
Learning by Fixing and Extending Games

delivered by

EUROGRAPHICSEUROGRAPHICS

D LIGITAL IBRARYD LIGITAL IBRARY
www.eg.org diglib.eg.org

G. Costantini1, G. Maggiore1 and A. Cortesi1
1 Ca’ Foscari University, Venice, Italy

Abstract

This paper reports the results of experiencing computer graphics and videogames programming as a way

to support the learning process of undergraduate courses on Programming and on Software Engineering,

in a ”fixing & extending” approach. In particular, we show how some XNA-based tools may provide a

successful environment which enhances not only skills and abilities in programming (in the small and in

the large, respectively), but also stimulates interest in the theoretical aspects covered in these courses.

Categories and Subject Descriptors: K.3.0 [Computers and Education]: General, K.8 [Personal

Computing]: Games

1. Introduction

In this paper we analyze the use of computer graphics as a

teaching tool in CS undergraduate courses. Even though

this idea has already been explored [PM06], the concept of

graphics as a practical application field for software-related

courses is not as common as one would think. It is

interesting to see which benefits might come from this

approach, and how to avoid possible pitfalls, like

overwhelming students with too many (or too difficult)

concepts, or modifying too much the original aim of the

course, or requiring too much work by lecturers and

teaching assistants. A crucial role is played by the

technologies employed: choosing computer graphics tools

that are easy to use, that allow to quickly obtain good

results, and that can be adapted to as many contexts as

possible.

 Graphics in computing is something extremely exciting

that can dramatically reduce the feeling of boredom that so

often accompanies students in traditional courses [GS02].

Many students enroll to a CS program mostly because they

are used to seeing computers accomplish amazing features

like 3d animations, media of all kinds, complex UIs and so

on. The curiosity to deeply understand how such things are

designed is usually what sparks the interest of a freshman

student. Moreover students, as young adults, are starting to

worry about what is “out there”, behind the academia

walls: they feel the importance of learning cutting edge

technologies that will be used in the IT industry. To sum it

up, a student wishes to study topics that will help her/him

finding a job, and get the right skills needed to produce

tools similar to the applications typically seen in fancy

appliances.

 What does the teacher gain from this approach? The

introduction of computer graphics in a traditional CS

course can really make the difference between students

who attend lesson “just because they have to” and students

engaged and passionate about the lessons and the course.

Since we know the difference between talking to an

interested audience and to an apathetic one, we believe this

to be more than sufficient motivation to experiment

something new.

 Computer graphics is a very large area, and although any

specific area of computer graphics could achieve the

purpose we are setting, we choose videogames, since it’s

probably the area closer to the students’ interests (and,

perhaps more importantly, an area of CG we are familiar

with). Students most likely play videogames, so the idea of

learning more about these fascinating virtual worlds can

make them feel empowered and skilled. Plus, there’s

another kind of reward they get: after having built a

videogame, they can play it!

 The structure of the paper is as follows. In the section

“Tools and technologies” we will see the set of

technologies required to put this new approach into

practice. After that, we will review two case studies taken

from our experiences: in “Learning by fixing” we see how

broken videogames to be fixed can be the assignments in a

first-year undergrad programming course; in “Learning by

extending” we show how the production of a complete

EUROGRAPHICS 2009/ G. Domik and R. Scateni Education Paper

c© The Eurographics Association 2009.

http://www.eg.org
http://diglib.eg.org

videogame can be assigned to students in an introductory

software engineering course. While exploring the two case

studies, we will focus on both preserving the original

structure of the considered course and also obtaining the

most benefits for students and teachers. Finally, in

“Conclusions” we will analyze our results for a final wrap

up of “gains and losses”.

2. Tools and technologies

Computer graphics and videogame development are very

demanding and difficult tasks. This means that we risk

adding some complexity to a course. We must avoid

dealing with the risk to add too much difficulty to courses

and with the risk to diverge the attention with respect to the

main aim of them. Then, we need to find a tool that

requires as less effort as possible to be learned and used,

and we need to tune the level of difficulty with respect to

the skills of the actual students: it has to be scalable to

adapt to different courses.

 In fact, consider a scenario in which the students do not

know anything about programming yet: we cannot possibly

ask them to develop an entire videogame, because they do

not have the skills. The ideal would be to give them simple,

extremely focused and narrow assignments without caring

too much for the rest of the code that would constitute just

noise for them. In other cases we could be working with

more experienced and skilful students, sometimes even

students who are close to their degree, able to program

pretty well and capable of team-working. With this kind of

preparation we can expect them (with the right support

system and the right tools) to design and develop an entire

videogame, in a collaborative team.

2.1 The XNA framework

An appropriate tool that suits our needs is Microsoft XNA

(XNA’s Not Acronymed) [XNA], a library to create

videogames first released in 2004. Since then, XNA has

rapidly grown, and has now reached its 3.0 release. XNA

supports various areas of game development like Audio,

Input, main loop, time frame normalization and of course

graphics. What is most interesting about XNA is that on

one hand the framework contains classes that make it very

easy for an unexperienced user to write her/his game, while

on the other hand it supports advanced developers in

writing code that requires to manage low level resources

(graphics device memory, shaders, etc.). Finally, XNA is

maybe the first framework that allows serious game

development on both the PC and a next generation console

like the XBox 360, with minimal to none code

modifications.

 Once chosen XNA as the reference framework, there are

other important aspects that still need to be explored: which

programming language to use, in what development

environment, etc. We have to be careful because we cannot

choose a language or an IDE that are too specific, and we

wish to be able to swap both languages and IDEs

depending on the topic of the course and the preferences of

teachers or students.

2.2 The .NET Framework

XNA is part of the .Net framework, a framework that

contains a massive set of libraries (collections, network

communication, serialization, concurrence, parallelism, etc)

and a garbage collecting virtual machine. This framework

has its own assembly language in which high level

languages are compiled. The assembly supports very

advanced features, from generics to closures and

anonymous functions that make it possible to implement

lots of languages with any kind of paradigm, from purely

functional to purely procedural/imperative language and

any kind of hybrid. Among the supported languages we

can find C#, F#, C++, Cobol, Haskell, APL, Eiffel, Fortran,

and many more, often coming from Microsoft Research.

All of this means that the students who learn to use the

.NET framework (or at least who get acquainted with it)

will have at their disposal a lot of interesting possibilities,

among which that of learning language independent

reasoning, that they can explore on their own. The .Net

framework is typically used in Windows within the Visual

Studio IDE (Integrated Development Environment), but is

also supported in many other operating systems through

Mono, an open source implementation of the .Net and the

C# language standards. Mono and the .Net framework can

be used in conjunction with many IDEs different from

Visual Studio, some free and some open source, many of

which are of amazing quality.

 2.3 C# language

 If we need an object oriented language, then we should

probably use C# [C#LS]. C# is a multi-paradigm

programming language defined by a standard that has been

approved by ECMA and ISO. It has an object-oriented

syntax based on C++ with heavy influences from other

languages like Delphi and Java. The most recent version of

the language is C# 3.0, released in 2007 in conjunction

with the 3.5 version of the .NET Framework. In this

version we have seen the emergence of very powerful

constructs taken directly from functional programming.

These constructs include lambda expressions to denote

anonymous functions, anonymous types, currying, and so

c© The Eurographics Association 2009.

Costantini et al. / Learning by Fixing and Extending Games16

on. In C# 3.0, through a set of features commonly referred

to as LINQ [BH07], collections and enumerables have even

been implemented as monadic combinators, offering the

opportunity to use them in an extremely elegant and

succinct way.

2.4 F# language

There may be other situations, like introductory

programming courses using a functional programming

approach, where C# would not be the right choice because

of its deep rooting in OO programming. In such a case we

can use F# ([SGC07], [Pic07]), a multi-paradigm

programming language that allows both pure functional

programming (the “F” stays for “functional”) and

imperative object oriented programming. It is a variant of

ML and largely compatible with the OCaml

implementation. The language is strongly typed, has a

powerful type inference compiler and supports union types,

tuples, language integrated lists, lambda expressions,

pattern matching and in general anything you would expect

from a functional language.

2.5 Team Foundation Server and SharePoint

As an optional (but really interesting) addition to the set of

tools we have explored, we mention Team Foundation

Server, a source control solution that integrates seamlessly

in Visual Studio to offer students the possibility of

collaboration in teams with enterprise grade tools but

without any kind of mental or visual noise (which is the

point of integration after all). Together with TFS comes

SharePoint, a collaboration platform providing a

centralized repository for shared documents and knowledge

in general, that allows creating workspaces for students to

meet their need for distributed interaction.

 In conclusion, the general architecture of our

development environment is the following:

Figure 1: General architecture.

3. Learning by fixing for a first-year undergraduate

Programming course

In this section we are going to consider the first of our two

case studies.

3.1 A first-year Programming Course

The course we are talking about is a first-year

undergraduate introductory Programming course. The

course has a functional programming approach, so we

choose F# as language to develop in XNA. The course

structure is made of bi-weekly frontal lessons and weekly

assignments (which can be solved in the next two weeks).

Students can come weekly to the laboratory to be helped by

the tutors with the assignments. The assignments are

divided in two parts: the traditional one (with exercises run

on the command line) and the advanced one (videogame

related). Since the introduction of videogames is an

experiment, students can choose between the two kinds of

assignments.

3.2 Assignments description

As stated before, we cannot ask a first-year CS student to

write a videogame alone, but we can ask her/him to help

writing a videogame: we can give students small

videogames that are intentionally broken by introducing

bugs or removing core pieces of source code. The parts of

the videogame to be fixed are chosen for each assignment

according to the studied topic. The most important thing is

that students have to complete a very small part of the

videogame (something related to the topic studied) but

fundamental to make it work. This gives them the

satisfaction of solving a problem without having to own a

deep knowledge of computer graphics or other difficult

subject.

3.3 Assignments samples

Let us see two samples of assignments.

 The very first assignment of the course, when the

students knew almost nothing about the language, was

about the if-then-else construct. We prepared a traditional

set of exercises, an example of which would be: “Given a

price and a discount, you have to compute the discounted

price, keeping in mind that the discount applies only if the

price is above 10000$”. Along with this, we also prepared

the advanced set of exercises: a simple videogame in which

the player (a blue triangle in the centre of the screen) could

shoot the enemies (red triangles all around the player) and
c© The Eurographics Association 2009.

Costantini et al. / Learning by Fixing and Extending Games 17

kill them (make them disappear). What was the catch? The

game was completely broken: the player would shoot

nonstop in only one direction and the enemies disappeared

wrongly. All the tasks required to repair the game could be

solved with the use of if-then-else (if the user presses S

then shoot else don’t shoot, etc). This way, the students

who tried the advanced assignment had to understand the

if-then-else construct as well as their colleagues who chose

the traditional one, but at the end of their work they had a

little videogame up and running, knowing that they

contributed to make it right.

 Below you can see a screenshot of the game:

Figure 2: If-then-else game screenshot.

 An example of the code of the assignment can be seen

here.

Exercise:

Consider the following code, corresponding to the bugged version
of the game, where the function updateSelf updates the position

and rotation of the player’s triangle.

let updateSelf =

 fun ((px, py), (sx, sy), r) dt ->

 ((px, py), (sx, sy), r)

Fix it by using Keyboard.GetState().IsKeyDown(Keys.Right) to

check if the right arrow key on the keyboard is pressed, and

similarly Keyboard.GetState().IsKeyDown(Keys.Left) for the left
arrow.

Corrected version of the code:

let updateSelf =

 fun ((px, py), (sx, sy), r) dt ->

 if Keyboard.IsKeyDown(Keys.Right) then

 ((px, py), (sx, sy), r + dt)

 else

 if Keyboard.IsKeyDown(Keys.Left) then

 ((px, py), (sx, sy), r - dt)

 else

((px, py), (sx, sy), r)

 It is important to notice that we like to hide the XNA

code from the students, since they are not able to

understand it. To do this, we encapsulate this code in a

precompiled assembly written in C#, so that the students

are be distracted by it.

 Let us see another example. One of the last assignments

of the course was about lists. An excerpt from the

traditional set of exercises would be: “Find the product of

all the odd numbers in this list”. For the graphical

assignment we used a car game (in which the car physics

had been partially built by the students during the previous

assignments) with little 2d circles instead of car models.

The purpose of the assignment was to implement the code

to render the models.

 In XNA, a Model can represent any kind of drawable

entity. The Model class contains a collection of Meshes

that represent single physical objects. Each ModelMesh can

be moved independently, and some can be drawn while

others are skipped. For instance, our car Model contained

one ModelMesh for the body of the vehicle and one for the

wheels. The ModelMesh class contains a collection of

MeshParts that represent single graphics card draw calls

and that contain sets of triangles that share the same

material and vertex declaration. We preprocessed these for

the students to make the access to this structure less object

oriented and more functional, so that to render a model in

XNA they only have to iterate the list of meshes in the

model: for each mesh, they have to iterate the list of its

effects and for each effect they have to set some

parameters.

 In the picture below, you can see how the game looked

like after having correctly rendered the car models:

Figure 3: Car game screenshot.

 The following is a sample of source code from the

assignment:

c© The Eurographics Association 2009.

Costantini et al. / Learning by Fixing and Extending Games18

let rec iterateMeshes modelMeshes =

 match modelMeshes with

 | [] -> ()

 | mesh::ms ->

(iterateEffects mesh (meshEffects mesh))

drawMesh mesh

iterateMeshes ms

 The function iterateMeshes iterates the list of the meshes

contained in the model of the car and, for each mesh,

iterates its effects (with the help of another function,

iterateEffects) and draws it. Note the use of “pattern

matching” to do elegant recursion by distinguishing

between the empty list [] and a list with a head called

“mesh” and a tail called “ms”.

 Again we encapsulated portions of XNA code in a

precompiled assembly. This was especially useful when

hiding the code that turned classes with a strong object

oriented flavor into more functional constructs.

4. Learning by extending for an introductory course on

Software Engineering

Let us consider the second case study, a Software

Engineering introductory course at the third year of a CS

bachelor program. The students, being seniors, mostly have

the programming skills required to write an entire

videogame; moreover, since the focus of the course is on

software engineering methodologies and on team-working,

we organized the class in teams of 4 or 5 students. Since

the subject makes heavy use of design patterns and

reusability constructs in general we have chosen the C#

language because of its strong support of object orientation.

4.1 A structured project

In order to learn how to apply software engineering

methodologies, we asked students to build a simple card

game. Such a game typically does not have very high

technological requirements but can be extended with

interesting features like concurrency, parallelism,

serialization to and from the disk (saving and loading the

game) and extensibility.

 We focused particularly on the concept of extensibility, as

seen from two different points of view. On one hand, we

offered students an AI for a specific card game

(Machiavelli), and required them to build a system around

this component. On the other hand, we required them to

build their system so that it did not rely directly on our AI:

their system had to be as reusable as possible with respect

to the implementation of other card games. Menus, sounds,

input management and drawing: all of these components

must be independent from the type of card game played.

4.2 Technology background

Additional classes have been offered to introduce the

technologies to be used: XNA, source control and web

based collaboration sites. We started with basics on 2D

rendering, input management, sound and code reusability in

an XNA video game. We also explained the basics of

source control and content management, and how having

one’s data in a remote server affects development.

 To get students familiar with these notions we assigned a

first task testing their degree of confidence with these

technologies. We asked them to build a simple application

focused on 2D rendering of textures and text and on the

user’s input management. The task had to be sent us

through the source control system. Contrary to our

expectations, some of the teams surprised us introducing

features not explicitly requested by the task (and more

importantly that we had not explained or showed or even

mentioned): moving backgrounds, alpha blending, support

for the XBox 360 gamepad, etc. Their efforts in the very

first task showed us their degree of engagement.

 To start tackling the true problem of the course, we

decided that it was time to show how our AI worked and

how to build a simple (non-XNA) application around it.

Students were then fully ready to start analyzing the

problem by knowing all the actors and the technologies

involved. Without this knowledge they would have risked

imagining a system too complex (or maybe even

impossible) for them to build afterwards. After this phase

of analysis they had clearly defined the problem they

wanted to solve and they had produced a list of the

requirements a good solution to this problem needed to

fulfill.

 Now that the students had defined what their system was

supposed to do, it was time to focus on how the system was

supposed to do it. In order to do so effectively, the students

needed a deeper knowledge of how XNA could interact

with design patterns and object orientation, and how to

implement concurrency, parallelism and a plug-in system.

In short, all those useful features that are never taught in

class but always taken for granted when using many

computer programs.

 We started with code reuse: XNA offers a way to

encapsulate a portion of the main loop of a game in a

separate loop that runs alongside the main one. This

secondary main loop is called a “Game Component”, and it

can expose its main functionalities through an interface

called its “Service”. This was more than enough for them to
c© The Eurographics Association 2009.

Costantini et al. / Learning by Fixing and Extending Games 19

achieve a very clean organization in subsystems and

modules.

 Secondly, we had to consider that the AI component of a

card game could be slow, sometimes very slow (up to 10-

15 seconds): no user can be expected to wait for an

unresponsive program for so long. To prevent this

unpleasant experience, we showed how they could solve

the problem by computing the AI operations concurrently

with the rest of the program. With C# and .Net concurrency

almost becomes easy, thanks to the integration of locking

constructs to make shared accesses simpler and thanks to

threading libraries that implement many useful patterns.

 Together with concurrency we showed how certain

operations (mostly those done with LINQ, that is

operations on collections) can be easily parallelized thus

exploiting the multiple cores that so often are found in a

modern PC or in the XBox 360.

 Finally, we told our students about serialization, so that

they could easily save and load complex data to disk

without having to explicitly use files and IO.

 Last but not least, we showed how reflection can allow us

to load files (DLLs) that contain .Net assembly and classes.

This is the core of a good plug-in system, because it allows

the game to be extended to other card games without

having to recompile anything beyond the new plug-ins.

 In addition to defining the overall behavior and

architecture our students were required to build a prototype

for the user interface that their system will use. Here you

can see a couple of UI prototypes produced by our

students:

Figures 4 and 5: User interface prototypes.

 In the last assignment the students have to fully

implement the system they specified and designed in the

previous tasks, and test it in according to the testing plan.

Finally, the final grading is given on the basis of the quality

of the whole documentation (analysis, design, test plan,

code) and on the quality of the card game prototype.

4.3 Students’ feedback

At the end of the project, the students were asked to answer

a questionnaire about the course and the use of videogames

as a case study. The results of the questionnaire are

depicted in Table 1 (we show average scores based on the

44 students who answered the questions).

Question Score

(1 = lowest,

10 = highest)

How do you evaluate the power and

quality of XNA as game development

tool?

7,86

How interesting was using a videogame

as a case-study?

7,86

How useful do you consider the

technologies practiced in this course?

7,07

Do you think you improved your team-

working skills?

7,76

Overall evaluation of the project

experience

8,03

Table 1: Questionnaire results

4.4 Possible follow-up

At the end of the course, we offer an interesting

opportunity to the brightest students: to keep working on

XNA and videogames for their final graduation report. This

way, they can participate in the development of a larger

videogame that allows the exploration of our degree in CS

in a metaphorical virtual world. This is a project aiming at

getting the player (usually a high school student) familiar

with the CS curriculum like in a war, where each exam is a
c© The Eurographics Association 2009.

Costantini et al. / Learning by Fixing and Extending Games20

battle that can be won by reading about the corresponding

topics, thus conquering hordes of enemies each time.

 Two screenshots of the current state of the game are here:

Figures 6 and 7: Final project prototype.

5. Conclusions

In this paper we analyzed the development of videogames

as a useful tool to support the learning process about

Programming and Software Engineering.

 We explained what benefits both teachers and students

can gain from this approach: students become more

interested and engaged because videogames are exciting

and the tools used are valuable knowledge in the IT

industry; the teacher can keep focusing on the topics of the

course but in a way that is quite more effective. The

experience on the two courses involved an overall amount

of 150 students.

 Let us now consider the amount of work the teacher was

required to do. In the first case, the teacher had to produce

a small videogame; in the second one, the teacher needed to

spend about three lessons talking about XNA and related

concepts (concurrency, serialization, etc.). With a little

background and preparation in XNA, these tasks can be

accomplished with an effort that is quite small, especially

compared to the quality of the results.

References

[BH07] BOX D., HEJLSBERG A.: LINQ: .NET Language-

Integrated Query (February 2007)

http://msdn.microsoft.com/en-us/library/bb308959.aspx

[CC01] Curriculum Guidelines for Undergraduate Degree

Programs in Computer Science,

http://www.acm.org/education/education/education/curric_

vols/cc2001.pdf

[C#LS] C# Language Specification,

http://msdn.microsoft.com/en-us/library/ms228593.aspx

[GS02] GUZDIAL M., SOLOWAY E.: Teaching the Nintendo

generation to program. Commun. ACM, 45(4) (2002)

[MG07] MARAGOS K., GRIGORIADOU M.: Designing an

Educational Online Multiplayer Game for learning

Programming, Proceedings of IEEII 2007, Thessaloniki,

Greece 322-331 (2007)

[Mos97] MOSER R.: A fantasy adventure game as a learning

environment: Why learning to program is so difficult and

what can be done about it. Proc. Of ACM ITiCSE 97,

Uppsala, Sweden 114-116 (1997)

[Pic07] PICKERING R.: Foundations of F#. Apress (2007)

[PM06] PEDRONI M., MEYER B.: The Inverted Curriculum

in Practice. Proceedings of SIGCSE 2006, ACM, Houston,

Texas (March 2006)

[Pre03] PRENSKY M.: Digital Game-Based Learning.

Computers in Entertainment, vol. 1(1) (2003)

[SGC07] SYME D., GRANICZ A., CISTERNINO A.: Expert F#.

Apress (2007)

[Whi84] WHITE B.Y.: Designing computer games to help

physics students understand Newton’s laws of motion.

Cognition and instruction, 1, 1, 69-108 (1984)

[XNA] XNA Official Site, http://creators.xna.com/en-US

c© The Eurographics Association 2009.

Costantini et al. / Learning by Fixing and Extending Games 21

http://msdn.microsoft.com/en-us/library/bb308959.aspx
http://www.acm.org/education/education/education/curric_vols/cc2001.pdf
http://www.acm.org/education/education/education/curric_vols/cc2001.pdf
http://msdn.microsoft.com/en-us/library/ms228593.aspx
http://creators.xna.com/en-US

