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Abstract 

Data path simplification in the context of reflection- and bump- 
mapping hardware opens new solutions in the design of rendering 
and shading circuits. We are proposing a novel approach to render- 
ing bump- and reflection-mapped surfaces, where the local geome- 
try defining bump-maps is transformed on-the-fly prior to surface 
shading. Applying angular encoding to normal vectors results in 
narrower data paths and permits hardware integration of look-up 
tables of acceptable size. A special-purpose logic-embedded mem- 
ory architecture is presented, where bump- and reflection-mapping 
of textured surfaces are executed by an intelligent memory device. 
High-performance surface shading is achieved by making use of 
precomputed shading- and reflection-map coordinate generation 
tables, and considering cache coherence of pixel-to-pixel normal 
vectors. Such a dedicated memory chip can easily be interfaced to 
a standard rasterizer, in place of texture memory to offer bump-, 
texture- and reflection-mapping hardware support. 

CR Categories and Subject Descriptors: B.3.2 [Memory Struc- 
tures]: Design Styles - Associative and Cache Memories; 1.3.1 
[Computer Graphics]: Hardware Architecture - Graphics Proces- 
sors; 1.3.3 [Computer Graphics]: Picture/Image Generation - Dis- 
play Algorithms, 

Additional Keywords: reflection- and bump-mapping, logic- 
embedded memory architectures. 

1 INTRODUCTION 

The appearance of computer-generated objects looks much better 
when surfaces are properly shaded and textured. Letting a human 
observer experience the surrounding environment as if he were 
physically present in real space is one scope of realistic rendering. 
When the viewer turns about a reflecting or metallic object he must 
get the feeling that the environment reflected by the object matches 
a real space in appearance. 
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Reflection-mapping was introduced by Blinn and Newell [4] to 
simulate reflections from mirror-like surfaces. Bump-mapping [3] 
is a simple technique for simulating the roughness or grain of a 
wrinkled surface without having to model the surface profile geo- 
metrically. More surface detail is added by bevelling the surface 
with micro structures, or scribing the surface with engraving pat- 
terns. Effects like engraving text on a marble texture, mortar 
grooves on a brick wall or drops of water on a mirror surface, such 
as a metallic object reflecting light can add more realism to com- 
puter-generated objects. 

One speed limiting factor in hardware supported texturing is the 
required bandwidth between the raster pipeline and the external 
memories, as explained by Knittel and Schilling [14][22]. Texture- 
mapping [IO], environment-mapping [7] and realistic shading all 
require on a per-pixel basis data retrieval from external memories, 
containing the texture or a precomputed shading environment- 
map. The second limitation lies in the implementation of surface 
shading algorithms, often presenting a high computational com- 
plexity [I]. To overcome the performance limits of external memo- 
ries, we designed a specialized memory integrating little 
arithmetic, performing different types of shading and texturing on 
the pixels generated by a raster pipeline. 

The design of a special-purpose intelligent memory chip is moti- 
vated by the fact that texture-mapping, bump- and reflection-map- 
ping or Phong shading all require parallel accesses on a per-pixel 
basis to external memories to fetch either texture data, the bump 
deflection vector, the projection in an environment of a reflected 
pixel, or specular and diffuse shading information. 

In this paper, we arc presenting a novel and elegant method for 
rendering bump- or reflection-mapped objects that is implemented 
in a special-purpose memory chip, adding shading in the sense of 
Phong Shading [20] to render objects part of a computer-generated 
scene with more realism. Such a dedicated memory chip can be 
easily integrated with existing rasterizer chips, in place of texture 
memory. The memory architecture presented in this paper assumes 
the existence of a standard graphics rasterization pipeline that 
interpolates a normal vector N and a texture coordinate (u, v, w) 
across a polygon. An object is retrieved from the object database, 
its associated texture- and bump-map, precomputed shading tables 
and environment-maps are downloaded to the memory chip, and 
then the object is rendered into the frame buffer. 

The algorithms and hardware architecture presented in this paper 
make use of: 
l geometry and symmetries for the bump-mapping process; 
l caching: pixel to pixel cache coherence; 
l shading and environment-map coordinate generation tables: the 

precomputed tables are indexed by the interpolated surface nor- 
mal directly; 

l consecutive pixels may share a common entry: making use of 
precomputed tables lowers the cost of computing the shading for 
each textured pixel. 

113 



2 BUMP-  AND REFLECTION-MAPPING

2.1 Bump-Mapping

Bump-mapping is a technique that was invented by Blinn  [3] to
add roughness  or wrinkles to a smooth surface.  It does not change
the underlying geometry of the model, but fools the shading to pro-
duce an interesting surface. The normal vector N to the surface at a
point P is perturbed by a perturbation  vector B dependent on a per-
turbation function F(u, v) of the surface parameters,  stored as a
two-dimensional  table indexed by the texture coordinates  u and v.
Normal  vector shading [2] can be applied  to the deviated normals
and small deviations of surface normals cause luminance varia-
tions on a smooth  surface, responsible  of the wrinkled surface

ooearance.
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The displaced  surface is formed by moving a point P of the param-
eterized surface S(u, v) an amount F(u, v) in the direction  of the
surface  normal  N. Given a point P on a surface S(u, v), the normal
vector N at that  point is expressed  as:

as as
N,= S,xS, = %xz (1)

where  S, and S, are the partial derivatives in the parameter  direc-
tions  II, v. The  new normal  to the perturbed surface is given  by:

N’ = N+
F,,(NxS,)  F,(S,xN)

INI +
(2)

INI
I I , ,
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2.2 Reflection-Mapping

Reflection-mapping  calculates  the reflection direction  R of a ray
from the viewer to the current sample point being shaded:

R = 2(N.Ej.N-E (3)

where  N is the unnormalized  surface normal and E points toward
the viewer.  If the reflection texture is a photograph of the environ-
ment  taken  from the object  center,  the texture-mapped  surface of
the object appears to be reflecting an image of its surrounding en-

vironment located infinitely  far away from the object center.  R is
used to index a texture in a spherical or cubic environment-map, as
described by Greene, Voorhies  and Foran [7][24].

The  second approach to reflection-mapping  is to generate an envi-
ronment-map from a texture image of a perfectly  reflective sphere
rendered in orthographic  projection,  as presented by Haeberli and
Segal [8] and shown  in Figure 2. For any reflection vector R from
the object surface, the corresponding  normal nsphere  of the reflec-
tive sphere, where  R hits the environment-map  is calculated.

When the viewing direction is constant, i.e. we are in orthographic
projection and the viewing rays going from the eye to the object
surface are parallel,  a spherical environment-map  can be precom-
puted and indexed by the interpolated  object surface normal  nobj.
We can fill up the texture image of the reflective sphere by precom-
puting R for all object  normals, determine  the normal  ns uere,
where  R hits  the reflective sphere, and index the image wit the4
current object surface normal nobj:

R = 2(n,,hj. E) n,,hj -E = ~(Tz,,,~.  vdir).  n,bj-~di,  (4)

‘N = nohj’ “xidr ‘N = nohj’ “up
(5)

To generate coordinate  (un,  vn)  indexing into the environment-
map,  we use the view-up vup and view-side  v,ide vectors of the cur-
rent  viewing direction vdir:

“side  ’ “up

“dir = IV,yide  x vu/J
(6)

The  environment-map is addressed with  a (u,v)-texture coordinate
in the same way a surface texture is indexed.

uR = R v,vide = 2(n,hj "dir) (n,,bj ",yide) (7)

= 2(n,,hj  "dir) UN

vR = R'v,,,, = 2(nohj "dir) (n,bj.  Vu,) (8)

= 2(n,,hj  “dir) VN

This method has the disadvantage  that  a new texture image must
be recomputed whenever the viewing direction changes,  but
requires only a single texture image. We will explain in section 5,
how this method can be efficiently  used to render reflective sur-
faces  in combination  with  bump-mapping  without having to com-
pute  the rellected ray vector R for each pixel.
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2.3 Shading 

Several existing graphics hardware accelerators evaluate the Phong 
lighting model at polygon vertices, before interpolating shaded 
color values across the polygon. However, to correctly shade a 
bump-mapped surface, the shading equation must be re-evaluated 
for each interior polygon pixel, because surface normals are likely 
to change between neighbouring polygon vertices. 

In the Phong illumination model, reflectivity is split into a diffuse 
and specular component: For distant lights the light vector L is 
independent of the surface location and the shading equation 
becomes a function of the surface normal N and reflected ray vec- 
tor R: 

l(P) = Ambienr + Diff(N) + Spec(R) (9) 

l(P) = kumh ‘urn/, + kditJ.. (L N) + k,vprc. (R E) “T 
(10) 

k umh: ambient light reflection coefficient 
kd$ amount of energy reflected diffusely 
k,s,,,,: amount of energy reflected specularly 
n5: specular reflection exponent of surface material 

The diffuse term Diff(N) and specular term Spec(R) can be 
thought as two separate environment-maps, containing the diffuse 
and specular highlights for a surface, indexed by the surface nor- 
mal N and reflected ray vector R. Lighting calculations can be per- 
formed as a pre-process to incorporate highlights into a precom- 
puted environment-map, as presented in [ l][ 12][24]. The precom- 
puted map Spec(R) can be accessed with the surface normal N in 
analogous way as a spherical environment-map. 

3 RELATED AND PREVIOUS WORK 

All architectures discussed so far have in common that the under- 
lying circuitry for bump- and reflection-mapping follows a 
straightforward implementation of formulas and produces costly 
designs, in the sense of necessary computer arithmetic. 

Environment-maps were first discussed by Blinn and Newell [4], 
further developed by Greene [7] for approximating surface illumi- 
nation from reflected rays. Voorhies and Foran [24] presented a 
hardware architecture for reflection vector shading. Their architec- 
ture indexes an unnormalized reflection vector in an environment- 
map cube. It is a straightforward implementation of equation (3) 
for the reflected ray computation: the hardware implementation 
can be assembled with adders and multipliers which can be broken 
down in a IO-stage pipeline, if one full addition is carried out per 
pipeline stage. 

A bump-mapping circuit doing per pixel a full matrix multiplica- 
tion to transform the deflection vector from texture space to screen 
space was designed and is implemented by Ernst, Wittig, Rtisseler 
and Jack&l [ 1][6][ 121. Their architecture requires extra square root 
and division units to normalize the interpolated surface normal. 
The straightforward method for bump-mapping presented in [6] 
consists of interpolating the Cartesian coordinates of surface nor- 
mals and applying the perturbation in a local coordinate system 
(et, e2, n) tangent to the surface and defined by the normalized 
surface normal vector n and two vectors perpendicular to n. This 
method requires a matrix transformation A of the perturbation vec- 
tor B before deviating the normal vector N for each pixel, and 
therefore is computationally expensive. Rotation matrix A must be 
redefined at each pixel for the current normal. 

An orthonormal coordinate system, as shown by Schilling [23], 
can be built from the interpolated surface normal N and a constant 
main direction m, such as the polar axis, if a spherical texture 
coordinate parameterization is used: 

mxN e,=&=n e,=- 
Ilm x NII 

e2 = e3 x e, (11) 

A = [e, e2 e?]’ 
This operation, carried out on a per-pixel basis, requires: 
l 2 vector normalizations (equivalent to 2 square roots, followed by 

2 reciprocals and 6 floating-point multiplies); 
l 2 cross products n x et and m x n; the second cross product is 

simplified if m = (0 1 O)T; 
l 9 floating-point multiplies and 6 adds for the matrix multiplica- 

tion in N’ := N + A-B; 
l if vector interpolation is done in object space, the deflected nor- 

mal must be converted back to world coordinates prior to shad- 
ing or reflection-mapping, which necessitates a second matrix 
multiplication of the deflected normal vector by a constant 
matrix. 

When matrix A is generated on a per-triangle basis [6] and its 
components are interpolated across the current triangle, the com- 
putational cost is lowered, but the bump-mapping deflection 
becomes inaccurate between adjacent triangles in surface regions 
with extreme curvature. 

OpenGL’s approach [15] to bump-mapping uses texture-maps to 
generate bump-mapping effects without requiring a custom ren- 
derer. The technique is just one possible implementation that uses 
more fundamental primitives in OpenGL. The lighting computa- 
tion is transformed into tangent space at polygon vertices and does 
not require any significant new shading hardware beyond Phong 
shading. As shading is a function of the dot product between the 
perturbed surface normal vector and other vectors, such as the light 
or halfangle vector, all shading vectors are transformed to tangent 
space, where bump-mapping happens by evaluating the shading 
from the bump deflection vector defined in tangent space and the 
transformed shading vectors. 

When set to environment-mapping mode [18], OpenGL is using a 
method similar to the technique presented by Haeberli and Segal to 
generate its texture coordinate [8]. At each polygon vertex the 
reflected ray vector is evaluated analytically from equation (3), 
before the (u, v) coordinate is computed and interpolated across 
the polygon. 

Recently, Peercy et al. [ 191 presented a minimal architecture for 
bump-mapping hardware support, where the perturbed normal is 
precomputed for a surface tangent space. Shading and perturbed 
normal vectors must still go through normalization pipelines for 
the shading to work properly. This architecture was specially 
trimmed to switch easily between bump-mapping and standard 
shading. The deflection of the normal vector happens in tangent 
space at polygon vertices, where the illumination is directly com- 
puted. Recovering the distorted normal vector to further use it for 
reflection-mapping is no longer possible. 

Jkedo and Ma [ 1 l] present a graphics chip with bump-mapping 
and Phong shading support. The algorithms implemented in their 
circuit follow the known straightforward implementation with a 
series of matrix multiplications. Their bump-mapping support is 
dubious in the sense that it interpolates angles between light and 
normal vectors, and may produce satisfactory results only when 
rendering very small sized polygons. 
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4 THE ALGORITHM 

The object surface normal vector N is interpolated in Cartesian 
object coordinates. Interpolating angles in a spherical coordinate 
system would be wrong: it does not follow a great arc between two 
normals, but involves great swings. For the purpose of our bump- 
mapping algorithm, N is transformed to spherical coordinates ((Pi, 
0,) after interpolation. 

4.1 Normal Vector Representation 

Any normal vector N=(N,, N,, NJT is expressed with a horizontal 
angle qN and a vertical angle 0, in spherical coordinates. Discre- 
tizing the unit sphere into 5 12 x 256 patches offers a resolution 01 
0.012 rad or 0.7 degrees between two vectors. Points on the unit 
sphere are parameterized by two angles Q, and 0. Rectangular 
coordinates are mapped to spherical coordinates by following rela- 
tions: 

N, = cos0, sin@ N, = sin@ N, = cosQ,, cos0 (12) 

0 = Arcsin(NJ (13) 

Normals are encoded the following way: one 9-bit field and one 8- 
bit field specify indices (cp, Cl) to a horizontal angle 6, and a vertical 
angle 0. The first bit in 0 denotes the sign of 0. 

The unnormalized surface normal vector N=(N,, N,, N,)T could be 
used to index directly into a cubic environment-map and retrieve 
the corresponding spherical coordinate ((PN, 0,). To cover the 
whole range of surface normals, discretized over the unit sphere, 
such a map would have a size of 512 x 256 x 17-bit, which is far 
too big for a simple look-up table. Normal vector compression, as 
presented by Deering [.5], exploits geometrical symmetries. Since 
the unit sphere is symmetrical in eight pieces (octants) by sign bits 
of the vector components, the look-up table size can be reduced to 
16384 x 14-bit, which still is very large. 

I 
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to angle CD 

Figure 3: Normal vector encoding. 

Any normal vector N=(N,, N,, NJT is assigned to an octant by 
changing the signs of its components. Indices in a look-up table 
containing qort and BnCt are computed as follows: 

(Pocr = LUT,(fJ (15) 

t,. = Ny2 
Nx2 + Nz2 

e,,,., = Lq(t,) (16) 

Before evaluating the two divisions (15)( 16), the three vector com- 
ponents N,, N, and N, are sorted, in order to divide by the largest 
component and clamp the results t, and t, to the range [O..l]. 
Look-up table LUT,(t) does now have an acceptable size of 128 x 
7-bit. 

Although this transformation necessitates three squares (multipli- 
cations), followed by two separate divisions, it is after thorough 
evaluation an economic and accurate solution, in terms of size and 
number of look-up tables. To avoid the latency penalty incured by 
one extra cycle through two consecutive accesses to the same look- 
up table, we can duplicate LUT,(t) and implement an additional 
divider. This does make sense in order to reach full performance. 

The normal vector is now defined by a tuple (act, qoct, 8,,,). This 
tuplc will be mapped and expanded at a later stage to ((Pi, e,), a 
spherical coordinate with a vertical polar axis, by the hardware 
architecture before the bump-mapping and shading happen. 

4.2 Deflection Vector Representation 

Bump-maps can either be represented as offset vectors B, that are 
added to surface normal vectors to displace them, or as displaced 
normal vectors D which are substituted to the initial surface nor- 
mals. When choosing the first representation, only two compo- 
nents for the Cartesian coordinates of the bump vector B are 
needed. In the second representation, three components of a carte- 
sian coordinate system or two angles in a spherical coordinate sys- 
tem are necessary. Our bump-mapping is based on angular 
deflection, therefore we will use the second representation. 

The bump-map is indexed with a (u, v)-coordinate in the same way 
as a texture-map. Each bump-map entry contains a tuple (Q,, 0,) 
with a horizontal and vertical angle relative to the horizontal polar 
axis u for the deflection vector D, expressed in (u, v, w)-coordinate 
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Figure 4: Local coordinate system and rotation of D. 
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4.3 Local Object Coordinate System 

In object coordinates, the origin and coordinate axes remain fixed 
relative to an object no matter how the object’s position or orienta- 
tion changes in space. Surface normals are defined in their local 
object coordinate system, where the object’s vertices are also 
defined, before the object is transformed by rotation or translation 
in world space. All computations relative to bump- or environ- 
ment-mapping are carried out in the object coordinate system. 

Blinn’s original bump-mapping method [3] requires the amount of 
displacement B to be scaled at the same rate as the surface normal 
N. Our method displaces the surface by rotating N by an amount 
described with two angles. Since angles are invariant to object 
scaling, the bump-mapped surface appearance is preserved at dif- 
ferent object sizes and scaling of D is unnecessary. 

4.4 Vector Rotation 

The deflection D can be viewed as rotating the u and v bump-map 
coordinate axes about the object normal vector N, as shown in Fig- 
ure 4. By defining the surface normal vector N with a signed hori- 
zontal angle TN and vertical angle I$$ we can rotate any deflection 
vector D from bump-map space to object space. The rotated bump- 
map coordinate axes w’ and v’ are constrained to lie in the plane 
containing the surface normal and y axis of the object coordinate 
system. u’ is perpendicular to N, w’ and y. Instead of adding a per- 
turbation vector B to N, we replace the normal vector N by a 
rotated deflection vector D,,. 

21 
A Initially: 

T D is represented with a 
spherical coordinate rela- 

D tiVe to a horizontal polar 
aXk yl: D = (TD, 8D); 

Yl 

J 
xi 

Step 2: 
D” (qD, e”D):= !qfD, e’,); 

D”:= ($‘D + vN, e”D); 
DrOt:= D” 

x2 

:igure 5: Rotating D from bump-map domain to the ob- 
ect surface by querying a spherical-to-spherical map. 

Any rotation can be broken down into a series of three rotations 
(roll, pitch, yaw) about the major axes of the object coordinate sys- 
tem [o]. To rotate the bump normal D, we represent D with a 
spherical coordinate ((pD, 0,) relative to the horizontal polar axis 
and use a spherical-to-spherical map 94 : ((cp, 8)+((p’, 8’) :: 
(zay’, XJZ’, yax’)] transforming (cp, 0) into (cp’, 6’). The rota- 
tion of D is performed by one rotation (roll) about the object x- 
axis, followed by a look-up to the spherical-to-spherical map 94 
and one rotation (pitch) about the object y-axis. 

Adding an offset -ON to the horizontal angle ‘pD is equivalent to 
turning the bump-map about the object X-axis: (@D, @D) = (9~ - 
8,, 8,). Then the spherical-to-spherical map is queried once yield- 
ing (@ID, @‘D). The second offset (PN is added to ((p”D, @‘D ) yield- 
ing ($‘D + qN, e”D), which corresponds to turn the bump-map (u, 
v, w) coordinate system about the object y-axis. The sequence in 
Figure 5 formulates the rotation of D from texture domain to the 
local coordinate system, aligned with the object surface normal N. 

5 REFLECTION-MAPPING 

The first step to reflection-mapping is to precompute an environ- 
ment-map that can bc directly indexed with the surface normal 
interpolated in object space. 

In an earlier work [13], we explained how to precompute effi- 
ciently environment- and shading-map coordinate generation 
tables Ft, F,, F,, G,, G,, H2, H,, that can be indexed by the inter- 
polated surface normal directly. We apply this method here to 
precompute an environment-map for the current viewing direction, 
relative to the object. R is precomputed for every object normal 
nc,bi and becomes a function of ((Pi, 0,). 

Below we brielly detail how to derive Ft, F2, F,, G2, G3, HZ, H, 
fmn n&j, Vup, V,ide and Vdir The viewing direction Vdir is defined 
by the VeCtOrS vside and Vup: vdir: = vside X V,p. Since N iS interpo- 

lated in object space, Vside, vUP and vdir must be transformed from 
world coordinates to object coordinates. If we transform Aside, v 
and vdir to object space, we can use the object surface normal no: 
directly, rather than having to transform R to world coordinates, to 
access the environment-map. The local surface normal nObj is 
defined with a spherical coordinate (TN, ON), and we apply the 
method outlined in section 2.2 and develop the dot products: 

“N = nobj ‘side = cos(eN). (sin(vN). [V,yidrlx + (17) 

‘Os(‘PN) [v,\i~,el,) + sin(eN) [V,v,&l, 

"N = “~b,‘~,,,, = cos(eNY) (sin(vN) [vL,,21x + (18) 
cos(cpN). lvuplz) + sin(eN). Ivuply 

and factorize expressions (I 7)( 18) into: 

uN = Ft ceN) F2((PN) + F3(eN) (19) 

“N = Gl(eN) G2(‘PN) + G3(eN) 

with 

F,(e,) = c,(e,) = cos(eN) 

F~((P~) = sin(tpN) [V,v&lx + cos((f),,!Y) lV,yidrlr 

%(%I = sin(cpN). [v,,,l, + cos(cpN). [v,,,lz 

Gm 

F3(eN) = sin(eN). [“sidrIv G3(eN) = sin(eN) [VulJly 

Coordinate (u N, vN) is used to read the diffuse term from a spheri- 
cal shading map as explained in section 2.3. 
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Similarly, we compute uR and vR from uN, vN and relations (7X8): 

‘R = Rohj’ ‘.yidr = 2(H,@,j,) H2(‘PN) + H#,)) uN (21) 

vR = Rohj. v,,~ = 2(ff,(e,) H2((P,$) + Hj(ejx,)) “j., 

with 

Hl(eN) = qeN) = weN) 

Hz((P,,,) = sin(‘PN) lVdirlx + cd~iy) b(,irlz 

ff3ceN) = sin(eN) [Vd;rl, 

(22) 

The spherical environment- or shading-maps are addressed with 
texture coordinate (un, vR). To generate the texture address we first 
index with (qN, 0,) into seven one-dimensional tables, containing 
the precomputed terms F,, FZ, F,, G2, G3, H,, H,. Each table cov- 
ers the range from 0 to n/2, and therefore has 128 entries. Values 
outside this range are obtained by trigonometric symmetry. The 
resulting (u, v) coordinate can be transferred to a texture memory 
address generation unit where it is processed as any standard tex- 
ture coordinate to read and interpolate the projected pixels from a 
shading- or environment-map texture. 

6 HARDWARE ARCHITECTURE 

nates and a RGB color value for the current pixel generated by the 
rasterizer. An internal texture-mapping pipeline does the perspec- 
tive division and computes a physical memory address from the 
texture coordinate. This address is used to retrieve texture data or a 
bump-mapping deflection vector D = (cpD. (3,) from internal mem- 
ory. 

Before deflecting the current surface normal N, its components 
(N,, N,: NJ go through a comparison logic generating the octant 
registration. Conversion to angular coordinates happens by squar- 
ing N,, N, and N,, making two divisions and looking up the angles 
qoct and 8,,i. The divider pipelines one Newton-Raphson iteration 
[16][25], starting with an approximation taken from a look-up 
table. Octant information together with N = (qoc., f&) are piped to 
the cache RAM, where N is expanded to ($iN, (3,) and deflected. 

For reflection-mapping and surface shading the spherical coordi- 
nate ((PN, t&J indexes into seven I28 x IO-bit tables to look-up the 
terms to compute a texture address. The address is used to read a 
texel from the environment-map memory or specular and diffuse 
shading coefficients from two shading-map memories. The pertur- 
bation of N by deflection vector D happens in the cache RAM. 
Finally, textured and environment-mapped pixels are interpolated 

6.1 Operational Framework and blended with the shading coefficients. 

The intelligent memory (IMEM) receives a (u, v, w) texture coor- 
nate. a r&ma1 vector N internolated in obiect Cartesian coordi- 
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Figure 6: Intelligent memory for bump- and reflection-mapping. 
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Figure 7: Cache RAM vector deflection pipeline. 
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6.2 Cache RAM 

In section 4.4 we explained how a vector expressed with spherical 
coordinates can be rotated by adding an angular offset to the coor- 
dinate and making one look-up to a spherical-to-spherical map M 
The rotation of D involves one look-up to the spherical-to-spheri- 
cal map. 

The cache RAM is detailed in Figure 7: it implements the spheri- 
cal-to-spherical map and is organized in interleaved 4 x 4 blocks. 
Any 4 x 4 block contains 16 entries of the spherical-to-spherical 
LUT. Any vector v(cp, 0) in the first octant (x, y, z 10) of the unit 
sphere is represented only once by a spherical coordinate in the 
cache RAM. Data (4 x 4 blocks) from the spherical-to-spherical 
map are transferred to a memory buffer register (MBR) which 
works as a temporary look-up table to rotate D. The access sce- 
nario to the cache RAM works as follows: 

I. To rotate D, the angular offset -6, is added to ‘pD, yielding ($D, 
6’,+ ($?D - ON, 6D), which is translated into a look-up table 
index. The high-order address bits are compared with the current 
block address of the data in the memory buffer register to deter- 
mine whether new data must be transferred or not from memory 
to the MBR. 

2. One look-up to the spherical-to-spherical map produces (@D, 
6”D). The second offset (PN is added to @‘D: (cp”D + (PN, 6”D). 

3. The cache RAM returns the rotated normal N’ = (VN’, 6N,):= 
(@‘D + (PN, 8”D) to the environment-map coordinate generator 
for shading and reflection-mapping. 

Normal vectors are likely to vary smoothly along one rendered 
scanline, so buffering 4 x 4 blocks of data permits consecutive 
queries to access directly the MBR to rotate D. 

7 DISCUSSION AND EVALUATION 

7.1 Results 

The algorithms and hardware architecture presented in this paper 
were simulated in C to validate their feasibility and are imple- 
mented in VHDL. Figure 9 shows objects that were bump- and 
reflection-mapped with the technique presented in this paper. 

The amount of DRAM storage for texture-, environment-, bump- 
and shading maps usually ranges from one to a few MBytes. It can 
be set deliberately, depending on the number of texture maps. 
IMEM will have far less external memory accesses, which greatly 
improves the performance in terms of bump- and reflection-shaded 
pixels, but still has a given density, limiting the number and size of 
texture-maps. 

In Table I, we list the different storage components of our archi- 
tecture. 
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Table 1: Look-up  tables  and memories  inside  IMEM.

To summarize our approach, we

l transfer bump-, reflection-mapping  and shading to the object
coordinate system;

l apply view-dependent  shading: precomputed shading- and envi-
ronment-map coordinate  generation tables are indexed directly
by the surface normal;

l trade complicated  vector arithmetic and normalization operations
against a cache RAM, a few look-up tables and two adders  for
the deflection of normal vector N;

l exploit  pixel-to-pixel  cache coherence and pipeline the deflection
of consecutive pixel normal vectors;

l combine processing and data for texture-, environment-, bump-
and shading-maps in an intelligent  memory.

Efficiency is gained by moving shading and reflection-mapping  to
object space, where  the deflected surface normal can be directly
used,  instead of having to transform it back to world coordinates. It
is also important to note  that  the method  of transferring all compu-
tations to object space is invariant to object rotation and position in
space.  Our bump-mapping  algorithm requires very little arithme-
tic: a few adders and multipliers  for environment- and shading-

I20



map coordinate generation; the divider, already available for per- 
spective division, is shared by the normal vector transformation to 
polar coordinates. The reflection-map and shading-maps can be 
precomputed in advance for a given environment. 

Only the (u. v)-coordinate look-up tables must be updated when 
the object orientation changes, because these tables are a function 
of the current view-up and view-side vectors, expressed in object 
coordinates. These tables are of small size (7 x 128 x IO-bit) and 
can be reinitialized before each frame. Reloading these view- 
dependant look-up tables whenever the object or its orientation 
changes is a fundamental problem due to performing computations 
in object space with precomputed tables. The chosen tables permit 
the generation of coordinates for an environment-map texture hav- 
ing a size of 1024 x 1024 pixels. To support both texture filtering 
and a higher texture resolution the look-up table width could be 
extended to I6 bits (I 2 integer bits + 4 bits for subpixel resolution 
and filtering). 

7.2 Angle Resolution 

We have described our method and hardware architecture for an 
angular resolution of 512 x 256 normal vector samples. The unit 
sphere is sampled 5 12 times along parallels over the range [O..27t] 
for cp and 256 times along meridians [-~/2..+~/2] for 8. This reso- 
lution was chosen for practical simulation reasons, where memory 
allocation grows quadratically for any look-up table. The color 
images in Figure 9 were all generated at this resolution. Such a res- 
olution is sufficient for standard bump-mapping shading and is 
acceptable for reflection-mapping. Artifacts are barely noticeable 
on bump-mapped objects, but become obvious on retlection- 
mapped objects, when resolution is further decreased. Figure 8 
compares image rendering quality at different angular resolutions 
for bump- and reflection-shading. 

7.3 Technology Considerations 

A standard graphics subsystem consists of one or more processing 
units retrieving data from external memories over common or sep- 
arate buses of fixed width. which limits the communication band- 
width between the processing units and memories. Such 
architectures suffer from an important contradiction: performance 
requirements for a high-speed memory and high-throughput bus 
conflict with requirements for low power, small circuit pin-count 
and cost. 

Given the growing processor-memory gap, we find it worthwhile 
to consider unifying processing logic and DRAM on a single chip. 
We named such a chip IMEM for intelligent memory, because 
most transistors on this merged chip will be devoted to memory. 
DRAM is much denser than SRAM. the traditional choice for on- 
chip caches, which justifies to merge the processing unit in DRAM 
rather than increasing on-processor cache SRAM. 

The main advantage of integrating the processing unit and memory 
is the feasibility of using wide and fast internal buses. The feasibil- 
ity of such a design decision has already been demonstrated by 
hybrid memory-processor architectures such as the M32R/D, a 32- 
bit RlSC processor [17], or the MSM7680, a multimedia accelera- 
tor with I .25 MByte embedded DRAM [21]. Technology advances 
will foster this trend and certainly will enable on-chip fusion of a 
small microcontroller with high-density DRAM in the range of a 
few MBytes, to attain a potential internal bus bandwidth of several 
Gigabytes per second. 

8 CONCLUSION 

Bump- and reflection-mapping demand parallel memory accesses 
and intensive arithmetic for the computation of the deflected nor- 
mal vector, the reflected ray vector and the shading. Our approach 
to bump- and reflection-mapping requires very simple arithmetic 
and exploits the local geometry of the bump-mapping process, 
cache coherence of pixel-to-pixel normal vectors, precomputed 
shading and reflection-map coordinate generation tables, accessed 
in parallel for each textured pixel, which enabled its implementa- 
tion in an intelligent memory device. 

IMEM is an intelligent memory device, integrating little arithmetic 
and offering bump-, texture- and reflection-mapping hardware sup- 
port to an existing surface rendering pipeline. It can be easily inter- 
faced to a standard rasterizer in place of texture memory. The 
design of IMEM is motivated by the fact that texture-, bump- and 
reflection-mapping, Phong shading all involve parallel accesses on 
a per-pixel basis to external memories to fetch the necessary data. 
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