Generating Knitting Patterns from a Sketch: a CSP Approach

Marta Kryven*

Elodie Fourquet'

University of Waterloo

(a) Source drawing

(b) Generated knitting pattern

(¢) User’s edited version (d) Knitted version of (c)

Figure 1: A girl with an iPod use-case: a Fair-Isle knitted wearable image (d) generated using our system from a line-drawing image (a)

converted to a knitted pattern (c).

Abstract

Graphic patterns in knitting are composed of relatively large pixels
and create a picture when seen from a distance, while on close view-
ing the image falls apart into its constituent stitches. Such patterns
are constrained in use of colors due to the nature of the medium and
in spacing between pixels as a durability concern and are a chal-
lenge to create. This paper shows how to convert an arbitrary line-
drawing or photograph to a constraint-compliant Fair-Isle knitting
pattern for a programmable knitting machine or a manual knitter by
formulating it as a Constraint Satisfaction Problem (CSP). First we
generate a constraint-inconsistent starting pixel assignment. Then
we produce a perceptually similar constraint compliant solution, by
minimizing and randomly distributing pixel flips to preserve gestalt
features of the original design. We evaluate ways of generating a
starting assignment using thresholding and dithering and of solving
the problem using pseudo-random texturing and search: Random
Walk, GSAT and Min-Conflict. Two hybrid solutions that achieve
an improved design-dependent result are described. To test the al-
gorithms an interactive knitting pattern generator was implemented.

CR Categories: 1.3.3 [Computer Graphics]: Picture/Image
Generation—; 1.3.6 [Computer Graphics]: Methodology and Tech-
niques, Interaction Techniques—;

Keywords: non-photorealistic, constraint solving, knitting,
sketch-based rendering, nontraditional media.

*e-mail:mkryven @uwaterloo.ca
Te-mail:ecdfourq@cs.uwaterloo.ca

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.

CAe 2013, July 19 — 21, 2013, Anaheim, California.

Copyright © ACM 978-1-4503-2203-4/13/07 $15.00

53

1 Introduction

Visual patterns created by knitting depend on the physical structure
of the medium, which defines and limits the possible images. A
knitting pattern is an instructional diagram describing how to knit
yarns to obtain an image on a finished garment. It shows sequences
of stitches of each color that can be read by a human and reproduced
either manually, or by a knitting machine. Having an instructional
diagram is useful because knitting is a linear activity, while the knit-
ted image that emerges is planar. There are several styles of multi-
colored knitting, in this paper we solve the problem of generating
patterns for a style of knitting called Fair-Isle. It produces a non-
reversible fabric, is supported by most knitting machines and easily
made by hand (Figure 1).

Artists use digitally generated knitted patterns to visualize input
images, algorithms and data. Figure 2 shows two examples. The
easiest way to convert an arbitrary image into a knitting pattern is
to lower pixel resolution and color depth, but that does nothing to
control the comfort and durability of the result. Figure 2b shows
the deleterious effect of designing an image at the front face of a
knitted medium without taking into account the effects that occur
the back of the fabric.

The front and back differ because a separate yarn is used for each
color. While knitting with the active yarn, the other yarns, called
floats, are hidden on the reverse. Long floats (Figure 2b) make a
material catch and rip. Reasonable thickness and durability require
that not more than two yarns are used in the same row and that
same-color sequences are limited in length, usually between three
and five stitches long [Radcliffe 2008]. Visually such patterns look
dense. To achieve this easily most knitted designs limit themselves
to geometric patterns with predictable spacing.

In this paper we describe and compare algorithmic solutions to con-
verting a line drawing or a photograph into a durable knitting pat-
tern. We discuss dithering, texturing and local search (Random
Walk, Min-Conflict and GSAT), and describe two hybrid meth-
ods that achieve best results in terms of perceptual similarity be-
tween the original drawing and the actual knitted images. We used
scanned drawings and photographs rather than vector graphics as
sources because such images contain randomness, allowing us to
generate knitted images that are more lively and dynamic [Arnheim
1974, p. 23-29] than conventional printed textiles.

delivered by
|

www.eg.org

EUROGRAPHICS

DIGITAL LIBRARY
diglib.eg.org

http://www.eg.org
http://diglib.eg.org

(¢) A knitted image made using our

software.

(d) The yarn on the back of (c).

Figure 2: Front and back faces of a Fair-Isle knitted image. Images
(a) and (b) are front and back of a ski mask designed by Andrew
Salomone [Appendix A] using dithering. Images (c) and (d) are
front and back of a pattern designed using our software.

2 Related Work

While there are publications [Griswold 2007] and software, such
as Core]DRAW, that address the problems of optimizing designs
created by weaving, no similar attempts have been made for knit-
ted patterns, which were traditionally made at home rather than in-
dustrially. Woven fabrics also adhere to constraints on float length
and yarn color, but publications on weaving address generating and
optimizing geometric patterns rather than arbitrary images and do
not overlap with our subject. Some commercial knitting machine
manufacturers, such as SilverReed, sell proprietary pattern editing
software that can convert a user-specified clip-art into a format that
can be read by the knitting machine. They do not offer pattern op-
timization.

An identical constraint on colors is used in grayscale half-tone
printing. Half-tone printing is a way of rendering gradients of var-
ied brightness by placing dots of dark ink close together on a light
background, and is usually done by dithering. Dithering is a pro-
cess of applying a brightness threshold matrix map that converts
each pixel in an image to black or white depending on its position
in the map and the brightness of its neighbours. Dithering places
no constraints on the distance between pixels of the same color, but
most dithering algorithms are designed to create either uniformly
homogeneous [Bayer 1973] or uniformly unstructured [Floyd and
Steinberg 1976] pixel patterns, in which the pixel structure is in-
conspicuous. In this paper we will take advantage of this prop-
erty of dithering and dither gradient-containing images as a way
of generating a starting assignment that partially satisfies knitting
constraints.

A similar reduction of the color space is typical for pen-and-
ink drawing[Salisbury et al. 1997], artistic hatching [Singh and
Schaefer 2010], and images rendered with non-photorealistic line-
drawing elements [Grabli et al. 2004]. When an image is converted
to a black-and-white line drawing, some color information is re-
moved and some semantic information is added because directional
line shading and hatching traditionally represents movement [Cut-

54

ting 2002]. Khnitted images share the same effect: reducing the
number of colors under the knitting constraints leads to semantic
changes in the image. Moreover, as the space of structural ele-
ments constituting an image shrinks, the potential weight of sym-
bolic meaning conveyed by the remaining elements increases [Arn-
heim 1974, p.47-95]. A common way to handle semantic artifacts
is to choose different hatching algorithms for geometrically struc-
tured and unstructured sources [Ostromoukhov 2013]. Prominent
edge structure in images benefits from using hatching algorithms
that build on it, while stochastic algorithms are preferred in blurry
images [Jodoin et al. 2002]. We take the same approach to knit-
ting and differentiate between line-drawn and gradient-containing
sources.

A problem of intelligent automation of an artist’s work by inferring
and solving a constraint satisfaction problem from an incomplete
user-supplied scene has been addressed [Colton 2008; Colton and
Ferrer 2012] for generating scenes with arrangements of multiple
similar objects: wreaths, fields of flowers, woodlands. The distribu-
tion of good solutions in such scenes is dense and only a small num-
ber of initial conditions are provided. Additionally, it is assumed
that there exist simple patterns of relationships between the color,
hue, and size of the constituent objects in the partial user-supplied
scene. Such patterns are extracted, formulated as constraints and
iteratively reproduced with some randomization to generate an im-
age.

On the other hand problems of 3D or 2D geometry modeling de-
scribed using constraints with an empty initial assignment are usu-
ally not represented as a CSP. They are described using structures
similar to L-Systems [Prusinkiewicz and Lindenmayer 1990] and
graphic diagrams [Ijiri et al. 2005]. A knitted image is different
because its final structure already exists in the initial assignment.
Rather than generating an image from a recipe, we need only to im-
prove its technical details to make it comply with the requirements
of the physical medium.

Modeling of volumetric knitted garments has been done [Yuksel
et al. 2012] for monochrome knitting. The authors describe a
system for generating knitting instructions based on a 3D CAD
user design. They then simulate the physical properties and ap-
pearance of the knitted garment. As a form of 3D printing knit-
ting can be used to render surfaces with limited curvature as was
demonstrated [Igarashi et al. 2008] in a system for generating
hand-knitting instructions for rendering 3D models as knitted toys.
Similar systems exist for generating instructions that model user-
specified deigns with beads [Igarashi et al. 2012] and textiles [Mori
and Igarashi 2007].

3 Generating A Starting Assignment

Formally a knitted image is a pixel grid of variables:

v;,j, where ¢ € [1,n] and j € [1,m)].

Fair-Isle knitting imposes two constraints on the pattern.

1. Only two colors can be used in one row, without loss of gen-
erality we will say that the two colors are black and white:
v;,; € {black, white}

2. A floatis less than f pixels long. Let:

lel,n],ke[l,n—1]
gla)) =true < a1 =a2=...=an
g(ar) = false <= Tk,ar <> ap+1

(a) The source image

(b) Starting assignment using a brightness threshold.
Variables: conflicts 4532, consistent 62%.

(¢) Starting assignment using ordered dithering.
Variables: conflicts 4210, consistent 64%.

Figure 3: Starting assignments from a line-drawing. The size of the source image is 120 x 100.

(a) The source image

(b) Starting assignment using ordered dithering.
Variables: conflicts 5664, consistent 76%.

(¢) Starting assignment using Floyd-Steinberg dithering.
Variables: conflicting 1417, consistent 40%.

Figure 4: Starting assignments from a gradient image. The size of the source image is 151 X 155

then the constraint on float length is:

9(Vi s Vit1,5,7+ ,vVitr,;) = false
Vie[l,n— f+1],j € [1,m],

which, provided v;,; are boolean, can be implemented as:

Vij @ Vig1,; D Dvipy; = false,
Vie[l,n—f+1],j €[1l,m],

where the operator, @, is an exclusive or.

The value of f depends on the thickness of the yarn and the desired
strength of the material, in practice f = 4 is most common. Before
we can proceed with solving the Constraint Satisfaction Problem
(CSP) we need to generate So, a starting assignment to pixels v; ;.
We assume that the initial sketch is a monochrome image of the
desired size, where each pixel in the resulting pattern corresponds
to a knitted stitch.

If the input image is a line-drawing, as in Figure 3a, a starting as-
signment is best obtained using a pixel brightness threshold, Fig-
ure 3b is the result. If the input image is a continuous tone image,
as in Figure 4a, it can be converted to a pixel image by dithering,
using Floyd-Steinberg, Atkinson or ordered dithering (Figures 4b
and 4c). The choice of dithering method affects the resulting tex-
ture. In most cases Floyd-Steinberg dithering is a reasonable neu-
tral choice because it minimizes visual artifacts. Ordered dithering
may be preferred for source images that contain a large empty space
which the user prefers to fill in a structured way.

4 Solving the CSP

So usually has floats longer than f and is thus inconsistent. To find
a consistent assignment we search within the space of all complete
assignments by flipping the value of one variable at a time starting
at Sp . Although the solutions are densely distributed, not all of
them are equally good. A satisfactory solution should be as percep-
tually similar to the original image, thus an ideal algorithm would
satisfy two objectives:

1. make changes that do not introduce spurious content;

2. minimize the amount of alteration.
Next, we consider search algorithms that satisfy either (1) or (2),
assuming that the constraints are hard and can not be partially sat-

isfied. All local search implementation follow Algorithm 4.1, dif-
fering in the way conflicting variables are picked at each step.

Algorithm 4.1: LOCALSEARCHFORCSP(Assignment, numSteps)

procedure LOCALSEARCHFORCSP(Assignment, numSteps)
if Assignmentconsistent
then return (Assignment)
else if numSteps > maxSteps
then return (notFound)
x = pickCon flictingV ariable(Assignment)
z. flipValue
numSteps + +
LocalSearchForCSP(Assignment, numSteps)

else

(b) ¢ = 5 Variables: conflicts 1221, consistent 90%.

Figure 5: Image 3b optimized with Random Walk. n = 100, m =
4, f = 4. Picking a smaller q results in an image that is noisier.

Next, we describe and compare four ways of picking a conflicting
variable.

4.1 A Variant of Random Walk

A Random Walk selects a variable at random at each step and flips
its value if the variable is conflicting. This is repeated until a com-
plete solution is found or a maximal number of iterations is reached.
The implementation has two extra steps.

1. A variable is flipped only if, as a result, the number of violated
constraints in decreased by a threshold m.

2. The algorithm terminates when fewer than g of the n ran-
domly checked variables are found conflicting.

Step (2) implies that the algorithm stops at threshold level of
constraint consistency, not attempting to generate a complete
constraint-compliant assignment. However, the number of consis-
tently assigned variables q is not a direct measure of the strength of
the resulting material, because there is no guarantee that the longest
floats were removed.

Comparing Figure 5a and Figure 5b shows that increasing ¢ in-
creases the amount of noise in the resulting image. The optimal
amount of noise that a designer may want to introduce is image-
dependent. It is possible to continue Random Walk iterations until
all conflicts have been resolved and a complete solution has been
found. Because variables are chosen randomly, successive runs pro-
duce different images and make different numbers of flips, which is
also the case for Min-Conflict, discussed next.

4.2 Min-Conflict

Min-Conflict randomly chooses a conflicting variable, then selects a
value for it that minimizes the number of violated constraints [Rus-

56

sell and Norvig 2009]. In the classic implementation, if no such
value exists, Min-Conflict randomly picks any value that does not
increase the number of violated constraints. Similarly, when choos-
ing between several values that have the same impact it selects at
random.

Figure 6: Image 3b optimized with Min-Conflict, f = 4. Variables
Sfipped: 1119.

Our implementation is flip-aversive: it flips a variable only if the
total number of violated constraints is reduced. Thus in our CSP
Min-Conflict is analogous to a complete Random Walk, and its ef-
fect is identical to a Random Walk that runs until it solves the CSP.
It is quite invasive, as shown in Figure 6. But, because Min-Conflict
and Random Walk pick variables in a straightforward way, they
have linear complexity.

4.3 GSAT

GSAT ranks variables by the number of constraints that are satisfied
when a variable is flipped. Then it flips a top-ranked variable, which
repairs the largest number of violated constraints [Hoos and Stiitzle
2000]. If several variables have equal rank, one is selected ran-
domly. In our knitting CSP the order in which the top ranked vari-
ables are selected is unimportant.If a flip satisfying 2 f + 1 broken
constraints is found, (Figure 8), it is selected immediately. Thus,
the longest unsatisfied sequences that can be resolved with one flip
are broken up first, then the second longest, and so on. Sequences
that are too long to be satisfied with a flip are broken up f + 1 pix-
els at a time, near the end. As a result, GSAT flips the minimum
number of variables.

A classic implementation of GSAT reranks all variables at each
step and in the worst case has O(n?) complexity in the number
of variables. In our CSP all variables involved in the same con-
straint clause also share the same row, therefore only the variables
in the same row as the one just flipped are reranked. Thus, our
implementation performs as O(nw), where w is a length of a row.

Because most human-designed images contain prominent vertical
and diagonal elements, it is common for pixels in a starting im-
age to be vertically and diagonally aligned. Running GSAT in the
presence of such features results in pixel flips that line up beside
the pre-existing line structure which generate artifacts in uniformly
colored areas (Figures 7a and 9a). GSAT artifacts are undesirable
because people perceive visual images as collections of structural
elements, the ease of understanding an image relies on a skeletal
structure composed of (1) horizontal and vertical lines, (2) faces,
(3) circles, (4) oblique lines, (5) simple curves, (6) simple geomet-
ric figures and (7) monochromatic shapes [Arnheim 1974, p.163—
217]. A knitting pattern should avoid introducing these elements as
artifacts and aim to preserve them in the original design. The dif-
ference between Figure 7a and Figure 7b shows that when GSAT is
run starting from a structure of sufficient density the artifacts made

(a) f = 4. Variables flipped: 790.
WL - < ik

B e N RS

(b) f = 4. Variables flipped: 1031.

Figure 7: Images 3b and 4c optimized with GSAT.

(I TTTTTTT T] — (I T T T T T T]

(a) The longest sequence that can be broken with one flip.

(O [T T T I — ([[
(b) GSAT breaks up long sequences every f pixels.

Figure 8: GSAT minimizations of variable flips, f = 4.

by GSAT blend in. In the next algorithm we exploit this property.

4.4 A Hybrid of Random Walk and GSAT

To address both objective (1) and objective (2) (Section 4), a
method with much randomness and that does a minimal number
of flips can be combined: first Random Walk for a number of steps,
and then GSAT. By adjusting n, g, and m in Random Walk we con-
trol the amount of randomization. Note that setting m = 2f + 1
reduces the hybrid method to GSAT. Compared to Figure 10a opti-
mized with GSAT, the hybrid method (Figure 9b) improves GSAT’s
handling of uniform areas and produces few line artifacts. The
worst case performance of the hybrid method is equal to that of
GSAT.

4.5 Pseudo-Random Texturing

Avoiding artifacts is hard(Figures 7a, 9, 10a). When long unsatis-
fied sequences are broken up at regular intervals, an uncontrolled
regular pattern is added to the design. Instead of avoiding such ar-
tifacts we can sometimes control them and make them part of the
resulting image. Algorithm 4.2 iterates through the unsatisfied se-
quences in order and breaks each of them starting at a random shift
1 to f pixels long to prevent aligning. It performs in linear time and
makes less artifacts compared to GSAT as shown on Figure 10.

57

(a) Image 3b, ¢ = 5. Random Walk flips: 204, GSAT flips:

572.
s

(b) Image 4c, ¢ = 5. Random Walk flips: 4365, GSAT flips: 2262.

Figure 9: Knitting patterns optimized with Random Walk+GSAT,
n=100,m =4, f = 4.

Algorithm 4.2: BREAKUPSEQUENCE(clause)

procedure BREAKUPSEQUENCE(clause)
if clauseconsistent
then return (clause)
else x = random(1, mazFloat — 1)
do x. flipValue
x = variableatx.position + maxFloat
while not endO f Sequence

5 Implementation

All algorithms described in this paper were implemented as open-
source software for designing knitting patterns. It is available to
download (Appendix A). The software has a fully automated mode
suitable for new users, in which the user selects an image and ac-
cepts defaults that perform reasonably well on average. More expe-
rienced users can configure algorithm parameters manually. Pixel
and dithering thresholds, dithering type, image orientation (hori-
zontal or vertical), random walk duration, float length, and whether
both yarns are anchored at the edges can be selected interactively.
The image may be reoriented horizontally or vertically to pick a dif-
ferent knitting direction or to start with a more constraints satisfied.
Yarn anchoring produces a fabric of a uniform thickness, and is re-
quired by some knitting machines. However, the user may want to
turn off yarn anchoring for manual knitting, substantially reducing
the number of flips.

After an initial assignment is generated, the user can interactively

(a) Source image (b) Starting assignment:

thresholding.

(¢) Min-Contflict on (b).

(d) GSAT on (b). (e) Hybrid on (b).

Figure 11: Comparing the generated knitting patterns to the original drawing using Gaussian blur.

(a) Source image (b) Starting assignment (?):

Floyd-Steinberg dithering.

(f) Pseudo-random on (b)

(g) Hybrid on (b)

(h) GSAT on (e). @

(d) Hybrid, no anchoring, on (b). (e) Ordered dithering.

il
|

A
A
a
i
| 2
A
- ,

.j “Il;i.‘\‘."‘ (TITESTEeeeees

() GSAT on (b).

Atkinson dithering — with

pseudo-random texturing.

Figure 12: Comparing the generated knitting patterns to the original drawing using Gaussian blur.

edit it and flip individual pixels to add details, correct pixelation
artifacts, or remove clutter. The user can dynamically zoom in for
ease of editing and zoom out to see how the image from a distance.
The image statistics—number of remaining conflicts and percent-
age of satisfied assignments—is displayed for guidance. The user
then selects an optimization algorithm. It is useful to try several
configurations because aesthetic qualities depend on the density,
gradients and content of the starting image.

After the constraint solver has run, the user can again interactively
edit the image. The user may choose to relax constraints in visually
important areas, such as faces. An example of a knitting pattern
with several constraints deliberately relaxed is shown in Figure 13.
A knitted image made using this pattern is shown in Figure 1. After
knitting this image, the floats that have emerged in the area where
constraints were relaxed, were fixed manually. A sequence of im-
ages a user might generate while designing a knitted image based
on a movie still is shown at Figure 15.

6 Evaluation

When seen at a sufficient distance the knitted pixel falls below the
threshold of visual acuity, like a monitor pixel. We compare the
similarity of the knitted patterns to the original drawings by sim-
ulating distance with a Gaussian blur. For a dense line-drawing
(Figure 11) the best result was generated by the hybrid method, im-
age (e). If the starting assignment had been more consistent, GSAT

58

alone may have been sufficient. Based on empirical observation a
starting assignment should have at least 70% of its variables consis-
tently assigned for GSAT alone be considered. An image with large
uniform areas and gradients (Figure 12) processed with an invasive
ordered dithering (e) and then GSAT (f) creates an evenly shaded,
grayed-out image, while using GSAT with a less invasive dithering
(j,c) results in prominent alterations. A good reason to use ordered
dithering is that a well-chosen dithering matrix produces lattice ar-
tifacts (Figure 4b) that partially satisfy the constraints. Because
the artifacts consist of disconnected dots rather than lines they are
are not visually jarring and the information they add to the result-
ing design is small [Arnheim 1974, p. 29]. An image processed
with Atkinson dithering, which emphasizes the white or black ar-
eas, and pseudo-random texturing (i) is also uniformly shaded but
lighter. Image (i) resembles the original the best, while image (h)
best illustrates the qualities of a knitted image emerging from a dis-
tance. Turning off yarn anchoring increases image resemblance to
the original and contrast (d). The desirability of such effects de-
pends on the colors of the yarn and the content of the starting im-
age.Although Min-Conflict and Random Walk produce unsatisfac-
tory results when used alone, images (b,d,g), optimized with a hy-
brid method, exhibit fewer artifacts. Comparing figures 11,12,14,
15 we can see that the similarity between an initial pixel assign-
ment and a knitted pattern grows with size of image. For large
enough patterns starting assignments and knitted images differ only
in brightness.

e

(b) Pseudo-random texturing, flips: 3566.

Figure 10: Comparing GSAT and pseudo-random texturing on im-
age 4c, f = 4.

7 Discussion and Future Work

In a typical use-case, after an automatic optimization is run, a user
may want to make some structure-restoring adjustments manually
(Figure 13). While knitting the example image (Figure 1), despite
having a knitting pattern of a satisfying visual similarity, we de-
cided to intentionally relax constraints on the girl’s face. Making
such exceptions means that floats have to be fixed manually, which
may be hard for a novice user. Sometimes artists modify a pat-
tern to make reattaching yarn easier, and use a process called back-
laddering [Salomone 2013]. Back-laddered knitted fabric is still
fragile, and therefore such exceptions should be used judiciously.
Currently we assume that the impact of every variable flip that does
not otherwise create a visible artifact is the same, but such a weight-
ing is perceptually correct only for abstract images. In the future
we intend to detect and handle different areas of the image dif-
ferently. Certain areas of an image, for example anthropomorphic
elements, receive more visual attention than others and it makes
sense to weaken constraints where it contributes to the visual ap-
peal and meaning of the design. In future we will detect important
areas automatically using shape extraction, face detection and allow
user intervention. This information can make constraints context-
dependent.

In a different approach constraints may be treated as costs. The
critical value of f in (2) may be interpreted as an interval cost con-
straint penalizing long floats. Adding a modification cost constraint
would ensure that as few modifications are made as possible, and
the CSP could be solved as a cost minimization problem.

59

Figure 13: A finished optimized and user-adjusted pattern. Af-
ter the image in Figure 3a was optimized by GSAT, constraints in
meaningful areas were deliberately relaxed by the user.

The initial pixel assignment in our implementation does not take
the artifacts of pixelation and scaling [Gerstner et al. 2013] into
account. We could take additional steps to minimize artifacts and
thus start with a better initial assignment. For example dithering
might be improved using edge enhancement [Eschbach and Knox
1991]. Some yarns when knitted create non-square stitch pixels
and in those cases a knitting pattern must be adjusted using yarn
gauge information. We also plan to allow arbitrary image rotation
when selecting the starting assignment. In images with many di-
rectional elements, such as twigs(Figure 3a), water ripples, or cross
hatching, a designer might reinforce them by aligning them with
the direction of knitting stitches. Knitting is not rotation-invariant,
which provides an opportunity for interplay between knitted tex-
ture and image texture. As long as the starting image is large, we
could sort structural areas of the image by brightness and tile them
with a constraint-consistent texture patch of varied grayness. Such
textures could be selected from a library [Salisbury et al. 1994],
procedurally generated from patterns such as hair, swamp, grass,
etc. [Lefebvre and Neyret 2003], or randomly [Lagae et al. 2010].
Building on the method described by Colton [Colton 2008], the
user could mark areas of the source image as texture, from which a
patch of constraint-consistent textured could be extracted and used
to infer image-dependent constraints. The inferred rules are then
reproduced to generate a consistent pattern for the whole area. In a
qualitatively different approach, a pattern can be interpreted as im-
age filtering, where an image filter over the source simultaneously
scales down and discretized an image into a knitting pattern. Pairs
of initial sketches and the corresponding manually-designed knit-
ting patterns can create a filter that processes the image. Such an
approach was applied [Colton and Torres 2009] to a colored image
using evolutionary algorithms.

8 Conclusions

This paper has described and evaluated local search, texturing, and
dithering for converting drawings or photographs to knitting in-
structions, capable of driving either a knitting machine or man-
ual knitting. As a part of the evaluation we have implemented an
open-source software prototype for automatically generating knit-
ting patterns using a user-configurable combination of these algo-
rithms, different for line-drawings and photographic source images,
and manual pixel editing. Knitting patterns produced by the soft-
ware were compared to the original images by viewing them at a
distance. They exhibit a satisfying level of visual similarity. Use-
case scenarios illustrating the use of the described approach have
been discussed. One pattern produced by the software was knitted
(Figure 1) and the results are satisfactory. Other patterns produced
by the same technique result in images that are sufficiently similar

to the originals and are neat at the back.

Appendix A

Online Resources:

e Brother Knitting machine data format
http://wiki.forskningsavd.se/ElectroknitKH940

e Tutorial: Programming a Brother knitting machine
http://sternlab.org/2010/11/
hacking-the-brother-kh-930e-knitting-machine/

e Software used in this paper
http://www.cgl.uwaterloo.ca/~mkryven/knit.html

e Andrew Salomone demonstrates using a knitting machine to
print digital images at World Maker Faire, New York, 2011
http://youtu.be/iiTTrT29HIO

References

ARNHEIM, R. 1974. Art and Visual Perception: A Psychology of
the Creative Eye, 2nd ed. University of California Press.

BAYER, B. 1973. An optimal method for two-level rendition of
continuous-tone pictures. In Proceedings of the IEEE Interna-
tional Conference on Communications, vol. 1, 11-15.

COLTON, S., AND FERRER, B. P. 2012. No photos
harmed/growing paths from seed: an exhibition. In Proceedings
of the symposium on Non-Photorealistic Animation and Render-
ing, 1-10.

COLTON, S., AND TORRES, P. 2009. Evolving approximate image
filters. In Proceedings of the EvoWorkshops 2009 on Applica-
tions of Evolutionary Computing, 467-477.

CoOLTON, S. 2008. Experiments in constraint-based automated
scene generation. In Proceedings of the 5th international work-
shop on Computational Creativity.

CUTTING, J. E. 2002. Representing motion in a static image: con-
straints and parallels in art, science, and popular culture. Percep-
tion 31, 10, 1165-1193.

ESCHBACH, R., AND KNOX, K. T. 1991. Error-diffusion algo-
rithm with edge enhancement. J. Opt. Soc. Am. A 8, 12, 1844~
1850.

FLOoYD, R. W., AND STEINBERG, L. 1976. An Adaptive Al-
gorithm for Spatial Greyscale. Proceedings of the Society for
Information Display 17,2, 75-71.

GERSTNER, T., DECARLO, D., ALEXA, M., FINKELSTEIN, A.,
GINGOLD, Y., AND NEALEN, A. 2013. Pixelated image ab-
straction with integrated user constraints. Computers & Graph-
ics 37,5 (8), 333-347.

GRABLI, S., TURQUIN, E., DURAND, F., AND SILLION, F. X.
2004. Programmable style for NPR line drawing. In Proceedings
of the 15th Eurographics conference on Rendering Techniques,
33-44.

GRISWOLD, R. E. 2007. Mathematical and Computational Topics
in Weaving. http://www.cs.arizona.edu/patterns/weaving/
webdocs/mo.pdf (accessed May 2013).

Hoos, H. H., AND STUTZLE, T. 2000. Local Search Algorithms
for SAT: An Empirical Evaluation. J. Autom. Reason., 24, 4,
421-481.

60

IGARASHI, Y., IGARASHI, T., AND SUZUKI, H. 2008. Knitting a
3D model. Computer Graphics Forum, 27,7, 1737-1743.

IGARASHI, Y., IGARASHI, T., AND MITANI, J. 2012. Beady: in-
teractive beadwork design and construction. ACM Trans. Graph.,
31, 4,49:1-49:9.

IJIRI, T., OWADA, S., OKABE, M., AND IGARASHI, T. 2005.
Floral diagrams and inflorescences: interactive flower modeling
using botanical structural constraints. ACM Trans. Graph., 24,
3, 720-726.

JODOIN, P.-M., EPSTEIN, E., GRANGER-PICHE, M., AND Os-
TROMOUKHOV, V. 2002. Hatching by example: a statistical ap-
proach. In Proceedings of the symposium on Non-Photorealistic
Animation and Rendering, 29-36.

LAGAE, A., LEFEBVRE, S., CoOK, R., DEROSE, T., DRET-
TAKIS, G., EBERT, D., LEWwIS, J., PERLIN, K., AND
ZWICKER, M. 2010. A Survey of Procedural Noise Functions.
Computer Graphics Forum, 29, 8, 2579-2600.

LEFEBVRE, S., AND NEYRET, F. 2003. Pattern based procedural
textures. In Proceedings of the 2003 symposium on Interactive
3D graphics, 203-212.

MORI, Y., AND IGARASHI, T. 2007. Plushie: an interactive design
system for plush toys. ACM Trans. Graph. 26, 3.

OSTROMOUKHOV, V. 2013. Non-photorealistic Shading and
Hatching. In Image and Video-Based Artistic Stylisation, vol. 42
of Computational Imaging and Vision. Springer London.

PRUSINKIEWICZ, P., AND LINDENMAYER, A. 1990. The algo-
rithmic beauty of plants. Springer-Verlag New York, Inc.

RADCLIFFE, M. 2008. The Essential Guide to Color Knitting
Techniques. Storey Publishing, LLC.

RUSSELL, S. J., AND NORVIG, P. 2009. Artificial Intelligence: A
Modern Approach, 3 ed. Pearson Education.

SALISBURY, M. P., ANDERSON, S. E., BARZEL, R., AND
SALESIN, D. H. 1994. Interactive pen-and-ink illustration. In
Proceedings of the 21st annual conference on Computer graph-
ics and interactive techniques, 101-108.

SALISBURY, M. P., WoONG, M. T., HUGHES, J. F., AND
SALESIN, D. H. 1997. Orientable textures for image-based
pen-and-ink illustration. In Proceedings of the 24th annual con-
ference on Computer graphics and interactive techniques, 401—
406.

SALOMONE, A., 2013. Personal communication, May 18, 2013.

SINGH, M., AND SCHAEFER, S. 2010. Suggestive hatching. In
Proceedings of the Sixth international conference on Computa-
tional Aesthetics in Graphics, Visualization and Imaging, 25-32.

YUKSEL, C., KALDOR, J. M., JAMES, D. L., AND MARSCHNER,
S. 2012. Stitch meshes for modeling knitted clothing with yarn-
level detail. ACM Trans. Graph. 31, 4, 37:1-37:12.

http://wiki.forskningsavd.se/ElectroknitKH940
http://sternlab.org/2010/11/hacking-the-brother-kh-930e-knitting-machine/
http://sternlab.org/2010/11/hacking-the-brother-kh-930e-knitting-machine/
http://www.cgl.uwaterloo.ca/~mkryven/knit.html
http://youtu.be/iiTTrT29HI0
http://www.cs.arizona.edu/patterns/weaving/webdocs/mo.pdf
http://www.cs.arizona.edu/patterns/weaving/webdocs/mo.pdf

(a) Initial assignment generated using Floyd-Steinberg dithering.
Total conflicts remaining: 16741

(¢) Initial Floyd-Steinberg assignment as seen from a distance. (d) A GSAT knitted pattern as seen from a distance.

Figure 14: Image size: 267x186, a photograph taken with a web-camera.

(b) Original photograph seen from a distance.

(d) Starting assignment from a distance.

() A knitting pattern, knitting in horizontal direction. (h) Horizontal knitted pattern seen from a distance.

Figure 15: Use-case: designing a knitted scarf based on a movie still taken from Wim Wenders, Wings of Desire. Image size: 363 x 255.

61

62

