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Abstract

We consider the problem of reconstructing a surface from scattered points sampled on a physical shape. The
sampled shape is approximated as the zero level set of a function. This function is defined as a linear combination
of compactly supported radial basis functions. We depart from previous work by using as centers of basis functions
a set of points located on an estimate of the medial axis, instead of the input data points. Those centers are
selected among the vertices of the Voronoi diagram of the sample data points. Being a Voronoi vertex, each center
is associated with a maximal empty ball. We use the radius of this ball to adapt the support of each radial basis
Sfunction. Our method can fit a user-defined budget of centers: The selected subset of Voronoi vertices is filtered
using the notion of lambda medial axis, then clustered to fit the allocated budget.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Surface Reconstruction

from Scattered Data, Radial Basis Functions.

1. Introduction

Recent improvements in automated shape acquisition has
stimulated a profusion of surface reconstruction techniques
over the past few years for computer graphics and re-
verse engineering applications. Data collected from scan-
ning processes of physical objects are often provided as large
point sets.

Reconstruction methods can be roughly classified as
Voronoi-based and mesh-free. Voronoi based reconstruction
algorithms compute the Delaunay triangulation of the sam-
ple points, the dual to the Voronoi diagram. A subcomplex
interpolating the sampled surface is then extracted from
the Delaunay triangulation [AGJ02, AB98, AS00, CSD04,
DGHO1, DG04, ACKO1, KSO04]. Detailed surveys are
presented in [CGO4, Dey0O4]. In the mesh-free approaches,
the surface is approximated or interpolated using explicit
methods such as deformable models [DQO1, Set99],
parametric methods such as NURBS, B-Spline [Far02]
or implicit methods such as RBF or MLS (see [TOO02]
for a survey). Among the many techniques developed for
surface reconstruction with implicit methods, the radial
basis functions (RBF) approach has shown successful at
reconstructing surfaces from point sets scattered on surfaces
of arbitrary topology [Buh03,Duc77,1sk04, Wen04].
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Radial Basis Functions (RBF) were introduced by Broom-
head and Lowe in the neural network community [BL88].
Techniques based on radial basis functions are now com-
mon tools for geometric data analysis [FN80,LF99], pattern
recognition [Kir01] and statistical learning [HTFO1]. The ra-
dial basis functions approach is volumetric in the sense that
it approximates the input surface as the zero level-set of a
scalar 3D function. This function is expressed as a weighted
sum of radial functions, whose centers commonly coincide
with the input data points. The function is constrained to be
zero on the input data points and to be non-zero on other
points in order to avoid the trivial constant solution. Given a
set of centers, a set of constraint points and a type of radial
basis function, reconstructing the sampled surface amounts
to finding the set of weights which minimize a least-squares
error to fit the constraints.

Although Voronoi-based reconstruction has long been
criticized for its computational burden, recent developments
in the implementation of fast algorithms have alleviated
this issue. As an example, computing the Delaunay of SOK
points takes 1s using the CGAL library [FGK*00]. Such
methods still depend on the quality of the sampling and on
the differential and topological properties of the surface. In
particular, sparsity, redundancy, noisiness of the sampling,
or non-smoothness and-beundaries—ef-the—surface—makes
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the surface reconstruction a challenging problem. Besides,
Voronoi-based reconstruction methods often fail to produce
watertight surfaces.

Radial basis functions, on the other hand, still have is-
sues with picking the right non-zero constraints (to avoid
disconnected components), and with efficiently computing
the weights. Functions with unbounded support give the best
reconstruction results, but also lead to dense matrices. The
only viable solution to this problem so far is the multipole
expansion for polyharmonic functions developed by Carr et
al. [CFB97]. Unfortunately this approach is notoriously in-
tricate and difficult to reproduce. Compactly supported func-
tions lead to sparse matrices [Wen95]. However, finding a
proper support size for the functions in case of irregularly
sampled surfaces is difficult. A recent trend is to perform
a set of local reconstructions, which may be mixed with
quadric or higher-order jet fitting, and to blend them us-
ing the partition of unity [TI04, OBS04]. Although a great
deal of effort has been put into the elaboration of multi-level
techniques with local reconstructions to deal with large data
sets, less effort has been spent at improving the compact-
ness of the representation by center selection and optimiza-
tion [CFB97, T104, OBS04]. Besides, when the basis func-
tions is compactly supported, the computed function is only
defined in the vicinity of the input data points.

1.1. Contributions

Our approach combines both worlds and eliminates some
of the aforementioned shortcomings. The sampled surface S
is still reconstructed as the zero-level of a function f ex-
pressed as a linear combination of radial basis functions.
The main advance in our method is to use radial basis func-
tions centered at vertices of the Voronoi diagram of the data
points. More precisely, centers of radial basis functions are
chosen among a subset of those Voronoi vertices, which are
called poles. Under certain sampling conditions, the poles
are known to be closed to the medial axis of the sampled
surface S [AB98]. Furthermore, each pole is the center of
a Delaunay ball hereafter called polar ball. A polar ball is a
maximal ball empty of sampled points. Such a ball is close to
a maximal ball in R? \ S. Considering that any smooth sur-
face S can be viewed as the envelope of the maximal balls
in R3\ S, using poles as centers for radial basis functions
is a rather natural idea. Furthermore, in our reconstruction
process, we use the radius of each polar ball as a guidance
for choosing the support of the corresponding basis func-
tions. Hence, the support of each basis functions is locally
adapted to the geometry and topology of the sampled shape.
Also, because the radius of each polar ball is a good estimate
of the distance between the pole and the sampled surface, we
use this radius to set, as additional constraints, the value of
the function at the poles. This leads to a reconstruction tech-
nique with the following features:

e The surface is represented as the zero-level set of a signed

function, which is a good approximation of the signed dis-
tance field to the surface.

e The function is defined as a weighted combination of lo-
cally supported radial functions; The number of functions
is independent from the number of input points and typi-
cally significantly smaller. The function can thus be eval-
uated faster than when using traditional (even compactly
supported) RBF.

e While the computation of the weights potentially incorpo-
rates all data points as constraints, the size of the system
matrix only depends on the number of centers, not on the
number of constraints.

e A filtering of the poles based on the notion of A-medial
axis allows the surface to degrade gracefully with noise.

In comparison with Voronoi-based reconstruction, the
most important advantages of our technique are the re-
silience to noise and the construction of a smooth watertight
surface that approximates all data points. In comparison to
the common compactly supported RBF, fewer centers are
used for the same accuracy. This leads to faster computa-
tion of the weights and faster evaluation of the functions.
Using poles associated with their Voronoi ball radius as ad-
ditional constraints leads to a better approximation of the
distance field to the surface, and to fewer topological issues
such as superfluous connected components away from the
input points.

1.2. Overview

Our algorithm proceeds as follows: given a 3D point set scat-
tered on a surface, we first compute its Delaunay triangula-
tion and the dual Voronoi diagram. Our algorithm then re-
peatedly refines a subset of the Voronoi vertices. In the first
stage, poles are extracted from the Voronoi vertices and are
classified as inside or outside. In the second stage, we se-
lect a user-defined number of centers, m, among the set of
poles. The selection is performed by filtering, then cluster-
ing the set of poles. Poles are filtered in order to adjust the
level of detail to the budget of centers and clustered in or-
der to achieve a center distribution nicely spread on the me-
dial axis. We choose as radial basis function a Gaussian-like
function with a compact support [Wen95], where the support
size is locally adapted. As constraints, we impose the func-
tion f to be zero at the data points and to be non zero at the
center points. A value set at a center point approximates the
signed distance from this point to the sampled surface. The
weights are obtained by computing the best least squares ap-
proximation of the function f with respect to the constraint
points.

For completeness we list some key notions behind the ra-
dial basis functions in Section 2. Section 3 details the main
steps of our algorithm. We show several experimental results
in Section 4. Some work in progress and perspective direc-
tions are discussed in Section 5.
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2. Background

Definition 1 The approximation problem is formulated as
follows. Given {p;},_, , asetof n points and n scalar num-
bers F = {f}i—1.... find a function f: R3 — R satisfying
the approximation condition:

" =argmingE(f), ¢))

where E is the least squares error :
n
E(f)=Y (fi—f(pi). &)
i=1

In the RBF approach, the function f is defined from a
class of basis functions ®; : R3IxR3 — R, as a linear com-
bination

fx) =Y aj®j(x,c;), 3)
=

where {c;}, |  denotes a set of m center points and

{oc‘} . denotes a set of unknown weights to be solved
JS j=1..m
for.

The reconstruction problem boils down to determine the
vector & = {0,..., &, }, by solving a linear system of equa-
tions resulting from the minimization of E (Eq.2) :

o= [GhoGra|  Gho. @

where  matrix
F:[ﬁ]iZI..n-

Gpo = [®(pi.cj)li=1.nj=1.m and

In the following, the set of points, P, where the function
value is specified a priori are called constraints. The set P
includes the data points where the function f should vanish
by definition, i.e. where all the f; should be zero. To avoid the
trivial solution o = 6}, during the minimization of E in (2),
several interior and exterior constraints are added where the
function f does not vanish. For each additional constraint
point py, we assign to f a signed value fi. This value is
commonly the approximated signed distance between p; and
the sampled surface. The N constraints {p;};,—;. n are now
composed of the n input points and of the additional off-
surface constraints where the function f is specified.

Most approaches locate centers both at the input data
points and at the off-surface constraints, therefore the
number of centers is such that m = N and the minimization
process (1) reduces to solving a N x N linear system which
requires O(N?) machine operations and O(N?) bits for
storage. Then, each evaluation of f(x) requires O(N) oper-
ations. This approach is therefore not suitable to a number
of constraints greater than several thousands. To reduce the
computational complexity, one first idea is to reduce the
number of constraints. Notice that since most algorithms
use the same points as constraints and as centers, this also
leads to center reduction. This approach is commonly called
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center reduction in the literature.

Center reduction consists of optimizing the trade-off be-
tween fitting accuracy and number of centers. A greedy algo-
rithm is proposed in [CBC*01]: centers are iteratively added
at locations where the fitting error is maximum until a satis-
factory accuracy is reached. Another idea to further reduce
the number of centers while maintaining decent fitting accu-
racy is to relax the one-to-one correspondence between the
centers and the constraints. This approach, which we follow
in this paper, is called Generalized Radial Basis Functions
(GRBF) in the neural networks community [PG89]. Let m
be a user-defined number of centers, possibly located any-
where in space, and N the number of constraints, such that
m << N. The size of the matrix to be inverted and stored
is now m x m, independently of the number of constraints.
O(m) operations are now required for a single point-wise
evaluation. Each term of the matrix G' G being a sum of con-
tributions arising from each constraint, the number of con-
straints conditions the cost for assembling the matrix. This
paper investigates one of the most important degrees of free-
dom offered by the RBF method: the location of centers and
constraints to obtained a satisfactory trade-off between num-
ber of centers and fitting accuracy.

3. Algorithm

The input data for our algorithm is a point set P =
{pi};—1 » C R3. All the input data points are supposed to
lie on the surface so the function value f is set to zero a
these points:

fi=fp)=0, Vi=l..n. 5)

We structure this section by the main components of the
reconstruction algorithm, namely the choices made for the
centers, for the constraints and for the radial basis functions.

3.1. Centers

Centers for RBFs are selected from the vertices of the
Voronoi diagram of the input points. Selection is performed
by refining a set of candidates in three steps.

Pole Extraction Let & be a shape with a closed continuous
boundary S = 9. A ball 2, included in R3/S, is said to be
a maximal ball if there exists no other ball included in R3/S
and containing 2.

Definition 2 Medial axis:

The medial axis M of S is the topological closure of the set
of points of R3 that have at least two nearest neighbors on S.
Every point in M is the center of a maximal ball.

Definition 3 Voronoi diagram:
The Voronoi diagram of a point set P is a partition of the
space in regions with the same closest point in P. Every
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Voronoi cell corresponds to exactly one point p; and con-
tains all points in the space that are closer to p; than to any
other points in P.

V(pi,P) ={xcQ:VgeP |x—pi| <[x—ql}. (©)

For the problem of reconstructing surfaces from point
sets, we assume that all points are sampled on the surface.
In 2D, it has been shown that if the sample is dense enough,
all Voronoi vertices are closed to the medial axis. However, a
similar result does not hold in 3D, where some Voronoi ver-
tices may be located close to the surface and thus far from
the medial axis, even when the sample density goes to infin-
ity. The notion of a pole was previously introduced to handle
this problem.

Definition 4 Pole:
A vertex of the Voronoi cell, V (p;, P), of a sample point p; €
P is called a pole if :

e cither it is the vertex v; of V(p;) that is the farthest from
pi

e or it is the vertex w; of V(p;, P) that is the farthest from
pi in the halfspace H; ™, set of points x such that (v; — p;) -
(x—pi) <0.

As a pole is a Voronoi vertex, there exists a maximal ball
centered at each pole. This ball is called a polar ball. Amenta
et al. [ACKO1] and Boissonnat and Cazals [BC00] show that
under some conditions the poles are close to the medial axis
of the sampled shape. The conditions are that the surface is
smooth and the sampling is dense enough. More precisely,
the sample has to be an e€-sample. This means that for any
point, x, on the surface, the distance from x to the sample
is not greater than € times the distance from x to the medial
axis. The poles are shown to exhibit interesting properties:

e if v; is a pole of the cell V(p;, P), the direction v;p; is a
good approximation of the normal at p;;

o the radius of the Delaunay ball centered at v; is a good
approximation of the distance from v; to the sampled sur-
face.

Let m be the user-defined budget of centers. Generally,
the number of poles is greater than m, and we must select m
relevant poles as centers. If m is small, there is no hope to re-
construct very small details and thus we need to remove the
poles which correspond to the smallest details (which are
not distinguishable from noise). This task is performed by
filtering the poles based on the notion of the A-medial axis.
Notice that this filtering stage is different from the cluster-
ing stage, which is designed to distribute the final budget of
centers on the A-medial axis with a proper sampling density.

Pole Filtering A major problem arises when trying to ap-
proximate the medial axis of a sampled shape from the
Voronoi vertices of the data points: The medial axis is known
to be highly unstable with respect to small details of the
shape. This means that even if two objects are very close

with respect to the Hausdorff distance, they may have very
different medial axis (Fig.1). Thus, the set of poles extracted
from the Voronoi diagram of a sampled surface is very un-
stable with respect to noise as well. Several approaches have
been proposed to tackle this problem [AM96, DZ03]. In
this paper we follow the recent work of Chazal and Lieu-
tier [CLO5], which defines the notion of A-medial axis.

NN\
/\/4\\\

Figure 1: Instability of the medial axis. Left: a smooth shape

and its medial axis (black). Right: the same shape with some
bumps added and its (unstable) medial axis.

For any point p, we denote by I'(p) the set points of the
boundary d & that are closest to p.

[(p) = {y €00.d(xy) =d(x.00)}.  (T)

The medial axis M of & can be viewed as the set of points
X € O such that |I"(x)| > 2. For each point p, there is a small-
est ball enclosing I'(p). We define the real-valued function
¥(p) as the radius of the smallest ball enclosing I'(p). The
A-medial axis M), is defined as :

My ={pcOly(p) > A}. ®)

M, is a closed subset of the medial axis. Moreover, the
medial axis is obtained for A = 0. Chazal and Lieutier have
shown that for any value for A which is not a singular value
of the map A — M), the A-medial axis of a surface is stable
under small perturbations and can be estimated from a dense
sampling. Roughly speaking, restricting the A-medial axis
with increasing value of A, smooths out both small features
and noise. We use this idea of medial axis filtering to smooth
noise and adapt the level of detail of the reconstruction to
the allocated budget of centers. More precisely, this means
that we determine the value A suitable to the sampled shape
and to the budget of centers, and filter out the poles which
are not close to the A-medial axis. To estimate if a pole v is
close to the A-medial axis, we compute the radius y(v) of the
smallest ball enclosing the set ['(v) of sample points closest
to v. Poles with radius y(v) smaller than A are discarded.

Pole Clustering The filtered set of poles now forms a set
of possible centers, PC. Generally, the size of PC remains
larger than m, the user-defined budget of centers. In order to
select m centers from PC, we perform a k-means clustering
over the set of possible centers [Mac67]. The goal is to ob-
tain a sampling of the A-medial axis with a local sizing field
at a pole v; proportional to the radius of the polar ball r(v;).

(© The Eurographics Association 2006.
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Figure 2: Medial axis filtering on a 2D shape (blue). The A-
medial axis is depicted in black. Top left: all extracted poles.
Top right: pole filtering with parameter A = 0.01. Bottom
left: A = 0.03. Bottom right: A = 0.05. To get a better sense
of these parameters: the diagonal length of the bounding box
of the input point set is 1.4.

Therefore, we compute the centroid, ¢, of a clustering cell €
as

c= Z w;v;, (9)

ViEE
using for each pole, v;, a weight, o;

o = d(Vi)7 (10)
p(vi)

where d(v;) denotes a quadrature term taking into account
the actual pole density, and p(v;) denotes the desired lo-
cal density. More precisely, and owing to the energy equi-
distribution property [DFG99], we know that the density
function p(v;) must be proportional to W to obtain a
cluster density matching the field r(v;) in a underlying space
of dimension d. In our case d = 2, because the filtered poles
approximate the medial axis, which is a generically a two-
dimensional manifold. As for the quadrature term d(v;), we

take it proportional to ‘r/((“:_")), where V(v;) is the volume of

the cell of v; in the Voronoi diagram of the filtered poles,
and r(v;) is the polar ball radius since each filtered pole v;

(vi)

roughly represents the area ‘:(v,_) of the A-medial axis.

After convergence of the clustering procedure, the cen-
troid of each cluster is replaced by the closest pole within its
cluster, so that the final centers are guaranteed to be located
near the medial axis of the sampled surface.

3.2. Constraints

We take as constraints both the input points where the func-
tion f is specified to be zero, and a set of additional con-
straints where f is specified to be non-zero. Recall that our

(© The Eurographics Association 2006.

Figure 3: Pole clustering on the Bimba model (100K input
data points). 200K poles have been extracted and clustered
to 15K poles. Left: All poles (100K inside poles depicted in
orange, 100K outside poles depicted in green). Right: After
clustering to 15K poles (8K inside depicted in red, 7K out-
side depicted in green).

goal is to consider as an approximation of the shape the zero-
level set of f. Therefore, we wish to define a signed func-
tion f which is positive outside the shape, negative inside
and with a non-zero gradient close to the sampled surface.
A good candidate is a function approximating the signed
distance function to the sampled shape where the distance
is positive for points outside the shape and negative inside
(Fig.4). At each pole the radius of the polar ball corresponds

Figure 4: 2D shape (black) and the computed function. Col-
ors range from cold color tones for positive distance values
to hot color tones for negative distance values.

to an approximation of its distance to the input point set.
Thus, poles can be used as a constraints in order to approx-
imate a distance function to the sampled surface. It remains
however to determine the sign of this value, and therefore to
classify the poles as inside or outside.

Pole Classification Pole classification is the process of la-
beling the poles as inside or outside the surface. Com-
mon approaches use an algorithm to propagate the pole
labels through the graph built from adjacency relation-
ships between the poles. In our implementation, we clas-
sify the poles using a variant of the algorithm proposed by
Amenta [ACKO1]. This variant, due to F.Cazals (internal
communication), is more efficient and more robust against
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to noise. During the classification process, a location tag (in-
side, outside and undetermined) and a confidence value are
attributed to each pole. If the confidence of a pole is lower
than a certain threshold, the pole will not be taken into ac-
count as a constraint.

3.3. basis functions

The reconstructed surface is required to be independent of
Euclidean transformation. The function ® is thus restricted
to the set of radial functions :

D(x,ci) = 9 (|lx—cill) (11)

where ||.|| denotes the Euclidean distance and ¢ : RT — R.

When the ¢ function has a unbounded support, the corre-
sponding constraint equations lead to a dense linear system.
Recovering a solution is therefore tractable only for small
data sets. In order to obtain a sparse interpolation matrix,
compactly supported RBFs have been introduced by Wend-
land in [Wen95]. Other compactly supported RBFs (CSRBF)
can be used for reconstruction as proposed in [Sch95,Wu95].
As centers are poles, each center c;, has a corresponding to
a scalar value, r;, the radius of its polar ball. Our function of
choice ¢ is compactly supported, and the support size s; for
the function centered on ¢; is computed using to ;. The ¢
function (11) centered on ¢; is scaled according to the local
support s;:

[lx—cill

Oi([lx —cill) = o( ) %5 (12)

The basis functions chosen in our implementation is
o(r) = (1—r)4(1+4r) (13)

where the symbol + means (x);+ =x if x >0 and (x)+ =0
otherwise.

3.4. Solver

The centers are the set {c;}._,  of m points in R3. The

j=l..
constraints are the set {p;},_, n of N points where the

value of f is known.

Let G be the matrix [¢;(||p; —¢j|)]i=1.¥,j=1..n and F be
the vector [fi];=1.n. The constraints points {p;}i—1.n in-
clude both the n input points and the additional off surface
points where we specity the function f value.

o1(llp1 — i) Om(llp1 —cml))
G- .

o1(lpy —c1l) Om(lpy — cmll)

(14)
An approximation using the least squares method implies

solving the system (4). With the new notations, the system is

G'G-a=G'F. (15)

The size of the matrix is m X m, where m is the number of
centers. The use of compactly supported functions ¢; leads
to a sparse matrix with about 90% zero elements.

Assembling of the matrix Each term a;; of the matrix G'G
is computed as a sum:

N
aij =Y. 0i(llpx —cil )9 (|l Pk — c;ll)- (16)
=1

For each constraint p, we need to find the list /,, of centers
which contain p in their support. To avoid searching exhaus-
tively, we use a 3D Delaunay triangulation of the centers.
The constraint p is first located in the triangulation, then our
algorithm search outwards from p in the triangulation until
all centers containing p in their support are found. For each
pair of centers (c;,c;) contained in the list /,, we add a term
for p to a;;.

4. Results

We have implemented our algorithm in C++. The Voronoi
diagram and Delaunay triangulation are computed using the
CGAL library [FGK*00]. The linear system is solved us-
ing the TAUCS library [Tol01]. We use an implementation
of the marching cube algorithm [Blo94] to extract the zero-
level set of the reconstructed function . To evaluate the fitting
accuracy, we use the Taubin distance [Tau94] from the input

points (17)
1 ﬁﬂmf
E = — _ . 17
(/) Né(wmw an

This distance is a first order approximation of the Euclidean
distance between the input points and the zero level set of
the function f. Since the gradient can vanish or go to infinity
with compactly supported basis functions, we need to use a
threshold S such that :

L& fi—fp) )2
E =— AN AR 18
milf) Néﬁwwmm a8
where :

S if §<81
r(HVf(pi)H)—{ IVF(pi)ll if S1<g

Figure 6 summarizes all steps of our algorithm on a 2D
shape.

As a typical example for our algorithm, we detail the tim-
ings of each reconstruction step for the omotrondo model
(80K points) (Fig.7).

1. point insertion in the Delaunay triangulation: 6.3s;

(© The Eurographics Association 2006.
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Figure 5: Error function. 1/T" function.
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Figure 6: The main steps of our algorithm on a 2D shape.
From left to right: input data points (black), all poles are ex-
tracted and classified from the Voronoi diagram (red inside,
green outside), poles are filtered, poles are clustered into
centers, the 2D scalar function is computed and the zero-
level set is extracted (black).

2. extraction of 16K poles: 2.75s;

3. classification (8K inside poles and 8K outside poles):
20s;

4. filtering and clustering to got 13k centers : 230s;

5. assembling the linear system: 674s;

6. solving the linear system: 78s.

In our current implementation, most of the time is spent as-
sembling the linear system, specifically finding all pairs of
centers whose supports intersect a constraint. Although the

(© The Eurographics Association 2006.

use of a 3D Delaunay triangulation avoids the naive exhaus-
tive search, this part could be further optimized.

Figure 7: Reconstruction of the Omotondo model (80K
points) with 13K centers. Fitting accuracy: 2.8 x 1075, Left
: the original model (gold); Right : the reconstructed surface
(silver).

The importance of our choice for the centers is shown
graphically by Figure 8. We plot the error against the number
of centers for our method and for the common method where
constraints and centers coincide. In the common method, the
set of data points is subsampled and the off constraints are
taken along the normals estimated at the subsampled points.

0.0016
oot |
0.0012+

0.0010-

0.0008-
0.0004—
0,002

0.0000 4]
1000 400 1800 2200 2600 3000 3400 300 4200 4500 5000

Figure 8: Plot of the error against the number of centers
(from 1K and 5K). The red curve corresponds to the common
method. The green curve corresponds to our method.

Figure 9 illustrates several reconstructions of the Dinosaur
with increasing number of centers.

As Fig. 10 depicts, our function is defined all over the
space around the sampled shape. In contrast, when com-
pactly supported radial basis functions are centered at the
input data points, the function is only defined in a tubular
neighborhood of the sampled surface.

The clustering step redistributes the centers among the set
of poles as shown in figure 11.
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Figure 9: Reconstruction sequence of the Dinosaur with increasing number of centers. From left to right: original, then

reconstruction with 1K, 3K, 4K and 5K centers.

Figure 10: Reconstructed function. The colors represent the
function values (cold tones for positive, hot tones for nega-
tive values and white for the zero values). Left: the recon-
structed function for the common approach; The function
does not vanish only in a tubular neighborhood of the point
set. Right: the reconstructed function for our method.

The pole filtering step of our algorithm is useful to adapt
the level of detail to the user-defined number of centers
(Fig. 12), as well as to improve robustness against noise
(Fig. 13). It also shows the effect of filtering when the al-
located budget of centers is low.

Figure 13 illustrates an extreme example with a substan-
tial amount of noise due to the misregistration of three range
maps. Moreover, the sampling is highly non isotropic and
non uniform due to the acquisition system. Figure 13 depicts
the main stages of our algorithm applied to a noisy point set
sampled on a hand. Although noise in the input data points
leads to misclassified poles, the A-medial axis is stable un-
der such perturbations, and theses misclassified poles are fil-
tered.

Figure 11: Knot model (6K input points). Left: centers and
reconstruction without clustering (inside centers with their
polar balls are depicted in red, outside centers are depicted
in green). Right: centers and reconstruction with clustering
(12K poles are clustered into 1K centers).

5. Conclusion

We have presented a new approach for reconstructing sur-
faces from scattered points, combining generalized radial
basis functions and Voronoi-based surface reconstruction. In
contrast to the Voronoi-based approaches, our method cre-
ates a smooth and watertight surface, similarly to the RBF
approaches. The resulting function is an approximation of
the signed distance to the sampled surface defined all around
the sampled shape, instead of being defined only in a small
neighborhood as in previous work. Our approach relies on
a theoretically sound framework for pole extraction and A-
medial axis filtering. This framework provides us with re-
liable estimates of the normal at each data point, with an
approximation of the distance to the sampled surface at each
pole, as well as with a filtering method based on the stable

(© The Eurographics Association 2006.
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Figure 12: Effect of the filtering step on the Julius model
(80K input points). The number of centers is m = 5K.
Left: without filtering; Middle: poles filtered with A = 0.01;
Right: poles filtered with A = 0.02 (to get a better sense of
these parameters, the diagonal length of the bounding box
of the input point set is 1.47).

Figure 13: Noisy hand reconstruction. Left: noisy hand
model (90K input points). The input points result from regis-
tering three range maps. Middle left: inside poles with their
polar balls (88K poles, some of them being misclassified);
Middle right: 2K centers after filtering and clustering (in-
side and outside centers with their polar balls (resp. red and
green); Right: reconstructed hand.

A-medial axis. As a result we can reduce the number of para-
meters for our algorithm to two: the number of centers, and
A, used to filter the medial axis.

In terms of efficiency, the only stage which impairs scala-
bility is the assembling of the final matrix. We are expect to
greatly improve this aspect by an optimized implementation
or using new geometric data structure. In our study the me-
dial axis filtering stage allows us to adapt the level of details
to a user-defined budget of centers, the value for A being
fixed experimentally. In a future work, we will investigate
how to automatically adjust this parameter to accommodate
for the allocated budget of centers.
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