
An Architecture for Ray - Bezier patch intersection

Peter De Vijt~ Luc Claesen; Ruga De Man l

IMEC, Kapeldreef 75, 3001 Reverlee, Belgium
e-mail: devijt@imec.be

Abstract

A new fast ray - patch intersection algorithm is presented. The algo
rithm correctly handles all ray - patch intersections. A number of param
eters are derived from a numerical analysis of the algorithm and the data
pad is re synthesized for higher accuracy. A global architecture for an
ASIC for intersecting a ray with a bezier patch is presented. It is shown
that a cache combined with pre pads can reduce the required memory con
siderable with an extremely small performance penalty. Attention will be
paid to the scheduling and control problem. Several high level optimiza
tions are presented that make efficient scheduling possible and decrease
the calculation time considerably.

1 Introd uction

In recent years there has been a lot of interest for direct ray patch intersection
calculation in hardware. A number of architectures have been proposed [PK87a]
[PK87b] [BSC89] [Sch87] [vdV89]. These papers mainly concentrate on the
data path, and few or no details of the control and scheduling algorithm are
presented. A number of problems, due to the recursive nature of the algorithm,
still exist.

Since t he implementation of the different sub blocks 'of the data pad is
straightforward , not much detail will be given . Instead more attention will
be paid to the numerical aspects, the data management and the scheduling
problem. Some high level optimizations, that result in a beLier schedule and
faster execution will be presented . Several errors in previous implementations
will be corrected .

·Supported by a gra.nt from l\VONL
fIMEC, Professor at KUL
lIMEC, P rofessor a t KUL

http://www.eg.org
http://diglib.eg.org

2 O verview of inter section a lgorit hms

The intersection calculation of a ray with a patch can be done in several ways:

• Numerically with interval Newton iteration [Tot85]' quasi Newton op
timization [JB86] and control mesh refinement followed by a Newton it
eration [SB86] [LTM87] .

• Algebraically with a resultants method [Kaj82] .

• Also subdivision methods can be used in three [Cla79] [LCWB80] [LR80]
[Yan87] or two dimensions [Rog85] [Wo089]. [NSK90] also handles trimmed
rational patches with an adaptive subdivision algorithm.

For a hardware implementation an algorithm with a highly repetitive inner
loop and not too much exceptions is needed. Only the simpler subdivision al
gorithms seem to be suited. A number of approaches have been tested based on
the three dimensional subdivision algorithm for a number of patches: [PK87a]
[PK87b] [BSC89] describe architectures for bezier patches, [Sch87] [vdV89] de
scribe architectures for rational B-splines.

3 The s ubdivision algorithm

3.1 t h e a lgo

The algorithm that was chosen as a basis is the same as in [PK87a] [PK87b] .
The patches are scanned in a depth first order. The following algorithm is
executed on every patch on the stack:

• pop patch from stack and subdivide

• determine bounding boxes for the sub patches

• calculate the intersection point of the ray with these bounding boxes

• sort them

• if there is a hit

if termination requirement met

* if there was an intersection compare if the new one is closer

* otherwise it is the first intersection

- else push the sub patch on the stack

This algorithm only serves as a basis, several optimizations will be presented
in the following sections.

94

3.2 Inverse direction

The algorithm requires 3 divisions per sub patch to calculate the intersection of
the ray with the bounding box. Since these factors stay the same for a given ray
throughout all the recursions, they can be stored and reused. Previous work
did however not mention how these factors were actually calculated. Since an
division requires an important amount of area and time, this has an impact on
the implementation.

These factors can however be derived without divisions. For a given ray
direction d = (a,b,c) the vector d' = (l/a,l/b,l/c) is to be calculated .. The
vector d' and the vector s.d' represent the same direction. A constant scaling
factor s = a.b.c can be chosen. The vector s.d' then becomes s.d' = (b .c, a .c, a.b)
which can be calculated with multiplications only.

3.3 Iteration depth

The parameter space is halved every iteration and the real world space is ap
proximately halved . The more the parameter space is uniform the more this
approximation holds. The accuracy needed for the intersection point depends
on the size of the projected patch on the screen. Most authors use however a
fixed accuracy. Different authors propose a different required accuracy: For a
512 by 512 resolution [LTM87] and [Yan87] propose 2-6

, [Tot85] and [NSK90]
propose 2-10

, [BSC89] and [Wo089] propose 2- 12
, [JB86] proposes 2- 16 and

[PK87a] [PK87bj propose 2- 9 for display purposes and 2-21 for high accuracy
solid modelling. The different authors do not agree well.

From the results of some experiments we estimate that for a resulting sub
patch to be sub pixel resolution about 2- 10 for a 512 by 512 image and 2-12 for
a 2k by 2k image is needed. If super sampling or stochastic sampling is used,
a factor 2-4 on top of this is needed. The total accuracy needed ranges thus
from 2-10 to 2- 16

. From 10 to 16 subdivisions are needed.

4 N ulnerical analysis

4 .1 Number representation

The number representation should satisfy two conditions:- (i) small implemen
tation possibJe and (ii) high accuracy of the results. A small implementation
dictates the use of integer arithmetic. A transformation will be used to satisfy
the second condition.

From the convex hull property of bezier curves it follows that the range
of the control points of the sub patches is bounded. This makes it possible
to transform the control points to a representation that is has a limited range
such as an integer representation . Several transformations are possible. The
transformation [a b 1 -+ [0 Cb - a)2 - n 1 seems a good compromise between

optimal filling of the transformed data space and ease of transformation (max
imally one bit is spoiled and only addition and scaling with power of 2 are
needed)

If the relation b > 2Tn(b - a) with m ~ 1 holds the n bit integer repre
sentation will have the same accuracy as an n + m bit mantissa floating point
representation. (since the floating point representation will have m leading l's) .
Only in the cases where m < 1 the floating point representation will be more
accurate for a part of the interval [a b/2] and will have the same accuracy
for the interval [b/2 b].

The patches can be scaled during a pre processing step, the ray has to
be transformed during the execution phase. In contrast to [PK87a] [PK87b]
[BSC89] the ray is translated to the bounding box origin only if the ray origin
was outside of this bounding box, otherwise not all cases (e.g. reflected rays)
can be handled correctly.

4.2 Error propagation

The algorithm recursively subdivides patches until a stop criterium is met. Since
the subdivision section uses additions and down shifts a truncation error will
be made. Every iteration this error is propagated and a new error is generated.
It is possible to reduce the total error by reducing the number of truncations.
This can be accomplished by shifting down only after a number of addit ions
instead of after each addition. If first addition is done with n bits, the next one
will have to be done with n + 1 bits and so on. It seems that the price that
has to be paid for decreasing the error is an increase in area. A further analysis
shows that t his not the case. The truncation error f: for shifting down is

!
I ,.

Figure 1: The curve subdivision data pad

2~-J]
2~

I
!
I
T

It is clear that when the result of every operation is rounded down, every
iteration the control points will drift down. If a constant is added to the number

96

before shifting down the error is:

a+8
L ~ J with 8 < 2n ~ £ E[- 20n

The bounds are equally centered around 0 if 8 satisfies:

{
8 = 2n - 1 - 1
8 = 2n - 1

Every iteration the error grows due to propagation and generation:

The error range after 1 and 16 iterations for truncating and rounding for
the different configurations is:

I iterations I after I truncate round

1 1 [0.00 1.50 J -
3 [0.00 0.87] [-0.50 0.37 J

6 [0.00 0.98 1 [-0.50 0.42 1
16 1 [0.00 16.33 1 -

3 [0.00 11.33 1 [-6.06 5.48 1
6 [0.00 10.33 J [-5.48 4.95 J

The rounding after 3 adders has about two bits more accuracy than the
truncation after one adder. The word length of the version after 3 adders can
be two bits less than the version after 1 adder.

The following table summarizes the cost for the subdivision of a curve with n
bit control points when the shift down is done after a different number of adders.
The generic case is the cost for an n bit implementation, the compensated case
takes the required accuracy into account:

after generic compensated I
FA mux FA mux

1 6n 6n - -

3 6n+4 6n 6n-8 6n-8
6 6n+13 6n+6 6n+l 6n-6

As can be seen from the table, the case after 3 adders is the best. Since the
number of bits is smaller than the original case, there is also a reduction in the
required memory. Note that for a n bit implementation, the intersection point
can only be calculated with n-2 bits of accuracy.

Instead of using additional adders for rounding, the appropriate 8 can be
injected in the adder network by using the carry input. A different 8 is needed
for each output. A set of 8; 's have to be chosen so that the rounding can be
performed for all outputs.

The sets (1,1,1,0,0,0)' (1,1,1,0,0,1) and (1,0,1,1,1,0) satisfy these conditions
for the case after 3 adders. For the case after 6 adders, there is no set that
satisfies the conditions, and additional adders would be needed .

In a bit serial implementation as in [PK87aJ [PK87bJ the subdivision can
be done exactly in a subdivision chain at the cost of a reduced pipeline effi
ciency since pipeline bubbles are inserted. The subdivision in stages however
introduces errors since a fixed number of bytes is saved. [PK87a] [PK87b] don't
account for this .

4.3 Normal calculation

The normal will be calculated as a product of the tangents 111 the u and v
direction.

The tangent of a curve

3

G(t) = L B i ,3(t)Pi

i=O

is

3

G'(t) = L B;,3(t)Pi

i=O

Evaluated in t = 1/2 this becomes

Since only in the direction is needed and not the length, the factor 3/4 can be
dropped. If the patch is fiat enough this can be further reduced to

Since a subtraction of two almost equal numbers is done during the calcu
lation of G'(t)h/2 a catastrophic cancellation can occur. This can be avoided
by making sure I - Po + P3 1 is bounded by a lower limit so that the relative
error on G'(t)ll/2 has an upper bound . The relative error is then given by
Er = I - Po + P3 1-1

.

The tangents need to be known with relative error Ert .:=- Ern /2 for the nor
mal to be known with relative error Ern This means that the minimal size of
the bounding box for the patch be I - Po + P3 1 > 2E;'; . If the normal is to
be known with a relative error of Ern = 2- n n+1 more bits are needed .for the
normal calculation than for the intersection calculation. The total number of
bits required is thus i + 2 + n + 1 for a relative error Ei = 2- i on the intersection
point and an relative error En = 2- n on the normal. An implementation that
calculates intersection point and normal needs a lot more bits than an imple
mentation that only calculates the intersection. It will be shown in section 7.4
that this can be handled efficiently with multiple precision operators .

98

5 Architecture

5.1 The data pad

From some early experiments it was clear that a word parallel implementation
could be integrated. Every cycle 4 words are dealt with in parallel. This means
that every cycle a curve can be subdivided in the block Sub (see also fig. 1) .
The RC block is a block that transposes a 4 by 4 matrix (this is needed to
operate on the 2 parameters u and v of the patch) The implementation of the
data pad itself is straightforward. It is almost a one to one translation of the
signal flow graph.

Figure 2: the complete data pad

Fig. 2 gives a general overview of the data pad. The left part is the pre
processing pad. The operators are grouped according to their parameter space.
The dashed sections can be repeated several times. The block consists out of a
number of subdivision (Sub) and select (Sel) blocks for the first parameter, a
transposition block (RC) and more subdivision and select blocks for the second
parameter. (more on the reason for these pre pads in section 5.3) The output
is fed to the core and the memory.

The middle part is the actual core. A curve is subdivided (Sub) in the first
parameter, lout of 2 is selected (Sel) , it is transposed (RC) and subdivided
(Sub) in the second parameter.

The right part does the intersection check. A bounding box is calculated
(Box) , these values are fed to a sequencer (Seq), the parameter range is cal
culated for one dimension (Param), grouped for all dimensions (Range) and
finally sorted according to the minimal distance. This information is put on
the st ack.

5.2 The stack

The information that is required for the next iteration are the data of the
current patch and its path. In this design the stack holds the path definitions
and pointers to the actual patch data (not the data itself) . Since the maximum
iteration depth that will be required is 16 and each level holds a maximum of
4 sub patches, a stack for (16 - 1) . 4 = 60 places is needed. In theory only
(16 - 2) . 3 + 4 = 46 places are needed since for every iteration there are a
maximum of 4 patches saved and one is read . Implementing this in silicon
represents however some difficulties. [BSC89] uses a set of 12 stacks for a
maximum subdivision level of 12.

At every level the 4 sub patches have almost the same path. The number
of places on the stack can be reduced to 15 places and a set of valid bits for the
4 possible children when pre pads are used (more on this in the next section) .

5.3 The memory

5.3.1 Requirement

The control points for each bicubic patch need 16 · 3· n bit of storage. For a 18
bit implementation this is 108 bytes. The total amount of data that needs to
be saved is thus 60 . 108 = 6f{3 bytes. This is a considerable amount of data.
Some techniques can be used to reduce this number.

5.3.2 Port reduction

Each cycle 4 words need to be read and 4m words need to be stored, with m
less or equal the number of sub patches generated per cycle (only the valid
ones need to be saved). A problem is that at the moment the sub patches are
generated , it is not known which ones need to be saved. In hardware 4 ports
need to be provided. It is rather impossible to organize the memory so that the
memory can be used efficiently. Room for 60 patches instead of 46 needs to be
provided. This has to be provided for every independent patch that is needed
to keep the pipeline filled (see also section 5.3.3)

To reduce the number of words that need to be stored and to be able to use
the memory efficiently a pre processing pad is used to calculate one out of m sub
patches. This way only the parent of the sub patches need to be stored. This
can be organized efficiently. The technique of the pre pads is similar to what
[PK87a] [PK87b] [BSC89] [Sch87] use for the reduction of the total memory
(subdividing in stages) . One pre pad reduces the input port requirement for
the memory and the memory size with a factor 4.

100

5.3.3 Memory reduction

The memory can be further reduced with the same technique as for port re
duction. 'With n additional pre pads the sub patch can be deduced from a
patch n levels higher in the hierarchy. n additional pre pads reduce the mem
ory requirement maximally with a factor n+1. The effect of the nth additional
pre pad is only a (n+1)/n storage reduction . T here is a trade off between the
extra space needed for the data pad and the reduced memory. Since a word
parallel implementation is used, there is no penalty as in [PK87a] [PK87b] for
introducing pipeline bubbles.

The extra pre pads make the pipeline longer a nd impose extra burden on
the scheduling. [PK87a] [PK87b] argument that a new sub patch can be sched
uled before the outcome of the previous subdivision is known if the outcome
is presented before the subdivision in the last pre pad is done. This is clearly
not the case: for every backtrack the pipeline needs to be flushed with such a
schedule. If k is the number of pre pads it is possible that the calculated and
the needed sub patch have less than k-1 common branch directions. In this case
the pipeline needs to be flushed .

Independent patches can be used to fill the pipeline. These independent
patches need however additional storage. Introducing more pre pads does not
necessarily decrease the memory requirement.

6 Cache D esign

A cache is used to further reduce the total required memory. Since the access
pattern of a stack is rather regular, a stack implemented with a cache can have
a good performance. A modified LRU scheme has been used as a replacement
policy. The patch with the but one lowest level will be replaced if the cache is
full. In contrast with a normal cache implementation the replaced information
will not be written to a memory lower in the hierarchy but will be simply
discarded. This is done because otherwise a considerable amount of data would
have to be transferred and the pipeline would have to be halted in the mean
time. Data that is overwritten will later be recalculated from the lowest level
patch available when needed.

To test the performance of the cache, access traces for the subdivision algo
rithm for 6 different data sets with 27 light sources were generated. The effect
of some parameters was studied

6 .1 Cache size

Fig. 3 shows the influence of the cache size on the relative execution speed
for different data sets. The more patches that can be stored, the closer to 100%
the relative execution speed gets. Once below cache size 4 the execution time
steeply increases. For cache size 1 and a mixed data set the relative execution

125

120

.~ +
.., 115

c
o,
" u
cv
u
X
cv

'" >,

110

~
'" 105
"

" x

o
.~ ~

"

········+. ·· ·· ···9 · · ··········· · · · · · ~ ·
x
o

+ " * LJ.

. . .
... ~PP.i.Ag.t.~._ pi1:.e_~ .t
pre pad~: 0 " fiLa t " 0 i
Fataset i : "light" +

"medium" 0
"inix" x

....... : .. twl~.t .: ~ ... L.
"rancom ")(.

·1··

100 ... ~ o ~ : . J .. J i
.~ l i• ••• • • ····· .. ······ io·

o 2 4 6 8 la 12 16 18

cache size (patches)

Figure 3: relative execution time vs cache size for different data sets

>.
u
c
cv
5-
cv

" ~
cv
:>,
'",
"

100

Ba

60

40

20

o
o

...... ~ ~ -..... -..... --: ... -... .

~ ' ! "

+
...... 0 '- ... -.~ .

·.·· ... 0

o

x
x

.. 15

2

o

....... ~ + ·oa .. t~··· s·e·f-····· ~ ·i iTllx···

map~ing : ldirect
pre ;pads : i 2
cache size: 1 "2" 0 i

. i "3" +
.~ ~ ; "4" 0 ;

...... 1" : '5';" "x"T'

: " 6" "

.••.....• ~.........•..• ·1·, ··

... :... ; :

6 10 12 14 16 18

levels recovered

Figure 4: frequency of recovered levels for different cache sizes

102

time is more than 500%. The flatter the patches in the data set the less influence
the cache size has (since there are fewer backtracks) .

Fig. 4 shows the relative frequency of the levels that have to be recalculated
due to previous overwriting. The bigger the cache the less higher levels need to
be recovered. This also means the less recalculation cost.

6.2 Number of p r e pads

III

.~
u

c
o ...
u

" U
III
U
X .,
.,
> ...
.LI ..
.-<
41 ...

125~---.-----r-----r----.-----r----.-----.----.-----~

120 ,

115))

: :

........ <i.~t~ ... ~.!'.~. ; ... ~.'!' _.i..
mapping :
pre ?ads :

associative
; '0' 0 i
: '1' + ,
! "2" 0 :

...... , L:.~:. x i

110 ; ·_ ·1 1· _) -............. : · ·f ·+

o
105 L .. · .. ·· .. · ·: .. · · ·~· .. ··· .. ·r · ·· .. ! · · ···· .. i .. · .. -.. ·· ·-·T· .. · ·· ·L ~ -........ "'l"

~ ... i 0

100 ~ IiI &· · t ~ ~ ~ ~.

o 2 4 6 8 10 12 14 16 18

cache size (patches)

Figure 5: relative execution time vs cache size for different number of
pre pads

Fig. 5 shows the influence of cache size on the relative execution speed for a
number of pre pad configurations. Increasing the number of pre pads increases
the execution speed for a given cache size. The cache size limit below which
the execution time steeply increases, decreases with increasing number of pre
pads.

As can be seen from fig. 6 the hit rate is almost 100% for cache sizes above
4. For a higher number of pre pads this starts already at cache size 2 and 3.

6.3 Mapping function

A number of different mappings are possible ranging from fully associative over
n-way set associative to direct mapped

Fig. 7 shows that there is not much difference for direct and associative
mapping. Since direct mapping requires less hardware, direct mapping will be

. . : :

100 ···· · ·· ~········~···· · · · ·t ······ : · · ····· ~········ e ········~ ••• _ ~• ~ • ~ .

95

to . datci set: mix :
..... ~ .. ······0 ·· .. · ... !.... ··l················ -1" .~ ~~P~~a~d····~~·~u~;·~;Jre

· , . · 1· + ,
· . . · 2· 0

90 ~ !•••.. j .•..••. .. ; ~ ; _ ; .. ::3.': x .. ,!, .

85
Q)

'-'

'" k 80
'-' ." .c

75 ······;··················t·············· ·····:·· .. -•.................. ; ~

7 0 i .. · ; :. ,

65

60 L-____ ~ ____ -L ____ ~ ____ ~ ______ L-____ ~ ____ -L ____ -L ____ ~~

o 2 10 1 2 14 16 18

cache size (patches)

Figure 6: hit rate vs cache size for different number of pre pads (asso
ciative mapping)

100 · ti··· ·····~ ·· · ~ tp ······ ti ···· .. ~ , • ~ , • •• ~ •• .

99.9•.. . .. ~ Q . ······f ····· ... t. "
··-d~·t·~·-·~·~·t· ~ : mi~······· · ···:·· ..

'"
99 . 8

c ." 0. 99.7
0.

pre !pads , ! . 0 • 0 ,
. .- .--... ~ .. ············ · · · ·!····················~ .. "'·r :f ... ! ..

: ·2· 0 '
·········,········ ···:········ ······ : ····+· 3·····" ·,··

·········;·······0········, .!
+

'" e 99.6 ~ .. .
III
III 99 . 5 '" III
> 99 . 4 .. -." f··· ... ~ ~

..
. " 99 . 3 '0

Q) ... 99 . 2
'" ..
'-' 99.1 ." .c

99

98 . 9 ········i·

98.8
0 2 6 10 12 14 16 18

cache size (patches)

Figure 7: hit rate direct vs a.ssociative mapping for different cache sizes
and pre pads

104

...
.,
E,
c: o

-< ...,
:;I
U .,
U
X .,
.,
>,,
...

125r----.-----.------.----.-----,----.-----.----,-----"

~ ~
120 ; ;. - ,i ~I>I>~!\g :. :q~ • . !:.c;i ." L

pre pad~ : 2 -fiat- 0 :

pataset ~ : "light"' + j
"med~um" 0

~ inix" x l
. ~. t.~:~?t. .~ 6 ;

"ran~om ")(
115

110)j....... " ,.... -. : ;

105 ". -...... ~ ~ -... ,;..... ,

1

100 l .. J ·* ~·· .. ·• · ·i ·· . .. ·· ~ ·•· ·~ · ~ io

2 4 8 10 12 14 16 18

cache size (patches)

Figure 8: relative execution time vs cache size for different examples
with direct mapped cache and 2 pre pads

implemented _

Fig. 8 shows that a cache size of 2 and direct mapping gives a relative execu
tion speed below 103% for all data sets. This configuration will be implemented.

7 High level optimizations

7.1 Independent data scheduling

In a pipelined design it is of high importance that the pipeline can be used effi
ciently and that there are no pipeline bubbles, stalls or flushes. Since there are
data dependencies from one iteration to another, only one iteration per patch
can be scheduled at the same time, as has been demonstrated in section 5.3.3.

Due to area limitations, during every iteration only 2 sub patches can be
calculated . Two iterations are needed to divide a patch in its 2 dimensional
parameter space. A normal implementation would therefore need 3 iterations
to calculate all 4 sub patches Aa, AI , Ba and B l for a patch R: R -; (A, B),
A -; (Aa, AI) and B -; (Ba, B I)- Notice that the 3 operations have a strict
ordering.

With small additional hardware, the patch can be subdivided in 4 sub
patches in only 2 iterations: R -; (Aa , Ba) and R -; (AI , Bl) ' This time

the 2 operations have no strict ordering and can be scheduled independently.
This means that the total number of patches needed to fill the pipeline with
independent patches is reduced by a factor 2.

7.2 Optimal dimension scheduling

One can make two observations from the previous algorithm and its implemen
tation:

• sometimes a subdivision in a certain dimension does not impose extra
restrictions on the parameter space of the patch at the intersection

• the pre pads are used for memory reduction, but do not really contribute
to a faster execution

B B

!Jx

(a) (b)

Figure 9: Subdividing a curve in x (a) and in y (b) dimension

Fig. 9 illustrates the first observation for curves: if a curve is subdivided in
the x dimension, the bounding boxes for both sub curves are both intersected
by the ray and the search space can not be reduced. If the same curve would be
subdivided in the y dimension, the search space is effectively reduced . This is
possible because the ray traverses the full x dimension of the parent bounding
box and only a part of the y dimension.

Vlithin the bounding box the ray covers a box (.6x, .6y) that has to contain
the intersection point (if there is one). If the ray covers a large portion of a
c-ertain dimension, it is most unlikely that the ray will only intersect with one
su b patch. If the ray covers not more than a certain fraction of the bounding
box (here chosen to be 1/2) it is likely that it will only intersect one sub patch.

If in this example, first the control points of the 2 sub curves were to be
calculated in the y dimension, the control points of only 1 sub curve are to be
calculated in the x dimension. This means that less work has to be performed.

106

Likewise for patches, only the control points of the sub patches that are
not already eliminated by a check in a previous dimension, have to be further
subdivided to reduce the search space. Sometimes only one dimension has to
be subdivided to reduce the parameter space. The other dimensions need not
be further subdivided for the current subdivision level. They will not reduce
the search space any further. Since with the pre pads a number of subdivisions
can be done at the same time, there is no need to schedule the other dimensions
right away: only if the next level is needed, the previous level can be subdivided
at the same time in the pre pads. This reduces the number of cycles that is
needed to find the intersection.

It is important that a good ordering of the dimensions is obtained. This
can be done in the following way. If the following relation is met, it is likely
that the subdivision in the x dimension will restrict the search space (6.RaYi is
the extent the ray covers in dimension i, 6.ti is the same extent in parameter
space, di the directional coefficient of the ray and 6.BBi is the extent of the
bounding box):

6. Rayx 1
6.BBx < '2

since 6.Rayx = 6.t . dx this becomes

26.t . dx < 6.BBx

This would take extra multiplies and since there is an error on 6.t the compar
ison is imprecise. A better solution is to take the dimension with the smallest
ray to bounding box extent ratio :

6. Rayx 6. Rayy ---"-- < --~
6.BBx 6.BBy

and thus also:

6.BBx 6.BBy --- > ---"-
6. Rayx 6.Rayy

which since 6.Rayx = 6.t · dx can be reduced to:

6.BBx 6.BBy
--.::...>--~

6.t . dx 6.t . dy

or since 6.BBx/dx = 6.tx with 6.tx the range of parameter values [or intersect
ing the bounding box planes perpendicular on the x-a.-xis

6.tx > 6.t y

These values have already been calculated for the calculation of the parameter
range for the ray for the ray - bounding box intersection. The dimension with
the largest 6. t range is t.o be handled first .

The scheduling algorithm for one iteration level then becomes:

• schedule the dimension with largest .6.t

• depending on p the number of valid sub patches do:

- if (p == 0) ---+ backtrack

- if (0 < p < m)---+ go to next iteration level

- if (m ~ p ~ 4) ---+ schedule next best dimension

The parameter m is a compromise between the speed of an iteration and the
number of children put on the stack. A good value is 2. In the hardware
implementation this will be parameterized.

Some limited performance tests show that this scheduling increases the
throughput by 10-50% depending on the data. The flatter the surface, the
higher the speed up .

7.3 Sub patch scheduling

If only the closest intersection is to be reported, the sub patches can be sorted
in such a way that the first intersection point that is found is the closest one.
This requires a global sorting of the sub patches. All proposed implementations
[PK87a] [PK87b] [BSC89] [Sch87] have however only dealt with a local sorting
of the sub patches. This means that the first intersection point found is not
necessarily the closest one. To guarantee that there is no closer intersection all
patches on the stack have to examined against the up-to-then closest intersec
tion point . Only [PK87a] [PK87b] handle this correctly. Every subsequently
calculated sub patch for which the ray bounding box intersection point is fur
ther than the already found one is discarded. Note that if the minimum value
of the range ~t were stored for every sub patch on the stack this one iteration
per patch on the stack could be saved.

It is however clear that in this case more iterations than necessary are
needed to find the closest intersection point since the optimal search path is not
followed. An implementation for a global sorting takes a lot of area. Moreover a
good upper bound for the stack is difficult to identify and the real upper bound
is quite high compared to the normal stack length (2n - 1 vs (n - 2) . 3 + 4).

The following relations for minimal and maximal bounding box intersection
distance for level i and level j > i hold:

tm.in ,i < tTnax ,i

tm.in ,i+l > tTnin,i

tmax,i+l < tTnin,i

~ tTnin,j > tm.in ,i

~ tmin ,j < tm.in ,i

and thus also for any path from level i to level j > i

t m.in,i < tmin,j < tmax,j < tmax ,i

For two different paths a and b from level i to level j the ordering is kept if and
only jf

108

the ordering is then:

and for any level j > i

Thus based on a local ordering, a global ordering can be deduced. The only
place where global and local ordering are not equal is when the bounding boxes
of 2 sub patches overlap. This means that only the sub patches with local
overlaps that are still on the stack have to be checked after a first intersection
is found.

The hardware implementation will save the local overlap bit for every sub
patch that is placed on the stack. After a first intersection is found, only the
patches on the stack with the overlap bit set need to be checked. This way the
number of iterations after the first intersection is found is reduced.

To reduce the number of intersections before the first intersection point, it
is not only necessary to detect an overlap, but also to know what the actual
value is. This needs however excessive register storage (n2 • m . 4 bits for a n
bit implementation with m subdivision levels). In this implementation only the
2 smallest values are stored and the rest is discarded . This way a number of
overlaps can be correctly handled before the first intersection, the rest is handled
after the first intersection. With a full implementation all of the overlaps would
be handled before the first intersection point.

To cope with the bigger stack, only a stack of 1.5 times the depth first
stack length was implemented. In most cases the sta k will not overflow. If a
stack overflow is detected, the control flow will, from that point on, switch over
to a depth first search. This way all cases can be correctly handled , and the
execution speed is incremented at a small cost..

Some limited performance tests show that this scheduling increases the
throughput by 15-40% depending on the data. Especially silhouette edges are
handled much faster. The flatter the surface, the higher the speed up.

7.4 Multiple precision

If the normal is to be calculated a bigger number of bits is required to do the
intersection calculation. This does not only mean that the data pad gets bigger
and slower, but more importantly that also the memory b'ecomes bigger.

A solution is to calculate the intersection point with limited accuracy (and
thus also a limited number of bits need to be saved), and once the path is known
recalculate t he resulting patch with higher accuracy. Intermediate patches don't
need to be stored but can be scheduled right after they are produced. Since the
path is already known, this can be accomplished with a small number of itera
tions trough the pre pads (several subdivisions can be done in one iteration). A
small performance penalty has thus to be paid since a limited number of extra
cycles is needed.

7.5 Projecting

If the patch is projected on a plane perpendicular to the ray, the intersection
calculation can be done in ill? instead of in lR3 [Rog85] [Wo089] [NSK90]. This
represents a 33% speed up. Due to a better alignment of the projection of
the parameter space of the ray and the real world (the ray coincides with the
new z-axis) less sub patches will be valid, and an additional speed up will
be obtained. A limited test set show a overall 33-60% improvement. If the
intersection point and normal have to be known in real space, the resulting
patch can be calculated in lR3

. Again this can be done in a limited number of
extra cycles. Since only 2 dimensions instead of 3 need to be processed this still
represents a net performance gain (20-50%) ..

This technique can be elegantly combined with the previous technique for
high speed and low storage requirements.

8 Conclusions

It has been demonstrated that a ray-patch intersection algorithm can be ef
ficiently mapped on hardware. A new faster subdivision algorithm has been
presented. A numerical analysis shows that the intersection point and normal
can be calculated accurately when some provisions have been made. The mem
ory requirement for this recursive algorithm is reduced with pre pads and a
cache. Several high level optimizations make efficient scheduling possible and
reduce the calculation time compared to previous algorithms.

References

[BSC89]

[Cla79]

[JB86]

[Kaj82]

K. Bouatouch, Y. Saouter, and J. C. Candela. A VLSI chip for
ray tracing bicubic patches. In VV'. Hansmann, F. R. A. Hopgood,
and W. Strasser, editors, Eurographics '89, pages 107-124. North
Holland, September 1989.

J. H. Clark. A fast scan-line algorithm for rendering parametric
surfaces. ComputeT Graphics, 13:7-11, August 1979.

Kenneth 1. Joy and Murthy N. Bhetanabhotla. Ray tracing para
metric surface patches utilizing numerical techniques and ray coher
ence. In David C. Evans and Russell J. Athay, editors, Computer
Gmphics (SIGGRAPH '86 Proceedings), volume 20, pages 279- 285 ,
August 1986.

James T. Kajiya. Ray tracing parametric patches. In Computer
Graphics (SIGGRAPH '82 Proceedings), volume 16, pages 245-254,
July 1982.

110

[LCWB80] J. Lane, L. Carpenter, T . Whitted, and J. Blinn. Scan line methods
for displaying parametrically defined surfaces. Communications of
the ACM, 23(1):23-34, 1980.

[LR80] J . Lane and R. Riesenfeld. A theoretical development for the com
puter generation and display of piecewise polynomial surfaces . IEEE
Trans. Pattern Analysis Machine Intell. , 2(1):35-46, 1980.

[LTM87] Geoff Levner, Paolo Tassinari, and Daniele Marini. A simple, gen
eral method for ray tracing bicubic surfaces. In Tosiyasu Kunii,
editor, Computer Graphics 1987 (Proceedings of CG International
'87), pages 285-302, New York, 1987. Springer Verlag.

[NSK90] Tomoyuki Nishita, Thomas W . Sederberg, and Masanori Kakimoto.
Ray tracing trimmed rational surface patches. In Forest Baskett, ed
itor, Computer Graphics (SIGGRAPH '90 Proceedings), volume 24,
pages 337-345, August 1990.

[PK87a] R. W. Pulleyblank and J. Kapenga. A VLSI chip for ray tracing
bicubic patches. In Wolfgang Strasser, editor, Advances in Com
puter Graphics Hardware I, first Eurographics workshop on Graph
ics Hardware, pages 125-140, 1987.

[PK87b] Ron Pulleyblank and John Kapenga. The feasibility of a VLSI
chip for ray tracing bicubic patches. IEEE Computer Graphics and
Applications, 7(3):33- 44, March 1987.

[Rog85] D. F . Rogers. Procedural Elements for Computer Graphics.
McGraw-Hill, 1985.

[SB86] Michael Sweeney and Richard H. Bartels. Ray tracing free-form B
spline surfaces. IEEE Computer Graphics and Applications, 6(2):41,
February 1986.

[Sch87] Bengt-Olaf Schneider. Ray tracing rational b-spline patches in
VLSI. Advances in Computer Graphics Hardware Il, Record of Sec
ond Eurographics Workshop on Graphics Hardware, pages 47- 63,
1987. .

[Tot85] Daniel 1. Toth. On ray tracing parametric .surfaces. In B. A.
Barsky, editor, Computer Graphics (SIGGRAPH '85 Proceedings),
volume 19, pages 171- 179, July 1985.

[vdV89] Alle-Jan van der Veen. Intersection tests for NURBS. In IEEE Sym
posium on Computer A rchitecture and Real Time Graphics, pages
101-114, Delft , The Netherlands, June 1989.

[Woo89] Charles \Voodward . Ray tracing parametric surfaces by subdivision
in viewing plane. Th eory and Practice of Geometric A10deling, pages
273- 87, 1989.

[Yan87] Chang-Gui Yang. On speeding up ray tracing of b-spline surfaces.
Computer-Aided Design, April 1987.

112

