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Abstract
The medial axis (MA) of an object and medial axis transform (MAT) have many applications in solid modeling, computer graph-
ics and other areas. Exact computation of MA is complex and various medial axis approximation algorithms were studied. One
of the most successful is based on the computation of the Voronoi diagram of a set of sample points on the boundary of the
object. Based on this method we present a novel representation of solids, which we call apair-mesh. The pair-mesh is a de-
formable manifold surface triangulation where each node deforms between a pair of vertices one on the MA approximation and
one on the boundary. Consequently, it provides a continuous map between the inner Voronoi based structure and the boundary
of the shape, encompassing the topological structures of them both. This representation can also be seen as a partitioning of
the volume between the two, where each element in the partition is either a tetrahedron or a pyramid and includes vertices from
both the MA approximation and the reconstructed boundary.
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1. Introduction

The medial axis (MA) of an objectO in R3 is defined as the
locus of points, which lie at the centers of all closed balls that
are maximal inO (medial balls), together with the limit points
of this locus. The properties of the medial axis (MA) and its
close relation to the object make it a useful tool for many ap-
plications in solid modeling, computer graphics, motion planning
and more [HK00, TH03, BTSG00, DWZ03, YBS03]. The medial
axis transform (MAT) is defined by the MA itself and a func-
tion R : MA → R that assigns to each MA point the radius value
of its sphere. It was shown that the objectO can be extracted
from MAT(O) as the union of all the medial balls. Thus the
boundary ofO can be calculated as the boundary of the union
of all medial balls (inverse MAT). Furthermore, an objectO and
it’s MA have the same topology structure (the same homotopy
type) and can continuously deform from one to the other (see
e.g. [SPFE96, CCM97, Ede01]). Thus, the MAT can be used as a
compact and effective representation for objects inR3.

The main motivation of this work is the definition of a solid rep-
resentation with similar properties as the MAT. In practice how-
ever, both the computation of the medial axis and the MAT are
extremely difficult and the results can become complicated even in
simple cases. Numerous methods for approximating the MA have
been proposed. Recently, several works were presented based on
the computation of the Voronoi diagram of a set of sample points
residing on the object’s boundary (either by surface sampling or
from range scans) [ACK01, DZ02]. The output of such approxi-
mation methods is a polygonal representation approximating the
medial axis. It has been shown that the resulting approximation is
guaranteed to be close to the true medial axis with some tolerance,
and converges to it when the boundary sampling rate approaches

infinity. Still, the resulting polygonal shape is unstable with respect
to the model boundary and may include many excessive parts and
spikes. This shape is non-manifold, extremely complex, and diffi-
cult to work with.

In [ACK01] the MA is approximated as part of the dual shape
of the power diagram of a set of approximated medial balls. A dif-
ferent approach, used also in this work, is to approximate the MA
directly as a subset of the Voronoi diagram applying some filtering
criteria to remove excessive parts [DZ02]. Nevertheless, during the
filtering process holes may occur in the medial axis, as well as the
separation of the medial axis to non-connected parts. Furthermore,
at the end of the process there are sites on the boundary that do not
have corresponding elements on the MA anymore and the link be-
tween the MA and the boundary is lost. In [HBK02] this link is pre-
served simply by copying the original boundary mesh connectivity
to the poles on the Voronoi based MA approximation. However the
MA is represented by a two-side surface that may cut itself and the
link between opposite sides of the boundary is lost.

In this paper we define a novel solid object representation, which
we call thepair-mesh. The pair-mesh definition is based on the
Voronoi diagram of sampled boundary points. This representation
preserves the link between the boundary and the inner Voronoi
structure, representing the skeleton of the shape. The end result of
this process is a simple and effective representation of the solid,
which is composed of both a medial axis approximation and the
approximated boundary of the shape. Furthermore, the pair-mesh
is in fact a parametric solid representation realizing the continuous
map between the MA and the boundary.

The rest of the paper is organized as follows. We begin by re-
viewing related work. Next, in Section 3 we describe the pair-
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mesh data-structure and its construction from the Voronoi diagram
of the boundary sample points. Section 4 defines the filtering of
the Voronoi creating a MA approximation and the method to re-
connect it to the shape boundary to create a pair-mesh. We conclude
in Section 5 and discuss future applications.

2. Related work

The complexity of the medial axis and its computation time pre-
vent methods for the exact calculation of the medial axis such as
for polyhedra in[CKM99]. Furthermore, an input 3D objectO may
be available only as a set of sample points instead of explicitly de-
fined. Some works studied approximations of the MA using dis-
crete space representations. In [ER99] the medial axis is calculated
for polyhedron input by separating the calculation of geometric
and symbolic parts. The symbolic representation is calculated us-
ing space subdivision. In [VO95] a medial axis for general objects
in 3D space is calculated by hierarchical subdivision of the space.
[FLM03] also uses spatial subdivision of the solid object to approx-
imate the MA. The MA simplification (theθ SMA) is parameter-
ized by a separation angle between the vectors connecting a MA
point to the closest points on the boundary.

A subset of the Voronoi diagram of a sample point set inO
was proved to approximate the MA with guaranteed accuracy. In
[ACK01] the medial axis approximation is derived from the power
diagram of a subset of Voronoi vertices. First the algorithm finds
the inner and outer poles of each site (the Voronoi vertices farthest
from the site). A power diagram is calculated using the poles with
a weight that relates to their Voronoi balls (polar balls), i.e. the
maximal ball of each pole that doesn’t include other samples. The
connectivity of the inner pole power diagram cells is used as an ap-
proximation of the MA. The Local Feature Size function,LFS(x)
at a pointx on the model boundaryW, is the minimum Euclidean
distance from pointx to any point of the medial axis [AB98]. A
SetS⊂W is anr-sampleof W if no point p on W is farther than
r ·LFS(p) from a point ofS. These definitions can guide us to find
the required local sampling rate in the model boundary in order to
have a good Voronoi based approximation.

In [DZ02] the medial axis is approximated as a subset of the
original Voronoi diagram faces. The algorithm first finds for each
site an estimated normal according to its poles. Then it finds the
set of Voronoi edges that cut the orthogonal plane through the
site, to get an umbrella (fan) of Delaunay triangles that are dual to
these Voronoi edges. The Delaunay edges in the diagram are now
checked against two tests. The angle test uses the angle between
the Delaunay edge to any of its sites vertex’s umbrella triangles
normal-vectors. The ratio test uses the ratio between the Delaunay
edge length and the largest circum-radius of the umbrella triangles
(the distance to the farthest Voronoi edge). The Voronoi faces that
are dual to the Delaunay edges that pass the tests were proved to
approximate a subset of the MA. Nevertheless, after filtering, only
the remaining faces are linked to their dual vertices on the bound-
ary and all other boundary parts remain with no correspondence to
the inner structure.

Volumetric partitioning and meshing are important tools in
finite-element simulations. There are numerous works, which
provide algorithms for creating a quality FEM mesh for an
object’s boundary, and some also rely on skeleton computa-
tions [TKGC03, RBO02, BWS03]. Our work does not target such
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Figure 1: Different elements types of the solid mesh: (a) Face-
Vertex pyramid (b) Edge-Edge tetrahedron (c) Vertex-Face tetra-
hedron.

Figure 2: An example of a situation where an edge-edge tetrahedra
(a-b) folds on a face-vertex tetrahedra.

quality volume meshing of elements and we concentrate more on
the mapping structure between a quality MA approximation and the
shape’s boundary. Nevertheless, such mapping could in the future
be the basis on which quality meshes can be produced.

3. Voronoi based pair mesh

In this section we will introduce our data structure, thepair-mesh,
using a subset of the Voronoi diagram of the surface point set. We
start with a watertight surfaceSreconstructed from the model sam-
ples using the tcocone algorithm from [DG03]. This surface, repre-
senting the boundary of the object, is a subset of faces from the 3D
Delaunay triangulation of the point set. As the reconstructed sur-
face is a restricted Delaunay triangulation of the sample points, it
has a direct connection to its dual graph, the Voronoi diagram of the
sample points. Hence we combineS with a subset of the Voronoi
elementsV of the same point-set to create a solid representation of
the object. This solid representation is composed of a set of pyra-
mids and tetrahedra elements. Each element has some vertices on
the boundary surfaceSand some on the Voronoi subsetV.

In the following description we assume that the sample point-
set are in general position, thus each Voronoi vertex is closest to
4 samples and each edge to 3. We will use the following notations
and definitions. A Delaunay element onS will be called abound-
ary vertex, edge or face. As we start from a surface that is made
from Delaunay elements, the restricted Voronoi elements are eas-
ily found as the dual to the surface elements. We call the elements
dual to the boundary faces and edges,cut-edgesandcut-facesre-
spectively. The water tight boundary surface imposes a partition
of the Delaunay tetrahedra graph to inner and outer parts (this is
directly enforced by the tcocone algorithm). We thus define every
Voronoi vertex that is dual to an inner Delaunay tetrahedron as an
inner Voronoi vertex. A Voronoi edge or face in which all vertices
are inner-vertices is defined as aninner element. Duality implies
that if the sub-graph of inner tetrahedra is face connected, the same
is true for the edge connected graph of the dual Voronoi vertices.
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Figure 3: The pair-mesh of a cube and a head figure: (a,d) Only the face-vertex tetrahedra (b,e) Adding the edge-edge tetrahedra (c,f) Adding
the vertex-face tetrahedra. Note that the surface mesh has been altered slightly as a result of local correction operators that prevent flipped
tetrahedra.

The inner edges and vertices that are a part of a cut face are called
inner-cut edgesandinner-cut verticesrespectively.

With these definitions we can proceed to the construction of the
solid representation. Each Voronoi inner-face inV is connected to
the Voronoi site of the face to createface-vertexpyramids. Every
pair of inner-cut edge and the boundary edge that is dual to the
Voronoi cut-face that includes it create anedge-edgetetrahedron.
Every Delaunay triangle on the boundarySand the inner-cut vertex
at the end of its dual Voronoi edge create avertex-facetetrahedron
(see Figure 1 and Figure 3). Note that all the face-vertex pyramids
can be tetrahedralized by triangulating the Voronoi face, and con-
necting the triangles to the boundary site. For simplicity, we will
sometime refer to all these volume elements as tetrahedra although
in terms of implementation there is no reason to actually subdi-
vide the face-vertex pyramid into tetrahedra. The sub-elements of
the tetrahedra will be classified asVoronoi for Voronoi elements,
Boundaryfor boundary elements, andinterim otherwise.

Given that the inner Voronoi subsetV is connected and the
boundary is water tight it is easy to verify that all the inner volume
is covered by the set of tetrahedra and pyramids, and every tetra-
hedron or pyramid element is connected either to other elements or
to a boundary face in all four faces. However, there might be cases
in which this construction scheme leads to overlapping elements as
some tetrahedra may fold over others (Figure 2). Hence, there may
be faces that have two tetrahedra on the same side geometrically.
The algorithm finds folded tetrahedra using volume calculation as
described below.

Every surface vertex is a Voronoi site and thus resides inside its
Voronoi cell, leading to correct orientation of the face-vertex pyra-
mids. However, other types of tetrahedra might be flipped. Such
cases may occur especially when the inner part of the Voronoi dia-
gram is close to, or crossing, the reconstructed model surface. Local
manipulation of the structure can solve this problem. For example
by moving Voronoi vertices which are outside toward the inside of
the model without breaking the tetrahedra orientation constraints.
Another case is when a Delaunay edge on the surface doesn’t cross
it’s dual Voronoi cut-face. In such case, we find the closest point
to the Delaunay-edge on the dual cut-face edge. Then, we choose
a point slightly inside the face to ensure a positive volume of the
resulting tetrahedra and replace the edge with two edges joined at
this point. In this way the edge-edge tetrahedron is replaced by two
tetrahedra that are properly connected to the adjacent face-vertex
tetrahedra of the edge vertices. Consequently, a Delaunay triangle
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Figure 4: Left: splitting an edge of a boundary triangle. Right: some
examples of Delaunay triangles with one, two and three edges split,
and their polygon triangulations.

including such edges can be deformed into a polygon in which all
of its vertices are either Voronoi sites (original Delaunay vertices)
or lie inside one of the three faces near its dual Voronoi edge. This
polygon can be triangulated as shown in Figure 4, and up to four
vertex-face tetrahedra are created by this triangulation instead of
one. Obviously these manipulations may lead to slight perturba-
tions on the reconstructed surface.

As mentioned before, all the defined tetrahedra have vertices
both onS and onV and thus form a scaffolding envelope around
V as the subset of the Voronoi diagram and form a partition of the
solid volume that is enclosed withinS.

Finally we define what we call thepair-mesh. Each node in the
pair-mesh is an interim edge, which in fact connects a pair of ver-
tices one from the boundaryS and one fromV. Each edge in the
pair-mesh is defined by an interim face and each face in the pair-
mesh is a pyramid or tetrahedra. In situations where the bound-
ary is made of several manifold components, the same topological
structure will emerge in the pair-mesh. This is still true even if the
Voronoi subsetV is only edge connected. We can refer to each pair-
mesh node as a parametric line segment with a parametert ∈ [0,1],
whent = 0 the node resides on the inner vertex ofV and whent = 1
the node resides on the boundary vertex. The pair-mesh thus defines
a parametric mesh deforming from an envelope around the Voronoi
subsetV, to the input boundary surfaceS (see Figure 5). Further-
more, for everyt ∈ [0,1], the mesh is composed of faces that are
a cut in the related pyramid or tetrahedra. These faces are planar
convex polygons. In the case of a face to vertex pyramid the re-
lated cut-face is parallel to the convex base of the pyramid and thus
is a convex planar polygon similar to the base Voronoi face (Fig-
ure 6(a)). A similar argument holds for the vertex to boundary face
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(a) (b) (c) (d) (e)

Figure 5: Deforming from the inner subset of the VoronoiV to the boundary surfaceSusing a parameter fromt = 0 to 1 on the pair-mesh.
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Figure 6: Three Different convex iso-faces for the three element
types of the solid mesh.

tetrahedra: the cut-faces are triangles similar to the boundary De-
launay triangles (Figure 6(c)). For an edge to edge tetrahedron the
cut face is a quadrilateral. However, each two opposite segments in
the face are parallel to the Voronoi edge or to the boundary Delau-
nay edge. Thus, the shape is a parallelogram and therefore planar
and convex (Figure 6(b)).

3.1. Data Structure

We use a single data structure to represent the tetrahedra, their
connectivity, the related model boundaryS and the Voronoi dia-
gram subsetV. We define an extension of the DCEL data struc-
ture [dBvKOS97] for the non-manifold case of this composite
structure. Each face in the structure is represented as two half-faces
with a dual pointer from one to the other. Each half-face polygon
is represented as a doubly connected edge list similar to the origi-
nal DCEL structure. However, each half edge includes an additional
pointer to its opposite half edge in the dual half-face. Each half-face
edge list is right handed oriented with respect to the normal of its
side. This way we can iterate on edges around a half-face polygon
and also iterate on faces around a non manifold edge. Moreover, in
the case of Voronoi diagram cells or in our pyramid structure the
entire data set is represented as a set of manifold meshes (one for
each cell) that are connected within them using the ordinary DCEL
pointers, and are connected between them with the new half-face
and half-edges pointers (see Figure 7).

Using this structure every face-connected part of the inner-subset
of the Voronoi diagramV is represented with a manifold mesh that
wraps it. However, the dual pointers provide the important link be-
tween the two sides ofV for the Voronoi faces, edges and vertices.
Another advantage of this structure is the simple method to check
for folded pyramids. Since the non-manifold DCEL structure im-
poses consistent half-edge orientation, we can use the edge order
as a reference. Using one of the base faces and its opposite ver-
tex, a folded pyramid would have a negative volume. The enhanced
DCEL data structure also restricts the pair-mesh validity as a par-
tition of the volume. This is because all the elements (pyramids or
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Figure 7: Illustration of the non-manifold DCEL data structure el-
ements: (a) Two adjacent cells (b) Each cell is a standard manifold
DCEL with some of the usual links shown (c) The new half-face
and half-edge new links between cells.

tetrahedra) must have neighbor elements or neighboring boundary
face and all of them are oriented properly.

4. Medial Axis based pair mesh

In general, the inner Voronoi diagram subsetV of the sample points
is not an approximation of the solid object medial axis. In order to
create a medial axis based representation we have to build it on
top of a medial axis approximation. Furthermore, using all the in-
ner subset of the Voronoi diagram leads to a structure with space
complexity of the order of the 3D Voronoi diagram. For complex
solids, this may lead to impractical time complexity for operations
on this structure. Using only the subset of the Voronoi diagram that
approximate the MA reduces the structure size substantially. In or-
der to approximate the medial axis as a Voronoi subset we follow
a similar approach to the filtering scheme of [DZ02]. When a sur-
face mesh is given the vertices normals are estimated using discrete
curvature normal [MDSB02] otherwise we use the original scheme
of the pole direction. After the filtering process we remain with a
subset of the Voronoi which approximates the MA, which we will
denote asM (See Figure 8).

In contrast to the inner Voronoi subsetV and the tcocone bound-
ary surface reconstruction of the previous section, using the filtered
MA approximation we no longer have a direct mapping between
the boundary elements ofS and the inner Voronoi elements ofM.
The smaller subset of the Voronoi elements inM are mapped only
to the sites of which part of their Voronoi cell is included inM.
Therefore, we must extend the scheme used for the Voronoi based
structure to construct the pair-mesh based on the MA approxima-
tion M.

Each Voronoi face inM is connected, as before, to its site on the
boundary with a face to vertex convex pyramid. Each Voronoi edge
in the M is closest, for general position input, to 3 sites. The De-
launay edges between pairs of such sites are dual to Voronoi faces,
which were removed in the filtering process. However, in this case
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Figure 8: The inner Voronoi diagram subsetV of the head figure
and the set of faces that are removed (yellow) in order to arrive at
an approximated medial axisM (blue).

these Delaunay edges are no longer edges of the boundary surface.
As an extension to the former structure, we find a path of edges on
the surface between such pairs of sites. We take the shortest path
between the pair of sites on the boundary as a reasonable map to
the Voronoi edges. For each of the edges in the path we create an
edge to edge tetrahedra, and thus create a chain of edge to edge
tetrahedra between the face to vertex pyramids of the sites. This
phase of the algorithm is not guaranteed to succeed as will be de-
scribed below. The edge paths must not cross each other, although
they may share boundary edges. An additional restriction is that all
the tetrahedra created must have a positive volume with respect to
the orientation of their half edges (no flipped tetrahedra).

After finding all pairs of sites that should be linked by an edge
path there are two cases. The first case is a manifold edge that only
one of its Voronoi faces was removed. Such edge will have one pair
of sites to be linked. The second case is a skeletal edge that has two
adjacent faces that were removed and thus two site pairs. As we
must use only boundary edges that form a positive volume (valid)
tetrahedron with the Voronoi edge, we search for a possible path
in a small sub-mesh neighborhood around the segment connecting
the two sites. Edges that create valid tetrahedron are gathered to a
sub graph. We now perform a Dijkstra single source shortest path
algorithm on the sub graph with the edges length as weights. If
the sub graph is connected such path will be found. In order to
increase the possibility for path existence we apply a subdivision
on the triangles connecting the centroid to the triangle vertexes and
edge centers. After all the paths are successfully found, we check
that there are no two paths that cross each other (see Figure 9(b)).

At the end of this phase, the boundary is segmented into a set
of closed polygons. Each polygon includes key vertices, which are
one of the Voronoi sites corresponding to a Voronoi face inM, and
creating the face vertex pyramids. The paths of edges between these
key vertices belong to edge-edge tetrahedra that sit on top of edges
in M (Figure 9). Hence, for each set of boundary faces enclosed by
one of these polygons, the visible part ofM from this set is a single
Voronoi vertex onM. This vertex is now connected to the boundary
faces using a vertex-face tetrahedra to complete the pair-mesh solid
representation.

(a)

(b)

Figure 9: (a) Example of the key vertices forming the pyramids with
the medial axis faces (purple balls), and the paths of edges found
between them (red). (b) Non-crossing paths found using Dijkstra
algorithm with some additional triangles subdivision.

The most difficult of the above construction phases is finding
the edge pyramids. The first problem that may arise follows from
the fact thatM may not have the same topology structure as the
solid. For example, some threshold values in the filtering stage may
lead to the creation of holes inM. Such holes may lead to the con-
struction of an edge path from one side of the model to the other,
crossing other edge paths.M may even have a different number
of components from the solid object. Another problem may occur
when we have complex ‘bays’ inM. Skeletal edges in these bays
may only be connected to the boundary with flipped tetrahedra. All
these may prevent the creation of a valid pair-mesh structure. We
currently demonstrate our methods for input sets where such cases
do not occur. Nevertheless, these cases can in fact be seen as re-
strictions on the subset of Voronoi elements that approximate the
medial axis. As the valid structure presents a continuous map be-
tween the MA approximation and the boundary, finding this struc-
ture enforces the MA to have similar topology structure as the input
object, and thus improves approximation.

Figures 10, 11 and 12 illustrate the different elements which
create the solid pair-mesh representation. Figures 13, 14 and 15
demonstrate the iso-value manifold meshes between a wrapped
mesh around the medial axis approximation until the object’s
boundary mesh.
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(a) (b) (c) (d)

Figure 10: (a) The approximated medial axis of a ball enlarged by a factor of around 100 (b) The face-vertex pyramids of the ball: note there
are much fewer such pyramids than in the case of the non-filtered Voronoi. (c) The paths of edge-edge tetrahedra added between the key
vertices of the boundary (d) The solid ball with all tetrahedra.

(a) (b) (c)

Figure 11: (a) The face-vertex pyramids of a cylinder (b) The paths of edge-edge tetrahedra (c) The solid cylinder with all tetrahedra.

 

(a)

 

(b)

 

(c)

Figure 12: (a) The face-vertex pyramids of a wheel model (b) Including the edge-edge tetrahedra (c) The solid wheel with all tetrahedra.

(a) (b) (c) (d) (e) (f) (g)

Figure 13: The iso mesh interpolating between the medial axis and the boundary of the ball at varioust values: (a)0.001, (b)0.003, (c)0.01,
(d)0.05, (e)0.1, (f)0.5, (g)1.0. Note that the small value balls (a)-(f) were scaled. The non scaled sizes can be seen to the right of (d)-(f) balls,
all others are too small to be seen in scale.
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(a) (b) (c) (d) (e) (f)

Figure 14: The iso mesh interpolating between the medial axis and the boundary of a Cylinder at the followingt values: (a)0.001, (b)0.1,
(c)0.3, (d)0.5, (e)0.75, (f)1.0.
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Figure 15: The iso mesh interpolating between the medial axis and the boundary of a Wheel model at the followingt values: (a)0.001, (b)0.1,
(c)0.3, (d)0.5, (e)0.75, (f)1.0.

5. Conclusions

In this paper, we have developed a new approach to represent the
volume of an input solid by an approximated skeleton based 3D
mesh. This representation uses recent results on mesh reconstruc-
tion as well as MA approximation algorithms based on the Voronoi
diagram of sample points. The result volume mesh is a paramet-
ric map between the model surface and its skeleton, and its vertex
pair-mesh connectivity can continuously deform between the two,
realizing a parameterizations of the solid volume.

It is interesting to distinguish between the real MAT and our
parametric map. The MAT maps the MA to the boundary using
a scalar function, and the object can be retrieved using the union of
the balls centered on the MA. In our pair-mesh the mapping is done
usingvectors(i.e. size and direction) which associate points on the
MA to points on the boundary (and vice verse). This map can be
many to one in any direction, but not many to many.

In ongoing work we explore the creation of the pair mesh struc-
ture using more robust approaches. We are also looking at several
applications for using the volume partition structure. For example,
for skeleton-based meshing, for skeleton-based animation or free-
form deformation. The volume cells around the rigid skeleton can
restrict the deformation leading to a well behaved deformation of
the volume.
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