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Abstract

Modeling 3D virtual humans has been an active field of research over the
last decades. It plays a fundamental role in many applications, such as movie
production, sports and medical sciences, or human-computer interaction. Early
works focus on artist-driven modeling or utilize expensive scanning equipment.
In contrast, our goal is the fully automatic acquisition of personalized avatars
using low-cost monocular video cameras only. In this dissertation, we show
fundamental advances in 3D human reconstruction from monocular images.
We solve this challenging task by developing methods that effectively fuse in-
formation from multiple points in time and realistically complete reconstruc-
tions from sparse observations. Given a video or only a single photograph of a
person in motion, we reconstruct, for the first time, not only his or her 3D pose
but the full 3D shape including the face, hair, and clothing.

In a first scenario, we estimate 3D human poses from unconstrained video.
Hereby, we leverage optical flow to enforce fluent and time-consistent motion.
While a body model helps to make the problem tractable, it so far lacks hair,
clothing, and personal details. In subsequent work, we reconstruct these prop-
erties, for the first time, from videos of people turning around in a so-called
A-pose. Our method generalizes visual hull reconstruction to articulated mo-
tion by merging silhouette information in a canonical representation. We ad-
ditionally estimate surface colors by stitching full textures from re-projected
frames. Our novel semantic prior helps greatly improving the visual fidelity of
the final textures. Further, we enhance surface details via multi-frame shape-
from-shading. In the following work, we significantly reduce the required input
for high-quality reconstruction to only about eight frames. Additionally, we
speed up the reconstruction time by several magnitudes. We achieve this by
combining the advantages of bottom-up Deep Learning and weakly supervised
top-down optimization at test time. In the final scenario, we again simplify and
accelerate the reconstruction process and further increase the level of detail in
the results. We open up the input to photos of people in various camera-facing
poses and enable 3D reconstruction based on only a single photograph. The
key insight of this work is that single-image 3D human reconstruction can be
performed by transforming 3D reconstruction into pose-independent 2D image-
to-image translation in UV-space. The reconstructed results feature, for the first
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Abstract

time, fine details like garment wrinkles, even on parts that are occluded in the
input image.

In this dissertation, we explore various approaches to monocular image and
video-based 3D human reconstruction. We demonstrate both straight-forward
and sophisticated reconstruction methods focused on accuracy, simplicity, us-
ability, and visual fidelity. During extensive evaluations, we give insights into
important parameters, reconstruction quality, and the robustness of the meth-
ods. For the first time, our methods enable camera-based, easy-to-use self-
digitization for exciting new applications like, for example, telepresence or vir-
tual try-on for online fashion shopping.
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Kurzfassung

Die 3D-Modellierung virtueller Menschen ist seit einigen Jahrzehnten Ge-
genstand aktiver Forschung. Sie spielt für verschiedenste Anwendungen, wie
zum Beispiel in der Filmproduktion, in Sport- und Medizinwissenschaften oder
bei Mensch-Computer-Interaktion eine entscheidende Rolle. Viele Arbeiten set-
zen auf von Designern erschaffene 3D-Modelle oder auf die Verwendung von
teuren 3D-Scannern. Im Gegensatz dazu ist das Ziel dieser Arbeit, die aus-
schließliche Verwendung von kostengünstigen Videokameras. In dieser Disser-
tation zeigen wir fundamentale Entwicklungen in der 3D Rekonstruktion von
Menschen aus monokularen Bilddaten. Wir lösen dieses anspruchsvolle Pro-
blem, indem wir Methoden entwickeln, die Informationen aus mehreren Zeit-
punkten effektiv zusammenführen und Rekonstruktionen aus wenigen Beob-
achtungen realistisch vervollständigen. Aus monokularen Videos oder sogar nur
einem einzelnen Bild einer Person in Bewegung, rekonstruieren wir erstmalig
nicht nur dessen 3D Pose, sondern auch die 3D Körperform inklusive des Ge-
sichtes, Haaren und Kleidung.

Zunächst beschreiben wir ein Verfahren, das aus regulären Videos mensch-
liche 3D Posen schätzt. Durch Zuhilfenahme von optischem Fluss erzeugen wir
flüssige und zeitkonsistente Bewegung. Ein statistisches Modell des mensch-
lichen Körpers hilft hierbei das Problem besser zu beschreiben. Dieses ver-
fügt bisher aber weder über Haare noch Kleidung noch persönliche Details
der Person. Wir rekonstruieren diese Eigenschaften in einem weiteren Ver-
fahren erstmalig aus Videos von Personen, die sich vor der Kamera drehen
und eine sogenannte A-Pose einnehmen. Unsere Methode erweitert die „Vi-
sual hull“-Rekonstruktion für bewegte Objekte durch die Kombination von Sil-
houetteninformationen in einer kanonischen Darstellung. Zusätzlich schätzen
wir das Erscheinungsbild durch Zusammenfügen einer Textur aus in den Tex-
turraum projizierten Einzelbildern. Hierbei verbessert die Zuhilfenahme von
semantischen Informationen die Qualität erheblich. Weiter verbessern wir die
Oberfläche durch „Shape-from-shading“ basierend auf einer Vielzahl von Ein-
zelbildern. Im nachfolgenden Verfahren reduzieren wir die benötigte Eingabe
für hoch-qualitative Rekonstruktionen auf nur etwa acht Einzelbilder. Zusätz-
lich beschleunigen wir die Rekonstruktion um mehrere Größenordnungen. Dies
wird durch die Kombination der Vorteile von „bottom-up“ Deep Learning und
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Bild-basierter „top-down“ Optimierung zur Ausführungszeit erreicht. In einem
letzten Verfahren vereinfachen und beschleunigen wir nochmals den Rekon-
struktionsprozess und erhöhen noch einmal den Detailgrad der Ergebnisse. Wir
erlauben beliebige Bilder von der Kamera zugewandten Personen als Eingabe
und ermöglichen die 3D Rekonstruktionen aus nur einem einzelnen Foto. Die
wichtigste Erkenntnis dieses Verfahrens ist, dass 3D Rekonstruktion von Per-
sonen durch Repräsentation der 3D Rekonstruktion als posenunabhängiges 2D
Bildumwandlungsverfahren im Texturraum erreicht werden kann. Die rekon-
struierten Ergebnisse enthalten erstmalig feine Strukturen, wie etwa Faltenwurf
in der Kleidung, selbst auf Körperteilen, die der Kamera abgewandt waren.

In dieser Dissertation untersuchen wir verschiedenste Ansätze der 3D Re-
konstruktion von Menschen aus monokularen Bilddaten. Wir beschreiben so-
wohl unkomplizierte als auch komplexere Methoden, die auf hohe Genauig-
keit, Einfachheit, Nutzbarkeit oder Darstellungsqualität setzen. In umfangrei-
chen Auswertungen untersuchen wir wichtige Parameter, die Qualität der Re-
konstruktionen und die Robustheit der Methoden. Unsere Methoden erlauben
erstmalig die kamerabasierte und benutzerfreundliche Digitalisierung von Men-
schen für spannende neue Anwendungsgebiete, wie etwa die Telepräsenz oder
virtuelle Anprobe im Onlineshopping.
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1 Introduction

Capturing and modeling the 3D human body from monocular video or pho-
tographs is a core problem in Computer Vision and Computer Graphics. For the
past decades, estimating the 3D pose of a subject, encoded through the locations
of distinct body parts or by joint angles, played a central role in Computer Vi-
sion and is still an active field of research. Researchers have enabled various
applications in scene analysis, medical diagnostics, or human-computer inter-
faces. Recently, the automatic 3D reconstruction of the full body gained more
and more attention. Hereby, one aims at reconstructing not only a 3D skeleton
but the whole 3D human shape including hair, clothing, and appearance. Es-
sentially, the goal is to create an avatar that is indistinguishable from the actual
human.

The advent of Virtual Reality (VR) and Augmented Reality (AR) consumer
hardware laid the foundation for new ways of entertainment, communication,
or online shopping. For these applications, personalized and highly realistic 3D
avatars are crucial. These avatars should feature all the details that form our
identity and make us unique. This includes accurate body shapes, faithfully re-
constructed faces, detailed clothing, and realistic hair. Reconstruction failures
lead to avatars that are not being identified by others or, more importantly, to
users not feeling represented by their virtual self. No less important, the acquisi-
tion process of these avatars should be fast, easy, and should not require special
equipment or training. However, the classical Computer Graphics approach to
3D modeling of virtual humans still requires considerable manual effort and
expert knowledge: A specially trained artist defines the 3D geometry of body
and clothing, that is then rigged in order to enable animation. The avatar’s 3D
motion is driven by manual keyframe-based animation or marker-based motion
capture. This laborious process presents an important practical barrier to the
needs of the aforementioned applications. In contrast, the goal of this work is
to take advantage of the omnipresence of cameras nowadays to develop auto-
matic methods, that efficiently utilize images and video for realistic 3D avatar
creation and animation.

In this dissertation, we explore the emerging topic of 3D reconstruction of
human shape and pose from monocular images. We present novel approaches
for reconstructing and tracking mesh-based 3D reconstructions of humans as
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(a) (b) (c)

Figure 1.1: Given one monocular image or a short video clip of a person (a), the goal
of this work is to reconstruct a detailed full-body 3D avatar (b) that can be photo-
realistically animated, for example in virtual environments (c).

depicted in monocular videos and even single photographs. We show funda-
mental advances in the challenging task of 3D human avatar reconstruction
from monocular images by developing methods that effectively fuse informa-
tion from multiple points in time and realistically complete reconstructions from
sparse observations. Our work enables, for the first time, easy acquisition of an-
imatable 3D avatars for everybody and paves the way for various exciting new
applications.

1.1 Problem Statement

Image-based 3D pose and shape reconstruction of humans is a wide field of re-
search with many approaches and interpretations. Some researchers are mainly
interested in the 3D skeleton and approximate body-proportions of a subject
[147, 250, 26, 168, 112]. Others reconstruct the naked body shape with-
out clothing [15, 260, 274] or focus on the garments worn by their subjects
[184, 123]. Again others only focus on specific body parts alone like for exam-
ple the face [23, 13, 28, 132, 231], hands [61, 210, 116, 201], or hair [141, 155].
In contrast, the goal of this dissertation is to track and model the whole human
body, including hair and clothing. We are interested in reconstructing the ob-
served subject as detailed as possible. Not only body and clothing geometry
but also its coloring and surface structure carries important information. To this
end, besides capturing the 3D shape, we aim at reconstructing the surface colors
in form of texture maps, too. Finally, we want to be able to re-use the estimated
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avatars. For this purpose, the reconstructions should come in a common format
that can be easily used, animated, and manipulated by other applications.

We have now defined the desired characteristics of the reconstructions. The
second main aspect of this work is the capturing process and equipment. Com-
puter Vision researchers have used a broad range of sensors and systems to cap-
ture and analyze the world. Commonly used are multi-camera set-ups, marker-
aided capturing, depth sensors, or active scanners. These systems can capture
3D data to a resolution of a few millimeters. While this is undoubtedly valuable
data, the systems are, unfortunately, not widely accessible. Usually, they are
only found in laboratories or professional video studios. At the other extreme,
standard cameras are nowadays all around us. Many of the devices we use on a
daily basis have one or even multiple cameras built in and are easily accessible.
Another valuable advantage of standard cameras is the unobtrusiveness and low
complexity of the capturing process. While complex capturing systems often
require careful and laborious calibration and set-up, or even interfere with the
captured scene, cameras allow easy recording with nearly zero setup time. Ad-
ditionally, they are lightweight and small and thus can be flexibly used nearly
everywhere. For these purposes, as input to our algorithms, we rely in this work
only on monocular image material as recorded by a standard webcam. This ad-
ditionally ensures that advances of our work can be seamlessly integrated with
modern devices, such as phones, tablets, or smart displays. At the same time,
our work is compatible with the large amount of available legacy photo and
video material.

The common pipeline and goal of all methods in this thesis is illustrated in
Figure 1.1. Given a single image or multiple frames of monocular video of a
person, we reconstruct a mesh-based full-body 3D virtual avatar. Additionally,
we optionally reconstruct the appearance in form of a texture. The final avatar
can then be animated and placed into new scenes or entire virtual environments.
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(a) (b) (c)

(d) (e)

Figure 1.2: Possible use-cases for our methods: Modeling of virtual actors1 (a), vir-
tual try-on of clothing, shoes, and accessories2 (b), body measurements for fitness and
health3 (c), and virtual telepresence4 (d) and (e).

1.2 Motivation

3D virtual human avatars have been used for various tasks in the past and will
potentially play a central role in many future applications. For example, in the
movies industry virtual actors are commonly used in order to digitally edit and
augment real-world video footage or even to produce fully computer-generated
movies. To this end, producers and designers make huge efforts in order to pro-
duce highly realistic and physically-plausible virtual doubles of real-world ac-
tors. Similarly, in the games industry, developers put more and more work into
realistic characters in order to produce a truly immersive gaming experience.
Both industries will largely benefit from fully automatic and widely accessible
reconstruction of highly realistic virtual humans.

Beyond entertainment, 3D virtual humans are potentially useful or already
play an important role in many applications. Examples are human understand-
ing for human-computer interfaces, medical diagnostics, virtual assistance, fit-

1Industrial Light & Magic / Lucasfilm via https://www.youtube.com/watch?v=OUIHzanm5Mk
2https://wanna.by/
3https://shapescale.com/
4Facebook Reality Labs via https://www.youtube.com/watch?v=FhiAFo9U_sM
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ness and health tracking, virtual try-on in online shopping, body language in-
terpretation and understanding, and many more. Figure 1.2 illustrates some
of the examples. All these applications can benefit from more accurate recon-
structions and easier acquisition. One emerging topic for 3D virtual humans
are future applications in communications, as for example VR or AR telepres-
ence. Enabling these applications is an active and emerging field of research
[80, 235, 136, 170]. Telepresence applications are closely related to the prob-
lem statement of this dissertation, as they require easy 3D reconstruction and
tracking of humans using low-cost sensors. Once established, these applica-
tions can significantly change our travel behavior, the way we communicate,
and generally the way we live.

Highly realistic 3D human avatars and widely accessible reconstruction
pipelines can make an impact in many science subjects and industries: We hu-
mans cannot not communicate [172], thus our visual appearance always carries
rich information. From visual inspection of other human beings we are able to
understand their mood, state of health, personal preferences, engagement, and
much more. In this dissertation, we only lay the foundation for computers to
model and understand the subtle visual cues that help us humans to understand
the human body and its language. On the other hand, our scientific findings can
already now directly be used by a large number of applications, for example in
entertainment, fitness and health, or online shopping.
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(a) (b)

Figure 1.3: The appearance variation of a human is one of the main challenges in 3D
human reconstruction. The same person might look very different in varying lighting
conditions (a), in front of different backgrounds, or while wearing different sets of gar-
ments (b), even when other parameters, e.g. pose and camera, remain fixed.

1.3 Challenges

Humans are extremely good at understanding and predicting the human body
and its language. From just a 2D photograph of people we can tell their 3D
body pose, 3D body shape and approximate height, we understand their facial
expressions and the performed actions, their intentions, and we even can tell
how they might look on unseen parts. We are able to do all this because we have
rich experience about how humans look like and how they move and behave.

While humans are able to process monocular video and photos with ease,
the same remains a challenging task for computers and algorithms. Relevant
information is often encoded, noisy, or ambiguous. For example, images lack
direct depth information. Depth is only encoded indirectly through perspective,
shading, and semantics. However, this information is much harder to under-
stand and process than direct depth values. Another challenge originates from
the image formation itself: distance to the camera, the actual size of an object,
and the focal length of the camera all affect the projected size of an object in an
image. This implies, for example, that multiple 3D skeletons all project into the
same 2D skeleton. Conversely, this means that the true 3D pose often cannot be
recovered from its 2D projection. Even with given intrinsic parameters of the
camera, the true bone lengths and height of a person can only be approximated.
While this ambiguity is one fundamental problem of 2D imaging, many more
challenges exist: Unknown lens-distortion or recording parameters may prevent
accurate measurements. Perspective distortion and foreshortening effects have
to be handled by the algorithms. Further, images only describe the scene from
one single view-point. Consequently, crucial information is often missing due
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to occlusion or self-occlusion. When working with videos, occluded scene con-
tent may be revealed, but connecting information from multiple time instances
to a joint scene model is a non-trivial task.

While information retrieval from images is already challenging, there is usu-
ally also much additional information in an image that is not directly relevant for
the task. Often the background of the scene must be ignored, and shadows and
reflections may fool or impede the algorithms. Further, sensor noise, compres-
sion artifacts, or the appearance of new objects can erroneously be interpreted
as a relevant signal.

Finally, the object of interest may change its appearance and shape over
time. This is especially challenging when working with videos, as differing in-
formation from multiple frames have to be aggregated. Humans are particularly
challenging, as we come in various shapes and appearances. Humans may look
completely different at different points in time due to changes in pose, changed
illumination conditions, through altered camera settings, or different wrinkle
patterns in clothing, changed hair, and much more. When looking at images
from longer time spans, humans may even have changed their clothing, their
hairstyle, or have gained or lost weight. See Figure 1.3 for some examples on
how the appearance of a human can vary.

When reconstructing humans, one presumably faces another challenge: The
Uncanny Valley [153]. The Uncanny Valley is a theory by Mori et al. describing
the relationship between the degree of realism of an artificial human and the
emotional response to it. The valley denotes a dip in the curve of familiarity
with artificial humans plotted against their human likeness. Very human-like
robots or avatars seem to cause a response of uncanniness or revulsion. While
the Uncanny Valley is a hypothesis, some studies provide empirical evidence
[154].

Naturally, we can not tackle all of the listed challenges. To this end, we
provide algorithms that work in more or less constrained settings. However, we
take particular care to constrain the set-ups not too much, so that our algorithms
can be reproduced and data acquisition is as easy as possible. Since our focus
lies on the detailed acquisition of 3D shape, we constrain our setup to images of
people in A-poses or standing poses, which is practical for many applications.
The following section give an overview over the contributions of this work,
how the described challenges are approached and partly overcome, and which
methods, tools, and concepts have been used in order to achieve this.
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1.4 Contributions

This dissertation describes advances in 3D human pose and shape estimation
from monocular images. Each of the following chapters corresponds to one
publication and describes specific advances in this field. All described methods
have the input and output modalities in common: Input are monocular videos or
photos; output are animatable 3D meshes describing the apparent shape, pose,
or motion of a human depicted in the input material. Solving this joint task
– creating 3D reconstructions of humans from monocular images – summa-
rizes the overall contribution of this thesis: By only relying on regular video
or even photos, our work democratizes the digitization of humans. For the first
time, it eliminates the need for specialized equipment. We enable automatic
reconstruction of detailed shapes and widespread usage of virtual humans in
emerging technologies.

Our work explores different approaches to 3D human pose and shape re-
construction. We show advantages of optimization-based and learning-based
approaches, study different forms of data representation and supervision losses,
and discuss the robustness and limitations of the individual methods. In the
following, the main contributions of each publication are briefly summarized:

[Paper A] Optical flow-based 3D human motion estimation from monocu-
lar video: A 3D representation of an actor in a video sequence needs to match
the sequence both in shape and in motion. While most previous works focused
on identifying 3D poses individually per frame, this work presents a method
to estimate the 3D motion of an approximate 3D body shape that matches the
apparent motion of the video sequence. By minimizing the difference between
calculated and synthesized optical flow, we are able to reconstruct fluent 3D
motion of up to 100 frames after initializing on a single frame.

[Paper B] Video Based Reconstruction of 3D People Models: While 3D
pose and motion estimation became more and more popular concurrent to our
work, monocular 3D human shape estimation was still limited to estimating
parameters of a parametric body model. The paper corresponding to this chapter
has presented the first method to estimate the full 3D shape of a clothed human
from video. From a video depicting a person such that he or she is visible
from all sides, we aggregate silhouette information from all frames into a single
frame of reference. To this end, we unpose the silhouette cone in each frame,
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allowing for efficient 3D shape estimation independently of pose. Extensive
experiments demonstrate a reconstruction accuracy of 4.5mm and robustness of
the method to noisy 3D pose estimates.

[Paper C] Detailed Human Avatars from Monocular Video: A convincing
digital avatar of a human should comprise all the unique properties of this per-
son. In this work, we add many of those properties to avatars that have been
calculated using the method from Paper B. Specifically, we improve the re-
constructed faces by relying on detected 2D facial landmarks and add clothing
wrinkles and fine structured details to the shapes based on multi-frame shape-
from-shading. Finally, we introduce a novel texture stitching strategy that lever-
ages a semantic prior and stitch a high-detailed texture that adds important ap-
pearance information to the meshes. In a user study, we show that details matter
and the additional reconstruction steps undoubtedly pay off.

[Paper D] Learning to Reconstruct People in Clothing from a Single RGB
Camera: In order to make 3D human reconstruction widely available, the
process has to be fully automatic, robust, and fast. Building on recent advances
in geometric Deep Learning, we present a learning-based model that enables
robust 3D shape reconstruction of clothed humans from only a small number
of frames. The presented model combines advantages from both learning and
optimization-based methods: A reconstruction predicted by a single forward-
pass through a neural network can be refined for a few seconds via weak render
and compare supervision using the same model at test-time. We further present
an extensive analysis of key parameters and demonstrate that the model can
partly be trained with weak supervision.

[Paper E] Tex2Shape: Detailed Full Human Body Geometry from a Sin-
gle Image: In the last publication, we further reduce the input data. From
only a single photograph of a person, we reconstruct an avatar that compro-
mises fine details such as hair and garment wrinkles even on occluded parts.
To this end, we train a conditional Generative Adversarial Network that effec-
tively translates incomplete texture maps into normal and displacement maps.
These maps add the desired level of detail to a smooth parametric body model.
The key insight of the work is to transform the pose-dependent and unaligned
reconstruction problem into a pose-independent and aligned image-to-image
translation problem by encoding the input image in UV space. Despite being
trained purely with synthetic data, the model generalizes well to real-world pho-
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tographs, laying the foundation for wide-spread 3D reconstruction of people for
various applications.

Table 1.1 summarizes inputs and outputs of the proposed methods. Each
of the papers describes individual advances and focuses on different tasks and
problems in 3D human reconstruction from images. Together, the publications
have impacted the emerging field of human digitization from images, and en-
abled, for the first time, to create detailed 3D avatars from monocular images of
subjects in motion.
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1.5 Outline

The remainder of this dissertation is organized as follows: In the following
chapter, an in-depth review of the topic of 3D human modeling and reconstruc-
tion from images, depth-sensors, and 3D data is given. The chapter outlines
the development in the field from geometric primitives to complex data-driven
models as well as model-free approaches. Finally, it discusses recent advances
based on Deep Learning techniques. In Chapter 3, we discuss the different con-
cepts that have been used in the publications forming this dissertation. We give
an overview of the core methods and explain crucial tools and algorithms in
more detail. The Papers A to E contain the above introduced publications and
form the core contribution of this dissertation. Chapter 5 concludes this disser-
tation with a discussion about the achieved results and an extensive discussion
about possible directions for future work.
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2 Related Work

3D human body pose and shape modeling and reconstruction has changed
dramatically over the past few years and recently received more and more at-
tention. Starting from models based on geometric primitives, researchers have
developed more and more complex models of the human body learned from
large scan-datasets of real humans. These models again have been successfully
deployed for various applications, such as pose tracking, video editing, or sta-
tistical analyses. The advent of Deep Learning resulted in a paradigm shift not
only for this specific topic, but generally in the fields of Computer Vision, Com-
puter Graphics, and many more. It accelerated the progress in these fields and
enabled many new applications, while at the same time reduced the amount of
needed input to often only a single image.

This chapter gives a systematic overview of the topic of 3D human body
pose and shape geometry modeling and reconstruction. We illustrate its origins,
how the topic has developed before and concurrent to this dissertation, as well
as its most recent advances.

2.1 Body Models based on Geometric Primitives

Researchers have understood very early how their methodology can benefit
from a model of the human body. Early works model the human body in form of
geometric primitives, such as the pioneering mathematical model by Hanavan Jr
[82]. In this work, a personalized body model is constructed from 15 simple 3D
polygonal shapes. Even simpler 2D models have been constructed and success-
fully applied to human gait analysis [169, 91, 165]. 3D human pose estimation
and tracking have been the driving force to develop more and more complex
3D models of the human body and its kinematic chain [149, 199, 69, 212]. Fi-
nally, also the human shape was taken into account, introducing the first full
parametric yet completely synthetic body models [233, 178, 219, 220].
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2.2 Artist-Driven and Anatomical Models

At the same time, the Computer Graphics community introduced the first dig-
ital actors and began to revolutionize the movie industry [142]. Similar to the
models of the Computer Vision community, these characters have been con-
structed from geometric shapes and an implanted skeleton used for anima-
tion. Seeking more realism, researchers soon developed layered models of
bones, muscles, and skin that are artist-driven [38] or anatomically inspired
[205, 157]. However, these models are difficult to build and simulation re-
quires time-expensive calculation. To this end, the use of skinning techniques
became popular [129, 114, 115]. A skinning function defines how the surface of
a model bends and moves according to the movement of an implanted skeleton.
This technique is also employed in state-of-the-art data-driven models, that are
introduced in the following.

2.3 Data-Driven Body Models and Applications

To represent the human body more realistically, models learned from data of
real humans have been developed (see Figure 2.1). These models describe
the shape variations of the naked body without hair or clothing. In the pro-
cess of learning such models, typically a template mesh is deformed to match
3D data of a large number of subjects in various poses and of different body
shapes. Then a statistical formulation is found that minimizes the error be-
tween low-dimensional, parametrization-based predictions and the alignments.
A similar concept has already been used in the pioneering work by Kakadiaris
and Metaxas [110], where a body model is constructed from three orthogo-
nal views. Allen et al. [10] learn a rich model of the human shape from laser
scans of 250 subjects. Later the model has been updated to also modeling pose-
dependent shape deformation [11]. Both models operate in global model space
which means that they directly output global vertex positions. With SCAPE
[14], a popular parametric body model has been presented, that operates on
mesh triangle level. Pose and shape deformation components of the model are
applied separately to each face, which is then rigidly transformed to match the
pose. This formulation simplifies the mathematical formulation into a rigid and
a non-rigid component, which supports the learning process. Based on SCAPE,
BlendSCAPE [90] is inspired by skinning functions and deforms each triangle
based on a linear combination of multiple influencing parts. Another variant
that incorporates correlations between body shape and pose has been introduced
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by Hasler et al. [84]. The DYNA model [182] extends SCAPE with dynamic
soft-tissue deformation based on the performed motion. However, because the
mesh triangles are transformed independently and form no watertight mesh, all
SCAPE variants depend on a least-squares solver to connect the triangles to a
smooth and coherent surface. This drawback prevents the models from being
used in standard graphics pipelines, which has been addressed by the following
works.

The SMPL body model [138] is an accurate parametric body model learned
from thousands of scans from real people. For posing, it transforms a template
mesh using standard linear blend skinning, thus it requires no post-optimization
and is compatible with standard graphics pipelines. A key insight is that pose-
dependent deformations can be linearly regressed from the pose rotation matri-
ces. SMPL is more accurate and more straight-forward to use than SCAPE and
thus is heavily used in various research problems. We, too, use SMPL in this
work as a template and prior for reconstructing poses and shapes of clothed peo-
ple. Like SCAPE, SMPL has been extended for soft-tissue deformations. The
DMPL model, a data-driven extension to SMPL is included in the original pa-
per. Kim et al. [118] present a layered combined data-driven and physics-based
model.

Despite its popularity, SMPL comes with some drawbacks. By design it
models the body only at a coarse scale. Neither facial expressions nor finger
movement are covered by the original model. To this end, multiple works fo-
cus on extending SMPL and adding missing functionality. The first work along
this line has been SMPL+H [201], a SMPL model with an incorporated hand
model. Joo et al. [109] propose Frank, a model stitched together from three
different models. They use SMPL without the pose-dependent deformations
for the body, an artist-rigged hand model, and a generative PCA face model
learned from the FaceWarehouse dataset [35]. However, the components are
learned individually and thus the model lacks realism. To this end, Pavlakos
et al. [174] present SMPL-X. SMPL-X extends SMPL with articulated hands
and an expressive face. In contrast to Frank [109], the model is learned in a uni-
fied fashion. Finally, several special-case models exist. ClothCap [184] presents
the first SMPL with clothing but does not model pose-depended deformations.
Hesse et al. [88] retrain SMPL for infants based on RGB-D captures, and Zuffi
et al. [290] introduce a SMPL-like model of animals that has been learned from
3D scans of toy figures.

Besides models of the whole body, a large number of 3D parametric body
part models exist. These models include models of the face [23, 13, 175, 28, 98,
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Figure 2.1: Body models with varying degree of realism. From left to right: Su-
perquadric model [219], SCAPE [14], SMPL [138], Frank [109], and SMPL-X [174].

70, 231], the head [47, 132], hand models [210, 116, 201], models of the whole
arm [159], and even of the ear [48]. In the following, we will review methods
that utilize parametric models of the whole body.

Parametric body models have been heavily used to reconstruct and encode
3D pose [179]. In early works, researchers formulate analysis-by-synthesis
problems to recover the 3D pose from multiple views [17], depth data [254],
or single images [213, 85]. For this purpose, posed 3D human shapes are
reconstructed that project into the image silhouettes or match with the input
data. Similarly, we present a work where we minimize silhouette and additional
optical-flow differences to recover time-consistent 3D poses [5] (Paper A). In
an alternative strategy, the reprojection error of 3D joint locations is minimized.
First, these 2D joint landmarks have been manually clicked [76]. Later the
process was automated [26, 124, 95]. The automation was made possible by
the advent of human landmark detection networks [177, 101, 36, 12]. Another
streamline of works uses a set of inertial measurement units (IMUs) attached to
the subjects body alone [245, 246, 96] or in combination with images [180, 247]
to reconstruct 3D motion. The advent of Deep Learning accelerated the ad-
vances in model-based 3D human motion estimation from images. We review
this field separately in Section 2.5.

Besides the pose properties of parametric body models, also the shape com-
ponents have been utilized in the literature. For example, the SCAPE model
has been used to recover the naked body shape of people from photographs in
regular clothing [15, 54]. The SMPL model has been used with 4D scanner
data to recover the body shape of the subject under clothing [274]. Pons-Moll
et al. jointly estimate garments as a separate clothing layer [184]. A similar
system has recently been introduced also for depth data [227]. The methods
by Guo et al. [79] and Chen et al. [39] recover the clothed and naked shapes
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from a single image but require manual initialization of pose and clothing pa-
rameters. Fully automatic acquisition of the full shape including tight [25] and
loose clothing [275, 226] has been presented, too. However, these works re-
quire RGB-D data. Our works [7, 6] (Paper B, Paper C) have been the first to
present 3D human shape and clothing reconstruction from monocular video in
which the subject is allowed to move. Similarly to the works by Zhang et al.
[274] or Pons-Moll et al. [184], we extend SMPL with a deformation field for
modeling clothing and hair. In contrast to these works we use a single RGB
camera as input.

Due to their shape variation, parametric body models have also been suc-
cessfully deployed in other science fields, for example, to study body-related
clothing preferences [204] or self-perception in anorexia nervosa [152]. Fi-
nally, body models have been used for image and video editing, for example, to
change the body shape of subjects in images [280] or videos [106], to augment
actors with new clothing [198], or to “wake-up” subjects in photos and artwork
to display them in VR or AR [255].

2.4 Free-form and Template-based Surface
Reconstruction

While body models are rich priors for human body shape reconstruction prob-
lems, they also limit the shape space. All shapes that do not share the human
topology cannot be well approximated using a body model. To this end, re-
searchers have developed free-form and template-based reconstruction meth-
ods, which we review in the following.

Even before body models have been available, researchers have used body
templates. These typically have been artist-made, rigged meshes that represent
a single person. For personalization, these templates have been non-rigidly de-
formed to match image silhouettes in multi-view set-ups [89, 1]. These early
methods share in large parts the methodology of those using parametric models.
However, they cannot benefit from the low-dimensional shape space. Neverthe-
less, these methods enabled for the first time multi-view body pose and shape
reconstruction [234, 50] and even free-viewpoint video of human actors [37].
Later, the artist-made templates have been replaced with laser-scans of the sub-
jects [51, 243, 66], enabling detailed reconstructions and also complex clothing
like skirts and dresses. Also, temporal surface deformation tracking has been
enabled for detailed free-viewpoint video [223, 45, 127]. In an alternative strat-
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egy, the methods by Rhodin et al. [192] and Robertini et al. [194] leverage a
flexible sum of Gaussians body model [224] to reconstruct human motion and
shape. Also related, general frameworks for 3D shape tracking based on volu-
metric shape representations have been presented [94, 4].

While all these methods require multi-view input, methods utilizing a single
depth sensor for shape reconstruction have been developed, too [46, 131, 273,
209]. These methods, however, do not allow for free movement but require the
subject to carefully take the same pose at different angles to the camera or hold
the pose while the camera is moving around the subject. Subtle pose changes
are then compensated by non-rigid alignment of the point clouds. For easier
acquisition, Tong et al. [237] propose to use a turntable. Later, the restriction
of static poses has been removed by utilizing multiple depth-sensors [57, 170].
Live performance capture using a small number of depth-sensors was made
possible. Finally, Newcombe et al. [163] introduce a real-time method to dy-
namically fuse the incoming depths stream of a single RGB-D camera into a
canonical model. The model is warped to match the latest frame, enabling sin-
gle sensor live performance capture. Based on this idea, methods enabling for
example volumetric non-rigid reconstruction [100] or less-controlled motion
[218] have been presented.

Xu et al. [264] present for the first time monocular performance capture in-
cluding surface deformation, what made the use of depth-sensors obsolete. A
pre-captured template of the actor is tracked and deformed based on 2D and
3D human landmark detection and image silhouettes. Following the proposed
methodology, Habermann et al. [80] present the first real-time human perfor-
mance capture based on a single view RGB video-stream only.

2.5 Deep Learning-based Human Reconstruction

Deep Learning techniques like CNNs have accelerated advances in Computer
Vision in general, and advances in human pose and shape reconstruction in
particular. Numerous learning-based works on 2D and 3D landmark detectors
or reconstruction and tracking of specific body parts exist in the literature. In the
following, we will review image-based methods that reconstruct the full human
body.

In early works, methods that reconstruct the shape in the space of a paramet-
ric body model have been presented [53, 55]. These methods use only a single
silhouette image but are restricted to a small set of poses. In the following,
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more flexible works have been presented that reconstruct 3D pose and shape
from single images by integrating the SMPL body model into a network archi-
tecture. Different works leverage either color images [239, 112], color images
plus segmentation [173], or body part segmentation [168]. Other works have
focused on the temporal aspect and successfully reconstruct temporal-coherent
3D human motion [113]. While these approaches reliably recover the 3D hu-
man pose from in-the-wild images, the reconstructions tend to feature average
body shapes. The reason for this is, that the methods heavily rely on the body
model statistics and return shape regressed from bone lengths. For more exact
reconstructions that better align with the images, methods perform mesh fitting
after network inference [78]. This fitting step also allows to additionally recon-
struct face and hand motion [261]. Our work [8] (Paper D) has been the first to
reconstruct the human shape beyond the parametrization of a body model from
a small number of frames. We, too, refine our results via optimization at test
time. Similarly, Zhu et al. [286] perform a multi-step approach. They first find
an initial SMPL pose and shape parametrization, then repose the mesh based on
silhouettes, and finally, leverage shading to refine the surface beyond the shape
parametrization.

Recently, the question of the best 3D human shape representation in the
context of CNNs gained more and more attention (see Figure 2.2). BodyNet
[241] was the first work to directly regress a volumetric representation of the
human body from a single image. A similar approach has been introduced by
Jackson et al. [105], demonstrating a higher level of detail. More recently, syn-
thesizing novel silhouette views to represent the 3D shape of the person, before
reconstructing the final 3D volume has been proposed [156]. Zheng et al. [278]
refine results from volumetric regression via a shading-based normal refinement
network to alleviate the limited spacial resolution of volumetric approaches. In
a different direction, Kolotouros et al. [121] propose to directly regress ver-
tices and optionally infer body model parametrization from there. Other works
regress and represent vertices in the UV space [267] or similarly as geometry
images [187]. In our work [9] (Paper E), we use the UV space to reconstruct de-
tailed human shape to a wrinkle-level independently of the 3D pose. In contrast
to concurrent work, our results feature details even on the unseen back-side of
the person.

In recent work, 3D shapes have been encoded as implicit functions like vol-
umetric occupancy fields or signed distance functions [171, 148, 42, 150, 263].
The first works deploying this idea in 3D human shape and pose reconstruction
use spare multi-view setups [97, 72]. Saito et al. [202] use this form of rep-
resentation for single-view human shape and texture reconstruction. The main
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Figure 2.2: Learning-based human shape reconstruction using different forms of 3D
shape representation. From left to right: SMPL model-based [112], voxel-based [241],
using implicit functions [202], and by augmenting SMPL in UV-space [9] (Paper E).

idea of this work is to sample the occupancy field along pixel-aligned projection
rays, which favors local details.

Finally and very recently, methods with or without coarse explicit 3D rep-
resentation have been presented. In the work by Shysheya et al. [211] the ap-
pearance of a subject is learned as per-part textures of the SMPL body model.
Given a 3D pose and a view-point, the parts are used to synthesize an image
of the subject utilizing a subject-specific neural renderer. Other recent works
present first ideas to encode complex scenes in coarse voxel grids [217, 137] or
as feature point clouds [3]. A learned renderer allows synthesizing images of
the scenes from novel viewpoints, featuring view-dependent surface effects or
thin structures and semi-transparent materials like human hair or smoke. While
this is an exciting avenue to explore, artifacts are still prominent and in contrast
to mesh-based solutions, compatibility with existing rendering pipelines is not
given.
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In the following, we will outline some of the basic tools, techniques, and
principles, that have been used in the publications that form the core of this
dissertation. In the last few years, the advent of Deep Learning significantly
changed the methodology of Computer Vision research. This also reflects in the
different approaches to 3D human shape and pose reconstruction in this work,
as outlined in the following. All presented approaches have, however, one thing
in common: To make the problems tractable, we leverage a parametric body
model. Parametric body models are statistical models of the variation of the hu-
man body shapes and poses. See Section 2.3 for an introduction. These models
help by regularizing the search space and reducing the dimensionality of tasks
related to the human body. In other words, they provide a template as an ap-
proximate solution that can be further refined by relying on its parametrization
alone or as a regularization prior. We now introduce the body model and the
different methods and concepts that have been utilized in this dissertation.

3.1 Body Model

In this work, we utilize the SMPL body model [138], presented by Loper et al. in
2015. SMPL is designed as a function M(·) ∈ RN×3 that maps pose θ ∈ R3K

and shape β ∈ R10 parameters to a mesh of N = 6890 vertices. To form a
watertight mesh, the vertices are connected to F = 13776 faces. The pose is
determined through K = 23 skeleton joints parametrized by θ in axis-angle
representation. The SMPL model has been learned from scans of real people.
It can, therefore, produce realistic body shapes and pose-depended shape defor-
mations. SMPL exists in three variants: A male, a female, and a neutral version,
covering only male, only female, or all subjects respectively.

SMPL produces a posed mesh by performing the following steps: To cre-
ate realistic body shapes, a template mesh T ∈ RN×3 is deformed with shape
deformation offsets Bs(β) ∈ RN×3 (Figure 3.1 (b)). The offsets are based on
a low-dimensional basis of the principal components of the body shape distri-
bution among the SMPL subjects. The shape parametrization β forms a vector
of linear shape coefficients of the shape space. Additionally, a linear regressor
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(a) (b) (c) (d)

Figure 3.1: Setting pose and shape of the SMPL model: From a template (a) the new
shape (b) is formed. Then pose-dependent offsets are applied (c). Finally, the pose is set
via blend skinning (d).

determines the positions of the skeleton joints J(β) ∈ RK×3. Next, pose-
dependent deformations Bp(θ) ∈ RN×3 are applied on the reshaped template
(Figure 3.1 (c)). Bp(·) is a learned linear function parametrized with the desired
pose θ. It accounts for muscle and soft-tissue deformations as well as skinning
artifacts potentially introduced in the last step. Finally, the mesh is posed using
standard linear blend skinning W (·) ∈ RN×3 with blend weights W ∈ RN×K
(Figure 3.1 (d)). The final equation reads as:

M(β,θ) = W (T (β,θ), J(β),θ,W) (3.1)

T (β,θ) = T +Bs(β) +Bp(θ). (3.2)

SMPL only covers naked subjects and its shape parametrization does not
allow for detailed personalization. For this reason, we augment the standard
formulation with additional details in large parts of this work. We add additional
per-vertex offsets D ∈ R3×N to the function [182, 274, 184]. SMPL+D, SMPL
extended with offsets D, is formed as follows:

M(β,θ,D) = W (T (β,θ,D), J(β),θ,W) (3.3)

T (β,θ,D) = T +Bs(β) +Bp(θ) + D. (3.4)

Additionally, we augment SMPL using UV mapping. In Papers B, C, and
D we apply textures to the mesh. In Paper E we augment its surface using
normal and displacement-maps. UV mapping [24] unfolds the body surface
onto a 2D image such that a given pixel corresponds to a 3D point on the body
surface. The mapping is defined over the faces such that every face consisting
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of three 3D vertices has a counterpart consisting of three 2D UV-coordinates.
Hereby, U and V denote the 2 axes of the image. The mapping of points inside
a face is determined via barycentric interpolation of neighboring coordinates.
The 2D image can be used to augment the 3D surface. A texture defines a
color per surface point. Similarly, a normal-map stores a surface normal that
can add or enhance visual details through shading. A 3D displacement-map
actually displaces the surface point in the given direction. Hence, it can be
used to create a highly detailed surface without changing the resolution of the
underlying mesh. Some tasks, however, require a higher mesh resolution. It can
be derived by subdividing the SMPL base mesh. Hereby, a new vertex is placed
on the center of each side of a triangular face. The old face is removed and four
new faces are created by connecting subsets of the six vertices. This processes
can be repeated. Please see Paper C for details.

As described beforehand, the body model can be used as a template, as a
prior, or as a representation for methods that work on 3D human body shapes
and poses. We will now elaborate on how we utilize the SMPL body model in
our work. More importantly, we introduce the general methods and principles
we have consulted to provide effective solutions to 3D human pose and shape
reconstruction from monocular images.

3.2 Analysis-by-Synthesis

Paper A presents an approach to time-consistent 3D pose estimation from video.
The principal idea of this work is that 3D pose is encoded in the 2D vector field
of optical flow. To recover the 3D pose changes from the 2D optical flow field,
we follow the analysis-by-synthesis or inverse graphics approach. In analysis-
by-synthesis, one aims at recreating the apparent scene using a rich synthetic
scene model. In our case, we minimize the difference between the observed
and synthesized optical flow. We synthesize optical flow by rendering differ-
ent pose parametrization of the SMPL body model using a specialized renderer.
Similarly, in papers Paper B and Paper C we estimate the 3D body shape of a
human by comparing its rendered silhouette with observed silhouettes. Gen-
erally speaking, in analysis-by-synthesis we define one or multiple objective
functions, that are optimized with respect to our scene model. In our case, the
scene model is the SMPL model plus possible additional components, for ex-
ample, an image formation function. The objective functions measure the sim-
ilarity between the synthesized and the observed images. Typically, we choose
to recreate abstractions of the images, e.g. segmentation, optical flow, or key-
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points, rather than images itself. These abstractions or features have far less
variation in appearance and thus are easier to synthesize. In the following, we
shortly introduce different analysis-by-synthesis techniques that we have uti-
lized in the different works of this dissertation.

3.2.1 Image keypoints

The easiest of the mentioned abstractions are image keypoints. Keypoints are
2D locations of image observations often with a specific semantic. For example,
for our setting keypoints can be facial landmarks or skeleton joint locations.
First, for every image keypoint ki ∈ R2 one finds a corresponding point li ∈ R3

in the scene model. Then, during optimization one aims at finding a scene
description such that every li projects onto ki under a given projection π(·):∑

i

||π(Rli + t)− ki|| = 0. (3.5)

R and t are rotation and translation parameters in an exemplary scene model.
As mentioned earlier, in the problem settings of this work, the scene is described
by the SMPL model. Global rotation and translation are generally applied, too.
3D points corresponding to image keypoints are regressed from the surface of
the body model by a linear combination of a set of vertices, for example through
barycentric interpolation.

3.2.2 Optical flow

Optical flow [71] is the perception of motion by our visual sense. For two
images it can be described as a 2D vector field that matches all points in the
first image to their apparent counterpart in the second image. For the first time,
optical flow between two images was computed by Horn and Schunck [93].
The described method makes two assumptions: First, the brightness constancy
constraint assumes that the intensity of a pixel at position [x, y] in an image I at
time-step t remains constant after displacement:

Ix,y,t = Ix+∆x,y+∆y,t+∆t. (3.6)

Second, it is assumed that all motion is small, i.e. less than a pixel wide. The
latter assumption was later replaced in extensions using image pyramids [140].
Hereby, larger motion can be estimated but local smoothness is assumed. Based
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on these constraints, one can optimize for the beforehand described 2D vector
fields.

Although calculated in the image plane, optical flow contains 3D informa-
tion. Optical flow can be interpreted as the projection of 3D scene flow [242].
Assuming the presence of optical flow in the sequence, large parts of the ob-
served optical flow are caused by relative movement between object and cam-
era. Optical flow contains information about boundaries of rigid structures.
On the other hand, unique appearance effects such as texture and shading are
removed. To this end, optical flow is a well-suited abstraction for analysis-
by-synthesis problems. In Paper A, we extract 3D poses from an image se-
quence by minimizing the difference between computed and synthesized opti-
cal flow. For synthesizing optical flow, we have developed a differential flow
renderer that renders the projected scene flow between two parameterizations
of the SMPL model. By relying on optical flow, we enforce small differences
between subsequent images and therefore produce time-consistent and fluent
motion.

3.2.3 Image segmentation

Image segmentation is a well-established scene abstraction that is heavily used
in analysis-by-synthesis problems. In image segmentation, each pixel is repre-
sented by a certain label. One has to differentiate between binary and multi-part
segmentation. Binary segmentation usually differentiates between foreground
and background. Foreground and background are hereby defined task-specific.
Often all moving objects belong to the foreground and all static objects belong
to the background. In Paper B and Paper C we are only interested in the person,
hence we define foreground as person and the rest of the scene as background.
In Paper D, we utilize multi-part segmentation. In multi-part segmentation,
each label corresponds to a certain object type or instance. In our case, the seg-
mentation differentiates between classes of garments, certain body parts, and
background.

During the optimization of an analysis-by-synthesis problem based on im-
age segmentation, one simply minimizes the difference between the predicted
silhouette and the observed silhouette. For the binary case, this reads as:

min
R,t
|G(R, t)− S| (3.7)

G(R, t) = Rc(F (R, t)), (3.8)
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where S is an observed segmentation image, F (·) is an exemplary scene func-
tion, and R(·) is a binary image formation function under camera c. While this
formulation has the expected minimum, it can be slow and problematic to opti-
mize. The reason for this is that the optimization might get stuck in local min-
ima and gradients only describe a one pixel-wide neighborhood. Hence, usually
more advanced formulations are used. One straight-forward way of solving this
issue is to formulate the problem at the same time on different resolutions of
the images. This way, the optimization can take larger steps and eventually
passes local minima. In Paper A and Paper B we follow a slightly different
approach: For each point in one silhouette, we minimize the difference to the
closest point in the other silhouette. This process is called Chamfer matching
(see Figure 3.2). The idea is that the predicted silhouette should not exceed the
observed silhouette, while at the same time cover it as much as possible. The
distances of all points in silhouette M to the nearest points in the silhouette N
can easily be computed by multiplying silhouette M with the distance trans-
form C(·) of silhouette N. The distance transform of a binary image contains
for every pixel its distance to the closest non-zero pixel. The Chamfer matching
objective sums the errors over all image pixels p:

min
R,t

∑
p

Gp(R, t) · Cp(S) + Sp · Cp(G(R, t)). (3.9)

Unfortunately, C(·) is not differentiable. To make the objective differentiable,
we slightly change it to:

min
R,t

∑
p

Gp(R, t) · Cp(S) + (1−Gp(R, t)) · Cp(1− S). (3.10)

While the minimum of the objective stays the same, we don’t have to calculate
the distance transform of the predicted silhouette.

While silhouette overlap and Chamfer matching are calculated in the im-
age plane, they actually supervise a 3D problem: The depicted scene is three-
dimensional, hence every pixel in an image corresponds to a virtual ray shooting
from the camera into the 3D scene (see Figure 3.3). Given the camera intrinsics
are known, we can supervise silhouette matching directly in 3D by comput-
ing point to line distances. The key contribution of Paper B is based on this
observation: Instead of minimizing the per-frame 2D silhouette overlap, we
minimize 3D point to line distances in a joint canonical representation. To this
end, we find correspondences (v, r) ∈ M between each SMPL vertex v and a
3D silhouette ray r in every frame. Then, we unpose the silhouette rays based
on the estimated 3D pose of the subject. Unposing generalizes visual hull for
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Figure 3.2: Pose reconstruction using Chamfer matching: The predicted silhouette
should not exceed the observed silhouette (right), while at the same time cover it as
much as possible (left). Red means large error and blue means small error compared to
the corresponding silhouette (grey).

Figure 3.3: Every pixel in an image corresponds to a virtual ray shooting from the
camera into the scene. Silhouette pixels in an image (left) form a silhouette-ray cone
(right) that limits possible 3D object positions and dimensions.
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articulated motion. Please see Paper B for details. Having silhouette ray and
vertex correspondences from all frames a canonical representation, we now can
minimize point to line distances to recover the underlying shape. The point to
line distances can be efficiently computed by expressing the rays using Plucker
coordinates:

r = rm, rn. (3.11)

Hereby rn corresponds to the direction of a line passing through point p and
rm = p×rn is referred to as moment vector. A point q lies on a line if and only
if q × rn = rm. When rn is a unit vector, the norm of the moment gives the
distance from the origin to the line. This means, given a set of correspondences
(v, r) ∈M, we can minimize

min
∑

(v,r)∈M
||v × rn − rm||. (3.12)

to recover a 3D shape that maximizes the silhouette overlap. In Paper B, all
silhouette rays are transformed into a joint canonical representation. Therefore,
we can jointly optimize for a consensus shape that maximizes the silhouette
overlap in all frames. Additionally, we do not have to differentiate through the
SMPL blend shape-based posing and an image formation function, what makes
the optimization very efficient and less memory-intensive.

3.2.4 Shape-from-shading

Shape-from-shading [92, 276] is a classical Computer Vision technique devel-
oped by Horn in the 1970s. The motivation behind shape-from-shading is that
the shading of a 3D object is a strong cue for its 3D shape. Shading refers to the
different levels of darkness of an originally uniformly colored surface caused by
the illumination and the shape and properties of the surface. For shape-from-
shading, we assume the shading of a pixel at position [x, y] in a brightness
image B only depends on the normal n of the surface point projecting into the
pixel and the scene reflectance map P :

Bx,y = P (nx,y) (3.13)

Further, we assume a Lambertian reflectance model. This means shading forms
from the dot product of the light direction and the surface normal:

Bx,y = cos(l,nx,y) =
l

|l| ·
nx,y
|nx,y|

. (3.14)
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Figure 3.4: The first nine spherical harmonics visualized on the unit sphere. Positive
values are green and negative values are red.

Using this simple illumination model, we can recover surface normals. Then,
we can optimize for a 3D shape that explains the estimated normals.

In Paper C, we refine the estimated SMPL surface using shape-from-
shading. Similar to the silhouette ray-based shape estimation step, we estimate
the refinement in the canonical representation. This way, we can fuse noisy
estimates from many frames and solve for the whole shape refinement jointly.
Further, we use a more advanced illumination model. Instead of modeling the
illumination using a single light direction l, we utilize spherical harmonic light-
ing. Spherical harmonics are orthogonal basis functions defined over the surface
of the sphere (Figure 3.4). Spherical harmonic lighting uses the first nine spher-
ical harmonics to describe the directions from where light is shining into the
scene [189]. By using spherical harmonic lighting, we can describe realistic
illumination conditions with the low dimensional vector c ∈ R9. We further
use spherical harmonic lighting in Paper E for synthesizing realistic images of
humans. To create realistic illumination conditions, we convert images of a
light probe dataset into diffuse spherical harmonics coefficients c. In contrast
to Paper C, Paper E does not explicitly utilize shape-from-shading. Instead, we
train a neural network to reconstruct the 3D shape of subjects. In the following,
we give an introduction to Deep Learning and describe learning-based methods
which are used in the different works of this dissertation.
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3.3 Deep Learning

Learning-based methods follow a fundamentally different approach than
optimization-based methods that build on the analysis-by-synthesis methodol-
ogy. Learning-based methods find a parameterization for a complex function,
a so-called neural network, such that it produces the desired output. This is
achieved by tuning the parameters with the help of a large number of input-
output pairs. The process of finding these parameters is called training the
network. Recently, especially convolutional neural networks (CNNs) have rev-
olutionized the field of Computer Vision. Their performance on various tasks
beats classical methods often by far. Further, they provide solutions to new tasks
where classical methods find their limits. While analysis-by-synthesis can play
a role during the training of neural networks, their functioning is very different.
Neural networks and similar learning architectures extract high-dimensional
features from input variables, for example, from images. These features are
then mapped to the task-specific result space. In the following we give a ba-
sic introduction to neural networks and CNNs. Systematic introductions to the
Deep Learning methodology, mathematical backgrounds, and specific models
are given by Goodfellow et al. [75] and Bishop [22].

A basic neural network is composed of several small functions, the so-called
neurons, that are organized in layers. Each neuron receives an input vector
x. It computes a weighted average based on learnable weights w and adds a
learnable bias b:

y = w>x+ b. (3.15)

Finally, the result is passed through a non-linear function h(·):

a = h(y). (3.16)

The function h(·) is called activation. Typical activation functions are Rectified
Linear Units (ReLU) or the Sigmoid function. To compose a complete layer l,
we stack i ∈ {1, . . . , I} neurons of the form:

y
[l]
i = w

[l]>
i a[l−i] + b

[l]
i (3.17)

a
[l]
i = h[l](y

[l]
i ). (3.18)

The neurons of a layer l can be vectorized to:

y[l] = W[l]a[l−1] + b[l]. (3.19)

a[l] = h[l](y[l]) (3.20)
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A set of layers forms a basic neural network. The number of neurons per
layer and the types of activations can be freely chosen. A network composed
of many layers is called a deep neural network. Different combinations of dif-
ferent layer sizes and activations, referred to as architectures, determine the
complexity of the network and therefore its computational capabilities.

To train the neural network so that it computes the desired output, one op-
timizes over a loss function with respect to the network parameters; its weights
W and biases b. The loss function measures the distance of the computed out-
put from the desired output. Given a specific loss value, we can compute partial
derivatives with respect to the parameters of the neural network. Finally, we
can update the parameters to decrease the loss value. During training, many
examples are computed and the network parameters are adjusted to minimize
the overall loss value.

In Computer Vision, CNNs, a variant of neural networks, became popular.
Instead of computing a weighted average over the whole input vector x, one
applies a convolution over a local neighborhood. In other words, each element
y is dependent on only a subset of x. A convolution of f and g is defined as:

(f ∗ g)[n] =

K∑
m=−K

f [m]g[n−m]. (3.21)

Hereby, f is referred to as kernel. In a CNN, a kernel consists of learnable
weights and is shared across the input to its layer. This has three main benefits:
First, the number of network parameters is comparably low, even for large in-
puts. Second, the dimensionality of the input vector can vary. And finally, the
network is (approximate) invariant to translations in the inputs.

In this work, we utilize Deep Learning methods in two ways: First, we
use pre-trained models to calculate the beforehand mentioned abstractions in-
cluding, but not limited to, foreground segmentation, semantic segmentation,
reflectance and shading separation, and keypoint localization. Second, we pro-
vide algorithms that make use of Deep Learning at their core. In Paper D and
Paper E, we perform the change from optimization-based methods to learning-
based models. This allows us to significantly reduce the number of input frames,
while at the same time robustify our methods. The questioning for methods uti-
lizing Deep Learning is, however, different from the classical methods. Instead
of designing a specific algorithm for the problem, we focus more on what data
is needed and how the problem and data can efficiently be represented. Most
importantly, Deep Learning methods require large amounts of data. For solving
a task using Deep Learning, one has to find the right data and formulate match-
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ing supervision losses. This problem again is closely related to optimization.
Methods from optimization can be exploited to make use of certain data. For
example, often data is only annotated in the image domain. However, we can
still supervise a three-dimensional problem, by utilizing ideas from analysis-by-
synthesis to construct loss functions in the image domain. Using noisy, limited,
or imprecise sources is referred to as weak supervision. In contrast, full super-
vision refers to comparing the results directly with ground truth data.

The problems of finding data and matching supervision losses are tackled
in the works of Paper D and Paper E. Hereby, the SMPL model again serves
as a base template and approximate solution. We incorporate the model as
fixed algorithmic layers into our neural networks or utilize its parametrization
to represent our data. This way we effectively reduce the dimensionality of the
output space and align training data in a common parametrization.

In the following chapters we present our published works and additional
material on human pose and shape reconstruction.
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Abstract

This paper presents a method to estimate 3D human pose and body
shape from monocular videos. While recent approaches infer the
3D pose from silhouettes and landmarks, we exploit properties
of optical flow to temporally constrain the reconstructed motion.
We estimate human motion by minimizing the difference between
computed flow fields and the output of our novel flow renderer. By
just using a single semi-automatic initialization step, we are able to
reconstruct monocular sequences without joint annotation. Our test
scenarios demonstrate that optical flow effectively regularizes the
under-constrained problem of human shape and motion estimation
from monocular video.
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Figure A.1: Following our main idea we compute the optical flow between two consec-
utive frames and match it to an optical flow field estimated by our proposed optical flow
renderer. From left to right: input frame, color-coded observed flow, estimated flow,
resulting pose.

A.1 Introduction

Human pose estimation from video sequences has been an active field of re-
search over the past decades with various applications such as surveillance,
medical diagnostics or human-computer interfaces [151]. One branch of hu-
man pose estimation is referred to as articulated motion parsing [289], which
defines the combination of monocular pose estimation and motion tracking in
uncontrolled environments. We present a new approach to temporally coher-
ent human shape and motion estimation in uncontrolled monocular video se-
quences. Our work follows the generative strategy, where both pose and shape
parameters of a 3D body model are found to match the input image through
analysis-by-synthesis [143].

The 3D pose of a human figure is highly ambiguous when inferred from
only a 2D image. Common generative approaches [76, 85, 41] try to find
human poses that are a good match to given silhouettes. However, human
silhouettes can often be explained by multiple poses [76]. Existing meth-
ods for landmark-based 3D human motion estimation from monocular images
[188, 215, 2, 281, 282] can find a pose per frame independently. Although 3D
reconstructions from both approaches look very convincing on single images,
they can result in significant jumps in position and joint angles between two
successive frames. This creates highly unrealistic 3D reconstructions in the
temporal domain. Temporal consistency of tracked landmarks is only consid-
ered by few researchers [191, 249, 250].
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In our work we exploit the properties of the optical flow in the sequence to
not only enforce temporal coherence but also resolve the pose ambiguities of
purely silhouette-based or landmark-based approaches. We develop a motion
tracker based on our novel optical flow renderer. Optical flow has proven to
improve 2D tracking while also sharing much of the properties of range data
[200]. By exploiting properties of the optical flow we construct a robust and
stable 3D human motion tracker working on monocular image sequences.

The main idea behind our work is that the optical flow between two consec-
utive frames largely depends on the change of the human pose between them.
Following this idea, we propose an energy minimization problem that infers
those model parameters that minimize the distance between observed and ren-
dered flow for two input frames (Fig. A.1). Additional energy terms are derived
based on typical constraints of the human body, namely joint angle limits, limb
interpenetration and continuous motion. For stable tracking, silhouette cover-
age is enforced.

We evaluate the proposed method using two well known datasets. We ana-
lyze the performance of our approach qualitatively and evaluate its 3D and 2D
precision quantitatively. In the first experiment, 3D joint positions are compared
against ground truth of the HumanEva-I dataset [214] and results of two recently
published methods [26, 250]. The second evaluation compares projected 2D
joint positions against ground truth of the VideoPose 2.0 dataset [203] featuring
camera movement and rapid gesticulation. We compare our results against a
recent deep-learning-based method for joint localization [177]. Results demon-
strate the strengths and potential of the proposed method.

Summarizing, our contributions are:

− We develop a novel optical flow renderer for analysis-by-synthesis.

− We propose a complete pipeline for 3D reconstruction of human poses
from monocular image sequences, that is independent of previous anno-
tations of joints. It only uses a single semi-automatic initialization step.

− Optical flow is exploited to retrieve 3D information and achieve temporal
coherence, instead of solely relying on silhouette information.
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A.2 Related Work

Human pose estimation is a broad and active field of research. Here, we focus
on model-based approaches and work that exploits optical flow during pose
estimation.

Human pose from images. 3D human pose estimation is often based on the
use of a body model. Human body representations exist in 2D and 3D. Many of
the following methods utilize the 3D human body model SCAPE [14]. SCAPE
is a deformable mesh model learned from body scans. Pose and shape of the
model are parametrized by a set of body part rotations and low dimensional
shape deformations. In recent work the SMPL model, a more accurate blend
shape model compatible with existing rendering engines, has been presented by
Loper et al. [138].

A variety of approaches to 3D pose estimation have been presented using
various cues including shape from shading, silhouettes and edges. Due to the
highly ill-posed and under-constrained nature of the problem these methods of-
ten require user interaction e.g. through manual annotation of body joints on the
image. Guan et al. [76] have been the first to present a detailed method to re-
cover human pose together with an accurate shape estimate from single images.
Based on manual initialization, parameters of the SCAPE model are optimized
exploiting edge overlap and shading. The work is based on [17], a method
that recovers the 3D pose from silhouettes from 3-4 calibrated cameras. Similar
methods requiring multi-view input have been presented, e.g. [16, 213, 192, 60].
Hasler et al. [85] fit their own statistical body model [84] into monocular image
silhouettes with the help of sparse annotations. Chen et al. [41] infer 3D poses
based on learned shape priors. In recent work, Bogo et al. [26] present the first
method to extract both pose and shape from a single image fully automatically.
2D joint locations are found using the CNN-based approach DeepCut [177],
then projected joints of the SMPL model are fitted against the 2D locations.
In contrast to our work no consistency with the image silhouette or temporal
coherency is taken into consideration.

Pose reconstruction for image based rendering. 3D human pose estimation
can serve as a preliminary step for image based rendering techniques. In early
work Carranza et al. [37] have been the first to present free-viewpoint video us-
ing model-based reconstruction of human motion using the subject’s silhouette
in multiple camera views. Zhou et al. [280] and Jain et al. [106] present updates
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to model-based pose estimation for subsequent reshaping of humans in images
and videos respectively. Rogge et al. [198] fit a 3D model for automatic cloth
exchange in videos. All methods utilize various cues, none of them uses optical
flow for motion estimation.

Optical flow based methods. Previous work has exploited optical flow for
different purposes. Sapp et al. [203] and Fragkiadaki et al. [63] use optical flow
for segmentation as a preliminary step for pose estimation. Both exploit the
rigid structure revealing property of optical flow, rather than information about
motion. Fablet and Black [62] use optical flow to learn motion models for au-
tomatic detection of human motion. Efros et al. [58] categorize human motion
viewed from a distance by building an optical flow-based motion descriptor.
Both methods label motion without revealing the underlying movement pat-
tern. In recent work, Romero et al. [200] present a method for 2D human pose
estimation using optical flow only. They detect body parts by porting the ran-
dom forest approach used by the Microsoft Kinect to use optical flow. Brox et
al. [32] have shown that optical flow can be used for 3D pose tracking of rigid
objects. They propose the use for objects modeled as kinematic chains. They
argue that optical flow provides point correspondences inside the object contour
which can help to identify a pose where silhouettes are ambiguous. Inspired by
the above mentioned characteristics, we investigate the extent to which optical
flow can be used for 3D human motion estimation from monocular video.

A.3 Method

Optical flow [71] is the perception of motion by our visual sense. For two suc-
cessive video frames, it is described as a 2D vector field that matches a point
in the first frame to the displaced point in the following frame [93]. Although
calculated in the image plane, optical flow contains 3D information, as it can
be interpreted as the projection of 3D scene flow [242]. Assuming the presence
of optical flow in the sequence (i.e. all observed surfaces are diffuse, opaque
and textured), the entire observed optical flow is caused by relative movement
between object and camera. Besides the motion of individual body parts, op-
tical flow contains information about boundaries of rigid structures and is an
abstraction layer to the input images. Unique appearance effects such as texture
and shading are removed [62, 200]. We argue that these features make optical
flow highly suitable for generative optimization problems.
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The presented method estimates pose parameters (i.e. joint angles), global
position, and rotation of a human model (Sec. A.3.1) frame by frame. The
procedure only requires a single semi-automatic initialization step (Sec. A.3.6)
and then runs automatically. The parameters for each frame are inferred by
minimizing the difference between the observed and rendered flow (Sec. A.3.3)
from our flow renderer (Sec. A.3.2). A set of energy functions based on pose
constraints (Sec. A.3.4) and silhouettes (Sec. A.3.5) is defined to regularize the
solution to meaningful poses and to make the method more robust.

A.3.1 Scene model

In this work, we use the human body model SMPL [138]. The model can be
reshaped using 10 shape parameters β. For different poses, 72 pose parameters
θ can be set, including global orientation. β and θ produce realistic vertex
transformations and cover a large range of body shapes and poses. We define
(γ,β,θi,σi) as the model state at time step i, with global translation vector
σ and gender γ. Here, for simplicity we assume that the camera positions and
rotations as well as its focal lengths are known and static. It is however not
required that the cameras of the actual scene are fixed, as the body model can
rotate and move around the camera (cf. Sec. A.4).

A.3.2 Flow renderer

The core of the presented method is our differential flow renderer built upon
OpenDR [139], a powerful open source framework for analysis-by-synthesis.
The rendered flow image depends on the vertex locations determined by the
virtual human model’s pose parameters θ and its translation σ. To be able to
render the flow in situ, we calculate the flow from frame i to i − 1, referred to
as backward flow. With this approach each pixel, and more importantly, each
vertex location contains the information where it came from rather than were it
went and can be rendered in place. The calculation of the flow is achieved as
follows: The first step calculates the displacement of all vertices between two
frames i and j in the image plane. Then the flow per pixel is calculated through
barycentric interpolation of the neighboring vertices. Visibility and barycentric
coordinates are calculated through the standard OpenGL rendering pipeline.

The core feature of the utilized rendering framework OpenDR is the differ-
entiability of the rendering pipeline. To benefit from that property, our renderer
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estimates the partial derivatives of each flow vector with respect to each pro-
jected vertex position.

A.3.3 Flow matching

Having a flow renderer available, we can formulate the pose estimation as an
optimization problem. The cost function Ef over all pixels p is defined as
follows:

Ef =
∑
p

||Fo(i, i− 1, p)− Fr(i, i− 1, p)||2 (A.1)

where Fr refers to the rendered and Fo to the observed flow field calculated on
the input frames i and i− 1. The objective drives the optimization in such way
that the rendered flow is similar to the observed flow (Fig. A.1). As proposed
in [139], we evaluate Ef not over the flow field but over its Gaussian pyramid
in order to perform a more global search.

For this work we use the method by Xu et al. [262] to calculate the observed
optical flow field. The method has its strength in the ability to calculate large
displacements while at the same time preserving motion details and handling
occlusions. The definition of the objective shows that the performance of the
optical flow estimation is crucial to the overall performance of the presented
method. To compensate for inaccuracies of the flow estimation and to lower the
accumulated error over time, we do not rely exclusively on the flow for pose es-
timation, but employ additional constraints as well (Sec. A.3.4 and Sec. A.3.5).

A.3.4 Pose constraints

SMPL does not define bounds for deformation. We introduce soft boundaries
to constrain the joint angles in form of a cost function for pose estimation:

Eb = ||max(eθmin−θi − 1, 0) + max(eθi−θmax − 1, 0)||2 (A.2)

where θmin and θmax are empirical lower and upper boundaries and e and max
are applied component-wise.

Furthermore, we introduce extended Kalman filtering per joint and lin-
ear Kalman filtering for translation. In addition to temporal smoothness, the
Kalman filters are used to predict an a priori pose for the next frame before
optimization, which significantly speeds up computation time.
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Figure A.2: Method initialization. Observed image, manual pose initialization, first
optimization based on joint positions (red: model joints; blue: manually marked joints),
final result including silhouette coverage and optical flow based correction.

During optimization the extremities of the model may intersect with other
body parts. To prevent this, we integrate the interpenetration error term Esp
from [26]. The error term is defined over a capsule approximation of the body
model. By using an error term interpenetration is not strictly prohibited but
penalized.

A.3.5 Silhouette coverage

Pose estimation based on flow similarity requires that the rendered human
model accurately covers the subject in the input image. Only body parts that
cover the correct counterpart in the image can be moved correctly based on
flow. To address inaccuracies caused by flow calculation, we introduce bound-
ary matching.

We use the method presented by Bălan et al. [17] and adapt it to make it
differentiable (cf. Sec. A.3.7). A cost function measures how well the model
fits the image silhouette SI by penalizing non-overlapping pixels by the shortest
distance to the model silhouette SM . For this purpose Chamfer distance maps
CI for the image silhouette and CM for the model are calculated. The cost
function is defined as:

Ec =
∑
p

||aSMi
(p)CI(p) + (1− a)SI(p)CMi

(p)||2 (A.3)

where a weighs SMi
CI stronger as image silhouettes are wider to enforce the

model to reside within in the image silhouette than to completely cover it. To
be able to compute derivatives, we approximate CM by calculating the shortest
distance of each pixel to the model capsule approximation used for Esp. The
distance at p is the shortest distance among all distances to each capsule. To
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lower computation time, we calculate only a grid of values and interpolate in
between.

A.3.6 Initialization

For the initialization of the presented method two manual steps are required.
First the user sets the joints of the body model to a pose that roughly matches
the observed pose. It is sufficient that only the main joints such as shoulder,
elbow, hip and knee are manipulated. In a second step the user marks joint
locations of hips, knees, ankles, shoulders, elbows and wrists in the first frame.
If the position of a joint cannot be seen or estimated it may be skipped. From
this point no further user input is needed.

The initialization is then performed in three steps (Fig. A.2). The first step
minimizes the distance between the marked joints and their model counterparts
projected to the image plane, while keeping Esp and Eb low. We optimize over
translation σ, pose θ and shape β. To guide the process we regularize both θ
and β with objectives that penalize high differences to the manually set pose
and the mean shape. In the second step we include the silhouette coverage ob-
jective Ec. Finally, we optimize the estimated pose for temporal consistency.
We initialize the second frame with the intermediate initialization result and op-
timize on the flow field afterwards. While optimizing Ef we still allow updates
for θ0 and σ0.

A.3.7 Optimization

After initialization we now iteratively find each pose using the defined objec-
tives. The final objective function is a weighted sum of the energy terms of the
previous sections:

min
σ,θ

(λfEf + λcEc + λbEb + λspEsp + λMEM ) (A.4)

with scalar weights λ. EM regularizes the current state with respect to the last
state

EM = ||θi − θi−1||2 + ||σi − σi−1||2. (A.5)

Each frame is initialized with the Kalman prediction as described in Sec. A.3.4.

For the optimization we use the OpenDR toolbox [139]. It allows for au-
tomatic differentiation of most partially differentiable functions. Therefore we
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Figure A.3: Resultant poses of frames 30 to 120 of the HumanEva-I test sets. Green
traces show the history of evaluated joints.

can avoid the laborious and inaccurate task of calculating finite differences. All
our energy terms are designed to be fully or partially differentiable. Using this
auto-differentiation we are able to optimize Eq. (A.4) efficiently.

A.4 Evaluation

We evaluate the 3D and 2D pose accuracy of the presented method using
two publicly available datasets: HumanEva-I [214] and VideoPose2.0 [203].
Ground truth is available for both datasets. We compare our results in both
tests, 3D and 2D, against state-of-the-art methods [26, 250, 177]. Foreground
masks needed for our method have been hand-annotated using an open-source
tool for image annotation1.

HumanEva-I. The HumanEva-I datasets features different actions performed
by 4 subjects filmed under laboratory conditions. We reconstruct 130 frames of
the sets Walking C1 by subject 1 and Jog C2 by subject 2 without reinitializa-
tion. The camera focal length is known. We do not adjust our method for the
dataset except setting the λ weights. Fig. A.3 shows a qualitative analysis.
The green plots show the history of the joints used for evaluation. The traces
demonstrate clearly the temporal coherence of the presented method. The low
visual error in the last frames demonstrates that the presented method is robust
over time.

1https://bitbucket.org/aauvap/multimodal-pixel-annotator
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Walking C1 Jog C2
local global local global

Bogo et al. [26] 6.6 17.4 7.5 10.4
Wandt et al. [250] 5.7 34.0 6.3 38.0
Our method 5.5 7.6 7.9 9.9

Table A.1: Mean 3D joint error in cm for local per frame Procrustes alignment and
global per sequence alignment.

Chandler Ross Rachel
DeepCut [177] 25.3 10.5 32.8
Our method 23.3 21.9 15.9

Table A.2: Mean 2D joint error (shoulders, elbows, and wrists) in pixels.

We compare our method against the state-of-the-art methods of Bogo et
al. [26] and Wandt et al. [250]. We use [26] without the linear pose regressor
learned for the HumanEva sequences, which is missing in the publicly avail-
able source code. Frames that could not be reconstructed because of undetected
joints have been excluded for evaluation. The 3D reconstruction of [250] is
initialized with the same DeepCut [177] results as used for [26]. We measure
the precision of the methods by calculating the 3D positioning error as intro-
duced by [215]. It calculates the mean euclidean distance of 13 reconstructed
3D joint locations to ground truth locations from MoCap data. Beforehand, op-
timal linear alignment of the results of all methods is achieved by Procrustes
analysis. In order to demonstrate the global approach of our method, we follow
two strategies here: First we measure the joint error after performing Procrustes
alignment per frame. Afterwards we calculate a per sequence alignment over
all joint locations in all frames and measure the resulting mean error. Table A.1
shows the result of all tests.

The results show that our method performs best in three of four test scenar-
ios. In contrast to [26] and [250], our method does not require prior knowledge
about the performed motion or training of plausible poses. The better perfor-
mance of our method can be explained by the temporal coherent formulation
using optical flow. This strength is especially noticeable in the global analysis.
The method of [26] takes no temporal consistency into consideration, which
results in jumps of joint locations between two frames and unresolved pose am-
biguities (cf. Fig. A.6). Note that some frames cannot be reconstructed due
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Figure A.4: Frame 120 of Walking C1 in comparison to reconstruction with Ef set to
zero.

to the joint detector failing to find a feasible skeleton. The algorithm of [250]
also estimates the camera trajectory. A slightly wrongly estimated person size
results in a global offset of the camera path and causes a larger global error.
In order to demonstrate, that our method resolves ambiguities successfully, we
conduct the experiment again with Ef set to zero. The resultant motion does
no longer resemble the performed action (Fig. A.4) and the positioning error
raises significantly to 9.8 and 15.9 for local and global analysis of Walking C1
and 14.5 and 22.3 for Jog C2 respectively.

VideoPose2.0. After evaluation with fixed camera and under laboratory con-
ditions, we test our method under a more challenging setting. The second eval-
uation consists of three clips of the VideoPose2.0 dataset. We choose the “full-
frame, every frame” (720 × 540px) variant in order to face camera movement.
Ground truth is given in form of projected 2D location of shoulders, elbows,
and wrists for every other frame. The camera focal length has been estimated.

We evaluate our method in 2D by comparison against DeepCut [177], the
same method that has been used before as input for the 3D reconstruction meth-
ods. Table A.2 shows the mean euclidean distance to ground truth 2D joint
locations. We use the first detected person by DeepCut and exclude several
undetected joints from its evaluation. For our method, we project the recon-
structed 3D joint locations to the image plane. The mixed performance of [177]
is due to problems of the CNN with background objects. In order to enable fair
comparison, we hand filter the results of [177] to foreground detections only
and exclude several undetected joints. The comparison shows that our method
produces similar precision while providing much more information. However,
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Figure A.5: Resultant poses of frames 1, 21 and 41 of the VideoPose2.0 sets (Chandler,
Ross, Rachel) with ground truth arm locations (green and blue).

the increasing performance of CNN-based methods suggests that our method
can benefit from semantic scene information for reinitialization in future work.

A.5 Conclusions

We have presented a new method for estimating 3D human motion from monoc-
ular video footage. The approach utilizes optical flow to recover human motion
over time from a single initialization frame. For this purpose a novel flow ren-
derer has been developed that enables direct interpretation of optical flow. The
rich human body model SMPL provides the description of estimated human
motion. Different test cases have shown applicability and robustness of the ap-
proach.

The presented method is dependent on realistic flow fields and good seg-
mentation. It finds its natural limitations in the typical limits of optical flow
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Figure A.6: Temporal behavior of the left hip angle of our method for Walking C1 in
comparison against ground truth (GT) and Bogo et al. (SMPLify) [26].

estimation. Improvements in optical flow estimation, especially multi-frame
optical flow, can help to further improve our method. Although our temporal
coherent formulation allows for a good occlusion handling, large occlusions
and reappearances can still lead to tracking errors.

Our work is focused on automatic estimation of human motion from monoc-
ular video. In future work we plan to further automatize our method. The
method might benefit from recent developments in semantic segmentation [167]
and joint angle priors [2]. Building upon the presented framework, the next
steps are texturing of the model and geometry refinement, enabling new video
editing and virtual reality applications.
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Abstract

This paper describes a method to obtain accurate 3D body mod-
els and texture of arbitrary people from a single, monocular video
in which a person is moving. Based on a parametric body model,
we present a robust processing pipeline to infer 3D model shapes
including clothed people with 4.5mm reconstruction accuracy. At
the core of our approach is the transformation of dynamic body
pose into a canonical frame of reference. Our main contribution
is a method to transform the silhouette cones corresponding to dy-
namic human silhouettes to obtain a visual hull in a common ref-
erence frame. This enables efficient estimation of a consensus 3D
shape, texture and implanted animation skeleton based on a large
number of frames. Results on 4 different datasets demonstrate the
effectiveness of our approach to produce accurate 3D models. Re-
quiring only an RGB camera, our method enables everyone to cre-
ate their own fully animatable digital double, e.g., for social VR
applications or virtual try-on for online fashion shopping.

Published in IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2018, pp.
8387-8397.
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Figure B.1: Our technique allows to extract for the first time accurate 3D human body
models, including hair and clothing, from a single video sequence of the person moving
in front of the camera such that the person is seen from all sides.

B.1 Introduction

A personalized realistic and animatable 3D model of a human is required for
many applications, including virtual and augmented reality, human tracking for
surveillance, gaming, or biometrics. This model should comprise the person-
specific static geometry of the body, hair and clothing, alongside a coherent
surface texture.

One way to capture such models is to use expensive active scanners. But
size and cost of such scanners prevent their use in consumer applications. Al-
ternatively, multi-view passive reconstruction from a dense set of static body
pose images can be used [65, 161]. However, it is hard for people to stand still
for a long time, and so this process is time-consuming and error-prone. Also,
consumer RGB-D cameras can be used to scan 3D body models [131], but
these specialized sensors are not as widely available as video. Further, all these
methods merely reconstruct surface shape and texture, but no rigged animation
skeleton inside. All aforementioned applications would benefit from the abil-
ity to automatically reconstruct a personalized movable avatar from monocular
RGB video.
Despite remarkable progress in reconstructing 3D body models [25, 254, 275]
or free-form surface [287, 163, 170, 57] from depth data, 3D reconstruction of
humans in clothing from monocular video (without a pre-recorded scan of the
person) has not been addressed before. In this work, we estimate the shape
of people in clothing from a single video in which the person moves. Some

54



Introduction

methods infer shape parameters of a parametric body model from a single im-
age [26, 55, 15, 85, 280, 106], but the reconstruction is limited to the parametric
space and can not capture personalized shape detail and clothing geometry.

To estimate geometry from a video sequence, we could jointly optimize a
single free-form shape constrained by a body model to fit a set of F images.
Unfortunately, this requires to optimize F poses at once and more importantly
it requires storing F models in memory during optimization which makes it
computationally expensive and unpractical.

The key idea of our approach is to generalize visual hull methods [145] to
monocular videos of people in motion. Standard visual hull methods capture a
static shape from multiple views. Every camera ray through a silhouette point
in the image casts a constraint on the 3D body shape. To make visual hulls work
for monocular video of a moving person it is necessary to “undo” the human
motion and bring it to a canonical frame of reference. In this work, the ge-
ometry of people (in wide or tight clothing) is represented as a deviation from
the SMPL parametric body model [138] of naked people in a canonical T-pose;
this model also features a pose-dependent non-rigid surface skinning. We first
estimate an initial body shape and 3D pose at each frame by fitting the SMPL
model to 2D detections similar to [124, 26]. Given such fits, we associate ev-
ery silhouette point in every frame to a 3D point in the body model. We then
transform every projection ray according to the inverse deformation model of
its corresponding 3D model point; we call this operation unposing (Fig. B.3).
After unposing the rays for all frames we obtain a visual hull that constrains
the body shape in a canonical T-pose. We then jointly optimize body shape pa-
rameters and free-form vertex displacements to minimize the distance between
3D model points and unposed rays. This allows us to efficiently optimize a sin-
gle displacement surface on top of SMPL constrained to fit all frames at once,
which requires storing only one model in memory (Fig. B.2). Our technique
allows for the first time extracting accurate 3D human body models, including
hair and clothing, from a single video sequence of the person moving in front
of the camera such that the person is seen from all sides.
Our results on several 3D datasets show that our method can reconstruct 3D
human shape to a remarkable accuracy of 4.5 mm (even higher 3.1 mm with
ground truth poses) despite monocular depth ambiguities. We provide our
dataset and source code of our method for research purposes1.

1https://graphics.tu-bs.de/people-snapshot
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(a) (b) (c) (d)

Figure B.2: Overview of our method. The input to our method is an image sequence
with corresponding segmentations. We first calculate poses using the SMPL model (a).
Then we unpose silhouette camera rays (unposed silhouettes depicted in red) (b) and
optimize for the subjects shape in the canonical T-pose (c). Finally, we are able to
calculate a texture and generate a personalized blend shape model (d).

B.2 Related Work

Shape reconstruction of humans in clothing can be classified according to two
criteria: (1) the type of sensor used and (2) the kind of template prior used
for reconstruction. Free-form methods typically use multi-view cameras, depth
cameras or fusion of sensors and reconstruct surface geometry quite accurately
without using a strong prior on the shape. In more unconstrained and ambigu-
ous settings, such as in the monocular case, a parametric body model helps to
constrain the problem significantly. Here we review free-form and model-based
methods and focus on methods for monocular images.

Free-form methods reconstruct the moving geometry by deforming a
mesh [37, 51, 34] or using a volumetric representation of shape [94, 4]. The ad-
vantage of these methods is that they allow reconstruction of general dynamic
shapes provided that a template surface is available initially. While flexible,
such approaches require high-quality multi-view input data which makes them
impractical for many applications. Only one approach showed reconstruction
of human pose and deforming cloth geometry from monocular video using a
pre-captured shape template [264]. Using a depth camera, systems like Kinect-
Fusion [104, 162] allow reconstruction of 3D rigid scenes and also appearance
models [279] by incrementally fusing geometry in a canonical frame. A number
of methods adapt KinectFusion for human body scanning [209, 131, 273, 46].
The problem is that these methods require separate shots at different time
instances. The person thus needs to stand still while the camera is turned
around, or subtle pose changes need to be explicitly compensated. The approach

56



Related Work

in [163] generalized KinectFusion to non-rigid objects. The approach performs
non-rigid registration between the incoming depth frames and a concurrently
updated, initially incomplete, template. While general, such template-free ap-
proaches [162, 100, 218] are limited to slow and careful motions. One way to
make fusion and tracking more robust is by using multiple kinects [57, 170]
or multi-view [223, 127, 45]; such methods achieve impressive reconstruc-
tions but do not register all frames to the same template and focus on differ-
ent applications such as streaming or remote rendering for telepresence, e.g.,
in the holoportation project [170]. Pre-scanning the object or person to be
tracked [287, 51] reduces the problem to tracking the non-rigid deformations.
Some works are in-between free-form and model-based methods. In [66, 243]
they pre-scan a template and insert a skeleton and in [271] they use a skele-
ton to regularize dynamic fusion. Our work is also related to the seminal work
of [43, 44] where they align visual hulls over time to improve shape estimation.
In the articulated case, they need to segment and track every body part sepa-
rately and then merge the information together in a coarse voxel model; more
importantly, they need multi-view input. In [117] they compensate for small
motions of captured objects by de-blurring occupancy images but no results are
shown for moving humans. In [285] they reconstruct the shape of clothed hu-
mans in outdoor environments from RGB video, requiring the subject to stand
still. All these works use either multi-view systems, depth cameras or do not
handle moving humans. In contrast, we use a single RGB video of a moving
person, which makes the problem significantly harder as geometry can not be
directly unwarped as it is done in depth fusion papers.

Model-based. Several works leverage a parametric body model for human
pose and shape estimation from images [179]. Early models in computer vi-
sion were based on simple primitives [149, 69, 178, 212]. Recent ones are
learned from thousands of scans of real people and encode pose, and shape
deformations [14, 84, 138, 288, 182]. Some works reconstruct the body shape
from depth data sequences [254, 86, 268, 275, 25] exploiting the temporal infor-
mation. Typically, a single shape and multiple poses are optimized to exploit the
temporal information. Using multi-view some works have shown performance
capture outdoors [192, 194] by leveraging a sum of Gaussians body model [224]
or using a pre-computed template [270]. A number of works are restricted to
estimating the shape parameters of a body model [15, 76] from multiple views
or single images with manually clicked points; silhouettes shading cues and
color have been used for inference. Some works fit a body model to images
using manual intervention [280, 106, 198] with the goal of image manipulation.
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Shape and clothing from a single image is recovered in [79, 39] but the user
needs to click points in the image and select the clothing types from a database.
In [122] they obtain shape from contour drawings. The advance in 2D pose
detection [253, 36, 102] has made 3D pose and shape estimation possible in
challenging scenarios. In [26, 124] they fit a 3D body model [138] to 2D de-
tections; since only model parameters are optimized and these methods heavily
rely on 2D detections, results tend to be close to the shape space mean. In [5]
they add a silhouette term to reduce this effect.

Shape Under Clothing. The aforementioned methods ignore clothing or treat
it as noise, but a number of works explicitly reason about clothing. Typically,
these methods incorporate constraints such as the body should lie inside the
clothing silhouette. In [15] they estimate body shape under clothing by opti-
mizing model parameters for a set of images of the same person in different
clothing. In [260, 265] they exploit temporal sequences of scans to estimate
shape under clothing. Results are usually restricted to the (naked) model space.
In [274] they estimate detailed shape under clothing from scan sequences by
optimizing a free-form surface constrained by a body model. The approach
in [184] jointly captures clothing geometry and body shape using separate
meshes but requires 3D scan sequences as input. DoubleFusion [226] recon-
structs clothing geometry and inner body shape from a single depth camera in
real time.

Learning based. Only very few works predict human shape from images us-
ing learning methods since images annotated with ground truth shape, pose
and clothing geometry are hardly available. A few exceptions are the approach
of [55] that predicts shape from silhouettes using a neural network and [49]
that predicts garment geometry from a single image. Predictions in [55] are re-
stricted to model shape space and tend to look over-smooth; only garments seen
in the dataset can be recovered in [49]. Recent works leverage 2D annotations to
train networks for the task of 3D pose estimation [146, 185, 283, 225, 236, 197].
Such works typically predict a stick figure or bone skeleton only, and can not
estimate body shape or clothing.
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B.3 Method

Given a single monocular RGB video depicting a moving person, our goal is to
generate a personalized 3D model of the subject, which consists of the shape of
body, hair and clothing, a personalized texture map, and an underlying skeleton
rigged to the surface. Non-rigid surface deformations in new poses are thus
entirely skeleton-driven. Our method consists of 3 steps: 1) pose reconstruction
(Sec. B.3.2) 2) consensus shape estimation (Sec. B.3.3) and 3) frame refinement
and texture map generation (Sec. B.3.4). Our main contribution is step 2), the
consensus shape estimation; step 1) builds on previous work and step 3) to
obtain texture and time-varying details is optional.

In order to estimate the consensus shape of the subject, we first calculate
the 3D pose in each frame (Sec. B.3.2). We extend the method of [26] to make
it more robust and enforce better temporal coherence and silhouette overlap. In
the second step, the consensus shape is calculated as detailed in Sec. B.3.3. The
consensus shape is efficiently optimized to maximally explain the silhouettes
at each frame instance. Due to time-varying cloth deformations the posed con-
sensus shape might be slightly misaligned with the frame silhouettes. Hence,
in order to compute texture and capture time-varying details, in step 3) devi-
ations from the consensus shape are optimized per frame in a sliding window
approach (Sec. B.3.4). Given the refined frame-wise shapes we can compute
the texture map. Our method relies on a foreground segmentation of the im-
ages. Therefore, we adopt the CNN based video segmentation method of [33]
and train it with 3-4 manual segmentations per sequence. In order to counter
ambiguities in monocular 3D human shape reconstruction, we use the SMPL
body model [138] as starting point. In the following, we briefly explain how we
adapt original SMPL body model for our problem formulation.

B.3.1 SMPL body model with offsets

SMPL is a parameterized model of naked humans that takes 72 pose and 10
shape parameters and returns a triangulated mesh with N = 6890 vertices. The
shape β and pose θ deformations are applied to a base template T, which in the
original SMPL model corresponds to the statistical mean shape in the training
scans Tµ:

M(β,θ) = W (T (β,θ), J(β),θ,W) (B.1)

T (β,θ) = Tµ +Bs(β) +Bp(θ) (B.2)
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where W is a linear blend-skinning function applied to a rest pose T (β,θ)
based on the skeleton joints J(β) and after pose-dependent deformationsBp(θ)
and shape dependent deformations Bs(β) are applied. Shape-dependent de-
formations Bs(β) model subject identity. However the Principal Component
shape space of SMPL was learned from scans of naked humans, so clothing
and other personal surface detail cannot be modeled. In order to personalize the
SMPL model, we simply add a set of auxiliary variables or offsets D ∈ R3N

from the template:

T (θ,β,D) = Tµ +Bs(β) +Bp(θ) + D (B.3)

Such offsets D allow us to deform the model to better explain details and cloth-
ing. Offsets are optimized in step 2.

B.3.2 Pose reconstruction

The approach in [26] optimizes SMPL model parameters to fit a set of 2D joint
detections in the image. As with any monocular method, scale is an inher-
ent ambiguity. To mitigate this effect, we take inspiration from [192] and ex-
tend [26] such that it jointly considers P = 5 frames and optimizes a single
shape and P = 5 poses. Note that optimizing many more frames would become
computationally very expensive and many models would have to be simultane-
ously stored in memory. Our experiments reveal that even when optimizing
over P = 5 poses the scale ambiguity prevails. The reason is that pose dif-
ferences induce additional 3D ambiguities which cannot be uniquely decoupled
from global size, even on multiple frames [228, 220, 181]. Hence, if the height
of the person is known, we incorporate it as constraint during optimization. If
height is not known the shape reconstructions of our method are still accurate
up to a scale factor (height estimation is roughly off by 2-5 cm). The output
of initialization are SMPL model shape parameters β0 that we keep fixed dur-
ing subsequent frame-wise pose estimation. In order to estimate 3D pose more
reliably, we extend [26] by incorporating a silhouette term:

Esilh(θ) = G(woIrn(θ)C + wi(1− Irn(θ))C̄) (B.4)

with the silhouette image of the rendered model Irn(θ), distance transform of
observed image mask C and its inverse C̄, weights w. To be robust to local
minima we optimize at 4 different levels of a Gaussian pyramid G. We further
update the method to use state of the art 2D joint detections [36, 253] and a
single-modal A-pose prior. We train the prior from SMPL poses fitted against
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Figure B.3: The camera rays that form the image silhouette (left) are getting unposed
into the canonical T-pose (right). This allows efficient shape optimization on a single
model for multiple frames.

body scans of people in A-pose. Further, we enforce a temporal smoothness
and initialize the pose in a new frame with the estimated pose θ in the previous
frame. If the objective error gets too large, we re-initialize the tracker by setting
the pose to zero. While optimization in batches of frames would be beneficial it
slows down computation and we have not found significant differences in pose
accuracy. The output of this step is a set of poses {θp}Fp=1 for the F frames in
the sequence.

B.3.3 Consensus shape

Given the set of estimated poses we could jointly optimize a single refined shape
matching all original F poses, which would yield a complex, non-convex op-
timization problem. Instead, we merge all the information into an unposed
canonical frame, where refinement is computationally easier. At every frame
a silhouette places a new constraint on the body shape; specifically, the set of
rays going from the camera to the silhouette points define a constraint cone,
see Fig. B.3. Since the person is moving, the pose is changing. Our key idea
is to unpose the cone defined by the projection rays using the estimated poses.
Effectively, we invert the SMPL function for every ray. In SMPL, every vertex
v deforms according to the following equation:

v′i =

K∑
k=1

wk,iGk(θ, J(β))(vi + bs,i(β) + bP,i(θ)) (B.5)
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where Gk is the global transformation of joint k and bs,i(β) ∈ R and bP,i(θ)
are elements of Bs(β) and Bp(θ) corresponding to i− th vertex. For every ray
r we find its closest 3D model point. From Eq. (B.5) it follows that the inverse
transformation applied to a ray r corresponding to model point v′i is

r =

(
K∑
k=1

wk,iGk(θ, J(β))

)−1

r′ − bP,i(θ). (B.6)

Doing this for every ray effectively unposes the silhouette cone and places con-
straints on a canonical T-pose, see Fig. B.3. Unposing removes blend-shape
calculations from the optimization problem and significantly reduces the mem-
ory foot-print of the method. Without unposing the vertex operations and the
respective Jacobians would have to be computed for every frame at every update
of the shape. Given the set of unposed rays for F silhouettes (we use F = 120
in all experiments), we formulate an optimization in the canonical frame

Econs = Edata + wlpElp + wvarEvar + wsymEsym (B.7)

and minimize it with respect to shape parameters β of a template model and
the vertex offsets D defined in Eq. B.3. The objective Econs consists of a data
term Edata and three regularization terms Elp, Evar, Esym with weights w∗ that
balance its influence.

Data Term measures the distance between vertices and rays. Point to line
distances can be efficiently computed expressing rays using Plucker coordinates
(r = rm, rn). Given a set of correspondences (vi, r) ∈M the data term equals

Edata =
∑

(v,r)∈M
ρ(v × rn − rm) (B.8)

where ρ is the Geman-McClure robust cost function, here applied to the point to
line distance. Since the canonical pose parameters are all zero (θ = 0) it follows
from Eq. B.3 that vertex positions are a function of shape parameters and offsets
v(β0,D) = Ti(β0,D) = (vµ,i + bs,i(β0) + di), where di ∈ R3 is the offset
in D corresponding to vertex vi. In our notation, we remove the dependency
on parameters for clarity. The remaining terms regularize the optimization.
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Laplacian Term. We enforce smooth deformation by adding the Laplacian
mesh regularizer [222]:

Elp =

N∑
i=1

τl,i||L(vi)− δi||2 (B.9)

where δ = L(v(β0,0)) and L is the Laplace operator. The term forces the
Laplacian of the optimized mesh to be similar to the Laplacian of the mesh at
initialization (where offsets D = 0).

Body Model Term. We penalize deviations of the reconstructed free-form
vertices v(β0,D) from vertices explained by the SMPL model v(β,0):

Evar =

N∑
i=1

τv,i||vi(β0,D)− vi(β,0)||2 (B.10)

Symmetry Term. Humans are usually axially symmetrical with respect to the
Y-axis. Since the body model is nearly symmetric, we add a constraint on the
offsets alone that enforces a symmetrical shape:

Esym =
∑

(i,j)∈S
τs,i,j

∣∣∣∣[−1, 1, 1]T · di − dj
∣∣∣∣2 (B.11)

where S contains all pairs of Y-symmetric vertices. We phrase this as a soft-
constraint to allow potential asymmetries in clothing wrinkles and body shapes.
Since the refined consensus shape still has the mesh topology of SMPL, we can
apply the pose-based deformation space of SMPL to simulate surface deforma-
tion in new skeleton poses.

Implementation Details. Body regions that are typically unclothed or where
silhouettes are noisy (face, ears, hands, and feet) are more regularized towards
the body model using per-vertex weights τ . We optimize Econs using a “dog-
leg” trust region method using the chumpy auto-differentiation framework. We
alternate minimizing Econs with respect to model parameters and offsets and
finding point to line correspondences. We also re-initialize Elp, Evar, Esym.
More implementation details and runtime metrics are given in the supplemen-
tary material.
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Figure B.4: We back-project the image color from several frames to all visible vertices
to generate a full texture map.

B.3.4 Frame refinement and texture generation

After calculating a global shape for the given sequence, we aim to capture the
temporal variations. We adapt the energy in Eq. B.7 to process frames sequen-
tially. The optimization is initialized with the preceding frame and regularized
with neighboring frames:

Eref,j =

f+m∑
j=f−m

ψjEdata,j + wvarEvar,j + wlpElp,j + wlastElast,j (B.12)

where ψj = 1 for j = k and ψj = wneigh < 1 for neighboring frames. Hence,
wneigh defines the influence of neighboring frames and Elast regularizes the re-
construction to the result of the preceding frame. To create the texture, we warp
our estimated canonical model back to each frame, back-project the image color
to all visible vertices, and finally generate a texture image by calculating the me-
dian of the most orthogonal texels from all views. An example of keyframes we
use for texture mapping and the resulting texture image is shown in Fig. B.4.
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B.4 Experiments

We study the effectiveness of our method, qualitatively and quantitatively, in
different scenarios. For quantitative evaluation, we used two publicly available
datasets consisting of 3D scan sequences of humans in motion: with minimal
clothing (MC) (DynamicFAUST [27]) and with clothing (BUFF [274]). Since
these datasets were recorded without RGB sensors we simply render images of
the scans using a virtual camera and use them as input. In order to evaluate
our method on more varied clothing and backgrounds, we captured a new test
dataset (People-Snapshot dataset), and present qualitative results. To the best
of our knowledge, our method is the first approach that enables detailed human
body model reconstruction in clothing from a single monocular RGB video
without requiring a pre-scanned template or manually clicked points. Thus,
there exist no methods with the same setting as ours. Hence, we provide a
quantitative comparison to the state-of-the-art RGB-D based approach Kinect-
Cap [25] on their dataset. The image sequences and ground truth scans were
provided by the authors of [25]. While reconstruction from monocular videos
is much harder than from depth videos, a comparison is still informative. In all
experiments, the method’s parameters are set to two constant values, one set for
clothed and one set for people in MC, which are empirically determined.

B.4.1 Results on rendered images

We take all 9 sequences of 5 different subjects in the BUFF dataset and all 9 se-
quences of 9 subjects from the DynamicFaust dataset performing “Hip” move-
ments, featuring strong fabric movement or soft tissue dynamics respectively.
Each dynamic sequence consists of 300-800 frames. To simulate the subject ro-
tating in front of a camera, we create a virtual camera at 2.5 meters away from
the 3D scans of the subject. We rotate the camera in a circle around the person
moving one time per sequence. The foreground masks are easily obtained from
the alpha channel of the rendered images. For BUFF we render images with
real dynamic textures; for DynamicFAUST since textures are not available we
rendered shaded models.

In Fig. B.6, we show some examples of our reconstruction results on image
sequences rendered from BUFF and DynamicFAUST scans. The complete re-
sults of all 9 sequences are provided in the supplementary material. To be able to
quantitatively evaluate the reconstruction quality, we adjust the pose and scale
of our reconstruction to match the ground truth body scans following [274, 25].
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D-FAUST
Subject ID full method GT poses

50002 5.13 ±6.43 3.92 ±4.49
50004 4.36 ±4.67 2.95 ±3.11
50009 3.72 ±3.76 2.56 ±2.50
50020 3.32 ±3.04 2.27 ±2.06
50021 4.45 ±4.05 3.00 ±2.66
50022 5.71 ±5.78 2.96 ±2.97
50025 4.84 ±4.75 2.92 ±2.94
50026 4.56 ±4.83 2.62 ±2.48
50027 3.89 ±3.57 2.55 ±2.33

BUFF
Subject ID full method GT poses

t-
sh

ir
t,

lo
ng

pa
nt

s 00005 5.07 ±5.74 3.80 ±4.13
00032 4.84 ±5.25 3.37 ±3.59
00096 5.57 ±6.54 4.35 ±4.66
00114 4.22 ±5.12 3.14 ±2.99
03223 4.85 ±4.80 2.87 ±2.58

so
cc

er
ou

tfi
t 00005 5.35 ±6.67 3.82 ±3.67

00032 7.95 ±8.62 3.04 ±3.39
00114 4.97 ±5.81 3.01 ±2.80
03223 5.49 ±5.71 3.21 ±3.28

KinectCap
Subject ID Subject ID

00009 4.07 ±4.20 02909 3.94 ±4.80
00043 4.30 ±4.39 03122 3.21 ±2.85
00059 3.87 ±3.96 03123 3.68 ±3.22
00114 4.85 ±4.93 03124 3.67 ±3.31
00118 3.79 ±3.80 03126 4.89 ±6.12

Table B.1: Numerical evaluation on 3 different datasets with ground truth 3D shapes. On
D-FAUST and BUFF we rendered the ground truth scans on a virtual camera (see text),
KinectCap already included images. We report for every subject the average surface
to surface distance (see text). On BUFF, D-FAUST and KinectCap we achieve mean
average errors of 5.37mm, 4.44mm, 3.97mm respectively. As expected best results are
obtained using ground truth poses. Perhaps surprisingly, the results (3.40 mm for BUFF,
2.86 for D-FAUST) do not differ much from the average errors of the full pipeline. This
demonstrates that our approach is robust to inaccuracies in 3D pose estimation.
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Figure B.5: Comparison to the monocular model-based method [26] (left to right) input
frame, SMPLify, consensus shape. To make a fair comparison we extended [26] to
multiple views as well. Compared to pure model-based methods, our approach captures
also medium level geometry details from a single RGB camera.

Then, we compute a bi-directional vertex to surface distance between our re-
construction and the ground truth geometry. Per-vertex errors (in millimeters)
on all sequences are provided in Tab. B.1. The heatmaps of per-vertex errors
are shown in Fig. B.6. As can be seen, our method yields accurate reconstruc-
tion on all sequences including personalized details. To study the importance
of the pose estimation component, we report the accuracy of our method us-
ing ground truth poses versus using estimated poses full method. Ground truth
poses were obtained by registering SMPL to the 3D scans. The results of the
ablation evaluation are also shown in Fig. B.6 and Tab. B.1. We can see that
our complete pipeline achieved comparable accuracy with the one using ground
truth poses which demonstrates robustness. Results show that there is still room
for improvement in 3D pose reconstruction.

B.4.2 Qualitative results on RGB images

We also evaluate our method on real image sequences. The People-Snapshot
dataset consists of 24 sequences of 11 subjects varying a lot in height and
weight. The sequences are captured with a fixed camera, and we ask the sub-
jects to rotate while holding an A-pose. To cover a variety of clothing, lighting
conditions and background, the subjects were captured with varying sets of gar-
ments and with three different background scenes: in the studio with green
screen, outdoor, and indoor with complex dynamic background. Some exam-
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D-FAUST

(a) (b) (c) (d) (e)

BUFF

(a) (b) (c)

Figure B.6: Our results on image sequences from BUFF and D-FAUST datasets.
D-FAUST: (a) ground truth 3D scan, (b) consensus shape with ground truth poses
(consensus-p), (c) consensus-p heatmap, (d) consensus shape (consensus), (e) consensus
heat-map (blue means 0mm, red means ≥ 2cm). Textured results on BUFF: (a) ground
truth scan, (b) consensus-p (c) consensus.
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Figure B.7: Qualitative results: since the reconstructed templates share the topology
with the SMPL body model we can use SMPL to change the pose and shape of our
reconstructions. While SMPL does not model clothing deformations the deformed tem-
plates look plausible and maybe of sufficient quality for several applications.

ples of our reconstruction results are shown in Fig. B.7 and Fig. B.1. We show
more example in the supplementary material and in the video. We can see that
our method yields detailed reconstructions of similar quality as the results on
rendered sequences, which demonstrates that our method generalizes well on
the real world scenarios. The benefits of our method are further evidenced by
overlaying the re-posed final reconstruction on to the input images. As shown in
Fig. B.8, our reconstructions precisely overlay the body silhouettes in the input
images.

B.4.3 Comparison with KinectCap

We compare our method to [25] on their collected dataset. Subjects were cap-
tured in both A-pose and T-poses in this dataset. Since T-poses (zero-pose in
SMPL) are rather unnatural, they are not well captured in our general pose-
prior. Hence, we adjust our pose prior to contain also T-poses. Note that their
method relies on depth data, while ours only uses the RGB images. Notably, our
method obtains comparable results qualitatively and quantitatively despite solv-
ing a much more ill-posed problem. This is further evidenced by the per-vertex
errors in Tab. B.1.

B.4.4 Surface refinement using shading

As mentioned before, our method captures both body shape and medium level
surface geometry. In contrast to pure model-based methods, we already add
significant details (Fig. B.5). Using existing shape from shading methods the
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Figure B.8: Side-by-side comparison of our reconstructions (right) and the input images
(left). As can be seen from the right side, our reconstructions precisely overlay on the
input images. The reconstructed models rendered in a side view are shown at bottom
right.
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Figure B.9: Comparison to the RGB-D based method of [25] (red) and ground truth
scans (green). Our approach (blue) achieves similar qualitative results despite using
a monocular video sequence as opposed to a depth camera. Their approach is more
accurate numerically 2.54 mm versus 3.97 mm but our results are comparable despite
using a single RGB camera.

reconstruction can be further improved by adding the finer level details of the
surface, e.g. folding and wrinkles. Fig. B.10 shows an example result of ap-
plying the shape from shading method of [256] to our reconstruction. This
application further demonstrates the accuracy of our reconstruction, since such
good result cannot be obtained without an accurate model-to-image alignment.

B.5 Discussion and Conclusion

We have proposed the first approach to reconstruct a personalized 3D human
body model from a single video of a moving person. The reconstruction com-
prises personalized geometry of hair, body, and clothing, surface texture, and an
underlying model that allows changes in pose and shape. Our approach com-
bines a parametric human body model extended by surface displacements for
refinement, and a novel method to morph and fuse the dynamic human silhou-
ette cones in a common frame of reference. The fused cones merge the shape
information contained in the video, allowing us to optimize a detailed model
shape. Our algorithm not only captures the geometry and appearance of the
surface, but also automatically rigs the body model with a kinematic skeleton
enabling approximate pose-dependent surface deformation. Quantitative results
demonstrate that our approach can reconstruct human body shape with an ac-
curacy of 4.5mm and an ablation analysis shows robustness to noisy 3D pose
estimates.
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Figure B.10: Our reconstruction can be further improved by adding the finer level details
of the surface using shape from shading.

The presented method finds its limits in appearances that do not share the
same topology as the body: long open hair or skirts can not be modeled as an
offset from the body. Furthermore, we can only capture surface details that
are seen on the outline of at least one view. This means especially concave re-
gions like armpits or inner thighs are sometimes not well handled. Strong fabric
movement caused by fast skeletal motions will additionally result in decreased
level of detail. In future work, we plan to incorporate illumination and material
estimation alongside with temporally varying textures in our method to enable
realistic rendering and video augmentation.

For the first time, our method can extract realistic avatars including hair and
clothing from a moving person in a monocular RGB video. Since cameras are
ubiquitous and low cost, people will be able to digitize themselves and use the
3D human models for VR applications, entertainment, biometrics or virtual try-
on for online shopping. Furthermore, our method precisely aligns models with
the images, which opens up many possibilities for image editing.
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B.6 Appendix: Additional Results and
Implementation Details

B.6.1 Implementation details

In this section, we present more implementation details of the presented
method.

Optimization Parameters. The presented results are calculated using two
empirically determined parameter sets: one for clothed subjects, one for sub-
jects in minimal clothing. We found that the results are not very sensitive to
optimization parameter weights and we select them so that the energy terms are
balanced. The consensus objective function is defined as:

Econs = Edata + wlpElp + wvarEvar + wsymEsym (B.13)

The method is initialized with wlp = 4.0, wvar = 0.6 and wsym = 3.6. For
subjects in minimal clothing, we enforce a smoother surface with initializing
wlp = 6.5. We minimize Econs with respect to model parameters and offsets.
We update the point-to-line correspondences during optimization. An interest-
ing direction to explore would be to extend [229] to continuously optimize line
to surface correspondences, model parameters and offsets. In this work, we
recompute correspondences during optimization. After each correspondence
step, we re-initialize the three regularization terms Elp, Evar and Esym. To cap-
ture personal details, we gradually decrease the regularization weights.

Computation Time and Complexity. The results are calculated with Python
code without highly parallel computation. No attempts for run-time optimiza-
tion have been made. On an Intel Xeon E5-1630 v4 processor, the run-time for
one frame of pose reconstruction is about 1 min including IO. Consensus shape
estimation, meaning correspondence calculation and subsequent optimization
on F = 120 frames, takes about 1:50 min.

Given, that the connectivity of the mesh is fixed and the maximum connec-
tivity is bounded by constant k, the complexity of the regularization falls into
O(N). As every new frame introduces more matches, the complexity of the op-
timization falls intoO(FNP ), with P being the number of pixels (upper bound
for silhouette).
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B.6.2 Scale ambiguity

Scale is an intrinsic ambiguity in monocular methods when the distance of the
person to the camera is not known. Multiple views of the person in different
poses help to mitigate the problem but we have observed that the ambiguity
remains. The reason is that pose differences induce additional 3D ambiguities
which cannot be uniquely decoupled from global size, even on multiple frames.
Therefore, we perform an evaluation that is not sensitive to scale. Before calcu-
lating the per-vertex point to surface error, we adjust the one-dimensional scale
parameter to match the ground truth. This step is necessary to evaluate the qual-
ity of the shape reconstructions as otherwise, almost all error would come from
the scale miss-alignment.

B.6.3 Comparison with the depth camera based approach [25]

We compare our method against state-of-the-art RGB-D based approach [25]
on their dataset which we refer to as KinectCap in the main paper. To make
a fair comparison we also adjust the scale of their result to match the ground
truth. In the original paper, they performed an evaluation that was based on
scan to reconstructed mesh distance. Since the scan contains noise they had to
filter out noise by not considering scan points that are further away than a given
threshold. We tried to make the fairest comparison possible so we report in the
main paper their result using this method, which was 2.54mm. Since we did
not know what threshold to use to filter out noise in the scan and since differ-
ent scan point sampling/density can produce very different results we followed
the strategy explained in the main paper which was also followed in [274]. We
first perform non-rigid registration regularized by the body model to obtain a
ground truth registration (since registrations are regularized, they do not con-
tain the noise in the scans). Then we compute a bi-directional surface to surface
distance from the ground truth registration to the reconstructed shape. Follow-
ing this strategy, their method achieves an accuracy of 3.2mm and ours 3.9mm.
Our monocular approach is still not as accurate as approaches that use a depth
camera [25] but produces comparable results despite using only a single RGB
camera.

B.6.4 More results

We show all 9 reconstruction results on image sequences rendered from the
DynamicFAUST dataset in Fig. B.11, and all 9 results from the BUFF scans
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(a) (b) (c) (d) (e)

Figure B.11: Our results on image sequences from D-FAUST [27]. (a) ground truth
3D scan, (b) consensus shape with ground truth poses (consensus-p), (c) consensus-p
heatmap, (d) consensus shape (consensus), (e) consensus heat-map (blue means 0mm,
red means ≥ 2cm).

in Fig. B.12. It is worth noticing that the segmentation masks obtained from
the scans in the BUFF dataset contain noise and missing data, which degrades
the reconstruction quality of our method, especially for head, hands and feet.
In addition, the pose reconstruction for the hip motion is less accurate than
for people turning around. Note that the hip motion (in DynamicFAUST and
BUFF) is probably not the most suitable motion pattern to reconstruct a static
3D person model but it allowed us to evaluate our approach numerically. Thus,
the results using the rendered images of BUFF and DFAUST are slightly worse
than results obtained with a real RGB camera. All the 24 reconstructed models
in the People-Snapshot dataset are shown in Fig. B.13.
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(a) (b) (c)

Figure B.12: Our results on image sequences from BUFF [274]. (a) ground truth scan,
(b) consensus shape with ground truth poses and texture, (c) consensus shape with tex-
ture.
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Figure B.13: Results on our People-Snapshot dataset. We blurred the faces for the
subjects that did not give consent.
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Errata

Compared to the original publication and in addition to editorial changes, the
following corrections have been made:

− The consensus mesh in Fig. B.2 (c) has been corrected.

− The unit in Sec. B.6.3 has been changed to mm.
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Abstract

We present a novel method for high detail-preserving human avatar
creation from monocular video. A parameterized body model is re-
fined and optimized to maximally resemble subjects from a video
showing them from all sides. Our avatars feature a natural face,
hairstyle, clothes with garment wrinkles, and high-resolution tex-
ture. Our paper contributes facial landmark and shading-based
human body shape refinement, a semantic texture prior, and a
novel texture stitching strategy, resulting in the most sophisticated-
looking human avatars obtained from a single video to date. Nu-
merous results show the robustness and versatility of our method.
A user study illustrates its superiority over the state-of-the-art in
terms of identity preservation, level of detail, realism, and overall
user preference.

Published in International Conference on 3D Vision. IEEE, 2018, pp. 98-109.
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Figure C.1: Our method creates a detailed avatar from a monocular video of a person
turning around. Based on the SMPL model, we first compute a medium-level avatar,
then add subject-specific details and finally generate a seamless texture.

C.1 Introduction

The automatic generation of personalized 3D human models is needed for many
applications, including virtual and augmented reality, entertainment, teleconfer-
encing, virtual try-on, biometrics or surveillance. A personal 3D human model
should comprise all the details that make us different from each other, such as
hair, clothing, facial details and shape. Failure to faithfully recover all details
results in users not feeling identified with their self-avatar.

To address this challenging problem, researchers have used very expen-
sive recording equipment including 3D and 4D scanners [182, 27, 138] or
multi-camera studios with controlled lighting [195, 127]. An alternative is to
use passive stereo reconstruction [65, 161] with a camera moving around the
person, but the person has to maintain a static pose which is not feasible in
practice. Using depth data as input, the field has seen significant progress in
reconstructing accurate 3D body models [25, 254, 275] or free-form geome-
try [287, 163, 170, 57] or both jointly [226]. Depth cameras are however much
less ubiquitous than RGB cameras.

Monocular RGB methods are typically restricted to prediciting the param-
eters of a statistical body model [168, 112, 173, 26, 15, 85]. To the best of
our knowledge, the only exception is a recent method [7] that can reconstruct
shape, clothing and hair geometry from a monocular video sequence of a person
rotating in front of the camera. The basic idea is to fuse the information from
frame-wise silhouettes into a canonical pose, and optimize a free-form shape
regularized by the SMPL body model [138]. While this is a significant step in
3D human reconstruction from monocular video, the reconstructions are overly
smooth, lack facial details and the textures are blurry. This results in avatars
that do not fully retain the identity of the real subjects.
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In this work, we extend [7] in several important ways to improve the quality
of the 3D reconstructions and textures. Specifically, we incorporate information
from facial landmark detectors, shape-from-shading, and we introduce a new
algorithm to efficiently stitch partial textures coming from frames of the moving
person. Since the person is moving, information (projection rays from face
landmarks and normal fields from shading cues) can not be directly fused into
a single reconstruction. Hence, we track the person’s pose using SMPL [138];
then we apply an inverse pose transformation to frame-wise projection rays and
normal fields to fuse all the evidence in a canonical T-pose; in that space, we
optimize a high-resolution shape regularized by SMPL. Precisely, with respect
to previous work, our approach differs in four important aspects that allow us
better preserve subject identity and details in the reconstructions:

Facial landmarks: Since the face is a crucial part of the body, we incorporate
2D facial landmark detections into the 3D reconstruction objective. To gain
robustness against misdetections, we fuse temporal detections by transforming
the landmark projection rays into the joint T-pose space.

Illumination and shape-from-shading: Shading is a strong cue to recover
fine details such as wrinkles. Most shape-from-shading approaches focus on
adding detail to static objects. Here, we perform shape-from-shading at every
frame, obtaining frame-wise partial 3D normal fields that are then fused in T-
pose space for final reconstruction.

Efficient texture stitching: Seamless stitching of partial textures from differ-
ent camera views is particulary hard for moving articulated objects. To prevent
blurry textures, one typically assigns the RGB value of one the views to each
texture pixel (texel), while preserving spatial smoothness. Such assignment
problem can be formulated as a multi-labeling assignment, where number pos-
sible labels grows with the number of views. Consequently, the computational
time and memory becomes intractable for a large number of labels – we define
a novel texture update energy function which can be minimized efficiently with
a graph cut for every new incoming view.

Semantic texture stitching: Aside from stitching artifacts, texture spilling is
another common problem. For example texture that corresponds to the clothing
often floods into the skin region. To minimize spilling we add an additional

83



Detailed Human Avatars from Monocular Video

semantic term into the texture update energy. The term penalizes updating a
texel with an RGB value that is unlikely under a part-based appearance dis-
tribution. This semantic appearance term significantly reduces spilling, and
implicitly "connects" texels belonging to the same part.

The result is the most sophisticated method to obtain detailed 3D human
shape reconstructions from single monocular video. Since metric based evalu-
ations such as scan to mesh distances do not reflect the perceptual quality, we
performed a user study to assess the improvement of our method. The results
show that users prefer our avatars over state-of-the-art 89.64 % of the times and
they think our reconstructions are more detailed 95.72% of the times.

C.2 Related Work

Modeling the human body is a long-standing problem in computer vision.
Given a densely distributed multi-camera system, one can make use of multi-
view stereo methods [120] for reconstructing the human body [65, 67, 107,
277]. More advanced systems allow reconstruction of body shape under cloth-
ing [274, 265, 260], joint shape, pose and clothing reconstruction [184], or
capture body pose and facial expressions [109]. However, such setups are ex-
pensive and require complicated calibration.

Hence, monocular 3D reconstruction methods [162, 161] are appealing but
require depth images from many view points around a static object and humans
can not hold a static pose for a long time. Therefore, nonrigid deformation
of the human body has to be taken into account. Many methods are based
on depth sensors and require the subject to hold the same pose. For example,
in [131, 46, 209, 273], the subject alternatively makes a certain pose and rotates
in front of the sensor. Then, several depth snapshots taken from different view
points are fused to generate a complete 3D model. Similarly, [237] proposes to
use a turntable to rotate the subject to minimize pose variations. In contrast, the
methods of [25, 254, 275] allow a user to move freely in front of the sensor. In
recent years, real time nonrigid depth fusion has been achieved [163, 100, 218].
These methods usually maintain a growing template and consist of two alter-
nating steps, i.e. a registration step, where the current template is aligned to
the new frame, and a fusion step, where the observation in the new frame is
merged to the template. However, these methods typically suffer from “phan-
tom surfaces” artifacts during fast motion. In [226], this problem is allevi-
ated by using SMPL to constraint tracking. Model based monocular meth-
ods [26, 55, 76, 15, 85, 183, 179] have recently been integrated with deep learn-
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ing [168, 112, 173]. However, they are restricted to predicting the parameters
of a statistical body model [138, 14, 84, 288, 182]. There are two exceptions,
that recover clothing and shape from a single image [79, 39] but these methods
require manual initialization of pose and clothing parameters. [7] is the first
method capable of reconstructing full 3D shape and clothing geometry from a
single RGB video. Users can freely rotate in front of the camera while roughly
holding the A-pose. Unfortunately, this approach is restricted to recover only
medium-level details. The fine-level details such as garment wrinkles, subtle
geometry on the clothes and facial features, which are essential elements for
preserving the identity information, are missing. Our goal is to recover the
missing fine-level details of the geometry and improve the texture quality such
that the appearance identity information can be faithfully recovered.

Another branch of work in human body reconstruction is more focused on
capturing the dynamic motion of the character. Works either recover articulated
skeletal motion [224, 146, 69, 212, 5, 95], or surfaces with deformed clothing,
usually called performance capture. In performance capture many approaches
reconstruct a 3D model for each individual frame [223, 127, 45] or fuse a win-
dow of frames [170, 57]. However, these methods cannot generate a temporal
coherent representation of the model, which is an important characteristic for
many applications. To solve this, methods register a common model to results
of all frames [34], use volumetric representation for surface tracking [4, 94],
or assume a pre-built static template. Again, most of those methods are based
on multi-view images [51, 66, 178, 37, 192, 195]. There are attempts on re-
ducing the number of cameras, such as the stereo method [259], single view
depth based method [287] and the recent monocular RGB based method [264].
Note that the result of our method can be used as the initial template for above-
mentioned template based performance capture methods.

Shape-from-shading is also highly related to our method. A comprehensive
survey can be found in [276]. We only discuss the application of shape-from-
shading in the context of human body modeling. Geometric details, e.g. folds
in the non-textured region, are difficult to capture with silhouette or photometric
information. In contrast, shape-from-shading captures such details [259, 257,
81]. There are also approaches for photometric stereo which recover the shape
using controlled light stage setup [244].

Texture generation is an essential task for modeling a realistic virtual char-
acter, since a texture image can describe the material properties that cannot be
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modeled by the surface geometry. The key of a texture generation method is
how to combine texture fragments created from different views. Many early
works blend the texture fragments using weighted averaging across the entire
surface [20, 52, 166, 176]. Others make use of mosaicing strategies, which
yields sharper results [18, 126, 164, 196]. [125] is the first to formulate texture
stitching as a graph cut problem. Such formulation has been commonly used in
texture generation for multi-view 3D reconstruction. However, without accu-
rately reconstructed 3D geometry and registered images, these methods usually
suffer from blurring or ghosting artifacts. To this end, many methods focus on
compensating registration errors [59, 21, 248, 64, 279]. In our scenario, the
registration misalignment problem is even more severe, due to our challeng-
ing monocular nonrigid setting. Therefore, we propose to take advantage of
semantic information to better constrain our problem.

C.3 Method

In this paper, our goal is to create a detailed avatar from an RGB video of
a subject rotating in front of the camera. The focus lies hereby on fine-level
details, that model a subject’s identity and individual appearance. As shown
in Fig. C.2, our method reconstructs a textured mesh model in a coarse-to-fine
manner, which consists of three steps: First we estimate a rough body shape
of the subject, similar to [7], where the medium-level geometry of the clothing
and skin is reconstructed. Then we add fine-level geometric details, such as
garment wrinkles and facial features, based on shape-from-shading. Finally, we
compute a seamless texture to capture the texel-level appearance details. In the
following, we first describe our body shape model, and then discuss the details
of our three steps.

C.3.1 Subdivided SMPL body model

Our method is based on the SMPL body model [138]. However, the original
SMPL model is too coarse to model fine-level details such as garment wrinkles
and fine facial features. To this end, we adapt the model as follows.

The SMPL model is a parameterized human body model described by a
function of pose θ and shape β returning N = 6890 vertices and F = 13776
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(a) (b) (c)

Figure C.2: Our method 3-step method: We first estimate a medium level body shape
based on segmentations (a), then we add details using shape-from-shading (b). Finally
we compute a texture using a semantic prior and a novel graph cut optimization strategy
(c).

faces. As SMPL only models naked humans, we use the extended formulation
from [7] allowing offsets D from the template T:

M(β,θ,D) = W (T (β,θ,D), J(β),θ,W) (C.1)

T (β,θ,D) = T +Bs(β) +Bp(θ) + D (C.2)

where W is a linear blend-skinning function applied to a rest pose T (β,θ,D)
based on the skeleton joints J(β) and after pose Bp(θ) and shape dependent
Bs(β) deformations. The inverse function M−1(β,θ,D) unposes the model
and brings the vertices back into the canonical T-pose. As we aim for fine
details and a subject’s identity, we further extent the formulation. As shown in
Fig. C.3, we subdivide every edge of the the SMPL model twice. Every new
vertex is defined as:

vN+e = 0.5(vi + vj) + sene, (i, j) ∈ Ee (C.3)

where E defines the pairs of vertices forming an edge and ne is the average
normal between the normals of the vertex pair. s ∈ s defines the displacement
in normal direction ne. ne is calculated at initialization time in unposed space
and can be posed according toW . The new finer modelMf (β,θ,D, s) consists
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ofN = 110210 vertices and F = 220416 faces. To recover the high-res smooth
surface we calculate an initial set s0 = {s0, . . . , se} by minimizing

arg min
s

(
LMf =

∑
j∈N (i)

wij(vi − vj)
)

(C.4)

where L is the Laplace matrix with cotangent weights wij andN (i) defines the
neighbors around vi.

C.3.2 Medium-level body shape reconstruction

In recent work, a pipeline to recover a subject’s body shape, hair and clothing in
the same setup as ours has been presented [7]. They first select a number of key-
frames (K ≈ 120) evenly distributed over the sequence and segment them into
foreground and background using a CNN [33]. Then they recover the 3D pose
for each selected frame based on 2D landmarks [36]. At the core of their method
they transform the silhouette cone of every key-frame back into the canonical
T-pose of the SMPL model using the inverse formulation of SMPL. This allows
efficient optimization of the body shape independent of pose. We follow their
pipeline and optimize for the subjects body shape in unposed space. However,
we notice that the face estimation of [7] is not accurate enough. This prevents
us from further recovering fine-level facial features in the following steps, since
precise face alignment is necessary for that. To this end, we propose a new
objective for body shape estimation (dependency on parameters removed for
clarity):

arg min
β,D

Esilh + Eface + Eregm (C.5)

The silhouette term Esilh measures the distance between boundary vertices and
silhouette rays. See [7] for details and regularization Eregm. The face alignment
termEface penalizes the distance between the 2D facial landmark detections and
the 2D projection of 3D facial landmarks. We use OpenPose [216] to detect 2D
facial landmarks for every key-frame. In order to incorporate the detections into
the method, we establish a static mapping between landmarks and points on the
mesh. Every landmark l is mapped to the surface via barycentric interpolation
of neighboring vertices. During optimization, we measure the point to line
distance between the landmark l on the model and the corresponding camera
ray r describing the 2D landmark detection in unposed space:

δ(l, r) = l× rn − rm (C.6)
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di ∈ D

sene

Figure C.3: One face of the new SMPL formulation. The displacement field vectors d∗
and the normal displacements s∗n∗ form the subdivided surface.

where r = (rm, rn) is given in Plucker coordinates. The face alignment term
finally is:

Eface =
∑
l,r∈L

wlρ(δ(ll, rr)) (C.7)

where L defines the mapping between mesh points and landmarks, w is the
confidence of the landmark given by the CNN and ρ is the Geman-McClure
robust cost function. To speed up computation time, we use the coarse SMPL
model formulation (Eq. C.1) for the medium-level shape estimation.

C.3.3 Modeling fine-level surface details

In Sec. C.3.2, we capture the medium-level details by globally integrating the
silhouette information from all key-frames. Now our goal is to obtain fine-
level surface details, which cannot be estimated from silhouette, based on
shape-from-shading. Note that estimating shape-from-shading globally over all
frames would lead to a smooth shape without details, due to fabric movement
and misalignments. Thus, we first capture the details for a number of key-
frames individually, and then incrementally merge the details into the model as
new triangles become visible in a consecutive key-frame. We found that the
number of key-frames can be lower than in the first step and choose K = 60.
Now we describe how to capture the fine-level details for a single key-frame k
based on shape-from-shading. To make this process robust, we estimate shad-
ing normals individually in a window around the key-frame and then jointly
optimize for the surface.
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Shape-from-shading: For each frame, we first decompose the image into
reflectance Ir and shading Is using the CNN based intrinsic decomposition
method of [158]. The functionHc calculates the shading of a vertex with spher-
ical harmonic components c. We estimate spherical harmonic components c
that minimize the difference between the simulated shading and the observed
image shading Is jointly for the given window of frames [256]:

arg min
c

∑
i∈V
|Hc(ni)− Is(Pvi)| , (C.8)

where V denotes the subset of visible vertices, i.e. the angle between the normal
and the viewing direction is 0 < α ≤ αmax. P is the projection matrix. Having
the scene illumination and the shading for every pixel, we can now estimate
auxiliary normals Ñ = {ñ0, . . . , ñN} for every vertex per frame:

arg min
Ñ

Egrad + wlapnElapn. (C.9)

The Laplacian smoothness term Elapn = LÑ enforces the normals to be locally
smooth. Egrad penalizes shading errors by calculating the difference between
the gradient between a shaded vertex and its neighbors N and the image gradi-
ent at the projected vertex positions:

Egrad =
∑
i∈V

∑
j∈N (i)∩V

||∆Hc(ñi, ñj)−∆Is(Pvi,Pvj)||2 (C.10)

with ∆f (a, b) = f(a)− f(b).

Surface reconstruction: In order to merge information about all estimated
normals within the window, we transform the normals back into the canonical T-
pose using the inverse pose function of SMPL M−1. Then we optimize for the
surface which explains the merged normals. Further, we include the silhouette
term and face term of Sec. C.3.2 to enforce the surface to be well aligned to the
images. Specifically, we minimize:

arg min
D,s

∑
j∈C

(λjEsilh,j + λjwfaceEface,j) + wsfsEsfs + Eregf (C.11)

with weights w∗ and λj = 1 for j = k and λj < 1 otherwise. Esilh andEface are
evaluated over a number of control frames C and matches in Esilh are limited to
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Figure C.4: We calculate a semantic segmentation for every key frame. The semantic
labels are mapped into texture space and combined into a semantic texture prior.

vertices in the original SMPL model. The shape-from-shading term is defined
as:

Esfs =

k+m∑
f=k−m

∑
i∈V
||ni − ñfi ||2 (C.12)

where k is the current key-frame and m specifies the window size, usually m =
1. ñfi denotes the auxiliary normal of vertex i calculated from frame f . All
normals are in T-pose space. Eregf regularizes the optimization as described in
the following:

Eregf = wmatchEmatch + wlapElap + wstrucEstruc + wconsEcons (C.13)

Ematch penalizes the discrepancy between two neighboring key-frames. Specif-
ically, for a perfect estimation, the following assumption should hold: When
warping a key-frame into a neighboring key-frame based on the warp-field de-
scribed by the projected vertex displacement, the warped frame and the target
frame should be similar. Ematch describes this metric: First we calculate the
described warp. Then we calculate warping errors based on optical flow [31].
Based on the sum of the initial warp-field and the calculated error, we establish
a grid of correspondences between neighboring key-frames. Every correspon-
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Figure C.5: Based on part textures from key frames (left), we stitch a complete texture
using graph-cut based optimization. The associated key frames for each texel are shown
as colors on the right.

dence c should be explained by a particular point of the mesh surface. We first
find a candidate for every correspondence:

arg min
i∈V

cos(αik)δ(vki , r
k
c ) + cos(αij)δ(v

j
i , r

j
c)

cos(αik) + cos(αij)
(C.14)

where αik is the viewing angle under which the vertex i has been seen in key-
frame k and rkc is the projection ray of correspondence c in posed space of
key-frame k. Then we minimize point to line distance in unposed space:

Ematch =
∑
i,c∈M

ρ(δ(vi, rc)) (C.15)

whereM is the set of matches established in Eq. C.14.

The remaining regularization terms of Eq.C.13 are as follows: Elap is the
Laplacian smoothness term with anisotropic weights [256]. Estruc aims to keep
the structure of the mesh by pruning edge length variations. Econs prunes large
deviations from the consensus shape.

We optimize using a dog-leg trust region method using the chumpy autod-
ifferentiation framework. We alternate minimizing and finding silhouette point
to line correspondences. Regularization is reduced step-wise.
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C.3.4 Texture generation

A high quality texture image is an essential component for a realistic virtual
character, since it can describe the material properties that cannot be modeled
by the surface geometry. In order to obtain a sharp and seamless texture, we
solve the texture stitching on a per texel level (Fig. C.5), in contrast to that on
a per face level as in other works [125]. In other words, our goal is to color
each pixel in the texture image with a pixel value taken from one out of K
key-frames. However, this makes the scale of our problem much larger, and
therefore does not allow us to perform global optimization. To this end, we pro-
pose a novel texture merging method based on graph cut, which translates our
problem to a series of binary labeling subproblems that can be efficiently solved.
Furthermore, meshes and key-frames are not perfectly aligned. To reduce color
spilling and artifacts caused by misalignments, we compute a semantic prior
before stitching the final texture (Fig. C.4).

Partial texture generation: For every key-frame, we first project all visible
surface points to the frame and write the color at the projected position into
the corresponding texture coordinates. In order to factor out the illumination
in the texture images, we unshade the input images by dividing them with the
shading images as used in Sec. C.3.3. The partial texture calculation can easily
be achieved using the OpenGL rasterization pipeline. Apart from the partial
color texture image, we calculate two additional texture maps for the merging
step, i.e. the viewing-angle map and the semantic map. For the viewing-angle
map, we compute the viewing angle αtk under which the surface point t has
been seen in key-frame k.

The semantic prior is generated by re-projecting the human semantic seg-
mentation to the texture space. Specifically, we first calculate a semantic la-
bel for every pixel in the input frames using a CNN based human parsing
method [133]. Each frame is segmented into 10 semantic classes such as hair,
face, left leg and upper clothes. Then the semantic information of all frames is
fused into the global semantic map by minimizing for labeling x:

arg min
x

T∑
t=0

ϕt(xt) +
∑
t,q∈N

ψ(xt, xq) (C.16)

ϕt(xt) = 1−
∑K
k=0Xk(cos2 αtk)

K
(C.17)
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Here ϕ is the energy term describing the compatibility of a label x with the
texel t, where Xk returns the given value if the texel was labeled with x in view
k and 0 otherwise. ψ gives the label compatibility of neighboring texels t and
q. We solve Eq. C.16 by multi-label graph-cut optimization with alpha-beta
swaps [29]. While constructing the graph, we connect every texel not only with
its neighbors in texture space but with all neighbors on the surface. In particular
this means texels are connected across texture seams. To have a strong prior for
the texture completion, we calculate Gaussian mixture models (GMM) of the
colors in HSV space per label using the part-textures and corresponding labels.

Texture merging: Next, we calculate the complete texture by merging the
partial textures. While keeping the same graph structure, the objective function
is:

arg min
u

T∑
t=0

θt(ut) +
∑
t,q∈N

ηt,q(ut, uq) (C.18)

where the labeling u assigns every texel to a partial texture k. The first term
seeks to find the best image for each texel:

θt(k) = wvis sin2 αtk + wgmmm(Ut
k, xt) + wfaced(Ut

k) + wsilhEsilh,k (C.19)

with weights w∗. m returns the Mahalanobis distance between the color value
for t in part-texture k given the semantic label xt. d calculates the structural
dissimilarity between the first and the given key-frame. d is only evaluated on
texels belonging to the facial region and ensures consistent facial expression
over the texture.

The smoothness-term η ensures similar colors for neighboring texels. For
neighboring texels assigned to different key-frames ut 6= uq , while belonging to
the same semantic region xt = xq , ηt,q equals the gradient magnitude between
the texel colors ||Ut

ut
−Uq

uq
||.

Since the number of combinations in η is very high, it is computationally not
feasible to solve Eq. C.18 as a multi label graph-cut problem. Thus, we propose
the following strategy for an approximate solution: We convert the multi-label
problem to a binary labeling decision b ∈ {update, keep}. We initialize the tex-
ture with M = U0. Then we randomly choose a key-frame k and test it against
the current solution. The likelihood of selecting a key-frame is inversly pro-
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(a) (b)

Figure C.6: Side-by-side comparisons of our reconstructions (b) and the input frame
(a). As can be seen from (b), our method closely resembles the subject in the video (a).

portional to its remaining silhouette error Esilh,k in order to favor well-aligned
key-frames. Further, η is approximated with:

ηt,q =

{
max(||Mt −Uq

k||, ||Mq −Ut
k||), if bt 6= bq ∧ xt = xq

0, otherwise
(C.20)

Convergence is usually reached between 2K to 3K iterations. Finally, we cross-
blend between different labels to reduce visible seams. The run-time per itera-
tion on 1000 × 1000 px with Python code using a standard graph cut library is
∼2 sec. No attempts for run-time optimization have been made.

C.4 Experiments

We evaluate our method on two publicly available datasets: The People-
Snapshot dataset [7] and the dataset used in [25]. To validate the perceived
quality of our results we performed a user study.
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(a) (b)

Figure C.7: Our results (b) in comparison against the RGB-D method [25] (a). Note
that the texture prior has not been used (see Sec. C.4.1).

C.4.1 Qualitative results and comparisons

We compare our method to the recent method of [7] on their People-Snapshot
dataset. The approach of [7] is the only other monocular 3D person reconstruc-
tion method. The People-Snapshot dataset consists of 24 sequences of different
subjects rotating in front of the camera while roughly holding an A-pose. In
Fig. C.6, we show some examples of our reconstruction results, which pre-
cisely overlay the subjects in the image. Note that the level of detail of the input
images is captured by our reconstructed avatars. In Fig. C.11, we show side-
by-side comparison to [7]. Our results (right) reconstruct the face better and
preserve many more details, e.g. clothing wrinkles and t-shirt stamps.

Additionally, we compare against the state-of-the-art RGB-D method [25],
also using their dataset of people in minimal clothing1. While their method
relies on depth data, we only use the RGB video which makes the problem
much harder. Despite this, as shown in Fig. C.7, our results are comparable in
quality to theirs.

C.4.2 Face similarity measure

One goal of our method was to preserve the individual appearance of subjects
in their avatars. Since the face is crucial for this, we leverage facial landmarks
detections and shape-from-shading. As seen in Fig. C.11 our method adds a
significant level of detail to the facial region in comparison to state-of-the-art.

1The deep learning based segmentation [73] only works for fully clothed people so we had to
deactivate the semantic prior in this dataset.
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Figure C.8: In comparison to the method of [7] (left), the faces in our results (right)
have finer details in the mesh and closely resemble the subject in the photograph.

In Fig. C.8 we show the same comparison also for untextured meshes. Our
result closely resembles the subject in the photograph. To further demonstrate
the effectiveness of our method for face similarity preservation, we perform the
following experiment: FaceNet [206] is a deep network, that is trained to map
from face images to an Euclidean space where distance corresponds to face
similarity. We use FaceNet trained on the CASIA WebFace dataset [269] to
measure the similarity between photos of the subjects in the People-snapshot
dataset and their reconstructions. Two distinct subjects in the dataset have a
mean similarity distance of 1.33 ± 0.13. Same subjects in different settings
differ by 0.55 ± 0.18. Our reconstructions feature a mean distance of 0.99 ±
0.11 to their photo counterparts. Reconstructions of [7] perform significantly
worse with a mean distance of 1.09 ± 0.15. While our reconstructions can
be reliable identified using FaceNet, reconstructions of [7] have a similarity
distance close to a distance of distinct people, making them less likely to be
identified correctly.

C.4.3 Ablation analysis

In the following we qualitatively demonstrate the effectiveness of further design
choices of our method.

Shape-from-shading: In order to render the avatars under different illumina-
tions, detailed geometry should be present in the mesh. In Fig. C.9, we demon-
strate the level of detail added to the meshes by shape-from-shading. While the
mesh on the left only describes the low-frequency shape, our refined result on
the right contains fine-grained details such as wrinkles and buttons.
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Figure C.9: Comparison of a result of our method before (left) and after (right) applying
shape-from-shading based detail enhancing.

Influence of the texture prior: In Fig. C.10 we show the effectiveness of
the semantic prior for texture stitching. While the texture on the left computed
without the prior contains noticeable color spills on the arms and hands, the
final texture on the right contains no color spills and less stitching artifacts along
semantic boundaries.

C.4.4 User study

Finally, we conducted a user study in order to validate the visual fidelity of our
results. Each participant was asked four questions about 6 randomly chosen
results out of the 24 reconstructed subjects in People-Snapshot dataset. The
avatars shown to each participant and the questions asked were randomized.
In every question the participants had to decide between our method, and the
method of [7]. The four question were:

− Which avatar preserves the identity of the person in the image better?
(identity)

− Which avatar has more detail? (detail)

− Which avatar looks more real to you? (realism)

− Which avatar do you like better? (preference)
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Figure C.10: The semantic prior for texture stitching successfully removes color spilling
(left) in our final texture (right).

We presented the users renderings of the meshes in consistent pose and illumi-
nation. The users were allowed to zoom into the images. At questions identity
and realism we showed the participants either textured or untextured meshes.
For identity comparison we additionally showed a photo of the subject next to
the renderings. When asking for detail we only showed untextured meshes, and
when asking for preference we only showed textured results. Additionally, we
asked for the level of experience with 3D data (None, Beginner, Proficient, Ex-
pert). 74 people participated in our online survey, covering the whole range of
expertise.

The results of the study are summarized in Table C.1. The participants
clearly preferred our results in all scenarios over current state-of-the-art. Ad-
mittedly, when asked about identity preservation in untextured meshes, users
preferred our method, but this time only 65.70%. Further inspection of the
results shows that users with high experience with 3D data think our method
preserves the identity better with 90.48% versus 60.49% for novice users. We
hypothesize that unexperienced users find it more difficult to recognize people
from 3D meshes without textures. Most importantly, by a large margin, our re-
sults are perceived as more realistic (92.27%), preserve more details (95.72%)
and where preferred 89.64% of the times.
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Figure C.11: In comparison to the method of [7] (left), our results (right) look much
more natural and have finer details.
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C.5 Discussion and Conclusion

We have proposed a novel method to create highly detailed personalized avatars
from monocular video. We improve over the state-of-the-art in several impor-
tant aspects: Our optimization scheme allows to integrate face landmark detec-
tions and shape-from-shading from multiple frames. Experiments demonstrate
that this results in better face reconstruction and better identity preservation.
This is also confirmed by our user study, which shows that people think our
method preserves identity better 83.12% of the times, and capture more details
95.72% of the times.

We introduced a new texture stitching binary optimization, which allows us
to efficiently merge the appearance of multiple frames into a single coherent
texture. The optimization includes a semantic texture term that incorporates
appearance models for each semantic segmentation part. Results demonstrate
that the common artifact of color spilling from skin to clothing or viceversa gets
reduced.

We have argued for a method to capture the subtle, but very important details
to make avatars look realistic. Indeed details matter, the user study shows that
users think our results are more realistic than the state of the art 92.7% of the
times, and prefer our avatars 89.64% of the times.

Future work should address capture of subjects wearing clothing with topol-
ogy different from the body, including skirts and coats. Furthermore, to obtain
full texturing, subjects have to be seen from all sides – it may be possible to
infer occluded appearance using sufficient training data. Another avenue to ex-
plore is reconstruction in an un-cooperative setting, e.g. from online videos of
people.

Having cameras all around us, we can now serve the growing demand for
personalized avatars in virtual and augmented reality applications e.g. in the
fields of entertainment, communication or e-commerce.

Identitiy Details Realism Preference
Textured Avatars 83.12 % - 92.27 % 89.64 %

Untextured Avatars 65.70 % 95.72 % 89.73 % -

Table C.1: Results of the user study. Percentage of answers where users preferred our
method over [7]. We asked for four different aspects. See Sec. C.4.4 for details.
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Abstract

We present Octopus, a learning-based model to infer the personal-
ized 3D shape of people from a few frames (1-8) of a monocular
video in which the person is moving with a reconstruction accuracy
of 4 to 5mm, while being orders of magnitude faster than previous
methods. From semantic segmentation images, our Octopus model
reconstructs a 3D shape, including the parameters of SMPL plus
clothing and hair in 10 seconds or less. The model achieves fast
and accurate predictions based on two key design choices. First,
by predicting shape in a canonical T-pose space, the network learns
to encode the images of the person into pose-invariant latent codes,
where the information is fused. Second, based on the observation
that feed-forward predictions are fast but do not always align with
the input images, we predict using both, bottom-up and top-down
streams (one per view) allowing information to flow in both direc-
tions. Learning relies only on synthetic 3D data. Once learned,
Octopus can take a variable number of frames as input, and is able
to reconstruct shapes even from a single image with an accuracy of
5mm. Results on 3 different datasets demonstrate the efficacy and
accuracy of our approach.

Published in IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2019,
pp. 1175-1186.
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Figure D.1: We present a deep learning based approach to estimate personalized body
shape, including hair and clothing, using a single RGB camera. The shapes shown above
have been calculated using only 8 input images, and re-posed using SMPL.

D.1 Introduction

The automatic acquisition of detailed 3D human shape and appearance, includ-
ing clothing and facial details is required for many applications such as VR/AR,
gaming, virtual try-on, and cinematography.

A common way to acquire such models is with a scanner or a multi-view
studio [1, 130]. The cost and size prevent the wide-spread use of such setups.
Therefore, numerous works address capturing body shape and pose with more
practical setups, e.g. from a low number of video cameras [192], or using one
or more depth cameras, either specifically for the human body [25, 254, 275] or
for general free-form surfaces [287, 163, 170, 100, 57, 226]. The most practical
but also challenging setting is capturing from a single monocular RGB camera.
Some methods attempt to infer the shape parameters of a body model from a
single image [112, 168, 26, 55, 15, 85, 280, 106, 173], but reconstructed detail
is constrained to the model shape space, and thus does not capture personalized
shape detail and clothing geometry. Recent work [7, 6] estimates more detailed
shape, including clothing, from a video sequence of a person rotating in front
of a camera while holding a rough A-pose. While reconstructed models have
high quality, the optimization approach takes around 2 minutes only for the
shape component. More importantly, the main bottleneck is the pre-processing
step, which requires fitting the SMPL model to each of the frame silhouettes
using time-consuming non-linear optimization (≈ 120 min for 120 frames).
This is impractical for many applications that require fast acquisition such as
telepresence and gaming.

In this work, we address these limitations and introduce Octopus, a convo-
lutional neural network (CNN) based model that learns to predict 3D human
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shapes in a canonical pose given a few frames of a person rotating in front of a
single camera. Octopus predicts using both, bottom-up and top-down streams
(one per view) allowing information to flow in both directions. It can make
bottom-up predictions in 50ms per view, which are effectively refined top-down
using the same images in 10s. Inference, both bottom-up and top-down, is per-
formed fully-automatically using the same model. Octopus is therefore easy to
use and more practical than previous work [7]. Learning only relies on syn-
thetic 3D data, and on semantic segmentation images and keypoints derived
from synthesized video sequences. Consequently, Octopus can be trained with-
out paired data – real images with ground truth 3D shape annotations – which
is very difficult to obtain in practice.

Octopus predicts SMPL body model parameters, which represent the un-
dressed shape and the pose, plus additional 3D vertex offsets that model cloth-
ing, hair, and details beyond the SMPL space. Specifically, a CNN encodes F
frames of the person (in different poses) into F latent codes that are fused to
obtain a single shape code. From the shape code, two separate network streams
predict the SMPL shape parameters, and the 3D vertex offsets in the canonical
T-pose space, giving us the “unpose” shape or T-shape. Predicting the T-shape
forces the F latent codes to be pose-invariant, which is necessary to fuse the
shape information contained in each frame. Octopus also predicts a pose for
each frame, which allows to “pose” the T-shape and render a silhouette to eval-
uate the overlap against the input images in a top-down manner during both
training and inference. Specifically, since bottom-up models do not have a feed-
back loop, the feed-forward 3D predictions are correct but do not perfectly align
with the input images. Consequently, we refine the prediction top-down by op-
timizing the F poses, the T-shape, and the vertex offsets to maximize silhouette
overlap and joint re-projection error.

Experiments on a newly collected dataset (LifeScans), the publicly avail-
able PeopleSnapshot dataset [7], and on the dataset used in [25] demonstrate
that our model infers shapes with a reconstruction accuracy of 4mm in less
than 10 seconds. In summary, Octopus is faster than purely optimization-based
fitting approaches such as [7], it combines the advantages of bottom-up and
top-down methods in a single model, and can reconstruct detailed shapes and
clothing from a few video frames. Examples of reconstruction results are shown
in Fig. D.1. To foster further research in this direction, we made Octopus avail-
able for research purposes1.

1http://virtualhumans.mpi-inf.mpg.de/octopus/
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D.2 Related Work

Methods for 3D human shape and pose reconstruction can be broadly classified
as top-down or bottom-up. Top-down methods either fit a free-form surface
or a statistical body model (model-based). Bottom-up methods directly infer
a surface or body model parametrization from sensor data. We will review
bottom-up and top-down methods for human reconstruction.

Top-down, free-form methods non-rigidly deform meshes [37, 51, 34] or
volumetric shape representations [94, 4]. These methods are based on multi-
view stereo reconstruction [120], and therefore require multiple RGB or depth
cameras, which is a practical barrier for many applications. Using depth cam-
eras, KinectFusion [104, 162] approaches reconstruct 3D scenes by incremen-
tally fusing frame geometry, and appearance [279], in a canonical frame. Sev-
eral methods build on KinectFusion for body scanning [209, 131, 273, 46]. The
problem is that these methods require the person to stand still while the camera
is turned around. DynamicFusion [163] generalized KinectFusion to non-rigid
objects by combining non-rigid tracking and fusion. Although template-free
approaches [162, 100, 218] are flexible, they can only handle very careful mo-
tions. Common ways to add robustness are pre-scanning the template [287], or
using multiple kinects [57, 170] or multi-view [223, 127, 45]. These methods,
however, do not register the temporal 3D reconstructions to the same template
and focus on other applications such as streaming or telepresence [170]. Esti-
mating shape by compensating for pose changes can be tracked back to Che-
ung et al. [43, 44], where they align visual hulls over time to improve shape
estimation. To compensate for articulation, they merge shape information in a
coarse voxel model. However, they need to track each body part separately and
require multi-view input. All free-form works require multi-view input, depth
cameras or cannot handle moving humans.

Top-down, model-based methods exploit a parametric body model consist-
ing of pose and shape [14, 84, 138, 288, 182, 109] to regularize the fitting pro-
cess. Some Depth-based methods [254, 86, 268, 275, 25] exploit the tem-
poral information by optimizing a single shape and multiple poses (jointly or
sequentially). This leads to expensive optimization problems. Using mutli-
view, some works achieve fast performance [192, 194] at the cost of using
a coarser body model based on Gaussians [224], or a pre-computed tem-
plate [270]. Early RGB-based methods were restricted to estimating the param-
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eters of a body model, and required multiple views [15] or manually clicked
points [76, 280, 106, 198]. Shape and clothing have been recovered from RGB
images [79, 39], depth [40], or scan data [184], but require manual intervention
or clothing is limited to a pre-defined set of templates. In [266] a fuzzy vertex
association from clothing to body surface is introduced, which allows complex
clothing modeled as body offsets. Some works are in-between free-form and
model-based methods. In [66, 243], authors pre-scan a template and insert a
skeleton, and in [226] authors combine the SMPL model with a volumetric rep-
resentation to track the clothed human body from a depth camera.

Bottom-up. Learning of features for multi-view photo-consistency [128], and
auto-encoders combined with visual hulls [72, 238] have shown to improve
free-form performance capture. These works, however, require more than one
camera view. Very few works learn to predict personalized human shape from
images–lack of training data and the lack of a feedback loop between feed-
forward predictions and the images makes the problem hard. Variants of random
forests and neural networks have been used [55, 53, 54, 240] to regress shape
from silhouettes. The problem here is that predictions tend to look over-smooth,
are confined to the model shape space, and do not comprise clothing. Garments
are predicted [49] from a single image, but a single model for every new gar-
ment needs to be trained, which makes it hard to use in practice. Recent pure
bottom-up approaches to human analysis [146, 147, 185, 283, 225, 236, 197]
typically predict shape represented as a coarse stick figure or bone skeleton, and
can not estimate body shape or clothing.

Hybrid methods. A recent trend of works combines bottom-up and top-
down approaches–a combination that has been exploited already in earlier
works [221]. The most straightforward way is by fitting a 3D body model [138]
to 2D pose detections [26, 124]. These methods, however, can not capture
clothing and details beyond the model space. Clothing, hair and shape [7, 6]
can be inferred by fusing dynamic silhouettes (predicted bottom-up) of a video
to a canonical space. Even with good 2D predictions, these methods are sus-
ceptible to local minima when not initialized properly, and are typically slow.
Furthermore, the 2D prediction network and the model fitting is de-coupled.
Starting with a feed-forward 3D prediction, semantic segmentation, keypoints
and scene constraints are integrated top-down in order to predict the pose
and shape of multiple people [272]. Other recent works integrate the SMPL
model, or a voxel representation [241], as a layer within a network architec-
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ture [112, 173, 168, 239]. This has several advantages: (i) predictions are con-
strained by a shape space of humans, and (ii) bottom-up 3D predictions can be
verified top-down using 2D keypoints and silhouettes during training. However,
the shape estimates are confined to the model shape space and tend to be close
to the average. The focus of these works is rather on robust pose estimation,
while we focus on personalized shapes. We also integrate SMPL within our
architecture but our work is different in several aspects. First, our architecture
fuses the information of several images of the same person in different poses.
Second, our model incorporates a fast top-down component during training and
at test time. As a result, we can predict clothing, hair and personalized shapes
using a single camera.

D.3 Method

The goal of this work is to create a 3D model of a subject from a few frames
of a monocular RGB video, and in less than 10 seconds. The model should
comprise body shape, hair, and clothing and should be animatable. We take
inspiration from [7] and focus on the cooperative setting with videos of people
rotating in front of a camera holding a rough A-pose – this motion is easy and
fast to perform, and ensures that non-rigid motion of clothing and hair is not
too large. In contrast to previous work [7], we aim for fast and fully automatic
reconstruction. To this end, we train a novel convolutional neural network to
infer a 3D mesh model of a subject from a small number of input frames. Addi-
tionally, we train the network to reconstruct the 3D pose of the subject in each
frame. This allows us to refine the body shape by utilizing the decoder part of
the network for instance-specific optimization (Fig. D.2).

In Sec. D.3.1 we describe the shape representation used in this work fol-
lowed by its integration into the used predictor (Sec. D.3.2). In Sec. D.3.3 we
explain the losses, that are used in the experiments. We conclude by describing
the instance-specific top-down refinement of results (Sec. D.3.4).

D.3.1 Shape representation

Similar to previous work [274, 7], we represent shape using the SMPL statistical
body model [138], which represents the undressed body, and a set of offsets
modeling instance specific details including clothing and hair.
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SMPL is a function M(·) that maps pose θ and shape β to a mesh of V =
6890 vertices. By adding offsets D to the template T, we obtain a posed shape
instance as follows:

M(β,θ,D) = W (T (β,θ,D), J(β),θ,W) (D.1)

T (β,θ,D) = T +Bs(β) +Bp(θ) + D, (D.2)

where linear blend-skinning W (·) with weights W, together with pose-
dependent deformations Bp(θ) allow to pose the T-shape (T + Bs(β)) based
on its skeleton joints J(·). SMPL plus offsets, denoted as SMPL+D, is fully
differentiable with respect to pose θ, shape β and free-form deformations D.
This allows us to directly integrate SMPL as a fixed layer in our convolutional
architecture.

D.3.2 Model and data representation

Given a set of images I = {I0, . . . , IF−1} depicting a subject from differ-
ent sides with corresponding 2D joints J = {J0, . . . ,JF−1}, we learn a
predictor f∗w that infers the body shape β, personal and scene specific body
features D, and 3D poses P = {θ0, . . . ,θF−1} along with 3D positions
T = {t0, . . . , tF−1} for each image. f∗w : (I,J ) 7→ (β,D,P, T ) is a CNN
parametrized by network parameters w.

Input modalities. Images of humans are highly diverse in appearance, requir-
ing large datasets of annotated images in the context of deep learning. There-
fore, to abstract away as much information as possible while still retaining shape
and pose signal, we build on previous work [74, 36] to simplify each RGB im-
age to a semantic segmentation and 2D keypoint detections. This allows us to
train the network using only synthetic data and generalize to real data.

Model parametrization. By integrating the SMPL+D model (Sec. D.3.1)
into our network formulation, we can utilize its mesh output in the training
of f∗w. Concretely, we supervise predicted SMPL+D parameters in three ways:
Imposing a loss directly on the mesh verticesM(β,θ,D), on the predicted joint
locations J(β) and their projections on the image, and densely on a rendering
of the mesh using a differential renderer [87].
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The T-shape (T + Bs(β) + D) in Eq. D.2 is now predicted from the set of
semantic images I with the function:

S(I) = T +Bs(f
β
w (I)) + fDw (I), (D.3)

where f∗w are the regressors to be learned. Similarly, the posed mesh
N3D(I,J , i) is predicted from the image Ii and 2D joints Ji with the func-
tion:

N3D(I,J , i) = W (P (I,J , i), J(fβw (I)), fθi
w (I,J ),W) (D.4)

P (I,J , i) = S(I) +Bp(f
θi
w (I,J )), (D.5)

from which the 3D Joints are predicted with the linear regressor JB25:

NJ3D (I,J , i) = JB25(N3D(I,J , i)) (D.6)

JB25 has been trained to output 25 joint locations consistent with the BODY_25
keypoint ordering1. The estimated posed meshN3D can be rendered in uniform
color with the image formation function R(·) paramerized by camera c:

N2D(I,J , i) = Rc(N3D(I,J , i)) (D.7)

Similarly, we can project the the joints NJ3D to the image plane by perspective
projection π:

NJ2D (I,J , i) = πc(NJ3D(I,J , i)) (D.8)

All these operations are differentiable, which we can conveniently use to for-
mulate suitable loss functions.

D.3.3 Loss functions

Our architecture permits two sources of supervision: (i) 3D supervision (in our
experiments, from synthetic data derived by fitting SMPL+D to static scans),
and (ii) 2D supervision from video frames alone. In this section, we discuss
different loss functions used to train the predictors f∗w.

Losses on body shape and pose. For a paired sample in the dataset {(I,J ),
(β,D,P, T )} we use the following losses between our estimated model N3D

and the ground truth model M(·) scan:

1https://github.com/cmu-perceptual-computing-lab/openpose
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• Per-vertex loss in the canonical T-pose 0θ. This loss provides a useful 3D
supervision on shape independently of pose:

LS = ||S(I)−M(β,0θ,D)||2 (D.9)

• Per-vertex loss in posed space. This loss supervises both pose and shape
on the Euclidean space:

LN3D
=

F−1∑
i=0

||N3D(I,J , i)−M(β,θi,D)||2 (D.10)

• Silhouette overlap:

LN2D
=

F−1∑
i=0

||Rc(N3D(I,J , i))− b(Ii)||2, (D.11)

where b(Ii) is the binary segmentation mask and Rc is the image formation
function defined in Eq. D.7. LN2D

is a weakly supervised loss as it does not
require 3D annotations and b(Ii) can be estimated directly from RGB images.
In the experiments, we investigate whether such self-supervised loss can reduce
the amount 3D supervision required (see D.4.4). Additionally, we show that
N2D can be used at test time to refine the bottom-up predictions and capture
instance specific details in a top-down manner (see D.3.4).

• Per-vertex SMPL undressed body loss:

The aforementioned losses only penalize the final SMPL+D 3D shape. It is
useful to include an "undressed-body" (Ŝ) loss to force the shape parameters β
to be close to the ground truth

LŜ = ||Ŝ(I)−M(β,0θ,0D)||2 (D.12)

Ŝ(I) = T +Bs(f
β
w (I)), (D.13)

where 0D are vectors of length 0. This also prevents that the offsets D explain
the overall shape of the person.

Pose specific losses. In addition to the posed space LN3D
and silhouette over-

lap LN2D
losses, we train for the pose using a direct loss on the predicted pa-

rameters Lθ,t

Lθ,t =

F−1∑
i=0

(
||R(fθi

w )−R(θi)||2 + ||f tiw − ti||2
)
, (D.14)
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where R are vectorized rotation matrices of the 24 joints. Similar to [168, 124,
173], we use differentiable SVD to force the predicted matrices to lie on the
manifold of rotation matrices. This term makes the pose part of the network
converge faster.

Losses on joints. We further regularize the pose training by imposing a loss
on the joints in Euclidean space:

LJ3D =

F−1∑
i=0

||NJ3D (I,J , i)− JB25(M(β,θi,D))||2 (D.15)

Similar to the 2D image projection loss on model LN2D
(Eq. D.11), we also

have a weakly supervised 2D joint projection loss LJ2D

LJ2D =

F−1∑
i=0

||NJ2D (I,J , i)− πc(JB25(M(β,θi,D)))||2. (D.16)

D.3.4 Instance-specific top-down optimization

The bottom-up predictions of the neural model can be refined top-down at test
time to capture instance specific details. It is important to note that this step
requires no 3D annotation as the network fine-tunes using only 2D data. Specif-
ically, at the test time, given a subject’s images I and 2D joints J we optimize
a small set of layers in f∗w using image and joint projection losses LN2D

,LJ2D
(see D.4.1). By fixing most layers of the network and optimizing only latent
layers, we find a compromise between the manifold of shapes learned by the
network and new features, that have not been learned. We further regularize
this step using Laplacian smoothness, face landmarks, and symmetry terms
from [7, 6]. Table D.1 illustrates the performance of the pipeline before and
after optimization (see D.4.2, D.4.3).

D.4 Experiments

The following section focuses on the evaluation of our method. In Sec. D.4.1
we introduce technical details of the used dataset and network architecture. The
following sections describe experiments for quantitative and qualitative evalua-
tion as well as ablation and parameter analysis.
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Figure D.3: Sample scans from the LifeScans dataset.

D.4.1 Experimental setup

Dataset. To alleviate the lack of paired data, we use 2043 static 3D scans of
people in clothing. We purchased 163 scans from renderpeople.com and 54
from axyz-design.com. 1826 scans were kindly provided from Twindom1. Un-
fortunately, in the 2043 there is not enough variation in pose and shape to learn
a model that generalizes. Hence, we generate synthetic 3D data by non-rigidly
registering SMPL+D to each of the scans. This allows us to change the under-
lying body shape and pose of the scan using SMPL, see Fig. D.3. Like [7],
we focus on a cooperative scenario where the person is turning around in front
of the camera. Therefore, we animate the scans with turn-around poses and
random shapes and render video sequences from them. We call the resulting
dataset LifeScans, which consists of rendered images paired with 3D animated
scans in various shapes and poses. Since the static scans are from real people,
the generated images are close to photo-realistic, see Fig D.3. To prevent over-
fitting, we use semantic segmentation together with keypoints as intermediate
image representation, which preserve shape and pose signatures while abstract-
ing away appearance. This reduces the amount of appearance variation required
for training. To be able to render synthetic semantic segmentation, we first ren-
der the LifeScans subjects from different viewpoints and segment the output
with the method of [74]. Then we project the semantic labels back in the SMPL
texture space and fuse different views using graph cut-based optimization. This
final step enables full synthetic generation of paired training data.

1https://web.twindom.com/
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Scale ambiguity. Scale is an inherent ambiguity in monocular imagery. Three
factors determine the size of an object in an image: distance to the camera,
camera intrinsics, and the size of the object. As it is not possible to decouple this
ambiguity in a monocular set-up with moving objects, we fix two factors and
regress one. In other works [168, 112, 173] authors have assumed fixed distance
to the camera. We cannot make this assumption, as we leverage multiple images
of the same subject, where the distances to the camera may vary. Consequently,
we fix the size of the subject to average body height. Precisely, we make SMPL
height independent, by multiplying the model by 1.66m divided by the y-axis
distance of vertices describing ankles and eyes. Finally, we fix the focal length
to sensor height.

Network architecture. In the following we describe details of the convolu-
tional neural network f∗w. An overview is given in Fig. D.4. The input to f∗w
is a set of 1080x1080px semantically segmented images I and corresponding
2D joint locations J . f∗w encodes each image Ii with a set of five, 3x3 con-
volutions with ReLU activations followed by 2x2 max-pooling operations into
a pose invariant latent code linv

i . In our experiments we fixed the size of linv
i to

20. The pose branch maps both joint detections Ji and output of the last con-
volutional layer to a vector of size 200 and finally to the pose-dependent latent
code lpose

i of size 100 via fully connected layers. The shape branch aggregates
pose invariant information across images and computes mean linv. Note that
this formulation allows us to aggregate pose-dependent and invariant informa-
tion across an arbitrary and varying number of views. The shape branch goes
on to predict SMPL shape parameters β and free-form deformations D on the
SMPL mesh. β is directly calculated from linv with a linear layer. In order
to predict per-vertex offsets from the latent code linv, we use a four-step graph
convolutional network with Chebyshev filters and mesh upsampling layers sim-
ilar to [190]. Each convolution is followed by ReLU activation. We prefer a
graph convolutional network over a fully connected decoder due to memory
constraints and in order to get structured predictions.

Training scheme. The proposed method, including rendering, is fully differ-
entiable and end-to-end trainable. Empirically we found it better to train the
pose branch before training the shape branch. Thereafter, we optimize the net-
work end-to-end. We use a similar training schedule for our pose branch as
[173], where we first train the network using losses on the joints and pose pa-
rameters (LJ3D ,Lθ,t) followed by training using losses on the vertices and pose
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Before optimization After optimization
Full Pipeline 4.47 ±4.45 4.00 ±3.94
GT Poses 4.47 ±4.41 3.17 ±3.41

Table D.1: Mean vertex error (mm) of 55 test samples computed on F = 8 input
images. The full method with inferred poses produces comparable results to using GT
poses. Both variants gain accuracy from subsequent optimization.

parameters (LN3D
,Lθ,t). We also experiment with various training schemes,

and show that weakly supervised training can significantly reduce the depen-
dence on 3D annotated data (see Sec. D.4.4). For that experiment, we train
the model with alternating full (LS ,LŜ ,LN3D

,LJ3D ) and weak supervision
(LN2D

,LJ2D ). During instance-specific optimization we keep most layers fixed
and only optimize latent pose lpose, latent shape linv and the last graph convolu-
tional layer, that outputs free-form displacements D.

D.4.2 Numerical evaluation

We quantitatively evaluate our method on a separated test set of the LifeScans
dataset containing 55 subjects. We use F = 8 semantic segmentation images
and 2D poses as input and optimize the results for a maximum budget of 10
seconds. All results have been computed without intensive hyper-parameter
tuning. To quantify shape reconstruction accuracy, we adjust the pose of the
estimation to match the ground truth, following [274, 25]. This disentangles er-
rors in pose from errors in shape and allows to quantify shape accuracy. Finally,
we compute the bi-directional vertex to surface distance between scans and re-
constructions. We report mean errors in millimeters (mm) across the test set in
Tab. D.1. We differentiate between full method and ground truth (GT) poses.
Full method refers to our method as described in Sec. D.4.1. The latter is a vari-
ant of our method that uses ground truth poses, which allows to study the effect
of pose errors. In Fig. D.5 we display subjects in the test set for both variants
along with per-vertex error heatmaps. Visually the results look almost indistin-
guishable, which is corroborated by the fact that the numerical error increases
only by≈ 1mm between GT and predicted pose models. This demonstrates the
robustness of our approach. We show more examples with the corresponding
texture for qualitative assessment in Fig. D.1. The textures have been computed
using graph cut-based optimization using semantic labels as described in [6].
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D.4.3 Analysis of key parameters

Our method comes with two key hyper-parameters, namely number of input
images F , and number of optimization steps. In the following section, we study
these parameters and how they affect the performance of our approach. We also
justify our design choices.

Fig. D.7 illustrates the performance of our method with growing number
of optimization steps. While the performance gain saturates at around 70 −
80 steps, we use 25 steps in following experiments as a compromise between
accuracy and speed. For the case of F = 8 input images optimization for 25
steps takes ≈ 10s on a single Volta V100 GPU. We believe 10s is a practical
waiting time and a good compromise for many applications. Therefore we fix
the time budget to 10s for the following experiments.

Including more input views at test time can potentially improve the per-
formance of the method. However, in practice, this means more data pre-
processing and longer inference times. Fig. D.8 illustrates the performance with
different number of input images. Perhaps surprisingly, the performance satu-
rates already at around 5 images before optimization. After optimization, the
error saturates at around 8 images. While more images potentially means better
supervision, we cannot see improved results for optimization on many images.
This can be explained with the fixed time budget in this experiment, where more
images mean fewer optimization steps. While we could potentially use fewer
images, we found F = 8 views as a practical number of input views. This has
the following reason: A calculated avatar should not only be numerically accu-
rate but also visually appealing. Results based on more number of views show
more fine details and most importantly allow accurate texture calculation.

D.4.4 Type of supervision

Since videos are easier to obtain than 3D annotations, we evaluate to which ex-
tent they can substitute full 3D supervision to train our network. To this end,
we split the LifeScans dataset. One part is used for full supervision, the other
part is used for weak supervision in form of image masks and 2D keypoints. All
forms of supervision can be synthetically generated from the LifeScans dataset.
We train f∗w with 10%, 20%, 50%, and 100% full supervision and compare
the performance on the test set in Tab. D.2. In order to factor out the effect of
problematic poses during the training, we used ground truth poses in this exper-
iment. The results suggest that f∗w can be trained with only minimal amount of
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Figure D.7: Error decrease of the test set with increased number of optimization steps
computed on F = 8 input images.
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Figure D.8: Error development on the test set with increased number of input views
F before (dashed) and after optimization (solid). Optimization has been limited by a
time budget of 10s allowing very few gradient steps for large numbers of views, which
explains why the error plateaus for more than 8 views.
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Before optimization After optimization
100% 4.47 ±4.41 3.17 ±3.41
50% 4.57 ±4.52 3.19 ±3.43
20% 4.74 ±4.65 3.29 ±3.53
10% 4.73 ±4.56 3.46 ±3.62

Table D.2: Mean vertex error (mm) of 55 test samples with different amount of full
supervision during training of the shape branch. f∗

w can be trained with only 10% full
supervision with minimal accuracy lose.

full supervision, given strong pose predictions. The performance of the network
decreases only slightly for less than 100% full supervision. Most interestingly,
the results are almost identical for 10%, 20%, and 50% full supervision. This
experiment suggests that we could potentially improve performance by super-
vising our model with additionally recorded videos. We leave this for future
work.

D.4.5 Qualitative results and comparisons

We qualitatively compare our method against the most relevant work [7] on their
PeopleSnapshot dataset. While their method leverages 120 frames, we still use
F = 8 frames for our reconstructions. For a fairer comparison, we optimize for
≈ 20s in this experiment. This is still several magnitudes faster than the 122min
needed by [7]. Their method needs 2 minutes for shape optimization plus 1
minute per frame for the pose. In Fig. D.6 we show side-by-side comparison
to [7]. Our results are visually still on par while requiring a fraction of the data.

We also compare our method against [25], a RGB-D based optimization
method. Their dataset displays subjects in minimal clothing rotating in front
of the camera in T-pose. Unfortunately, the semantic segmentation network is
not able to successfully segment subjects in minimal clothing. Therefore we
sightly change the set-up for this experiment. We segment their dataset using
the semi-automatically approach [33] and re-train our predictor to be able to
process binary segmentation masks. Additionally, we augment the LifeScans
dataset with T-poses. We show side-by-side comparisons in Fig. D.9. Again
our results are visually similar, despite the use of less and only monocular data.
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(a) (b)

Figure D.9: Comparison to the RGB-D method [25] (a). Our method (b) is visually on
par, despite using only 8 RGB images as input.

D.5 Discussion and Conclusion

We have proposed a novel method for automatic 3D body shape estimation
from only 1− 8 frames of a monocular video of a person moving. Our Octopus
model predicts mesh-based pose invariant shape and per-image 3D pose from a
flexible number of views. Experiments demonstrate that the feed-forward pre-
dictions are already quite accurate (4.5mm), but often lack detail and do not
perfectly overlap with the input images. This motivates refining the estimates
with top-down optimization against the input images. Refining brings the error
down to 4mm and aligns the model with the input image silhouettes, which al-
lows texture mapping. In summary, we improve over the state-of-the-art in the
following aspects: Our method allows, for the first time, to estimate full body
reconstructions of people in clothing in a fully automatic manner. We signifi-
cantly reduce the number of needed images at test time, and compute the final
result several magnitudes faster than state-of-the-art (from hours to seconds).
Extensive experiments on the LifeScans dataset demonstrate the performance
and influence of key parameters of the predictor. While our model is indepen-
dent on the number of input images and can be refined for different numbers
of optimization steps, we have shown that using 8 views and refining for 10
seconds are good compromises between accuracy and practicability. Qualita-
tive results on two real-world datasets demonstrate generalization to real data,
despite training from synthetic data alone.

Future work should enable the proposed method for scenarios where the
subject is not cooperating, for example from Youtube videos, or legacy movie
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material. Furthermore, clothing with geometry far from the body, such as skirts
and coats or hairstyles like ponytails will require a different formulation.

By enabling fully automatic 3D body shape reconstruction from a few im-
ages in only a few seconds, we prepare the ground for wide-spread acquisition
of personalized 3D avatars. People are now able to quickly digitize themselves
using only a webcam and can use their model for various VR and AR applica-
tions.
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D.6 Appendix: Implementation Details

In the following, we present implementation details of the presented method. In
Sec. D.6.1, we explain of the parametrization of the body model. In Sec. D.6.2,
we discuss the top-down optimization in detail.

D.6.1 Body model parametrization

The SMPL body model M(·) is a function of pose θ and shape β (see Sec. 3.1
in main paper). The pose θ is parametrized by 23 ball-joints and global rotation
in axis-angle representation modeled in a kinematic chain. Additionally, we
move SMPL in space by 3D translation t. The shape β is parameterized by
the first 10 coefficients of a PCA shape space learned from body scans. This
parametrization comes in three variants: A PCA space describing only female
body shapes, a space for male shapes, and a joint shape space describing body
shapes across genders. In order to keep the fully-automatic property of our
method, we estimate body shapes based on the joint shape space.

D.6.2 Instance-specific top-down optimization

During top-down optimization (see Sec. 3.4 in main paper), we refine the pre-
dictor f∗w for a specific instance using weak supervision. Besides losses on input
images LN2D

and 2D joints LJ2D , we further regularize the optimization with
losses on the vertices, that preserve mesh sanity, inspired by [7]. Hereby, body
regions that are typically unclothed are more regularized by per-vertex weights
σ, τ . We enforce smooth meshes with Laplacian mesh regularization [222].
Similar smoothness as the undressed body shape is achieved by:

Llp =

V−1∑
j=0

σj ||L(vj)− L(v̂j)||2, (D.17)

where v∗ are vertices of S(I), v̂∗ are vertices of the undressed body Ŝ(I),
and L is the Laplace operator calculated with cotangent weights. Furthermore,
we take advantage of the fact, that bodies are mostly axially symmetrical with
respect to the Y-axis:

Lsym =

F−1∑
i=0

∑
(j,k)∈S

τ j,k||[−1, 1, 1]T · vi,j − vi,k||2, (D.18)
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where vi,∗ are vertices ofN3D(I,J , i) and S contains all pairs of Y-symmetric
vertices.

To further improve the visual fidelity of the results, we include 2D face
keypoint matching from [6]. To this end, we compute face keypoints K =
{K0, . . . ,KF−1} per image and include a 2D reprojection loss:

Lface =

F−1∑
i=0

||πc(K70(N3D(I,J , i)))−Ki||2, (D.19)

where K70 has been trained to output 70 face keypoints. As demonstrated in
[6], this loss enforces the produced results to look more like their human coun-
terpart. The loss used for fine-tuning f∗w finally is:

Lopt = wN2D
LN2D

+ wJ2DLJ2D + Lreg (D.20)

Lreg = wlpLlp + wsymLsym + wfaceLface, (D.21)

with weights w∗ that balance the influence of different terms.
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Errata

Compared to the original publication and in addition to editorial changes, the
following corrections have been made:

− The call of Equation D.5 has been corrected in Equation D.4.
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Thiemo Alldieck1, Gerard Pons-Moll2, Christian Theobalt2,
and Marcus Magnor1

1 Computer Graphics Lab, TU Braunschweig
2 Max Planck Institute for Informatics, Saarland Informatics Campus

Abstract

We present a simple yet effective method to infer detailed full hu-
man body shape from only a single photograph. Our model can
infer full-body shape including face, hair, and clothing including
wrinkles at interactive frame-rates. Results feature details even on
parts that are occluded in the input image. Our main idea is to turn
shape regression into an aligned image-to-image translation prob-
lem. The input to our method is a partial texture map of the visible
region obtained from off-the-shelf methods. From a partial texture,
we estimate detailed normal and vector displacement maps, which
can be applied to a low-resolution smooth body model to add de-
tail and clothing. Despite being trained purely with synthetic data,
our model generalizes well to real-world photographs. Numerous
results demonstrate the versatility and robustness of our method.

Published in IEEE International Conference on Computer Vision, IEEE, 2019, pp. 2293-2303.
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Figure E.1: We present an image-to-image translation model for detailed full human
body geometry reconstruction from a single image.

E.1 Introduction

In this paper, we address the problem of automatic detailed full-body human
shape reconstruction from a single image. Human shape reconstruction has
many applications in virtual and augmented reality, scene analysis, and virtual
try-on. For most applications, acquisition should be quick and easy, and visual
fidelity is important. Reconstructed geometry is most useful if it shows hair,
face, and clothing folds and wrinkles at sufficient detail – what we refer to as
detailed shape. Detail adds realism, allows people to feel identified with their
self-avatar and their interlocutors, and often carries crucial information.

While a large number of papers focus on recovering pose, and rough body
shape from a single image [168, 112, 173, 26], much fewer papers focus on
recovering detailed shapes. Some recent methods recover pose and non-rigid
deformation from monocular video [264], even in real-time [80]. However, they
require a pre-captured static template of each subject. Other recent works [7, 8]
recover static body shape, and clothing as displacements on top of the SMPL
body model [138] (model-based), or use a voxel representation [240, 156].
Voxel-based methods [240, 156] often produce errors at the limbs of the body
and require fitting a model post-hoc [240]. Model-based methods are more
robust, but results tend to lack fine detail. We hypothesize there are three rea-
sons for this. Firstly, they rely mostly on silhouettes for either fitting [7], or
CNN-based regression plus fitting [8], ignoring the rich illumination and shad-
ing information contained in RGB values. Secondly, the regression from image
pixels directly to 3D mesh displacements is hard because inputs and outputs are
not aligned. Furthermore, prediction of high-resolution meshes requires mesh-
based neural networks, which are very promising but are harder to train than
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standard 2D CNNs. Finally, they rely on 3D pose estimation, which is hard to
obtain accurately.

Based on these observations, our idea is to turn the shape regression into
an aligned image-to-image translation problem (see Fig. E.1). To that end, we
map input and output pairs to the pose-independent UV-mapping of the SMPL
model. The UV-mapping unfolds the body surface onto a 2D image such that
every pixel corresponds to a 3D point on the body surface. Similar to [160], we
map the visible image pixels to the UV space using DensePose [12] obtaining a
partial texture map image, which we use as input. Instead of regressing details
directly on the mesh, we propose to regress shape as UV-space displacement
and normal maps. Every pixel stores a normal and a displacement vector from a
smooth shape (in the space of SMPL) to the detailed shape. We call our model
to Tex2Shape.

We train Tex2Shape with a dataset of 2043 3D scans of people in varying
clothing, poses, and shapes. To map all scan shapes to the UV-space, we non-
rigidly register SMPL to each scan, optimizing for model shape parameters and
free-form displacements, and store the latter in a displacement map. Registra-
tion is also useful for augmentation; using SMPL, we render multiple images of
varying pose and camera view. We further augment the renderings with realis-
tic illumination, which is a strong cue in this problem. Assuming a Lambertian
reflectance model, we know that color forms from the dot product of light di-
rection and the surface normal times albedo. Shape-from-shading [276] allows
to invert the process and estimate the surface from shading, which was used be-
fore to refine geometry of stereo-based [259] or multi-view-based human per-
formance capture results [258, 130]. After synthesizing image pairs, we train
a Pix2Pix network [103] to map from partial texture maps to complete normal
and displacement maps and a second small network for estimating SMPL body
shape parameters.

Several experiments demonstrate that our proposed data pre-processing un-
doubtedly pays-off. Trained only from synthetic images, our model can robustly
produce, in one shot, full 3D shapes of people with varied clothing, shape, and
hair. In contrast to models that produce normals or shading only for the visi-
ble image part, Tex2Shape hallucinates the shape also for the occluded part –
effectively performing translation and completion together. In summary, our
contributions are:

− We turn a hard full-body shape reconstruction problem into an easier
3D pose-independent image-to-image translation one. To the best of our
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knowledge, this is the first method to infer detailed body shape as image-
to-image translation.

− From a single image, our model can regress full 3D clothing, hair and
facial details in 50 milliseconds.

− Experiments demonstrate that, while very simple, Tex2Shape is very ef-
fective and is capable of regressing full 3D clothing, hair and facial details
in a static reference pose in one shot.

− Tex2Shape is available for research purposes1.

E.2 Related Work

Human shape reconstruction is a wide field of research, often jointly approached
with pose reconstruction. In the following, we review methods for human pose
and shape reconstruction from monocular image and video. Full body methods
are often inspired by methods for face geometry estimation. Hence, we include
face reconstruction in our review. When it comes to detailed reconstruction,
clothing plays an important role. Therefore, we conclude with a brief overview
of garment reconstruction and modeling.

Pose and shape reconstruction. Methods for monocular pose and shape re-
construction often utilize parametric body models to limit the search space [14,
84, 138, 182, 109], or use a pre-scanned static template to capture pose and
non-rigid surface deformation [264, 80]. To recover pose and shape, the 3D
body model is fitted against 2D poses. In early works 2D poses have been
entirely or partially manually clicked [76, 280, 106, 198], later the process
was automated [26, 124] with 2D landmark detections from deep neural net-
works [177, 101, 36]. In recent work, the SMPL [138] model has been inte-
grated into network architectures [112, 173, 168, 239]. This further automates
and robustifies the process. All these works focus mostly on robust pose detec-
tion. Shape estimation is often limited to surface correlations with bone lengths.
Most importantly, the shape is limited to the model space. In contrast, we focus
only on shape and estimate geometry details beyond the model space.

Clothing and hair can be obtained by optimization-based methods [7, 6].
From a video of a subject turning around in A-pose, silhouettes are fused in

1http://virtualhumans.mpi-inf.mpg.de/tex2shape/
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canonical pose. In the same setting, the authors in [8] present a hybrid learning
and optimization-based method, that makes the process completely automatic,
fast, and dependent only on a handful of images. However, all these methods
can only process A-poses and depend on robust pose detection. The method
in [255] loosens this restriction and creates humanoid shapes from a single
image via 2D warping of SMPL parameters, but only partially handles self-
occlusion. Another recent line of research estimates pose and shape in form of
a voxel representation [241, 105, 156], which allows for more complex clothing
but limits the level of detail. In [278] the authors alleviate this limitation by aug-
menting the visible parts with a predicted normal map. In contrast, we present
3D pose-independent shape estimation in a reference pose with high-resolution
details also on non-visible parts.

Several previous methods exploited shading cues in high-frequency texture
to estimate high-frequency detail. For instance, they estimated lighting and
reflectance to compute shape-from-shading-refined geometry of a human tem-
plate from stereo [259] or multi-view imagery [258, 130].

Face reconstruction. Several recent monocular face reconstruction and per-
formance capture methods use shading-based refinement for geometry improve-
ment, e.g., in analysis-by-synthesis fitting [207] or refinement, or in a trained
neural network [208, 99]. Also related to our approach are recent works inte-
grating a differentiable face renderer in a neural network to estimate instance
correctives of geometry and albedo relative to a base model [230], or learn an
identity geometry and albedo basis from scratch from video [232].

Garment reconstruction and modeling. Body shape under clothing has
been estimated without [274] and jointly with a separate clothing layer [184]
from 3D scans and from RGB-D [227]. [266] introduces a technique, which al-
lows complex clothing to be modeled as offsets from the naked body. The work
in [251] describes a model that encodes shape, garment sketch, and garment
model, in a single shared latent code, which enables interactive garment de-
sign. High frequency wrinkles are predicted as a function of pose either in UV
space using a CNN [123, 108] or directly in 3D using a data-driven optimiza-
tion method [186]. All these methods [123, 266, 108] target realistic animation
of clothing and can only predict garments in isolation [123, 108]. Learning
based normals and depth recovery [19] or meshes [49] has been demonstrated
but again only for single garments. In contrast, our approach is the first to re-
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construct the detailed shape of a full-body from a single image by learning an
image-to-image mapping.

E.3 Method

The goal of this work is to create an animatable 3D model of a subject from a
single photograph. The model should reflect the subject’s body shape and con-
tain details such as hair and clothing with garment wrinkles. Details should be
present also on body parts that have not been visible in the input image, e.g.
on the back of the person. In contrast to previous work [156, 255, 8] we aim
for fully automatic reconstruction which does not require accurate 3D pose. To
this end, we train a Pix2Pix-style [103] convolutional neural network to infer
normals and vector displacement (UV shape-images) on top of the SMPL body
model [138]. To align the input image with the output UV-shape images, we
extract a partial UV texture map of the visible area using off-the-shelf meth-
ods [12, 112]. An overview is given in Fig. E.2. A second small CNN infers
SMPL shape parameters from the image (see Sec. E.5.1). In Sec. E.3.1 we
describe the parametric body model used in this work, and in Sec. E.3.2 we
explain our parameterization of appearance, normals, and displacements.

E.3.1 Parametric body model

SMPL is a parameterized body model learned from scans of subjects in minimal
clothing. It is defined as a function of pose θ and shape β returning a mesh of
N = 6890 vertices and F = 13776 faces. Shape β corresponds to the first 10
principal components of the training data subjects. Since scale is an inherent
ambiguity in monocular images, we made β independent of body height in this
work. Our method estimates β with a standardized height and is independent
of pose θ. Details that go beyond the SMPL shape space are added via UV
displacement and normal maps (UV shape-images), as described in Sec. E.3.2.
During the dataset generation (see Sec. E.4), we use SMPL to synthesize images
of humans posing in front of the camera.

E.3.2 UV parameterization

The SMPL model describes body shapes with a mesh containing 6890 vertices.
Unfortunately, this resolution is not high enough to explain fine details, such
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as garment wrinkles. Another problem is that meshes do not live on a regular
2D grid like images, and consequently require taylored solutions [30] that are
not yet as effective as standard CNNs on the image domain. To leverage the
power of standard CNNs, we propose to use a well-established parameterization
of mesh surfaces: UV mapping [24]. A UV map unwraps the surface onto
an image, allowing to represent functions defined on the surface as images.
Hereby, U and V denote the 2 axes of the image. The mapping is defined once
per mesh topology and assigns every pixel in the map to a point on the surface
via barycentric interpolation of neighboring vertices. By using a UV map, a
mesh can be augmented with geometric details of a resolution proportional to
the UV map resolution.

We augment SMPL using two UV maps, namely normal map and vector
displacement map. A normal map contains new surface normals, that can add
or enhance visual details through shading. A vector displacement map contains
3D vectors that displace the underlying surface. Displacements and normals are
defined on the canonical T-pose of SMPL. The input to our neural network is a
partial texture map of the visible pixels on the input photograph (see Sec. E.5.3).

E.4 Dataset Generation

To learn our model we synthesize a varied dataset from real 3D scans of people.
Specifically, we synthesize images of humans in various poses under realistic
illumination paired with normal maps, displacement maps, and SMPL shape pa-
rameters β. The large majority of scans (1826) was kindly provided from Twin-
dom (https://web.twindom.com/). We additionally purchased 163 scans from
renderpeople.com and 54 from axyz-design.com. These scans do not share the
same mesh layout, and therefore we can not directly compute coherent normal
and displacement maps. To this end, we non-rigidly register the SMPL model
against each of the scans. This ensures that all vertices share the same contex-
tual information across the dataset. Furthermore, we can change the pose of the
scans using SMPL. Unfortunately, non-rigid registration of clothed people is a
very challenging problem itself (see Sec. E.4.1), and often results in unnatural
shapes. Hence, we manually selected 2043 high quality registrations. Unfortu-
nately, our current dataset is slightly biased towards men because registration
currently fails more often for women, due to long hair, skirts and dresses. Of
the 2043 scans, we reserve 20 scans for validation and 55 scans for testing.
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In the following, we explain our non-rigid registration procedure in more
detail and describe the synthetization of the paired dataset for training of the
models.

E.4.1 Scan registration

As discussed in Sec. E.3.1, N = 6890 vertices are not enough to explain fine
details. To this end, we sub-divide each face in SMPL into four, resulting in a
new mesh consisting of N = 27554 vertices and F = 55104 faces. This high-
resolution mesh can better explain fine geometric details in the scans. While
joint optimization is generally desirable, registration is much more robust when
done in stages: we first compute 3D pose, then body shape and finally non-rigid
details. We start the registration by reconstructing the pose of the scan subject.
Therefore, we find 3D landmarks by rendering the scan from multiple cameras
and minimizing the 2D re-projection error to 2D joint OpenPose detections [36].
Then we optimize the SMPL pose parameters θ to explain the estimated 3D
joint locations. Next, we optimize for shape parameters β to minimize scan
to SMPL surface distance. Here, we make sure SMPL vertices stay inside the
scan by paying a higher cost for vertices outside the scan since SMPL can only
reliable explain the naked body shape. Finally, we recover fine-grained details
by optimizing the location of SMPL vertices. The resulting registrations explain
high-frequency details of the scans with the subdivided SMPL mesh layout and
can be re-posed.

E.4.2 Spherical harmonic lighting

For a paired dataset, we first need to synthesize images of humans. For realis-
tic illumination, we use spherical harmonic lighting. Spherical harmonics (SH)
are orthogonal basis functions defined over the surface of the sphere. For ren-
dering SH are used to describe the directions from where light is shining into
the scene [189]. We follow the standard procedure and describe the illumina-
tion with the first 9 SH components per color. To produce a large variety of
realistic illumination conditions, we convert images of the Laval Indoor HDR
dataset [68] into diffuse SH coefficients, similar to [111]. For further augmen-
tation, we rotate the coefficients randomly around the Y-axis.

137



Tex2Shape: Detailed Full Human Body Geometry From a Single Image

E.4.3 UV map synthetization

To complete our dataset, we calculate UV maps that explain details of the 3D
registrations. In UV mapping every face of the mesh has a 2D counterpart
in the UV image. Hence, UV mapping is essentially defined through a 2D
mesh. Given a 3D mesh and a set of per-vertex information, a UV map can
be synthesized through standard rendering. Information between vertices is
filled through barycentric interpolation. This means, given the high-resolution
registrations, we can simply render detailed UV displacement and normal maps.
The displacement maps encode the free-form offsets, that are not part of SMPL.
The normal maps contain surface normals in canonical T-pose. These maps are
used to augment the standard-resolution naked SMPL, which eliminates the
need for higher mesh-resolution or per-vertex offsets. We use the standard-
resolution SMPL augmented with the UV maps in all our experiments.

E.5 Model and Training

In the following, we explain the used network architectures, losses, and train-
ing schemes in more detail. Further, we explain how a partial texture can be
obtained from DensePose [12] results.

E.5.1 Network architectures

Our method consists of two CNNs – one for normal and displacement maps and
one for SMPL shape parameters β. The main component of our method is the
Tex2Shape-network as depicted in Fig. E.2. The network is a conditional Gen-
erative Adversarial Network (Pix2Pix) [103] consisting of a U-Net generator
and a PatchGAN discriminator. The U-Net features each seven convolution-
ReLU-batchnorm down- and up-sampling layers with skip connections. The
discriminator consists of four of such down-sampling layers. We condition on
512 × 512 partial textures, based on two observations: First, when mapping
pixels from an HD 1024 × 1024 image to UV, the resolution is high enough to
contain most pixels from the foreground, and not too high to prevent large unoc-
cupied regions. Second, using the mesh resolution of the training set, larger UV
maps would only contain more interpolated data. See supplemental material for
an ablation experiment using smaller UV maps.
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Figure E.3: To create the input to our method, we first process the input image (left)
with DensePose. The DensePose result (middle) contains UV coordinates, that can be
used to map the input image into a partial texture (right).

The β-network takes 1024 × 1024 DensePose detections as input. These
are then again down-sampled with seven convolution-ReLU-batchnorm layers
and finally mapped to 10 β-parameters by a fully-connected layer.

E.5.2 Losses and training scheme

The goal of our method is to create results with high perceived quality. We be-
lieve structure is more important than accuracy and therefore experiment with
the following loss: The structural similarity index (SSIM) was introduced to
predict the perceived quality of images. The multi-scale SSIM (MS-SSIM)
[252] evaluates the image on different image scales. We maximize the struc-
tural similarity of ground truth and predicted normal and displacement maps by
minimizing the dissimilarity (MS-DSSIM): (1−MS-SSIM)/2. We further train
with the well-established L1-loss and the GAN-loss coming from the discrim-
inator. Finally, the β-network is trained with an L2 parameter loss. We train
both CNNs with the Adam optimizer [119] and decay the learning-rate once the
losses plateau.

E.5.3 Input partial texture map

The partial texture forming the input to our method is created by transforming
pixels from the input image to UV space based on DensePose detections, see
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Fig. E.3. DensePose predicts UV coordinates of 24 body parts of the SMPL
body model (Fig. E.3 middle). For easier mapping, we pre-compute a look-
up table to convert from 24 DensePose UV maps to the single joint SMPL
UV parameterization. Each pixel in the DensePose detection now maps to a
coordinate in the SMPL UV map. Using this mapping, we compute a partial
texture from the input image (Fig. E.3 right).

E.6 Experiments

In the following, we qualitatively and quantitatively evaluate our proposed
method. Results on four different datasets and comparisons to state-of-the-art
demonstrate the versatility and robustness of our method as well as the qual-
ity of results (Sec E.6.1). Further, we study the effect of different supervision
losses (Sec. E.6.2), evaluate different methods for UV mapping (Sec. E.6.3),
and measure the robustness for different visibility levels (Sec. E.6.4). Finally,
in Sec. E.6.5 we demonstrate a potential application of our proposed method,
namely garment transfer between subjects. More experiments and ablation
studies can be found in the supplemental material. Due to scale ambiguity in
monocular images, all results are up to scale. Also, our method does not com-
pute pose. For better inspection, we depict results in ground truth or A-pose.
Further, we color-code the results by the used method for UV-mapping (see
Sec. E.6.3). Results using DensePose mapping are green, blue marks ground
truth mapping, red indicates HMR-based [112] texture reprojection, and ground
truth shapes are grey.

All results have been calculated at interactive frame-rates. Precisely, our
method takes on average 50 ms for displacement map, normal map, and β-
estimation on an NVIDIA Tesla V100. UV mapping using DensePose can be
performed in real-time.

E.6.1 Qualitative results and comparisons

We qualitatively compare our work against four relevant methods for monocular
human shape reconstruction on the PeopleSnapshot dataset [7]. BodyNet [241]
is a voxel-based method to estimate human pose and shape from only one im-
age. SiCloPe [156] is voxel-based, too, but recovers certain details by relying
on synthesized silhouettes of the subject. HMR [112] is a method to estimate
pose and shape from single image using the SMPL body model. In [7] the au-
thors present the first video-based monocular shape reconstruction method, that
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Figure E.7: After training with MS-DSSIM loss enabled (green) complex clothing is
reconstructed more reliably, than after training with L1 loss only (yellow).

goes beyond the parameters of SMPL. They use 120 images of the same subject
roughly posed in A-poses and fuse the silhouettes into a canonical representa-
tion. However, the method is optimization-based and requires to fit the pose in
each frame first, which makes the process very slow. In Fig. E.4, we show a
side-by-side comparison with our results. Our method clearly features the high-
est level of detail, even compared to [7] using 120 frames, while our method
only takes a single image as input and runs at interactive frame-rates.

In Fig. E.17 we show more results of our method. We compare against
ground truth on our own dataset and show qualitative results on 3DPW [247],
DeepFashion [134, 135], and PeopleSnapshot [7] datasets. Our method suc-
cessfully generalizes to various real-world conditions. Please note how realistic
garment wrinkles are hallucinated on the unseen back of the models. In general,
we can see our method is able to infer realistic 3D models featuring hair, facial
details, and various clothing including garment wrinkles from single image in-
puts.

E.6.2 Type of supervision

In Sec. E.5.2, we have introduced the MS-DSSIM loss. The intuition behind us-
ing this loss is that for visual fidelity structure is more important than accuracy.
To evaluate this design decision, we train a variant of our Tex2Shape network
with L1 and GAN losses only. Since it is not straight forward to quantify better
structure, we closely inspect our results on a visual basis. We find, that the vari-
ant trained with MS-DSSIM loss is able to reconstruct complex clothing more
reliably. Examples are shown in Fig. E.7. Note that the results computed with
MS-DSSIM loss successfully reconstruct the jackets.
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Figure E.8: Partial textures computed with different methods. From left to right: Input,
ground truth UV mapping, DensePose, HMR.

E.6.3 Impact of UV mapping

Our method requires to first map an input image to a partial UV texture. We
propose to use DensePose [12], which makes our method independent of the
3D pose of the subject. In the following, we evaluate the impact of the choice of
UV mapping on our method. To this end, we train three variants of our network.
Firstly, we train with ground truth UV mappings calculated from the scans.
We render the scan’s UV coordinates in image space, that are then used for
UV mapping, similar to the mapping using DensePose (see Sec. E.5.3). In the
following, we refer to this variant as GT-UV. Secondly, we train a variant that
can be used with off-the-shelf 3D pose estimators. To this end, we render UV
coordinates of the naked SMPL model without free-form offsets. This way only
pixels that are covered by the naked SMPL shape are mapped, what simulates
UV mapping as created from results of 3D pose detectors (3D pose variant).
Finally, we compare with our standard training procedure using DensePose. A
comparison of partial textures created with the three variants is given in Fig. E.8.
Note how we lose large parts of the texture by using DensePose mapping.

To evaluate the 3D pose variant, we choose HMR [112] as 3D pose detec-
tor. Unfortunately, the results of HMR do not always align with the input image
what produces large errors in the UV space. To this end, we refine the results
by minimizing the 2D reprojection error of SMPL joints to OpenPose [36] de-
tections. We choose dogleg optimization and optimize for 20 steps.

In Fig. E.6 we show a side-by-side comparison of the three variants. While
GT-UV and DensePose variants are almost identical, the 3D pose variant lacks
some detail and introduces noise in the facial region. This is caused by the
fact, that perfect alignment is still not achieved even after pose-refinement. The
GT-UV and DensePose variants differ the most in hairstyle and at the boundary
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Figure E.9: Average displacement error for three different poses (red: A-pose, blue:
walking, green: posing sideways with hands touching) and different distances to the
camera. The shaded region marks the margin of trained UV map occupancy.
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Figure E.10: Average displacement error for A-posed subjects and different rotations
around Y-axis with respect to the camera. Our model has been trained on rotations±20◦.

of the shorts, what is not surprising since hair and clothing are only partially
mapped by DensePose. However, both variants closely resemble ground truth
results. The DensePose and 3D pose mapping variants can directly be used on
real-world footage, while only being trained with synthetic data.

E.6.4 Impact of visibility

In the following, we numerically evaluate the robustness of our method to dif-
ferent visibility settings caused by different poses and distances to the camera.
The following results have been computed using GT UV mapping to factor out
noise introduced by DensePose. Which pixels can be mapped to the UV partial
texture is determined by the subject’s pose and distance to the camera. Parts
of the body might be not visible (e.g. the subject’s back) or occluded by other
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body parts. If the subject is far away from the camera, it only covers only a
small area of the image and thus only a small number of pixels can be mapped.

In Fig. E.9 we measure how this influences the accuracy of our results. Over
a test-set with 55 subjects, we synthesize images of three different poses with
various distances to the camera. The three poses are A-pose, walking towards
the camera, and posing sideways with hands touching. We report the mean
per-pixel error of 3D displacements maps (including unseen areas) against the
percentage of occupied pixels in the partial texture. For all three poses, the er-
ror increases linearly, even for untrained texture occupations. Not surprisingly,
the minimum of all three poses lies in the margin of trained occupations. Ad-
mittedly, for higher occupations, the error slightly goes up what is caused by
the fact, that the network was not trained for scenarios where the subject fully
covers the input image.

In Fig. E.10, we study the robustness of our method against unseen poses.
We trained the network with images of humans roughly facing the camera.
Therefore, we randomly sampled poses in our dataset and Y-axis rotations be-
tween ±20◦. In this experiment, we rotate an A-pose around the Y-axis and
report the mean per-pixel 3D displacement error. From 0◦ to 30◦, the error
stays almost identical, after 30◦ it increases linearly. Again this behavior can be
explained by the network not being trained for such angles.

Both experiments demonstrate the robustness of our method against scenar-
ios not covered by our training set.

E.6.5 Garment transfer

In our final experiment, we want to demonstrate a potential application of our
method, namely garment transfer or virtual try-on. We take several results
of our method and use them to synthesize a subject in different clothing. To
achieve this, we keep the SMPL shape parameters β. Then we alter normal
and displacement maps according to a different result. Hereby, we keep details
in the facial region, to preserve the subject’s identity and hair-style. Since we
edit in UV space, this operation can simply be done using standard image edit-
ing techniques. In Fig. E.11 we show a subject in three different synthesized
clothing styles.
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Figure E.11: Since all reconstructions share the same mesh layout, we can extract cloth-
ing styles and transfer them to other subjects.

Figure E.12: Failure cases of our method: The predictor confuses a dress with short
pants, a female subject with a male, and hallucinates a hood from a collar.
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E.7 Conclusion

We have proposed a simple yet effective method to infer full-body shape of hu-
mans from a single input image. For the first time, we present single image
shape reconstruction with fine details also on occluded parts. The key idea of
this work is to turn a hard full-body shape reconstruction problem into an easier
3D pose-independent image-to-image translation one. Our model Tex2Shape
takes partial texture maps created from DensePose as input and estimates de-
tails in the UV-space in form of normal and displacement maps. The estimated
UV maps allow augmenting the SMPL body model with high-frequent details
without the need for high mesh resolution. Our experiments demonstrate that
Tex2Shape generalizes robustly to real-world footage, while being trained on
synthetic data only.

Our method finds its limitations in hair and clothing that is not covered by
the training set. This is especially the case for long hair and dresses since they
cannot be modeled as vector displacement fields. Typical failure cases are de-
picted in Fig. E.12. These failures can be explained with garment-type or gender
confusion, caused by missing training samples. In future work, we would like
to further open up the problem of human shape estimation and explore shape
representations that allow all types of clothing and even accessories.

We have shown, that by transferring a hard problem into a simple formu-
lation, complex models can be outperformed. Our method lays the foundation
for wide-spread 3D reconstruction of people for various applications and even
from legacy material.
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E.8 Appendix: Additional Results and Experiments

We show here additional experiments to understand the influence of illumina-
tion on our model and its robustness to varying camera intrinsics. We evaluate
the β-regression network and perform an ablation of the UV map resolution.
Finally, we present more qualitative results.

E.8.1 Influence of illumination

As already emphasized in the main paper, shading is potentially a strong cue for
our model. In the following, we evaluate the illumination augmentation during
training and the robustness of our model to varying illumination.

In order to evaluate the effect of the illumination augmentation during train-
ing, we re-trained our model with constant ambient illumination. This means
we render the scans using the textures only. While being scanned, the subjects
have been exposed to uniform lighting. However, shading is still present in
wrinkles and smaller structures. This means, we cannot factor out shading ef-
fects completely. Nevertheless, in Fig. E.16 we can see more consistent details
for our final method, especially for the faces.

Our model should produce the same or at least a very similar result when
applied on two different photos of the same person in the same clothing but
under varying illumination. To validate illumination invariance of our model,
we took 9 photos of two subjects while rotating the light-source around the
subject. In Fig. E.13 we show the different photos and a heat-map illustrating
areas with high standard deviation. We see a consistent picture with varying
details only in areas of likely fabric movement.

E.8.2 Influence of camera intrinsics

Camera intrinsics are mostly unknown at test time, especially for in-the-wild
photos. The focal length is an important camera parameter, which can affect
the results of our method. We have trained our model with a fixed focal length.
To study the robustness of our method against varying focal length, we render
our test set in A-poses with different focal length and distance to the camera.
We keep the ratio between distance and focal length fixed, creating a Vertigo
Effect. In Fig. E.14, we report the mean vertex-to-vertex error of the naked
SMPL model under varying focal length. Although the lowest error is obtained
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Figure E.13: Displacement reconstruction consistency under varying illumination. The
heatmap illustrates the vector norm of per surface point standard deviation (dark-red
means ≥ 4cm).
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Figure E.14: Mean SMPL vertex-to-vertex error in mm (without added displacements)
over the test-set for varying focal length.

for the focal length assumed during training, different focal lengths increase the
error only slightly, which demonstrates the robustness of our model.

E.8.3 Numerical comparison with HMR

In order to evaluate the β-regression network, we compare our naked results
without added displacements against HMR [112]. Since we do not estimate
pose it has to be factored out before comparison. To this end, we follow
the established procedure in [25] and adjust pose and scale of the results of
both methods to match the ground truth scans. On our test-set, our method
using DensePose mapping achieves a mean bi-directional vertex to surface
error of 10.57 ± 10.68mm compared to the clothed scans. HMR achieves
16.28 ± 17.05mm. Our method can better estimate the body shapes. This is
likely linked to the fact, that our method directly uses dense image-space detec-
tions, while HMR correlates surface with bone-lengths. With added displace-
ments, our method achieves 5.19± 6.36mm. All results are up to scale.

E.8.4 UV resolution ablation

To evaluate our choice of the UV resolution (512 × 512px), we train a variant
of the network with 256 × 256px maps. The results look surprisingly good.
A close inspection of the results reveals missing details and smoothed edges.
An example is shown in Fig. E.15. However, this experiment demonstrates
that Tex2Shape can be trained with lower resolution without largely decreased
quality.
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Figure E.15: Comparison of two variants of our network: Using 256×256px resolution
(left) decreased the quality only sightly when compared to the original resolution of
512× 512px (right).

E.8.5 Additional qualitative results

In Fig. E.17, we show more in-the-wild results of our method on MonoPerf-
Cap [264] and PeopleSnapshot [7] datasets.
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5 Conclusion and Future
Perspectives

The publications presented in this dissertation have studied various aspects
of 3D reconstruction of human pose and shape from monocular images. This
chapter summarizes the methods, key insights, and contributions of the pre-
sented works. Finally, we give an outlook towards future research directions
and possible applications.

5.1 Conclusions

This dissertation bundles five publications in the field of 3D reconstruction of
human pose and shape from monocular images. While each publication tackles
different aspects of the problem, all follow a similar concept: Instead of aiming
at reconstructing the 3D shape of the observed human from scratch, we build
upon a statistical body model. This way, we make use of a rich prior for the
reconstruction process. Compared to competing work, our reconstructions of-
ten look more realistic, cf. Figure E.4. Additionally, our strategy ensures that
the reconstructed avatars can directly be used by other applications, as our re-
sults already come rigged. We will now discuss the individual aspects of the
presented works in the global context of 3D virtual human reconstruction from
monocular images.

In the first work (Paper A) we presented a method to recover time-consistent
3D human motion from video by utilizing optical flow and silhouette cues. We
have introduced a novel differential flow renderer that allows direct interpre-
tation of optical flow via analysis-by-synthesis. Our results demonstrate that
optical flow effectively regularizes the under-constrained problem of 3D hu-
man motion estimation by partially resolving ambiguities of pure silhouette-
or landmark-based approaches. The advent of CNN-based 2D human joint
landmark detectors, however, resulted in a paradigm shift in human pose es-
timation from images. Researchers now mainly focused on single image pose
retrieval. Just recently, researchers began to again take time [113] and even op-
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tical flow [56] into consideration for regularizing 3D human motion estimation,
what demonstrates the relevance of our ideas.

In the following work (Paper B), we shifted our focus to human shape esti-
mation. We presented the first work to estimate 3D human shapes from monoc-
ular video of a moving person that goes beyond the parameter space of a para-
metric model. Our method estimates animatable 3D human avatars including
hair, clothing, and surface texture. The method has been well received by the
community and was also covered in the media1,2. The key contribution of this
work is the transformation of silhouette ray cones into a common frame of ref-
erence. We unpose the silhouette rays and thereby remove pose from the op-
timization problem. This significantly reduces memory consumption, speeds
up the optimization process, and allows to combine information from many
frames. Results on three different datasets demonstrate a mean surface recon-
struction accuracy of 4.5mm.

The next project (Paper C) extended the preceding work. Instead of only
unposing silhouette rays, we treat the unposing procedure as a general frame-
work. In that sense, we include normals calculated from shape-from-shading
and facial landmarks into the shape optimization. Further, we propose a novel
texture stitching strategy that builds on a rich semantic prior with per-part ap-
pearance models. In order to validate the complex reconstruction method, we
performed a user study. The results of the study clearly show that the effort paid
off and details matter: 89.64% of the users preferred the enhanced avatars over
those of our previous work, and 92.27% perceived them as more realistic.

After improving the visual fidelity of the reconstructions, we focused on
the usability of our methods (Paper D). To that end, we trained a CNN that is
capable of reconstructing the 3D shape of humans from semantic segmentation
of only a few frames, down to a single frame. Knowing that details matter, we
propose to refine the results using ‘render and compare’ supervised optimization
at test time. Extensive experiments suggest that using eight frames as input and
refining the results for 10 seconds results in high-quality reconstructions. Our
method is flexible in both the number of input frames and refinement steps, thus
the quality can be increased by using more input or longer refinement.

The above publications all introduced novel ideas and significantly ad-
vanced state-of-the-art. Nonetheless, we made three important observations:

1http://www.sciencemag.org/news/2018/04/watch-artificial-intelligence-create-3d-model-person-
just-few-seconds-video

2https://www.facebook.com/ScienceChannel/videos/10155948465388387/
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First, while building on silhouettes and semantic segmentation helps to make
the problem tractable and applicable for real-world data, it also abstracts away
valuable information. Second, regressing 3D vertex locations from 2D images
is an unaligned problem. 2D images and 3D meshes can only be compared by
projecting and rasterizing the meshes through rendering. Thus, 3D pose plays
a significant role in supervision. Incorrect poses lead to decreased quality of
the results, as we show in multiple ablation studies. These observations have
been the inspiration for our last paper (Paper E). By transforming the input
image into an incomplete texture in UV space, we are able to turn 3D shape re-
construction into a pose-independent 2D image-to-image translation problem.
From the incomplete texture, we predict normal and displacement maps using
a Pix2Pix network [103]. This set-up allowed, for the first time, to predict fine
details, such as garment wrinkles, also on occluded parts. The method requires
only a single image as input and predicts highly detailed results in only 50ms.

While we have been among the first to present detailed 3D human shape
reconstruction methods from monocular images, the field has recently received
more and more attention. Concurrent to our work, researchers have presented
exciting new applications and reconstruction methods for 3D human shape re-
construction from monocular input [255, 156, 105, 202, 211, 286, 278]. Some
of these works use alternative 3D shape representations, namely voxels and
implicit functions. While voxel memory consumption grows cubically with re-
spect to the resolution, and implicit functions are not straight-forward to param-
eterize, both resolve one limitation of our methods: By relying on the SMPL
body model, our methods cannot model shapes with a different topology than
the human body. Among others, skirts, dresses, long hair, braids, open jack-
ets, ties, scarves, etc. cannot be well represented using a body-shaped mesh.
In the following chapter, we discuss possible avenues for resolving this limita-
tion along with additional ideas for extensions to our current methods. Finally,
we give an outlook to potential research directions that go beyond our current
methodology.

5.2 Future Work and Applications

The works in this dissertation followed the methodology of model-based recon-
struction. As described earlier, this means the methods build on a rich prior –
a parametric statistical body model. The model is tracked and heavily person-
alized in order to create virtual avatars of people as seen in the input images.
Despite the great advances we have contributed to the field, both the modeling
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and the reconstruction aspect leave much room for future work, as we elaborate
in the following.

When building an avatar from sparse and low-cost sensors, rich paramet-
ric models help to reduce the search space and make the problem tractable.
State-of-the-art body models, however, only model very few aspects of the
human body, mostly the distribution of body shapes and limb proportions
among the training set. More detailed models of hands [210, 116, 201], faces
[23, 13, 28, 132, 231] and even ears [48] exist. However, only recently have
researchers developed joint models that model multiple aspects of the human
body [109, 174]. While these models allow for joint reconstruction of human
movements, gestures, and facial expressions, they are still far from resembling
the true human. Probably the most obvious missing aspect is clothing. While
some initial works on modeling clothing and its dynamics exist [77, 184, 123],
a complete model of different clothing items or even single garments is yet to be
presented. A garment model would not only model the shape variations of the
particular garment type, but also wrinkle patterns based on pose changes or mo-
tion speed. Further, properties of the fabric, like stiffness and stretching, may
be of interest. Similarly, reconstruction of hair can be performed using multi-
view capturing set-ups, [141, 155] and first work on single-view reconstruction
exist [284]. However, rich dynamic models would robustify the reconstruction
process and at the same time would allow one to realistically animate the pre-
dicted avatar. Finally, humans wear glasses, shoes, and accessories. Again,
first works handle those items explicitly [144] or implicitly [202]. However,
no explicit parametrization of the reconstruction is provided. Generally speak-
ing, rich parametric models of human shape and pose, hair, clothing, shoes, and
accessories help to better model 3D virtual avatars from sparse and low-cost
sensors by providing a rich prior and at the same time allow one to edit and
animate the reconstructed avatars realistically and at high frame-rates.

The human body and its statistics have been successfully modeled using 3D
meshes, see Section 2.3. However, using meshes as 3D representation in recon-
struction problems introduces some limitations in the variety of shapes that be
can modeled, as the mesh topology is often assumed to be given. This problem
arises when we want to reconstruct objects that may exist in different genera or
topologies, e.g. open and clothed shirts. To this end, the best representation for
3D data in a reconstruction problem is still subject of research. Besides meshes,
three other forms of representation are commonly used: voxels, point clouds,
and implicit surfaces. Simply put, voxels are the 3D extension to a pixel. A
voxel represents a value in a regular Euclidian grid in 3D space. The Euclid-
ian property of voxels make them well-suited for CNNs, however the memory
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consumption grows cubically with the sample density. While octrees and spe-
cialized network architectures [193] can alleviate the memory requirements to
some extent, the possible level of detail is generally limited. Point clouds model
the 3D shape by a sparse set of points in 3D. While this representation is mem-
ory efficient, it defines no object surface. Implicit surfaces [83] are another from
of representing 3D data. Very recently, they have been rediscovered almost at
the same time by multiple research groups for representing 3D data in neural
networks [171, 148, 42, 150, 263]. Here the 3D shape is defined as a distance-
based function between the object’s surface and every point in 3D. Compared
to meshes with a fixed surface topology, all three alternative 3D representations
have less restrictions in the type of objects they can represent. However, meshes
still have several advantages: Firstly, voxels, point clouds, and implicit surfaces
have to be converted to meshes before they can be rendered in standard Com-
puter Graphics pipelines. More importantly, the parametrization of meshes is
well studied. Many works and tools for rigging, animating, and editing meshes
exist, which is not the case for alternative representations. Finally, meshes are a
very compact form of storing 3D data. Combining the advantages of all forms
of 3D data representation into a new or extended form of a well-known repre-
sentation is one important avenue to explore for future work.

Another aspect of 3D reconstruction is the reconstruction of the object’s ap-
pearance. In Computer Graphics, the appearance of an object is modeled by
its albedo color or texture, surface reflectance properties, and a light transport
function. This means for relighting that the object’s reflectance properties and
albedo color need to be known. However, decomposition of appearance into
reflectance properties and albedo color is not straight-forward. Additionally,
only effects that are modeled in the light transport function can be synthesized.
To this end, new forms of representing appearance in form of feature textures,
point clouds, or volumes have been proposed recently [136, 217, 137, 3]. These
representations use neural networks to synthesize images or textures with view-
depended effects based on a learned appearance encoding. However, these
learned appearances cannot be parameterized with changed illumination con-
ditions and, most importantly, are object- or subject-specific. In future work,
it would be interesting to see if these appearance encodings can generalize to
new subjects and changing conditions. Finally, future work should enable to
predict high detailed appearance on parts that have not been observed, e.g. on
the backside of a person.

On the capturing side, our proposed methods are still quite restrictive. Here
we intentionally leave much room for future work. Some example directions are
simultaneous capturing of multiple people, in-the-wild capturing without any
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restrictions on performed actions or viewing angles, or capturing in challenging
illumination conditions. Another interesting topic would be 3D reconstruction
from analog legacy material, even black-and-white film. In an orthogonal direc-
tion, future work should not exclude disabled subjects and thus should be able
to reconstruct people also with unusual body shapes or missing body parts. Our
ultimate goal should be to make our methods work equally well for all diversity
among humanity.

Building a realistic-looking avatar and being able to drive it via low-cost
sensors is only one interesting aspect of virtual humans. Certain applications
might need to work without a real human driving his or her virtual self, for
example, virtual assistance. One could think of an Alexa, Siri, or Cortana em-
bodied by an avatar of a real human. Even in a scenario where a real human
drives the virtual avatar, the sensor might not be able to capture all subtle micro-
expressions and social cues that we humans use to communicate. Yet, we expect
the virtual avatar to perform these when talking to us for example in a collab-
orative multi-user application. In both cases, we need virtual humans that are
more than just a 3D template of the real human. Our goal is full immersion in
the virtual environment1. To achieve this goal, the virtual avatar needs to act,
move, talk, and maybe even eventually think like his or her real template. To
enable this, we need to understand more about real humans. We need to un-
derstand which social cues are important and how to extract and model motion
patterns that make us unique.

Having built a virtual avatar of a person does not mean all work is done. To
be able to synthesize convincing performances, the model needs to adapt to the
real human. On a coarse scale this means the model needs to wear the same
clothing, have the same hairstyle, wear the same make-up and so on. On a finer
scale this means the model should reflect the current state of the real human. Is
he or she tired or refreshed? Does he or she look healthy or sick? Is he or she
happy or depressed? All this may reflect in our current appearance. Finally, the
virtual human needs to age with the real human.

As realistic virtual humans have the potential to change the way we live and
communicate, there are other aspects beyond 3D reconstruction and modeling
that need to be investigated by scientists of other professions. These aspects
are, but not limited to, security, ethics, social sciences, or display and sensor
technologies.

1cf. German Science Foundation (DFG) project MA2555/15-1 “Digital Immersive Reality”
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In this chapter, we have given an outlook on possible research directions
for 3D virtual humans particularly and 3D reconstruction in general. We have
discussed which aspects might become important once we can convincingly
and indistinguishably digitize ourselves and which directions are potentially
important to explore to achieve this. In this dissertation, we have presented
fundamental and important steps to reconstructing virtual avatars of real hu-
mans from monocular video. Our methods allow, for the first time, to build
detailed and animatable virtual humans using only a low-cost video camera.
We have presented effective methods that enable easy-to-use self-digitization
and that pave the path for exciting new applications, as, for example, new forms
of communication, camera-based body monitoring, or virtual try-on for online
shopping.
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