. It is a good answer to

the problem of fitting, but it loses the uniqueness of the recognition. Then, we would like to find

a solution that automatically selects the family of curves a priori. The second difficulty to be

addressed is the search for the standard form of the selected family and the parameters estimate

that allows the construction of the parameter space. In this context, we are combining our method

with a learning-based approach able to select automatically the template, through a classification

step, and estimate the parameters, through a regression step. We are doing some tests about

this in the context of plane curves. Specifically, we first created a dataset composed of images

obtained from the parametric equations of the families of curves available in our dictionary. These

images present differently shaped dots with different thicknesses and with various sampling

densities and values of uniform noise. Then, we use a traditional pre-trained Convolutional

Neural Networks (CNNs) architecture [119]. One of the major advantages of CNNs is their

ability to "autonomously" learn the convolutional kernels necessary for the extraction of features

in an image dataset (therefore no prior feature engineering process is necessary). The second

great advantage of modern CNNs is the possibility of exploiting the so-called transfer learning

effect, i.e., being able to reuse - up to a certain degree of performance - old kernels pre-trained

on "generic" datasets composed of natural images also on very specific datasets composed of

synthetic images such as those we generate. Being able to take advantage of transfer learning

allows us to train CNNs much faster and with smaller datasets than what would be normally

necessary without transfer learning.

All of our experiments were performed on a machine equipped with 2× Nvidia Tesla V100

GPUs with 32GB of RAM each. As for the software, all the training phases took place inside

Jupyter Notebooks using Python 3.8 and the popular Fast.ai library [82], a handy abstraction

layer on top of Pytorch that allows training neural networks in a sufficiently simple and fast way.

In the following, we describe the two steps that allow us to automatically select the family

of curves necessary for the recognition (classification) and estimate a geometric parameter

(regression).

• Classification step. To begin exploring the problem, we generated a toy dataset of 990

135

CONCLUSIONS

Figure 6.1: Examples of images present in our dataset.

images divided into 9 classes (astroid, citrus, egg, geomPetalA, geomPetalB1, geomPetalB2,

inf, mouth, spiral). Figure 6.1 shows an example of batch given as input to the neural

network. Already in this phase we started to insert a minimum of noise in the images, both

to act as "offline data augmentation" and to start testing the generalization capacity of the

network.

Given the very simple task and the toy dataset created, the architecture we chose was a

standard ResNet-34 [76] available in the Fast.ai library. The training took place on images

with a size of 256×256 px with a learning rate (LR) of 10e−3 and a batch size of 64 images

per batch. The training ended with a Fast.ai callback after the validation loss did not

improve over 10 epochs. As expected, the network is perfectly capable of learning to classify

images in the dataset, even reaching 100% accuracy, precision, recall and an F-Score of 1 on

this toy dataset (see Figure 6.2(a)). Finally, the confusion matrix confirms what is reported

136

6.1. ONGOING ACTIVITIES AND FUTURE DIRECTIONS

(a) (b)

Figure 6.2: In (a) the validation metrics and in (b) the confusion matrix associated to the
classification problem.

by the metrics (see Figure 6.2(b)).

• Regression step. Having had full success with the first toy dataset classification experi-

ment, we decided to expand the dataset and start working on the parameter estimation

of curves. As a starting point, we estimate only one parameter: the rotation angle, which

translated into the language of Deep Learning is called image regression. The important

difference compared to regression analysis in statistics is that the independent variables

are not two- or three-dimensional points but are the feature representation of the images

after they have been processed and condensed into a feature vector in the forward phase of

the neural network.

To address this problem, we have generated more than 190k images containing curves

belonging to 6 classes (astroid, citrus, egg, lemniscate, geomPetalA, geomPetalB1). To

perform offline data augmentation we used an initial set of simple transformations (e.g.

by varying the type of marker that makes up the curve, its size and the distance between

the marker symbols) but without injecting further noise in this phase. The training took

place on images with a size of 256×256 px with a batch size of 32 images per batch. This

time the training took place in two phases: in the first phase, with a learning rate (LR) of

10e−3, only the weights of the output layer of the network were trained (thus exploiting

the transfer learning from ImageNet [45]). In the second phase, all the weights of the

neural network were trained with LR ranging from 10e−6 to 10e−7. Again, the end of

training triggered at epoch 18 of the “unfreeze” phase due to a callback from Fast.ai after

the validation loss has not improved in 10 epochs (see Figure 6.3).

Figure 6.4 visually shows some estimation results of the rotation angle, highlighting in red

137

CONCLUSIONS

Figure 6.3: The validation metrics associated with the regression problem.

Figure 6.4: Three examples of images in our dataset and in red the line that represent the
estimation of the rotation angle.

the line representing it. Although these results are very encouraging, much work remains

before we can obtain a model capable of predicting multiple parameters beyond the angle of

rotation (e.g. position, size, etc.), the class of the object and that is very robust to any kind

of noise, so not just the simple "synthetic" noise we have used so far. Furthermore, each

additional parameter we add as an estimate is one less degree of freedom that we have to

use in the data augmentation phase, so it will be necessary to get very creative to produce

sufficiently varied datasets in the future.

The approach just described automatically selects the family of curves to be used for the

recognition and to estimate a priori the curve parameters. Although we have extended the

number of families of curves and surfaces that can be used with the HT, we still need to limit the

number of parameters in curve and surface representations because the computational cost of HT

increases as the number of parameters involved grows up. To reduce the number of parameters,

in this thesis we exploited several strategies such as reparameterization techniques (e.g., the

change of variables) or the search for a standard form of the selected family of curves or surfaces.

In the future, we plan to investigate further possibilities and other techniques for parameter

space reduction, for instance by exploiting geometric properties of curves or geometric invariants

such as symmetries, centres of rotation, or properties of the projective space.

In Section 3.6, we describe a method able to insert the recognised space curves into the

model to drive model simplification and to create a hybrid mesh representation. Analogously,

138

6.1. ONGOING ACTIVITIES AND FUTURE DIRECTIONS

we envisage the application to model resampling and simplification for the piece-wise curve

approximation presented in Chapter 4, too. On the wave of those achievements, we plan to extend

our approach to the insertion of both curve and surface primitives to create a hybrid model with

curvilinear and surface profiles. This process would permit the improvement of model quality

and fair appearance. The use of exact primitive representations would produce a faithful model

simplification as well as repair a model with the completion of missing parts and be robust to

noise. In our view, these hybrid models would mix linear and curvilinear edges and faces, and

faces would not be necessarily triangular, thus allowing greater flexibility. This would extend the

representation models traditionally used in a CAD modeller, such as [5, 67]. However, we think

that hybrid meshes are particularly suitable for the emerging use of finite element methods for

physical simulations in the context of isogeometric analysis [84]. In these cases, it is possible to

have a better (or even exact) approximation of the geometry and, therefore, a better simulation

over there.

Another possible field of interest is remote sensing, in particular the processing of the

point clouds coming from the acquisition of large-scale outdoor/indoor scenes. This procedure

is becoming popular for the creation of a digital model of an urban area or a complex building,

falling into an area of research that goes by the name of Urban Intelligence. Urban Intelligence

fosters the creation of a cyber-physical counterpart of all the city/building systems and sub-

systems. Within this scenario, it is necessary to integrate heterogeneous data and predict the

evolution of the model with the physical city, supporting the monitoring of the current status

and predicting/anticipating possible future scenarios. In this context, the potential support of

the work presented in this thesis goes in the provision of several tools for point cloud processing

and annotation, thus contributing to the creation of the geometric layer of the city digital twin.

Indeed, the more the geometry adheres to the real counterpart, the more accurate measures

and simulations related to the urban space will be. As an example, in the civil industry, the use

of Building information models (BIM) is becoming popular for its modularity, flexibility, and

the possibility of making simulations over it. The 3D geometric representation of a building

structure is the fundamental information under the BIM models [79, 142]. In this context, the

most widely used approach for modelling already-existing structures is to create 3D geometric

structures from point clouds that are acquired through laser scanners or photogrammetry. The

fundamental principle behind the BIM representation is the recognition of structures (e.g., walls,

pillars, staircases, etc.) that are shaped as basic geometric primitives, such as planes, spheres,

and cylinders. To guarantee faithful calculations on the material required and effective numerical

simulations, it is crucial to recognize these elements as accurately as possible and to annotate

the characteristic parts for the model construction with precise measures. The issues that have

to be addressed so that the methods presented in this thesis can be effectively applied to remote

sensing and urban intelligence are the ability to deal with scene complexity since it might be

composed of not isolated heterogeneous objects and could present also unexpected elements, and

139

CONCLUSIONS

an increase of the computational efficiency because it could be necessary to process hundred

million and even billions of points.

140

A
P

P
E

N
D

I
X

A
BENCHMARKING ACTIVITIES

To develop a competitive and fair evaluation system and to identify new research areas,

the creation of appropriate datasets and ground truth are essential building blocks. The

fundamental purpose of creating a new benchmark is not unique; it can range from the

requirement for a summary of the approaches capable of handling a certain task to identifying

what is still lacking or requires additional development. Benchmarks have played a crucial role

in the advancement of object recognition and other fields of computer vision and graphics. The

challenges posed by these standard datasets have helped identify and overcome the deficiencies

of existing approaches, and have led to great advances in the state of the art. Even the recent

growth of interest in deep learning methods can be attributed to their success. In particular, the

availability of such benchmarks helps the development of algorithms processing shape models,

allowing a direct fair comparison of different approaches.

In our case, we wanted to compare the performance of our methods, in recognising geometric

primitives in point clouds, with other algorithms. To do this, we have proposed a track for the

international 3D SHape REtrieval Challenge (SHREC), whose general objective is to evaluate the

effectiveness of 3D-shape retrieval algorithms. This track [139] was submitted to test recognition

algorithms related to our study topic. Similarly, we created a benchmark [140], composed of

dataset and performance measures, to test and compare our method, since the available datasets

contain mostly general shape models and few real CAD artefacts, or lack ground truth or

performance measures.

This appendix is divided into two sections: the first (Section A.1) regards the recognition and

fitting of simple geometric primitives on point clouds representing planes, cylinders, spheres,

cones and tori (or their subparts), to compare our approach outlined in Section 5.3.1 with

literature methods; the second (Section A.2) concerns the fitting of geometric primitives in point

cloud representing CAD objects to compare our method explained in Section 5.4.1 to another

141

BENCHMARKING ACTIVITIES

direct algorithm.

For each proposed track, in this appendix we describe the benchmark, that is dataset and

performance measures, and we briefly summarise the comparative analysis among the participant

methods. Both benchmarks are currently available on GitHub and have been awarded the

replicability stamp by the graphics Replicability Stamp Initiative.

A.1 The SHREC2022 track on fitting and recognising geometric
primitives in point clouds

Since we needed to compare our method described in Section 5.3.1 with other state-of-the-art

approaches, we have proposed a track in the SHape REtrieval Challenge SHREC (previously

Contest) by creating an appropriate benchmark.

This SHREC track aims to evaluate the performance of automatic algorithms for fitting and

recognising geometric primitives in point clouds. The goal is to identify, for each point cloud, its

primitive type (i.e., planes, spheres, cylinders, cones and tori) and some geometric descriptors.

Three tasks are considered in the evaluation phase:

• Classification task. Methods are evaluated based on their capability to identify, for each

point cloud of the test set, its primitive type.

• Recognition task. Methods are studied in terms of their ability to recover the geometric

descriptors (e.g, radii of a torus, vertex of a cone) of each segment.

• Fitting task. Regardless of the primitive type, the performance of the methods is studied

with respect to the approximation of each point cloud.

A.1.1 Dataset and performance measures

The dataset was specifically designed to allow the training of data-driven methods, with a

training set of 46000 primitives and a test set of 925 models. Nine types of perturbations were

randomly applied to each type of primitive. To quantify the performance of automatic algorithms

in classifying, recognising and fitting simple geometric primitives on point clouds under different

conditions, we, therefore, consider a variety of classification and approximation measures. This

analysis will be further specified according to the type of geometric primitive and point cloud

artefacts.

The benchmark is available at https://github.com/chiararomanengo/SHREC2022.git.

A.1.1.1 Dataset

The dataset is composed of 46,925 three-dimensional segments represented as point clouds; it is

divided into a training set and a test set that contain, respectively, 46,000 and 925 point clouds.

142

https://github.com/chiararomanengo/SHREC2022.git

A.1. THE SHREC2022 TRACK ON FITTING AND RECOGNISING GEOMETRIC PRIMITIVES
IN POINT CLOUDS

Each point cloud is provided in a TXT file listing one triplet per line.

The point clouds are generated by sampling classical surface primitives derived from con-

structive solid geometry (i.e., planes, cylinders, spheres, cones and tori), using the following

procedure. First, point clouds are sampled by using parametric equations in their canonical form,

i.e., centred at the origin of the coordinate axes and with the rotational axis aligned with the

z−axis; the geometric quantities that define each primitive (i.e., amplitudes and radii, if any)

are assigned randomly. Second, to obtain segments of different shapes, several cuts are enforced

by exploiting random planes. Third, we randomly apply translations and/or rotations to recover

primitives in their general position. Lastly, each point cloud is (potentially) processed so that it

can be:

• A0 - Clean. No perturbation is applied.

• A1 - Perturbed by uniform noise of different intensities. The noise is obtained by sampling

uniform distributions of the form U (− 1
n , 1

n), being 3 ≤ n ≤ 20 random, and adding such

perturbations to a random percentage of the points.

• A2 - Perturbed by Gaussian noise of different intensities. The noise is obtained by sam-

pling normal distributions among N (− 1
n , 4

n2), being 10≤ n ≤ 30 random and adding such

perturbations to a random percentage of the points.

• A3 - Clean but affected by undersampling. We randomly select a percentage of points to be

removed.

• A4 - Clean but affected by missing parts. We randomly choose a point of the point cloud;

then, we remove all points contained inside the sphere having the selected point as the

centre and radius assigned randomly.

• A5 - Perturbed by uniform noise of different intensities and undersampled.

• A6 - Perturbed by Gaussian noise of different intensities and undersampled.

• A7 - Perturbed by uniform noise of different intensities and affected by missing parts.

• A8 - Perturbed by Gaussian noise of different intensities and affected by missing parts.

• A9 - Clean but with local deformations. We randomly select a point of the point cloud and

we apply a bivariate Gaussian centred at the selected point with a random covariance

matrix.

For the sake of brevity, we will often refer to these point cloud artefacts as perturbation types.

For each perturbation type A0, . . . , A8, training set and test set containing 5,000 and 100 point

clouds, respectively; for perturbation type A9, training set and test set count 1,000 and 25 point

clouds, respectively.

143

BENCHMARKING ACTIVITIES

T1 T2 T3 T4 T5

A
0

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

Figure A.1: Examples of point clouds from the dataset. Columns identify primitive types: plane
(T1), cylinder (T2), sphere (T3), cone (T4) and torus (T5). Rows correspond to point cloud artefacts:
none (A0), uniform noise (A1), Gaussian noise (A2), undersampling (A3), missing data (A4),
uniform noise + undersampling (A5), Gaussian noise + undersampling (A6), uniform noise +
missing data (A7), Gaussian noise + missing data (A8), small deformations (A9).

144

A.1. THE SHREC2022 TRACK ON FITTING AND RECOGNISING GEOMETRIC PRIMITIVES
IN POINT CLOUDS

A.1.1.2 Ground truth

For each point cloud of the training set, the track participants were provided with a ground truth

TXT file that includes the primitive type and the geometric parameters required to identify each

segment. More precisely, each file contains a column vector v defined as follows:

• Plane. We list the primitive type (for planes, codified as 1), the unit normal vector1 a and a

point sampled on the plane P. Then, the file provides the vector v= [1, at, Pt]t.

• Cylinder. We list the primitive type (for cylinders, codified as 2), the radius r, the unit

vector determining the rotational axis a, and a point P sampled on the axis. In this case,

the file contains the vector v= [2, r, at, Pt]t.

• Sphere. We list the primitive type (for spheres, codified as 3), the radius r and the centre C.

The ground truth corresponds to the vector v= [3, r, Ct]t.

• Cone. We list the primitive type (for cones, codified as 4), half the aperture2 α, the unit

vector determining the rotational axis a and the vertex C. Then, the file provides the vector

v= [4, α, at, Ct]t.

• Torus. We list the primitive type (for tori, codified as 5), the major and minor radii, respec-

tively r and R, the unit vector determining the rotational axis a and the centre C. In this

case, the file contains the vector v= [5, r, R, at, Ct]t.

For each point cloud, the track participants were required to return a TXT file per point cloud

(of the test set), with the same syntax employed for the ground truth files of the training set.

A.1.1.3 Classification measures

The confusion matrix [93] is a popular way to visualise the classification performance of a method.

A confusion matrix CM is a square matrix whose order equals the number of classes in the

dataset under study. Diagonal elements count true positives, i.e., all those items which have been

correctly labelled as members of their ground truth classes: precisely, CM(i, i) is the number of

items that have been correctly predicted as elements of class i. Off-diagonal elements give the

numbers of items mislabeled by the classifier; precisely, CM(i, j), with j ̸= i, is the number of

elements wrongly labelled as belonging to class j rather than to class i. Ideals classifiers have

diagonal classification matrices.

1To be precise, the definite article “the" is here used improperly. Indeed, there are two unique unit normal vectors
that can be used to define the same plane or rotational axis. In our case, we recover uniqueness by enforcing the first
nonzero component to be positive.

2The aperture of a right circular cone, denoted by 2α, is the maximum angle between two generatrix lines; we
here report half the aperture, i.e., α.

145

BENCHMARKING ACTIVITIES

• True Positive and Negative Rates. True Positive Rate (TPR) refers to the method’s ability to

correctly identify positives (e.g., the percentage of cats correctly classified as cats). Likewise,

True Negative Rate (TNR) measures the classifier’s ability to identify negatives (e.g., the

percentage of non-cats correctly classified as non-cats). In statistics, TPR and TNR are also

called sensitivity and specificity. A perfect classifier is 100% sensitive and 100% specific.

• Positive and negative predicted values. Besides TPR and TNR, to quantify the likelihood

that a method returns a true positive (or true negative) rather than a false-positive (or a

false-negative) we consider the Positive Predictive Value (PPV) and the Negative Predictive

Value (NPV). PPV is the ratio of true positives to the number of items labelled as positives by

the classifier. Similarly, NPV is the ratio of true negatives to the number of items classified

as negatives.

• Accuracy. Accuracy describes how often a classifier is correct in its predictions: precisely, it

is defined as the proportion of predictions that the classifier got right.

• Macro-average. Macro-average permits to evaluation the overall performance of the classi-

fier treating all classes equally, it is defined as the arithmetic mean of one of the metrics

mentioned above, computed independently for each class.

A.1.1.4 Fitting and recognition measures

To measure the approximation accuracy of a specific primitive, we exploit the geometric de-

scriptors predicted by each method and the corresponding parametric representation to sample

densely the recognised surface primitive, say SP . Let us consider a point cloud P to be evaluated;

we use the following two measures to evaluate the approximation accuracy:

• Mean Fitting Error MFE(P ,SP), as defined in Eq. (3.2);

• Directed Hausdorff distance ddHaus(P ,SP), as defined in Eq. (2.2).

Finally, the recognition accuracy is evaluated in terms of L2 norm between the column vectors

of the ground truth and that obtained by each method. Specifically, we compare the geometric

descriptors recognised with those of the ground truth considering the L2 distance:

d(vG ,vP)= ∥vG −vP∥2

where vG and vP here denote the ground truth and the prediction vectors, respectively, where we

remove the first entry and, for planes and cylinders, the point (since they are not comparable).

146

A.1. THE SHREC2022 TRACK ON FITTING AND RECOGNISING GEOMETRIC PRIMITIVES
IN POINT CLOUDS

A.1.2 Evaluation

Six methods submitted their results, namely: accelerated Hough transform (M1), Histograms

of local features and parameter fitting (M2), PointNet (M3), 3D ShapeNets (M4), PointNet

bundle and parameter estimation with least square fitting (M5), AlexNet and ISO reconstruction

standards (M6). Two approaches – M1 and M2 – base their whole pipeline on direct methods;

M3 and M4 are fully based in neural networks; M5 and M6 exploit both methodologies, that is,

neural architectures for the classification task and direct methods for the fitting and recognition

tasks. The approach M1 is described in Section 5.3.1, while the others are detailed in [139].

A.1.2.1 Classification task

Figure A.2 shows the confusion matrices over the whole test set. All six methods have a high

number of true positives, being cones and tori the most difficult primitive types to be recognised.

A more thorough analysis is provided by Table A.1, which contains the following information:

Positive Predicted Value (PPV), Negative Predicted Value (NPV), True Positive Rate (TPR), True

Negative Rate (TNR), Accuracy (ACC) and their macro-averages. We can notice that:

• Methods M2, M3, M4 and M5 have NPV (slightly) higher than PPV: it is more likely for

these methods to be right when reporting a negative rather than a positive. Methods M1

and M6 have mixed outcomes.

• Methods M3 and M5 have TNR higher than TPR, making them more reliable in correctly

finding true negatives rather than true positives. Methods M1, M2, M4 and M6 present,

for some primitive types, a TPR higher than the TNR: this means that, in some cases, the

classifier is more likely to identify correctly true positives rather than true negatives.

• All methods have an accuracy over 90%, with slightly lower scores for cylinders, cones and

tori. Macro-averaged values of accuracy are always above 95%, with two of the three best

scores reached by neural methods.

Figure A.3 clarifies the (global) impact of different point cloud artifacts upon the six methods,

with respect to the classification measures. We observe that:

• M1, M2, M4 and M6 reach their best performance on clean data. Surprisingly enough,

M2, M4 and M6 perform best on data with small deformations: these three approaches

appear to be able to extract some additional hidden information to improve their prediction

capability.

• M1 suffers the most from undersampled data. On the other hand, coherently with the

Hough paradigm on which the method relies on, it is not much affected by missing data.

147

BENCHMARKING ACTIVITIES

M1 M2 M3

M4 M5 M6

Figure A.2: Confusion matrices CM for the whole test set, with respect to each primitive type.
Here, the entry CM(i, j) indicates the number of samples with the true label being the i-th class
and the predicted label being the j-th class.

• M3 and M4 have their lowest performance, respectively, in case of uniform and Gaus-

sian noise. However, the grouped bar charts suggest these two methods are the least

prone to misclassification. This result confirms the power of neural methods in handling

classification tasks.

• In spite of having, in most cases, the lowest classification performance, M2 has still no

measure that goes below 80%. Compared to the other method using PointNet (M3), here

the implementation seems to overfit way more the training data.

• M5 has a relatively high performance on undersampled data, when compared to other point

cloud artifacts.

• The combination of noise and undersampling has proved to be the most challenging per-

turbation for M6 which, however, exhibits one of the best overall performance on small

deformations.

By checking which segments are misclassified, it can be additionally observed that the segments

which results being more problematic are, in many cases, the small ones.

148

A.1. THE SHREC2022 TRACK ON FITTING AND RECOGNISING GEOMETRIC PRIMITIVES
IN POINT CLOUDS

Figure A.3: Bar graphs of the macro averages for the classification measures, grouped by method.
The legend reflects the colour encoding of the perturbation types.

149

BENCHMARKING ACTIVITIES

Table A.1: Classification metrics for the whole test set, with respect to each primitive type:
T1=plane, T2=cylinder, T3=sphere, T4=cone, T5=torus. Here, gold, silver and bronze identify the
first, second and third best performance. The last column contains the macro averages.

Method T1 T2 T3 T4 T5 Avg
M1 0.8981 0.8447 0.9211 0.9750 0.9816 0.9241
M2 0.9286 0.7980 0.8865 0.8324 0.9249 0.8741
M3 0.9946 0.9448 0.9275 0.9665 0.9572 0.9581
M4 0.9893 0.9832 0.9893 0.9683 0.9891 0.9838
M5 0.9890 0.8359 0.9382 0.9022 0.9194 0.9169

P
P

V

M6 0.9686 0.6908 0.9330 0.9524 0.9783 0.9046
M1 1.0000 0.9847 0.9864 0.9621 0.9672 0.9801
M2 0.9959 0.9629 0.9716 0.9455 0.9668 0.9685
M3 0.9986 0.9812 0.9918 0.9839 0.9919 0.9895
M4 1.0000 0.9879 1.0000 0.9973 0.9946 0.9960
M5 0.9933 0.9699 0.9759 0.9744 0.9811 0.9789

N
P

V

M6 1.0000 0.9808 0.9759 0.9670 0.9365 0.9720
M1 1.0000 0.9405 0.9459 0.8432 0.8649 0.9189
M2 0.9838 0.8541 0.8865 0.7784 0.8649 0.8735
M3 0.9946 0.9243 0.9676 0.9351 0.9676 0.9578
M4 1.0000 0.9514 1.0000 0.9892 0.9784 0.9838
M5 0.9730 0.8811 0.9027 0.8973 0.9243 0.9157

T
P

R

M6 1.0000 0.9297 0.9027 0.8649 0.7297 0.8854
M1 0.9716 0.9568 0.9797 0.9946 0.9959 0.9797
M2 0.9811 0.9459 0.9716 0.9608 0.9824 0.9684
M3 0.9986 0.9865 0.9811 0.9919 0.9892 0.9895
M4 0.9973 0.9959 0.9973 0.9919 0.9973 0.9959
M5 0.9973 0.9568 0.9851 0.9757 0.9797 0.9789

T
N

R

M6 0.9919 0.8959 0.9838 0.9892 0.9959 0.9714
M1 0.9773 0.9535 0.9730 0.9643 0.9697 0.9676
M2 0.9816 0.9276 0.9546 0.9243 0.9589 0.9494
M3 0.9978 0.9741 0.9784 0.9805 0.9849 0.9831
M4 0.9978 0.9870 0.9978 0.9914 0.9935 0.9935
M5 0.9924 0.9416 0.9686 0.9600 0.9686 0.9663

A
C

C

M6 0.9935 0.9027 0.9676 0.9643 0.9427 0.9542

A.1.2.2 Recognition and fitting tasks

Table A.2 provides various statistics of the measures introduced in Section A.1.1.4, when the

whole test set is considered. It contains the following information: first, second and third quartiles,

mean value and standard deviation. More specifically, these quartiles split a set of sorted real

numbers into four parts of approximately equal cardinality: the first (Q1) and the third (Q3)

quartiles are defined as the values such that, respectively, 25% and 75% of the numbers lie below

them; the second quartile (Q2) is the median of the set. Quartiles’ significance is due to their

ability to identify possible outliers. Based on quartiles, we can notice that:

• The L2 distance provides low values for all methods with regard to the three quartiles. The

lowest Q1 has an order of magnitude of −14 and is obtained by method M6; the highest

order of magnitude is that of method M3, and corresponds to −1. Q2 and Q3 have order of

magnitudes between −3 and −1.

150

A.1. THE SHREC2022 TRACK ON FITTING AND RECOGNISING GEOMETRIC PRIMITIVES
IN POINT CLOUDS

• With the sole exception of the third quartile of M5, quartiles of the MFEs lie under the

order of magnitude of −2. The lowest values are obtained by M2.

• When it comes to quartiles, the Hausdorff distance the order of magnitude is generally

(non-strictly) lower than −1; the only exceptions are the third quartiles of methods M3 and

M5.

Table A.2: Statistics of the fitting errors for the whole test set. Here, gold, silver and bronze
identify the first, second and third best performance.

Method Q1 Q2 Q3 mean std

M1
2.16e-

02
6.82e-

02
1.78e-

01
2.06e-

01
3.71e-01

M2
8.95e-

10
5.17e-

03
9.27e-

02
1.21e+11 2.78e+12

M3
1.77e-

01
4.73e-

01
8.73e-

01
6.03e-

01
5.54e-01

M4
2.37e-

07
1.54e-

02
4.43e-

02
5.18e-

02
1.84e-01

M5
6.25e-

04
2.15e-

02
9.01e-

01
2.46e+02 1.64e+03L

2

M6
1.49e-

14
1.49e-

02
1.05e-

01
1.28e+06 7.54e+06

M1
3.71e-

03
5.96e-

03
1.05e-

02
9.19e-

03
9.42e-03

M2 0.00
1.94e-

03
5.11e-

03
1.39e+10 3.51e+11

M3
1.71e-

02
4.49e-

02
8.67e-

02
6.57e-

02
7.46e-02

M4
2.32e-

03
3.59e-

03
5.87e-

03
5.82e-

03
1.43e-02

M5
3.45e-

03
1.49e-

02
1.70e-

01
2.62e+00 4.46e+01M

F
E

M6
2.04e-

03
3.43e-

03
9.51e-

03
2.56e+05 1.46e+06

M1
9.49e-

02
1.67e-

01
3.05e-

01
2.50e-

01
2.58e-01

M2
6.12e-

02
9.25e-

02
2.68e-

01
1.07e+11 2.60e+12

M3
3.72e-

01
6.62e-

01
1.09e+00

8.13e-
01

6.34e-01

M4
5.82e-

02
7.90e-

02
1.51e-

01
2.23e-

01
4.74e-01

M5
7.18e-

02
2.98e-

01
4.24e+00 3.87e+01 5.77e+02d d

H
au

s

M6
5.85e-

02
8.95e-

02
2.53e-

01
1.31e+06 7.63e+06

Based on the arithmetic mean and standard deviation, we can conclude that:

• Methods M2, M5 and M6 are affected by numerical instability issues, which result in the

presence of outliers; it is worth noting, however, this problem is limited to the top 25% of

the errors.

151

BENCHMARKING ACTIVITIES

• M2 presents 11 outliers corresponding to the recognition of cones in which the estimated

half-angle estimate is close to zero and the estimated vertex is far away from the origin of

the coordinate axes.

• M5 provides different outliers depending on the type of task. Specifically, it has 61 outliers

in the parameter recognition of various cylinders, cones and tori; however, for these clouds,

fitting errors are low. We therefore conclude that, in all these cases, the approximation is

successful but at the cost of a poor recognition. From the fitting task point of view, MFE

and directed Hausdorff distance have high values in correspondence of 18 outliers correctly

identified as planes: here, the normal is correctly identified (thus, the low value of L2

distance); on the other hand, the method fails in returning a point passing through each

returned plane.

• M6 presents 30 outliers, which correspond to point clouds classified as cones; the problem

these estimates suffer from is analogue to that of M2.

• M1 and M4 alternate the first and second places in terms of means and standard deviations,

suggesting that direct and neural methods can both provide competitive solutions to the

problem under study.

By checking the bar graphs of the log mean errors with respect to the perturbation type, see

Figure A.4, it is possible to note a generally low variation of the (average) performance of each

method, with the exception of M2 and M6; for these results, the logarithmic scale was preferred

because of the presence of outliers. It is indicative that, when the methods (i.e., all but M2 and

M6) are right in predicting the primitive type, their estimates are not much influenced by the

perturbation type. Moreover:

• Methods M2 and M6 have better recognition and fitting performance when dealing with

clean data or with point clouds having just small deformations. However, it is worth noticing

once more that the poor performance mostly depends on the presence of outliers (see Table

A.2).

• M5 is on average better in fitting than in recognition: despite being the mean L2 errors

rather high, mean MFEs and directed Hausdorff distances are lower.

• M1 and M4 behave similarly in both recognition and fitting tasks.

A.2 The Fit4CAD benchmark

In this section we describe Fit4CAD, a benchmark for the evaluation and comparison of methods

for fitting simple geometric primitives in point clouds representing CAD objects. The ground

truth dataset of point clouds is segmented in geometric primitives and subdivided into a training

152

A.2. THE FIT4CAD BENCHMARK

Figure A.4: Bar graphs of the log macro averages for the recognition and fitting measures, grouped
by method. The legend reflects the colour encoding of the perturbation types.

set and a test set. In addition, a set of quality metrics and two fitting methods are given. This

benchmark is meant to help both method developers and those who want to identify the best

performing tools. We hope the results of our comparison will inspire the development of new

methods for primitive fitting, computational time being the main bottleneck in practice. In

particular, it would be interesting to have a comparison with methods that use machine learning

approaches, because the dataset has been already organised in the form of a training set and a

test set. Our benchmark is available at https://github.com/chiararomanengo/Fit4CAD.

153

https://github.com/chiararomanengo/Fit4CAD

BENCHMARKING ACTIVITIES

A.2.1 Dataset and performance measures

A.2.1.1 Dataset

At present, the dataset contains 225 individual high quality point clouds, each of which has been

obtained by sampling a CAD model. The dataset is already split into two subsets: a training set,

counting 190 point clouds, and a test set, containing the remaining 35 point clouds. The dataset

generation process, in the most general form, has been carried out by the following three steps:

1. Model creation. We created part of the models, by using the publicly available interface

hosted by Onshape, while the remaining part was collected from the ABC dataset [91],

which was derived, in turn, from the Onshape public collection. Models gathered from the

ABC dataset have been filtered by manually correcting the parts presenting minimum

flaws and rejecting low quality models, in order to avoid rare yet bothersome imperfections,

such as overlapping or repeating patches. Some examples of CAD objects from Onshape are

displayed in Figure A.5.

2. Parametric and implicit representations. The generation of B-rep models was crucial to

extract the parametric representation behind each geometric primitive; in our case, the

parametric representations for each patch have been obtained by processing the STEP

files produced by Onshape in GMSH [67]; nevertheless, we emphasise that other software

could be considered too (e.g., [110]). Several methods to compute the implicit representation

from a parametric form are nowadays available. We here consider the numerical approach

known as approximate implicitization, introduced in [50] and further developed in [16].

One of the advantages of this approach is that it provides exact implicit representations

when the exact total degree is selected; we remind that a bivariate polynomial has total

degree n if all monomials xi y j are such i+ j ≤ n, and there exists at least one monomial

xi y j such that i+ j = n.

3. Point cloud extraction. CAD objects are sampled at different densities, and optionally man-

ually postprocessed by using CloudCompare3 to simulate missing data. To give an example,

Figure A.6(a) shows a model from Onshape, which is then sampled and postprocessed in

A.6(b-c).

A.2.1.2 Groundtruth

Each model in the ground truth comes in the form of four TXT files. We here provide a description

of each file content for the i-th point cloud.

PCi lists the three-dimensional points forming the point cloud to be segmented.

3CloudCompare (version 2.10.2), http://www.cloudcompare.org/

154

A.2. THE FIT4CAD BENCHMARK

Figure A.5: Example of models obtained using Onshape.

(a) (b) (c)

Figure A.6: Example of point cloud creation. The initial object in (a) is sampled at a chosen
density (b) and then perturbed by simulating missing data (c).

PCi_primitives contains the list of true primitives. For each primitive, a list of indices is

provided; each index corresponds to a point in “PCi", with respect to the ordering there

introduced. For example,

Primitive6:=[4 9 184 185 186 187 188 189 190 191 192]

means that the sixth primitive contains points number 4, 9, 184, 185, 186, 187, 188, 189,

190, 191 and 192 (where the ordering is the one in the corresponding “PCi").

PCi_parametric provides, for each primitive in “PCi_primitives" corresponding to a plane, a

cylinder, a cone, a sphere or a torus, its parametric representation. To give an example,

Primitive6:=[primitive type, v]

where v is the vector that contains the parameters of the parametric representation (see

[140] for further details on the considered ordering).

PCi_implicit provides, for each primitive in “PCi_primitives" corresponding to a plane, a

cylinder, a cone, a sphere or a torus, its implicit representation. For example,

Primitive6:=[primitive type, w]

155

BENCHMARKING ACTIVITIES

PC 1 PC 2 PC3 PC 4 PC 5 PC6 PC 7

PC 8 PC 9 PC10 PC 11 PC 12 PC13 PC 14

PC 15 PC 16 PC17 PC 18 PC 19 PC20 PC 21

PC 22 PC 23 PC24 PC 25 PC 26 PC27 PC 28

PC 29 PC 30 PC31 PC 32 PC 33 PC34 PC 35

Figure A.7: The 35 point clouds used as a test set. Different colours represent different primitives,
as stored in the CAD models, i.e., our ground truth.

where w is the vector that contains the coefficients of the implicit representation (see [140]

for further details on the considered ordering).

The points that do not correspond to any of the simple primitives mentioned above (i.e.,

plane, cylinder, cone, sphere or torus) are classified as unsegmented and not explicitly reported in

files PCi_primitives, PCi_parametric and PCi_implicit; in the original model, these points

usually originate from B-spline surfaces. We intentionally decided to insert some models with

non-simple geometric primitives to check whether a candidate method can avoid misclassification.

A.2.1.3 Performance measures of the point classification

Any primitive in a model is identified by the list of points belonging to it or, equivalently, by the

list of points that do not belong to it. The problem of primitive detection can therefore be easily

written in terms of binary classification tasks, one per primitive in the ground truth.

Let PB be a a set of points in the benchmark point cloud corresponding to a specific primitive,

and let PS be the primitive in the segmentation to assess that most overlap with PB. We can

156

A.2. THE FIT4CAD BENCHMARK

define the following quantities:

• True positives, TP: the number of points shared by PB and PS.

• False positives, FP: the number of points in PS that do not belong to PB.

• False negatives, FN: the number of points in PB that do not belong to PS.

• True negatives, TN: the number of points that do not belong to either PB nor PS.

Based on these four quantities, we consider the following measures:

• Sensitivity, also called true positive rate, measures the proportion of positives that are

correctly identified, i.e.,

TPR := TP
TP+FN

.

Specificity, or true negative rate, measures the proportion of true negatives that are correctly

identified as such, i.e.,

TNR := TN
TN+FP

.

• Positive predictive value is defined as the proportion of predicted positives that are actual

positives, i.e.,

PPV := TP
TP+FP

.

Similarly, negative predictive value is given by

NPV := TN
TN+FN

.

• Accuracy is the ratio of correct predictions to total predictions made, i.e.,

ACC := TP+TN
TP+TN+FP+FN

.

• Sørensen-Dice index. It is given by

DSC := 2|PB ∩PS|
|PB|+ |PS|

.

In case of binary classification, it is shown to be equivalent to

DSC := 2TP
2TP+FP+FN

,

which is often referred to as F1 score.

For more details, we refer the reader to [93].

157

BENCHMARKING ACTIVITIES

A.2.1.4 Approximation accuracy

To measure the recognition accuracy of a specific primitive, we use the parametric and the

implicit representations provided in “PCi_implicit" and “PCi_parametric". Exploiting the

notation provided before, let us consider a primitive PS to be evaluated, and let S be the surface

described by the corresponding parametric representation. When it comes to the parametric

representation, we use the following two measures to evaluate the approximation accuracy of

primitive PS:

• Mean Fitting Error (MFE(PS,S)) as defined in Eq. 3.2;

• Directed Hausdorff distance (ddHaus(PS,S)) as definded in Eq. 2.2. To make the measure

independent from the primitive size, we normalize it with respect to the diagonal l of the

minimum bounding box containing PS.

The fitting accuracy for the implicit representation is evaluated by the following measure:

• Coefficient distance:

d1(v,v′)= ∥v−v′∥1

where v and v′ are the coefficient vectors for the implicit representations of the primitives

PS and PB, respectively, and where ∥·∥1 is the well-known ℓ1 norm. To make this measure

consistent, we assume the coefficient vectors to be normalized, and the first nonzero entry

to be positive (where the ordering is the one provided in [140]).

We refer to [46] for further details.

A.2.2 Evaluation

We here analyse the performance of two methods, to show how the benchmark works. The first

approach (HT) is the one described in Section 5.4.1, while the second one (PG) is a curvature-

based method based on a primitive growing framework, based on the method proposed in [125]

for triangle meshes. Firstly, we compare the quality of the segments/primitives found against a

ground truth; the measures involved do not require an explicit representation of the primitive

equation and thus can be applied to both methods. Secondly, we consider the accuracy of the

parametric/implicit representations: in our case, this comes down to the analysis of the method

introduced in Section 5.4.1.

Performance measures of the point classification

Table A.3 summarizes the performances of the two methods over all the test set models. Each

row corresponds to a model; for each model, the table provides information on the number of true

and predicted primitives, as well as the accuracy measures introduced in Section A.2.1.3. For

158

A.2. THE FIT4CAD BENCHMARK

each metric, two columns are considered, respectively referring to the PG- and the HT-based

approaches.

Table A.3: Number of fitted primitives and classification performance metrics: comparison be-
tween the PG-based and the HT-based algorithms.

points
true

primitives

predicted
DSC PPV TPR TNR NPV ACC

primitives
PG HT PG HT PG HT PG HT PG HT PG HT PG HT

PC 1 7,500 8 12 8 0.370 0.987 0.693 0.989 0.332 0.985 0.968 0.998 0.696 0.995 0.706 0.995
PC 2 20,621 17 13 16 0.656 0.921 0.795 0.960 0.632 0.937 0.994 0.999 0.947 0.998 0.944 0.998
PC 3 9,723 35 36 35 0.843 0.896 0.778 0.828 0.943 0.986 0.994 0.996 0.998 1.000 0.992 0.999
PC 4 10,000 15 14 12 0.736 0.840 0.831 0.981 0.729 0.800 0.993 0.999 0.964 0.972 0.960 0.973
PC 5 20,000 37 32 34 0.480 0.839 0.665 0.872 0.544 0.901 0.990 0.999 0.925 0.978 0.918 0.978
PC 6 9,320 26 13 20 0.465 0.783 0.671 0.857 0.466 0.772 0.994 0.999 0.968 0.997 0.964 0.996
PC 7 5,000 68 41 69 0.465 0.923 0.642 0.871 0.429 0.994 0.993 0.999 0.978 1.000 0.972 0.999
PC 8 7,500 32 28 30 0.390 0.890 0.528 0.896 0.438 0.889 0.984 0.997 0.930 0.998 0.916 0.996
PC 9 17,000 104 43 40 0.403 0.568 0.607 0.848 0.335 0.456 0.998 0.999 0.993 0.996 0.991 0.995
PC 10 10,000 10 7 10 0.627 0.919 0.793 0.926 0.555 0.938 0.988 0.995 0.949 0.996 0.943 0.993
PC 11 13,201 13 9 10 0.705 0.805 0.874 0.959 0.677 0.770 0.993 0.998 0.937 0.973 0.934 0.973
PC 12 12,327 6 6 6 0.894 0.998 0.852 0.997 0.982 1.000 0.984 0.999 0.994 1.000 0.981 0.999
PC 13 10,000 21 17 16 0.582 0.800 0.792 0.991 0.576 0.761 0.993 1.000 0.951 0.983 0.946 0.984
PC 14 7,500 8 6 8 0.623 0.963 0.836 0.997 0.606 0.933 0.987 0.999 0.878 0.990 0.878 0.991
PC 15 5,000 15 15 14 0.533 0.941 0.615 0.972 0.566 0.933 0.981 0.999 0.951 0.993 0.937 0.992
PC 16 29,641 35 28 31 0.533 0.848 0.615 0.842 0.566 0.891 0.981 0.999 0.951 0.994 0.937 0.993
PC 17 21,137 45 45 45 0.916 0.935 0.859 0.889 0.983 0.996 0.997 0.998 1.000 1.000 0.997 0.998
PC 18 16,406 29 20 29 0.555 0.933 0.847 0.912 0.536 0.978 0.994 0.999 0.898 0.999 0.896 0.998
PC 19 16,740 16 14 11 0.751 0.747 0.869 0.967 0.747 0.681 0.990 0.998 0.971 0.960 0.963 0.960
PC 20 2,500 14 8 14 0.525 0.954 0.789 0.917 0.467 1.000 0.991 0.999 0.916 1.000 0.914 0.999
PC 21 1,000 5 3 5 0.677 0.985 0.891 0.983 0.588 0.988 0.977 0.997 0.834 0.998 0.845 0.996
PC 22 26,093 10 6 10 0.561 0.967 0.751 0.949 0.586 0.987 0.994 1.000 0.824 1.000 0.822 0.999
PC 23 19,088 13 14 12 0.721 0.886 0.699 0.878 0.828 0.930 0.985 0.997 0.987 0.991 0.975 0.989
PC 24 13,767 27 21 27 0.742 0.916 0.795 0.861 0.750 0.999 0.995 0.997 0.992 1.000 0.987 0.998
PC 25 18,331 38 26 35 0.677 0.873 0.841 0.862 0.665 0.921 0.997 0.998 0.986 0.998 0.984 0.996
PC 26 17,374 14 10 14 0.663 0.975 0.762 0.953 0.607 1.000 0.988 0.999 0.965 1.000 0.956 0.999
PC 27 19,339 9 7 9 0.789 0.994 0.860 0.995 0.751 0.993 0.988 1.000 0.971 0.999 0.963 0.999
PC 28 46,364 21 15 21 0.589 0.983 0.776 0.975 0.551 0.993 0.996 0.999 0.963 0.999 0.960 0.999
PC 29 12,753 9 7 9 0.785 0.991 0.852 1.000 0.758 0.983 0.992 1.000 0.985 0.998 0.980 0.999
PC 30 2,500 13 8 12 0.468 0.873 0.666 0.873 0.421 0.887 0.974 0.995 0.863 0.978 0.855 0.974
PC 31 22,098 22 18 23 0.729 0.869 0.813 0.906 0.758 0.887 0.992 0.995 0.980 0.991 0.972 0.986
PC 32 18,950 22 18 22 0.682 0.972 0.853 0.948 0.749 1.000 0.994 0.998 0.992 1.000 0.987 0.998
PC 33 1,500 3 3 3 0.811 0.978 0.875 0.983 0.819 0.974 0.910 0.983 0.948 0.997 0.901 0.988
PC 34 12,089 14 13 14 0.788 0.939 0.823 0.892 0.806 0.998 0.994 0.998 0.979 0.999 0.976 0.998
PC 35 7,500 8 8 8 0.946 0.975 0.936 0.958 0.970 0.999 0.989 1.000 0.997 0.999 0.990 0.995

To ease the analysis, the metrics are studied via boxplots:

• Figure A.8 compares the two methods over the whole test set. A first observation of this

analysis is that accuracy measures from the HT-approach have generally a lower variability.

At a closer look, one can notice that the quartiles, as well as the minimum and maximum,

always assume higher values when it comes to the HT-based method; in particular, the

second quartile (i.e., the median) is always above 90%. DSC, TPR and PPV are the three

accuracy measures that vary the most; this highlights that the two methods have lower

performances in identifying the true positives, compared to true negatives. Both methods

exhibit outliers in most of the boxplots.

• Robustness to missing data is analysed in Figure A.9. The HT-based method turns out to be

hardly affected by such perturbation, as the inter-quartile range and the whiskers do not

significantly vary; the only noteworthy variation is that of TPR, which points out a slightly

159

BENCHMARKING ACTIVITIES

decreased capability in correctly identifying positives. A more prominent variation can be

noted for the PG-method.

Interestingly enough, both methods rarely suffer from oversegmentation, while it is more

likely for them to undersegment. The most dramatic undersegmentation is that of point cloud 9

(i.e., PC 9 in Table A.3), where the PG-based and the HT-based methods only manage to detect

43 and 40 primitives, respectively, out of the 104 there expected; this highlights possible issues

when the original model has thin or small primitives.

Figure A.8: Boxplot for the classification metrics presented in Table A.3. All 35 models are here
considered.

Figure A.9: Performance of the PG- and HT-based methods, with an eye on models suffering from
missing data. For these boxplots, we have made use of the classification metrics presented in
Table A.3.

160

A.3. RELATED PUBLICATIONS

Approximation accuracy

Table A.4 reports the performance of the HT-based method evaluated according to the metrics

reported in Section A.2.1.4. Each row corresponds to a segmented point cloud; each column

represents a different accuracy measure; for each point cloud, each measure has been obtained

by averaging over all segments.

• Being the MFE normalized by definition, its value can be interpreted as a percentage. From

the numbers provided in the table, we can conclude that the MFE ranges from a minimum

of 0.1% to a maximum of 0.7%.

• The directed Hausdorff distance, in its normalized version, ranges from 0.2% to 1.9%.

The generally higher values, compared to those from the MFE, can be explained by the

Hausdorff ’s sensitivity to outliers.

• The coefficient distance seems to provide a much more fluid situation. By checking the

model corresponding to the highest error, we can conclude that the HT-based method has a

lower precision when applied to point clouds containing tori.

Computational time

All tests are performed on a desktop PC equipped with an Intel Core i9 processor (at 3.6 GHz) and

a Windows 10 operating system. The routines have also been tested on a MacBook Pro equipped

with macOS Catalina (version 10.15.7). We provide here some statistics of the execution times,

obtained on the desktop PC:

• The PG-method has minimum, mean and maximum execution time corresponding to 1.7,

286.0 and 19074.0 seconds, respectively.

• The HT-method has minimum, mean and maximum execution time corresponding to 2.6,

50.7 and 358.0 seconds, respectively.

We observe that, for small point clouds, the PG-method is generally faster, while for big point

clouds it is slower.

A.3 Related publications

• C. Romanengo, A. Raffo, S. Biasotti, B. Falcidieno, V. Fotis, I. Romanelis, E. Psatha, K.

Moustakas, I. Sipiran, Q.-T. Nguyen, C.-B. Chu, K.-N. Nguyen-Ngoc, D.-K. Vo, T.-A. To,

N.-T. Nguyen, N.-Q. Le-Pham, H.-D. Nguyen, M.-T. Tran, Y. Qie, N. Anwer. , Fitting and

recognition of simple geometric primitives on point clouds, Computer and Graphics (2022),

vol. 107, pp. 32-49.

161

BENCHMARKING ACTIVITIES

Table A.4: Approximation accuracy of the HT method.

MFE ddHaus d1
PC 1 0.002 0.005 0.008
PC 2 0.007 0.011 0.132
PC 3 0.002 0.004 0.621
PC 4 0.002 0.003 0.000
PC 5 0.007 0.011 0.082
PC 6 0.003 0.005 0.001
PC 7 0.007 0.011 0.232
PC 8 0.004 0.013 0.001
PC 9 0.003 0.006 0.000
PC 10 0.005 0.019 1.203
PC 11 0.003 0.006 0.165
PC 12 0.002 0.004 0.058
PC 13 0.002 0.005 0.000
PC 14 0.004 0.006 1.264
PC 15 0.001 0.003 0.000
PC 16 0.003 0.004 0.029
PC 17 0.003 0.007 0.000
PC 18 0.003 0.004 0.324
PC 19 0.003 0.006 0.019
PC 20 0.002 0.003 0.001
PC 21 0.004 0.007 0.566
PC 22 0.002 0.005 0.000
PC 23 0.006 0.012 0.002
PC 24 0.001 0.003 0.000
PC 25 0.002 0.003 0.001
PC 26 0.001 0.003 0.000
PC 27 0.003 0.005 0.301
PC 28 0.001 0.002 0.000
PC 29 0.003 0.010 0.119
PC 30 0.002 0.009 0.003
PC 31 0.002 0.003 0.000
PC 32 0.006 0.007 0.000
PC 33 0.003 0.006 0.000
PC 34 0.003 0.005 0.004
PC 35 0.004 0.006 0.000

162

A.3. RELATED PUBLICATIONS

• C. Romanengo, A. Raffo, Y. Qie, N. Anwer, B. Falcidieno, Fit4CAD: A point cloud benchmark

for fitting simple geometric primitives in CAD objects, Computer and Graphics (2022), vol.

102, pp. 133-143.

163

BIBLIOGRAPHY

[1] The Shape Repository.

Available at http://visionair.ge.imati.cnr.it/ontologies/shapes/, 2011–2015.

[2] STARC repository.

Available at http://public.cyi.ac.cy/starcRepo/, 2014.

[3] GRAVITATE: Discovering relationships between artefacts using 3D and semantic data,

2015-2018.

EU H2020 REFLECTIVE project.

[4] INTER-CH: interfacce innovative per la valorizzazione del patrimonio storico-artistico

ligure.

Available at http://www.imati.cnr.it, 2020-2022.

POR Liguria FSE 2014- 2020.

[5] Open Cascade.

Available at https://dev.opencascade.org/doc/overview/html/index.html, 2021.

[6] J. ABBOTT, A. M. BIGATTI, AND G. LAGORIO, CoCoA-5: a system for doing Computations

in Commutative Algebra.

Available at http://cocoa.dima.unige.it, 2019.

[7] G. ALBRECHT, C. V. BECCARI, J.-C. CANONNE, AND L. ROMANI, Planar pythagorean-

hodograph b-spline curves, Computer Aided Geometric Design, 57 (2017), pp. 57–77.

[8] G. ALBRECHT, C. V. BECCARI, AND L. ROMANI, Spatial pythagorean-hodograph b–spline

curves and 3d point data interpolation, Computer Aided Geometric Design, 80 (2020),

p. 101868.

[9] E. ALBUZ, E. D. KOCALAR, AND A. A. KHOKHAR, Quantized cielab* space and encoded

spatial structure for scalable indexing of large color image archives, in Proceedings

of the IEEE International Conference on Acoustics, Speech, and Signal Processing,

(ICASSP 2000), vol. 6, IEEE, 2000, pp. 1995–1998.

[10] A. ANDREADIS, G. PAPAIOANNOU, AND P. MAVRIDIS, Generalized digital reassembly using

geometric registration, in Digital Heritage, vol. 2, IEEE, 2015, pp. 549–556.

165

http://visionair.ge.imati.cnr.it/ontologies/shapes/
http://public.cyi.ac.cy/starcRepo/
http://www.imati.cnr.it
https://dev.opencascade.org/doc/overview/html/index.html

BIBLIOGRAPHY

[11] M. ATTENE AND B. FALCIDIENO, Remesh: An interactive environment to edit and repair

triangle meshes, in IEEE International Conference on Shape Modeling and Applications

2006 (SMI 2006), IEEE, 2006, pp. 271–276.

[12] M. ATTENE, B. FALCIDIENO, J. ROSSIGNAC, AND M. SPAGNUOLO, Edge-Sharpener:

Recovering sharp features in triangulations of non-adaptively re-meshed surfaces, in

Eurographics Symposium on Geometry Processing, (SGP 2003), L. Kobbelt, P. Schroeder,

and H. Hoppe, eds., 2003, pp. 62–69.

[13] M. ATTENE AND G. PATANÈ, Hierarchical structure recovery of point-sampled surfaces,

Computer Graphics Forum, 29 (2010), pp. 1905–1920.

[14] D. H. BALLARD, Generalizing the Hough transform to detect arbitrary shapes, Pattern

recognition, 13 (1981), pp. 111–122.

[15] G. BAREQUET AND M. SHARIR, Piecewise-linear interpolation between polygonal slices,

Computer Vision and Image Understanding, 63 (1996), pp. 251 – 272.

[16] O. J. D. BARROWCLOUGH AND T. DOKKEN, Approximate implicitization using linear

algebra, Journal of Applied Mathematics, (2012), pp. 1 – 25.

[17] M. BELTRAMETTI, E. CARLETTI, D. GALLARATI, AND G. MONTI BRAGADIN, Lectures

on Curves, Surfaces and Projective Varieties—A Classical View of Algebraic Geometry,

European Mathematical Society, 9th ed., 2009.

[18] M. BELTRAMETTI, A. MASSONE, AND M. PIANA, Hough transform of special classes of

curves, SIAM Journal on Imaging Sciences, 6 (2013), pp. 391–412.

[19] M. BELTRAMETTI, J. SENDRA, J. SENDRA, AND M. TORRENTE, Moore–penrose approach

in the hough transform framework, Applied Mathematics and Computation, 375 (2020),

p. 125083.

[20] M. C. BELTRAMETTI AND L. ROBBIANO, An algebraic approach to Hough transforms,

Journal of Algebra, 37 (2012), pp. 669–681.

[21] F. BERGAMASCO, M. PISTELLATO, A. ALBARELLI, AND A. TORSELLO, Cylinders extraction

in non-oriented point clouds as a clustering problem, Pattern Recognition, 107 (2020),

p. 107443.

[22] F. BERNARDINI, J. MITTLEMAN, H. RUSHMEIER, C. SILVA, AND G. TAUBIN, The ball-

pivoting algorithm for surface reconstruction, IEEE Transactions on Visualization and

Computer Graphics, 5 (1999), pp. 349–359.

166

BIBLIOGRAPHY

[23] S. BIASOTTI, A. CERRI, B. FALCIDIENO, AND M. SPAGNUOLO, 3D artifacts similarity

based on the concurrent evaluation of heterogeneous properties, Journal on Computing

and Cultural Heritage, 8 (2015), pp. 1–19.

[24] S. BIASOTTI, A. CERRI, S. PITTALUGA, D. SOBRERO, AND M. SPAGNUOLO, Tracking the

evolution of rainfall precipitation fields using persistent maxima, in Proceedings of the

Conference on Smart Tools and Applications in Computer Graphics, 2016, pp. 29–37.

[25] S. BIASOTTI, B. FALCIDIENO, D. GIORGI, AND M. SPAGNUOLO, Mathematical tools

for shape analysis and description, Synthesis Lectures on Computer Graphics and

Animation, 6 (2014), pp. 1–138.

[26] T. BIRDAL, B. BUSAM, N. NAVAB, S. ILIC, AND P. STURM, Generic primitive detection in

point clouds using novel minimal quadric fits, IEEE Transactions on Pattern Analysis

and Machine Intelligence, 42 (2020), pp. 1333–1347.

[27] J. BOCHNAK, M. COSTE, AND M.-F. ROY, Real Algebraic Geometry, Springer Berlin,

Heidelberg, 1st ed., 1998.

[28] D. BORRMANN, J. ELSEBERG, K. LINGEMANN, AND A. NÜCHTER, The 3D Hough trans-

form for plane detection in point clouds: A review and a new accumulator design, 3D

Research, 2 (2011).

[29] C. BRACCO, T. LYCHE, C. MANNI, F. ROMAN, AND H. SPELEERS, Generalized spline spaces

over t-meshes: Dimension formula and locally refined generalized b-splines, Applied

Mathematics and Computation, 272 (2016), pp. 187–198.

[30] A. BUFFA AND G. SANGALLI, IsoGeometric Analysis: A New Paradigm in the Numerical

Approximation of PDEs, Springer, 2nd ed., 2012.

[31] F. BUONAMICI, M. CARFAGNI, R. FURFERI, L. GOVERNI, A. LAPINI, AND Y. VOLPE,

Reverse engineering modeling methods and tools: a survey, Computer-Aided Design and

Applications, 15 (2018), pp. 443–464.

[32] M. CAMURRI, R. VEZZANI, AND R. CUCCHIARA, 3D Hough Transform for Sphere Recogni-

tion on Point Clouds, Machine Vision and Applications, 25 (2014), p. 1877–1891.

[33] J. CANNY, A computational approach to edge detection, IEEE Transactions on Pattern

Analysis and Machine Intelligence, 8 (1986), pp. 679–698.

[34] Y. CAO, D.-M. YAN, AND P. WONKA, Patch layout generation by detecting feature networks,

Computers & Graphics, 46 (2015), pp. 275 – 282.

167

BIBLIOGRAPHY

[35] C. E. CATALANO, A. REPETTO, AND M. SPAGNUOLO, A Dashboard for the Analysis

of Tangible Heritage Artefacts: a Case Study in Archaeology, in Proceedings of the

Eurographics Workshop on Graphics and Cultural Heritage, (GCH 2017), D. Fellner,

ed., The Eurographics Association, 2017.

[36] B. F. CAVINESS, On Canonical Forms and Simplification, Journal of the ACM, 17 (1970),

p. 385–396.

[37] P. CIGNONI, M. CALLIERI, M. CORSINI, M. DELLEPIANE, F. GANOVELLI, AND

G. RANZUGLIA, MeshLab: an Open-Source Mesh Processing Tool, in Eurographics

Italian chapter conference, (EGIT 2008), V. Scarano, R. De Chiara, and U. Erra, eds.,

The Eurographics Association, 2008, pp. 129–136.

[38] D. COHEN-STEINER AND J.-M. MORVAN, Restricted delaunay triangulations and normal

cycle, in Proceedings of the Nineteenth Annual Symposium on Computational Geometry,

Association for Computing Machinery, 2003, p. 312–321.

[39] F. COLE, A. GOLOVINSKIY, A. LIMPAECHER, H. S. BARROS, A. FINKELSTEIN,

T. FUNKHOUSER, AND S. RUSINKIEWICZ, Where do people draw lines?, ACM Transac-

tion on Graphics, 27 (2008), pp. 1–11.

[40] C. CONTI, L. ROMANI, AND D. SCHENONE, Semi-automatic spline fitting of planar curvi-

linear profiles in digital images using the Hough transform, Pattern Recognition, 74

(2018), pp. 64–76.

[41] J. I. DANIELS, L. K. HA, T. OCHOTTA, AND C. T. SILVA, Robust smooth feature extrac-

tion from point clouds, in IEEE International Conference on Shape Modeling and

Applications 2007 (SMI 2007), 2007, pp. 123–136.

[42] J. DANIELS II, T. OCHOTTA, K. L. HA, AND T. C. SILVA, Spline-based feature curves from

point-sampled geometry, The Visual Computer, 24 (2008), pp. 449–462.

[43] W. DAY AND H. EDELSBRUNNER, Efficient algorithms for agglomerative hierarchical

clustering methods, Journal of Classification, 1 (1984), pp. 7–24.

[44] D. DEFAYS, An efficient algorithm for a complete link method, The Computer Journal, 20

(1977), pp. 364–366.

[45] J. DENG, W. DONG, R. SOCHER, L.-J. LI, K. LI, AND L. FEI-FEI, Imagenet: A large-scale

hierarchical image database, in The IEEE Conference on Computer Vision and Pattern

Recognition, (CVPR 2009), IEEE, 2009, pp. 248–255.

[46] M. M. DEZA AND E. DEZA, Encyclopedia of Distances, Springer Berlin Heidelberg, 2009.

168

BIBLIOGRAPHY

[47] L. DI ANGELO, P. DI STEFANO, A. E. MORABITO, AND C. PANE, Measurement of constant

radius geometric features in archaeological pottery, Measurement, 124 (2018), pp. 138 –

146.

[48] J. J. DIGNE AND J.-M. MOREL, Numerical analysis of differential operators on raw point

clouds, Numerische Mathematik, 127 (2014), pp. 255–289.

[49] M. P. DO CARMO, Differential geometry of curves and surfaces., Prentice Hall, 1976.

[50] T. DOKKEN, Aspects of intersection algorithms and approximation, PhD thesis, University

of Oslo, 1997.

[51] H. DORAISWAMY, N. SHIVASHANKAR, V. NATARAJAN, AND Y. WANG, Topological saliency,

Computers & Graphics, 37 (2013), pp. 787 – 799.

[52] D. H. DOUGLAS AND T. K. PEUCKER, Algorithms for the reduction of the number of points

required to represent a digitized line or its caricature, Cartographica: The International

Journal for Geographic Information and Geovisualization, 10 (1973), pp. 112–122.

[53] R. O. DUDA AND P. E. HART, Use of the Hough transformation to detect lines and curves

in pictures, Commununications of the ACM, 15 (1972), pp. 11–15.

[54] N. DYN, J. GREGORY, AND D. LEVIN, Analysis of uniform binary subdivision schemes for

curve design, Constructive Approximation, 7 (1991), pp. 127–147.

[55] EDELSBRUNNER, LETSCHER, AND ZOMORODIAN, Topological persistence and simplifica-

tion, Discrete Computational Geometry, 28 (2002), p. 511–533.

[56] A. EFRAT, L. GUIBAS, S. HAR-PELED, J. MITCHELL, AND S. MURALI, New similarity mea-

sures between polylines with applications to morphing and polygon sweeping, Discrete

& Computational Geometry, 28 (2002), pp. 535–569.

[57] M. ESTER, H. P. KRIEGEL, J. SANDER, AND X. XU, A density-based algorithm for dis-

covering clusters in large spatial databases with noise, in Proceedings of the Second

International Conference on Knowledge Discovery and Data Mining, AAAI Press, 1996,

pp. 226–231.

[58] G. FARIN, Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide,

Academic Press, 3rd ed., 1993.

[59] R. T. FAROUKI, Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable,

Springer Berlin, Heidelberg, 2008.

169

BIBLIOGRAPHY

[60] R. T. FAROUKI, M. AL-KANDARI, AND T. SAKKALIS, Hermite interpolation by rotation-

invariant spatial Pythagorean-Hodograph curves, Advances in Computational Mathe-

matics, 17 (2002), pp. 369–383.

[61] L. A. FERNANDES AND M. M. OLIVEIRA, A general framework for subspace detection in

unordered multidimensional data, Pattern Recognition, 45 (2012), pp. 3566 – 3579.

[62] M. A. FISCHLER AND R. C. BOLLES, Random sample consensus: A paradigm for model

fitting with applications to image analysis and automated cartography, Communications

of the ACM, 24 (1981), pp. 381–395.

[63] A. FORREST, The twisted cubic curve: a computer-aided geometric design approach,

Computer-Aided Design, 12 (1980), pp. 165 – 172.

[64] J. H. FRIEDMAN, J. L. BENTLEY, AND R. A. FINKEL, An algorithm for finding best matches

in logarithmic expected time, ACM Transactions on Mathematical Software, 3 (1977),

pp. 209–226.

[65] T. GATZKE AND C. M. GRIMM, Estimating curvature on triangular meshes, International

Journal of Shape Modeling, 12 (2006), pp. 1–28.

[66] A. GEHRE, I. LIM, AND L. KOBBELT, Feature curve co-completion in noisy data, Computer

Graphics Forum, 37 (2018), pp. 1–12.

[67] C. GEUZAINE AND J.-F. REMACLE, Gmsh: A 3-D finite element mesh generator with built-in

pre- and post-processing facilities, International Journal for Numerical Methods in

Engineering, 79 (2009), pp. 1309–1331.

[68] G. H. GOLUB AND C. F. VAN LOAN, Matrix Computations, The Johns Hopkins University

Press, 3rd ed., 1996.

[69] G. GUENNEBAUD AND M. GROSS, Algebraic point set surfaces, ACM Transactions on

Graphics, 26 (2007), p. 23–32.

[70] V. GUILLEMIN AND A. POLLACK, Differential Topology, Englewood Cliffs, 2010.

[71] S. GUMHOLD, X. WANG, AND R. MACLEOD, Feature extraction from point clouds, in

Proceeding of 10th International Meshing Roundtable, Sandia National Laboratories,

2001, pp. 293–305.

[72] G. HARARY AND A. TAL, The Natural 3D Spiral, Computer Graphics Forum, 30 (2011),

pp. 237–246.

[73] G. HARARY AND A. TAL, 3D Euler spirals for 3D curve completion, Computational Geome-

try, 45 (2012), pp. 115 – 126.

170

BIBLIOGRAPHY

[74] G. HARARY, A. TAL, AND E. GRINSPUN, Context-based coherent surface completion, ACM

Transactions on Graphics, 33 (2014), pp. 1–12.

[75] G. HARARY, A. TAL, AND E. GRINSPUN, Feature-preserving surface completion using four

points, in Computer Graphics Forum, vol. 33, Wiley Online Library, 2014, pp. 45–54.

[76] K. HE, X. ZHANG, S. REN, AND J. SUN, Deep residual learning for image recognition, in

The IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016), 2016,

pp. 770–778.

[77] K. HILDEBRANDT, K. POLTHIER, AND M. WARDETZKY, Smooth feature lines on surface

meshes, in EG Symposium on geometry processing, (SGP 2005), The Eurographics

Association, 2005, pp. 85–90.

[78] C. M. HOFFMANN, Conversion methods between parametric and implicit curves and sur-

faces, tech. rep., Purdue Univ Lafayette, Dept of Computer Sciences, 1990.

[79] R. HONTI, J. ERDÉLYI, AND A. KOPÁČIK, Semi-automated segmentation of geometric

shapes from point clouds, Remote Sensing, 14 (2022).

[80] H. HOPPE, T. DEROSE, T. DUCHAMP, J. MCDONALD, AND W. STUETZLE, Surface recon-

struction from unorganized points, in Proceedings of the 19th Annual Conference on

Computer Graphics and Interactive Techniques, Association for Computing Machinery,

1992, p. 71–78.

[81] P. V. C. HOUGH, Method and means for recognizing complex patterns, 1962.

US Patent 3,069,654.

[82] J. HOWARD AND S. GUGGER, Fastai: A layered api for deep learning, Information, 11

(2020).

[83] Y. HU, T. SCHNEIDER, X. GAO, Q. ZHOU, A. JACOBSON, D. ZORIN, AND D. PANOZZO,

Triwild: Robust triangulation with curve constraints, ACM Transactions on Graphics,

38 (2019), pp. 1–15.

[84] T. HUGHES, J. COTTRELL, AND Y. BAZILEVS, Isogeometric analysis: CAD, finite elements,

NURBS, exact geometry and mesh refinement, Computer Methods in Applied Mechanics

and Engineering, 194 (2005), pp. 4135 – 4195.

[85] R. W. G. HUNT AND M. R. POINTER, Measuring Colour, Wiley, 4th ed., 2011.

[86] K. HÖLLIG AND J. KOCH, Geometric Hermite interpolation, Computer Aided Geometric

Design, 12 (1995), pp. 567 – 580.

171

BIBLIOGRAPHY

[87] H. ISHII AND B. ULLMER, Tangible Bits: Towards Seamless Interfaces between People,

Bits and Atoms., in Proceedings of the ACM SIGCHI Conference on Human factors in

computing systems, Association for Computing Machinery, 1997, pp. 234–241.

[88] A. KAISER, J. A. YBANEZ ZEPEDA, AND T. BOUBEKEUR, A Survey of Simple Geometric

Primitives Detection Methods for Captured 3D Data, Computer Graphics Forum, 38

(2019), pp. 167–196.

[89] V. KARAGEORGHIS, J. KARAGEORGHIS, AND A. L. FOUNDATION, The coroplastic art of

ancient Cyprus, Nicosia : A.G. Leventis Foundation, 1991.

[90] P. KICIAK, Geometric continuity of curves, Springer International Publishing, Cham, 2017,

pp. 7–37.

[91] S. KOCH, A. MATVEEV, Z. JIANG, F. WILLIAMS, A. ARTEMOV, E. BURNAEV, M. ALEXA,

D. ZORIN, AND D. PANOZZO, ABC: A big CAD model dataset for geometric deep learning,

in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

(CVPR 2019), 2019, pp. 9601–9611.

[92] M. KOLOMENKIN, I. SHIMSHONI, AND A. TAL, Demarcating curves for shape illustration,

ACM Transaction on Graphics, 27 (2008), pp. 1–9.

[93] K. KUHN, MAX;JOHNSON, Applied Predictive Modeling, Springer New York, 2018.

[94] Y. K. LAI, Q. Y. ZHOU, S. M. HU, J. WALLNER, AND H. POTTMANN, Robust feature

classification and editing, IEEE Transactions on Visualization and Computer Graphics,

13 (2007), pp. 34–45.

[95] K. LAWONN, E. TROSTMANN, B. PREIM, AND K. HILDEBRANDT, Visualization and

extraction of carvings for heritage conservation, EEE Transactions on Visualization and

Computer Graphics, 23 (2017), pp. 801–810.

[96] T. LE AND Y. DUAN, A primitive-based 3D segmentation algorithm for mechanical CAD

models, Computer Aided Geometric Design, 52-53 (2017), pp. 231–246.

[97] H. LI, M. A. LAVIN, AND R. J. LE MASTER, Fast Hough transform: A hierarchical approach,

Computer Vision, Graphics, and Image Processing, 36 (1986), pp. 139–161.

[98] H. LI, H. ZHANG, Y. WANG, J. CAO, A. SHAMIR, AND D. COHEN-OR, Curve style analysis

in a set of shapes, Computer Graphics Forum, 32 (2013), pp. 77–88.

[99] L. LI, M. SUNG, A. DUBROVINA, L. YI, AND L. J. GUIBAS, Supervised Fitting of Geometric

Primitives to 3D Point Clouds, in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, (CVPR 2019), 2019, pp. 2652–2660.

172

BIBLIOGRAPHY

[100] Y. LI, X. WU, Y. CHRYSATHOU, A. SHARF, D. COHEN-OR, AND N. J. MITRA, GlobFit:

Consistently Fitting Primitives by Discovering Global Relations, ACM Transactions on

Graphics, 30 (2011).

[101] P. LIEPA, Filling Holes in Meshes, in Eurographics Symposium on Geometry Processing,

(SGP 2003), L. Kobbelt, P. Schroeder, and H. Hoppe, eds., 2003, pp. 200–205.

[102] F. A. LIMBERGER AND M. M. OLIVEIRA, Real-time detection of planar regions in unorga-

nized point clouds, Pattern Recognition, 48 (2015), pp. 2043–2053.

[103] M. LIPSCHUTZ, Schaum’s Outline of Differential Geometry, McGraw-Hill Education, 1969.

[104] C. LIU AND W. HU, Real-time geometric fitting and pose estimation for surface of revolution,

Pattern Recognition, 85 (2019), pp. 90–108.

[105] E. LÓPEZ-RUBIO, K. THURNHOFER-HEMSI, E. B. BLÁZQUEZ-PARRA, O. D. DE CÓZAR-

MACÍAS, AND M. C. L. DE GUEVARA-MUÑOZ, A fast robust geometric fitting method

for parabolic curves, Pattern Recognition, 84 (2018), pp. 301 – 316.

[106] C. LV, Z. WU, X. WANG, M. ZHOU, AND K.-A. TOH, Nasal similarity measure of 3D faces

based on curve shape space, Pattern Recognition, 88 (2019), pp. 458 – 469.

[107] E. MAGID, O. SOLDEA, AND E. RIVLIN, A comparison of Gaussian and mean curvature

estimation methods on triangular meshes of range image data, Computer Vision and

Image Understanding, 107 (2007), pp. 139 – 159.

[108] V. MARKOVIC, Z. JAKOVLJEVIC, AND I. BUDAK, Automatic recognition of cylinders and

planes from unstructured point clouds, The Visual Computer, (2021), pp. 1–24.

[109] A. M. MASSONE, A. PERASSO, C. CAMPI, AND M. C. BELTRAMETTI, Profile detection in

medical and astronomical images by means of the Hough transform of special classes of

curves, Journal of Mathematical Imaging and Vision, 51 (2015), pp. 296–310.

[110] A. MATHUR, M. PIRRON, AND D. ZUFFEREY, Interactive Programming for Parametric

CAD, Computer Graphics Forum, 39 (2020), pp. 408–425.

[111] THE MATHWORKS, INC., MATLAB version 9.7.0.1247435 Update 2 (R2019b), Natick,

Massachusetts, 2019.

[112] E. MOSCOSO THOMPSON AND S. BIASOTTI, A Preliminary Analysis of Methods for Curva-

ture Estimation on Surfaces With Local Reliefs, in Eurographics 2019 - Short Papers,

P. Cignoni and E. Miguel, eds., The Eurographics Association, 2019.

173

BIBLIOGRAPHY

[113] E. MOSCOSO THOMPSON, A. GERASIMOS, K. MOUSTAKAS, E. R. NGUYEN, M. TRAN,

T. LEJEMBLE, L. BARTHE, N. MELLADO, C. ROMANENGO, S. BIASOTTI, AND B. FALCI-

DIENO, SHREC’19 track: Feature Curve Extraction on Triangle Meshes, in Eurographics

Workshop 3D Object Retrieval, (3DOR 2019), S. Biasotti, G. Lavoué, and R. C. Veltkamp,

eds., The Eurographics Association, 2019, pp. 85–92.

[114] P. MUKHOPADHYAY AND B. B. CHAUDHURI, A survey of Hough transform, Pattern Recog-

nition, 48 (2015), pp. 993 – 1010.

[115] J. R. MUNKRES, Topology, Prentice Hall, Inc., 2nd ed., 2000.

[116] M. NIESER, C. SCHULZ, AND K. POLTHIER, Patch layout from feature graphs, Computer-

Aided Design, 42 (2010), pp. 213–220.

[117] S. OESAU, F. LAFARGE, AND P. ALLIEZ, Indoor Scene Reconstruction using Feature Sen-

sitive Primitive Extraction and Graph-cut, ISPRS Journal of Photogrammetry and

Remote Sensing, 90 (2014), pp. 68–82.

[118] S. OKANIWA, A. NASRI, H. LIN, A. ABBAS, Y. KINERI, AND T. MAEKAWA, Uniform

B-spline curve interpolation with prescribed tangent and curvature vectors, IEEE Trans-

actions on Visualization and Computer Graphics, 18 (2012), pp. 1474–1487.

[119] W. PEDRYCZ AND S. CHEN, Deep Learning: Concepts and Architectures, Springer Interna-

tional Publishing, 2019.

[120] R. PENROSE, On best approximate solutions of linear matrix equations, in Mathematical

Proceedings of the Cambridge Philosophical Society, vol. 52, Cambridge University

Press, 1956, p. 17–19.

[121] G. PEYRE, Toolbox graph - A toolbox to process graph and triangulated meshes.

Available at http://www.ceremade.dauphine.fr/\simpeyre/matlab/graph/

content.html, 2007.

[122] L. PIEGL AND W. TILLER, The NURBS Book, Springer Berlin, Heidelberg, 2nd ed., 1997.

[123] M. POTENZIANI, M. CALLIERI, M. DELLEPIANE, M. CORSINI, F. PONCHIO, AND

R. SCOPIGNO, 3DHOP: 3D heritage online presenter, Computers & Graphics, 52 (2015),

pp. 129 – 141.

[124] F. POUX, C. MATTES, Z. SELMAN, AND L. KOBBELT, Automatic region-growing system

for the segmentation of large point clouds, Automation in Construction, 138 (2022),

p. 104250.

[125] Y. QIE, L. QIAO, AND N. ANWER, Enhanced invariance class partitioning using discrete

curvatures and conformal geometry, Computer-Aided Design, 133 (2021), p. 102985.

174

http://www.ceremade.dauphine.fr/$\sim $peyre/matlab/graph/content.html
http://www.ceremade.dauphine.fr/$\sim $peyre/matlab/graph/content.html

BIBLIOGRAPHY

[126] T. RABBANI SHAH AND F. VAN DEN HEUVEL, Efficient Hough transform for automatic

detection of cylinders in point clouds, in ISPRS Laser Scanning 2005, G. Vosselman and

C. Brenner, eds., ISPRS Working Groups, 2005, pp. 60–65.

[127] A. RAFFO, O. J. BARROWCLOUGH, AND G. MUNTINGH, Reverse engineering of CAD models

via clustering and approximate implicitization, Computer Aided Geometric Design, 80

(2020), p. 101876.

[128] A. RAFFO, C. ROMANENGO, B. FALCIDIENO, AND S. BIASOTTI, Fitting and recognition of

geometric primitives in segmented 3d point clouds using a localized voting procedure,

Computer Aided Geometric Design, 97 (2022), p. 102123.

[129] A. RAMANANTOANINA AND K. HORMANN, New shape control tools for rational bézier curve

design, Computer Aided Geometric Design, 88 (2021), p. 102003.

[130] R. J. RENKA, Shape-preserving interpolation by fair discrete G3 space curves, Computer

Aided Geometric Design, 22 (2005), pp. 793 – 809.

[131] G. RICCA, M. C. BELTRAMETTI, AND A. M. MASSONE, Piecewise recognition of bone

skeleton profiles via an iterative Hough transform approach without re-voting, in Medical

Imaging 2015: Image Processing, vol. 9413, SPIE, 2015, pp. 706–713.

[132] K. RODRIGUEZ ECHAVARRIA AND R. SONG, Analyzing the decorative style of 3d heritage

collections based on shape saliency, Journal on Computing and Cultural Heritage, 9

(2016), pp. 1–17.

[133] C. ROMANENGO, S. BIASOTTI, AND B. FALCIDIENO, HT-based Recognition of Patterns on

3D Shapes Using a Dictionary of Mathematical Curves, in Proceedings of the Conference

on Smart Tools and Applications in Graphics 2019, (STAG 2019), M. Agus, M. Corsini,

and R. Pintus, eds., The Eurographics Association, 2019, pp. 31–40.

[134] C. ROMANENGO, S. BIASOTTI, AND B. FALCIDIENO, HT-based identification of 3D feature

curves and their insertion into 3D meshes, Computers & Graphics, 89 (2020), pp. 105–

116.

[135] C. ROMANENGO, S. BIASOTTI, AND B. FALCIDIENO, Recognising decorations in archaeolog-

ical finds through the analysis of characteristic curves on 3d models, Pattern Recognition

Letters, 131 (2020), pp. 405 – 412.

[136] C. ROMANENGO, S. BIASOTTI, AND B. FALCIDIENO, Hough transform for detecting space

curves in digital 3d models, Journal of Mathematical Imaging and Vision, 64 (2022),

p. 284–297.

175

BIBLIOGRAPHY

[137] C. ROMANENGO, E. BRUNETTO, S. BIASOTTI, C. E. CATALANO, AND B. FALCIDIENO,

Recognition, modelling and interactive manipulation of motifs or symbols represented

by a composition of curves, in Proceedings of the Conference on Smart Tools and

Applications in Graphics 2020, (STAG 2020), S. Biasotti, R. Pintus, and S. Berretti,

eds., Eurographics Association, 2020, pp. 27–35.

[138] C. ROMANENGO, B. FALCIDIENO, AND S. BIASOTTI, Hough transform based recognition of

space curves, Journal of Computational and Applied Mathematics, 415 (2022), p. 114504.

[139] C. ROMANENGO, A. RAFFO, S. BIASOTTI, B. FALCIDIENO, V. FOTIS, I. ROMANELIS,

E. PSATHA, K. MOUSTAKAS, I. SIPIRAN, Q.-T. NGUYEN, C.-B. CHU, K.-N. NGUYEN-

NGOC, D.-K. VO, T.-A. TO, N.-T. NGUYEN, N.-Q. LE-PHAM, H.-D. NGUYEN, M.-T.

TRAN, Y. QIE, AND N. ANWER, Shrec 2022: Fitting and recognition of simple geometric

primitives on point clouds, Computers & Graphics, 107 (2022), pp. 32–49.

[140] C. ROMANENGO, A. RAFFO, Y. QIE, N. ANWER, AND B. FALCIDIENO, Fit4CAD: A point

cloud benchmark for fitting simple geometric primitives in CAD objects, Computers &

Graphics, 102 (2022), pp. 133–143.

[141] A. SAMPER, G. GONZÁLEZ, AND B. HERRERA, Determination of the geometric shape which

best fits an architectural arch within each of the conical curve types and hyperbolic-cosine

curve types: The case of Palau Güell by Antoni Gaudí, Journal of Cultural Heritage, 25

(2017), pp. 56 – 64.

[142] A. SCALAS, D. CABIDDU, M. MORTARA, AND M. SPAGNUOLO, Potential of the geometric

layer in urban digital twins, ISPRS International Journal of Geo-Information, 11 (2022).

[143] D. SCHENONE, Detection of space profiles by means of the hough transform technique,

master’s thesis, Università degli Studi di Genova, 2015.

[144] R. SCHNABEL, R. WAHL, AND R. KLEIN, Efficient RANSAC for Point-Cloud Shape Detec-

tion, Computer Graphics Forum, 26 (2007), pp. 214–226.

[145] L. SCHUMAKER, Spline Functions: Basic Theory, Cambridge University Press, 3rd ed.,

2007.

[146] T. SEDERBERG, D. ANDERSON, AND R. GOLDMAN, Implicit representation of parametric

curves and surfaces, Computer Vision, Graphics, and Image Processing, 28 (1984),

pp. 72 – 84.

[147] G. SHARMA, B. DASH, A. ROYCHOWDHURY, M. GADELHA, M. LOIZOU, L. CAO, R. WANG,

E. G. LEARNED-MILLER, S. MAJI, AND E. KALOGERAKIS, PriFit: Learning to Fit

Primitives Improves Few Shot Point Cloud Segmentation, Computer Graphics Forum,

41 (2022), pp. 39–50.

176

BIBLIOGRAPHY

[148] G. SHARMA, D. LIU, S. MAJI, E. KALOGERAKIS, S. CHAUDHURI, AND R. MECH, ParSeNet:

A Parametric Surface Fitting Network for 3D Point Clouds, in European Conference

on Computer Vision, A. Vedaldi, H. Bischof, T. Brox, and J. Frahm, eds., vol. 12352,

Springer, 2020, pp. 261–276.

[149] L.-Y. SHEN, C.-M. YUAN, AND X.-S. GAO, Certified approximation of parametric space

curves with cubic b-spline curves, Computer Aided Geometric Design, 29 (2012), pp. 648

– 663.

[150] E. V. SHIKIN, Handbook and atlas of curves, CRC, 1995.

[151] G. TAUBIN, Estimation of planar curves, surfaces, and nonplanar space curves defined

by implicit equations with applications to edge and range image segmentation, IEEE

Transactions on Pattern Analysis & Machine Intelligence, 13 (1991), pp. 1115–1138.

[152] M. TORRENTE, M. BELTRAMETTI, AND J. SENDRA, r-norm bounds and metric properties for

zero loci of real analytic functions, Journal of Computational and Applied Mathematics,

336 (2018), pp. 375 – 393.

[153] M.-L. TORRENTE AND M. C. BELTRAMETTI, Almost vanishing polynomials and an ap-

plication to the Hough transform, Journal of Algebra and Its Applications, 13 (2014),

p. 1450057.

[154] M.-L. TORRENTE, S. BIASOTTI, AND B. FALCIDIENO, Recognition of feature curves on

3D shapes using an algebraic approach to hough transforms, Pattern Recognition, 73

(2018), pp. 111 – 130.

[155] M. A. UY, Y.-Y. CHANG, M. SUNG, P. GOEL, J. G. LAMBOURNE, T. BIRDAL, AND L. J.

GUIBAS, Point2cyl: Reverse engineering 3d objects from point clouds to extrusion cylin-

ders, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion, (CVPR 2022), 2022, pp. 11850–11860.

[156] L. VÁŠA, P. VANĚČEK, M. PRANTL, V. SKORKOVSKÁ, P. MARTÍNEK, AND

I. KOLINGEROVÁ, Mesh statistics for robust curvature estimation, Computer Graphics

Forum, 35 (2016), pp. 271–280.

[157] R. J. WALKER, Algebraic curves, Springer Verlag, 1978.

[158] L. XU AND J. SHI, Geometric Hermite interpolation for space curves, Computer Aided

Geometric Design, 18 (2001), pp. 817 – 829.

[159] D.-M. YAN, W. WANG, Y. LIU, AND Z. YANG, Variational mesh segmentation via quadric

surface fitting, Computer-Aided Design, 44 (2012), pp. 1072 – 1082.

177

BIBLIOGRAPHY

[160] S. YAN, Z. YANG, C. MA, H. HUANG, E. VOUGA, AND Q. HUANG, HPNet: Deep Prim-

itive Segmentation Using Hybrid Representations, in Proceedings of the IEEE/CVF

International Conference on Computer Vision (ICCV), October 2021, pp. 2753–2762.

[161] S. YOSHIZAWA, A. BELYAEV, H. YOKOTA, AND H.-P. SEIDEL, Fast, robust, and faithful

methods for detecting crest lines on meshes, Computer Aided Geometric Design, 25

(2008), pp. 545–560.

[162] C.-H. YU AND J. HUNTER, Documenting and sharing comparative analyses of 3D digi-

tal museum artifacts through semantic web annotations, Journal on Computing and

Cultural Heritage, 6 (2013), pp. 1–20.

178

	List of Tables
	List of Figures
	Introduction
	Motivation
	Contribution
	Organization of the thesis

	Background material
	Theoretical representation and properties of curves and surfaces
	Some properties of curves
	Some properties of surfaces

	Computational representation and properties of curves and surfaces
	Notations
	Mathematical representations in case of codimension 1 in the plane and in the space
	Mathematical representations in case of codimension 2 in the space
	Geometric properties
	Colorimetric properties

	The Hough transform for families of curves and surfaces
	Preliminary concepts on the HT
	Mathematical representations of the HT in case of codimension 1 in the plane and in the space
	Mathematical representations of the HT in case of codimension 2 in the space
	Voting procedure

	Recognition, extraction and representation of plane curves
	Previous work
	Families of plane curves
	Simple plane curves
	Compound plane curves

	A method for recognising plane curves
	Estimation of the Accumulator Function
	Computational cost

	Testing and validating the method on data from real objects
	A comparative analysis for plane curves
	Applications
	Recognition of decorations in archaeological finds
	Recognition of motifs and symbols

	Concluding remarks
	Related publications

	Recognition, extraction and representation of space curves
	Previous work
	Families of space curves
	Space curves of type I
	Space curves of type II

	A method for recognising space curves
	Estimation of the Accumulator Function
	Computational complexity

	Testing the method on digital models of real objects
	A comparative analysis for space curves
	Curve insertion into 3D meshes
	Feature curves insertion method
	Curve insertion examples

	Concluding remarks
	Related publications

	Piece-wise curve approximation using the Hough transform
	Pipeline of the piece-wise curve approximation method
	Description of the feature approximation method
	Variation from the standard HT
	Approximation method considering one projection
	Approximation method considering two projections

	Examples
	Feature-preserving point cloud simplification and resampling
	Concluding remarks

	Recognition, extraction and representation of geometric primitives
	Previous work
	Geometric primitives
	Simple geometric primitives
	Complex geometric primitives

	Recognition and fitting primitives from 3D segmented point clouds
	Description of the method
	Computational complexity
	Performance over different datasets
	Comparison with the method Raffo:2020
	Tests on point clouds segmented by different methods

	Recognition and fitting primitives from 3D point clouds
	Description of the method
	Computational complexity
	Experimental results
	Comparative analysis

	Concluding remarks
	Related publications

	Conclusions
	Ongoing activities and future directions

	Benchmarking activities
	The SHREC2022 track on fitting and recognising geometric primitives in point clouds
	Dataset and performance measures
	Evaluation

	The Fit4CAD benchmark
	Dataset and performance measures
	Evaluation

	Related publications

	Bibliography

