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Figure 1: Overview of the proposed self-supervised inverse rendering-based framework (SS-SfP) to obtain per-pixel surface normals under
mixed polarization by decomposing the diffuse (Ay) and specular (As) reflection components from the raw polarization images.
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1. Ambiguities in SfP

An unpolarized light striking a surface point exhibits diffuse and/or
specular (mixed) reflection (see Figure 2 (a)). The estimation of ¢
and p depends on the surface reflectance model and directly relates
to the azimuth (@) and the zenith (0) angles, respectively, described
as per the coordinate system shown in Figure 2(b). The polarization
image formation is generally given by Equation 1.

I(¢p01) = A+BCOS(2(])[,0/ 72(1)) (1

Equation 1 is manifested in the form of a Transmitted Radiance
Sinusoid (TRS), as shown in Figure 2 (c).

© 2023 The Authors.

Proceedings published by Eurographics - The European Association for Computer Graphics.

This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

(i) Azimuth Angle Ambiguities. As per Equation 1, two az-
imuth angles separated by & radians cannot be distinguished in po-
larization images, i.e., ¢ and @ + 7 will have the same result. This
is referred to as azimuthal angle ambiguity. Consider T and R as
the transmittance and reflectance coefficients either parallel (||) or
perpendicular (L) to the incidence plane. Under diffuse reflection,
a portion of the light enters the object and gets refracted and thus,
partially polarized [WB93] with a greater magnitude in the direc-
tion parallel to the incidence plane (7} > 7' ). Therefore, maxi-
mum light intensity is observed for ¢ = ¢. Under specular reflec-
tion, the reflected light is predominantly polarized in the direction
perpendicular to the incidence plane (R; > RH). Therefore, the
maximum light intensity will be observed at ¢ = ¢ £ % In short,
for a general surface, when the type of reflectance is not known
apriori, we are unsure if the estimated angle should be shifted /2.
This is called azimuthal model mismatch.

(ii) Zenith Angle Ambiguities. The zenith angle relies on the
degree of polarization (DoP) (p) and refractive index (). More-
over, as in the case of azimuthal angle estimation, the type of re-
flectance model affects the zenith angle estimation as well and pro-
duces zenith model mismatch, as described below. The DoP is de-
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Figure 2: (a) Mixed reflections (and polarization) off the surface. (b) Coordinate system for polarization imaging. (c) Transmitted Radiance
Sinusoid (TRS) showing the observed intensities under varying polarizer angles for two pixels (P; and P;) with different surface normals.

scribed as per Equation 2 for diffuse reflection [Col05].
(m— %)2 sin® @

p:
242m2—(M+ %)zsin20+4cose\/m

Similarly, the DoP is described in Equation 3 for specular reflection

[Col05].
2sin@tan0y/m2 —sin’ O 3

n?— 25sin? 0+ tan2 O

@

p:

However, this relation applies to highly specular objects and has
been used for metallic objects. The very requirement of known re-
fractive index () imposes refractive distortion if an improper re-
fractive index is used. Moreover, for regions having a zenith an-
gle close to zero, DoP is small, and estimated surface normals are
noisy due to low SNR. The readers are requested to kindly refer
to [SYC*20] for more details.

2. Implementation Details

The network weights are randomly initialized just at the beginning,
and the weights are subsequently updated through the loss func-
tions for 2500 iterations. The framework is trained over 256 x 256
sized images and is implemented in PyTorch [PGC*17] over the
NVIDIA RTX 5000 GPU with 16 GB memory. Each object or
scene is optimized using Adam optimizer [KB14] with default pa-
rameters. Note that the initial learning rate for the optimization is
set to 0.001. The network is optimized for 2500 iterations with a
learning rate decay of 0.1 after every 250 iterations.

To train the baselines under a self-supervised setting, we use
their respective networks for normal estimation and recover the
polarization information (p,¢) from the estimated normals. We
replace the normal supervision with the reconstruction error be-
tween estimated and ground truth AoP and DoP. We could not
enforce the geometry and ratio constraints since the two meth-
ods [BGW*20, LQX*22] do not estimate depth. Further, under a

supervised setting, SS-SfP is trained over the respective train sets
under direct normal supervision and tested over the respective test
sets. We stick to the same train-test split as originally given for the
respective datasets for fair comparison so that they do not contain
images from the same scene.

3. Dataset Details

DeepSfP Dataset [BGW *20] contains 33 objects in total out of
which 25 objects are kept for the training while the remaining 8 be-
long to the test set. Each of the objects are imaged under 3 different
lighting conditions (indoor, outdoor-sunny day, and outdoor-cloudy
day) and 4 different orientations (front, back, left, and right) such
that we have a total of 300 images in the train set.

SPW Dataset [LQX*22] contains the scene-level polarization
data for the scenes in the wild. It consists of 522 images from 110
different scenes with diverse object materials and lighting condi-
tions. It contains 403 images in the train set and 119 in the test set.

4. Additional Ablation Experiments

Table 2 reports the variation in the performance of the proposed
framework with the number of layers in the encoder and the de-
coder. The network performance is best for 6 and 5 blocks (each
for encoder and decoder) over the DeepSfP and SPW datasets, re-
spectively. However, we finally resorted to 5 blocks for a lighter
network.

Further, we chose to use instance normalization after observing
a relatively smoother and faster convergence with instance normal-
ization when compared to that with batch normalization, as shown
in Figure 3. The values are averaged over the scenes in the test set
of the SPW dataset [LQX*22]. Table 1 shows how instance normal-
ization achieves better performance. Observing a slight fallback in
performance compared to SPW [LQX*22]), we tried an interesting
variant to use self-attention [CLY*21, YTD*21] (see ID 11, Table
1) in the decoder (inspired by SPW [LQX*22]). However, the per-
formance still suffered when compared to the proposed SS-SfP.
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D Encoder Input Decoder Input Depth and Normal MAE

Raw pol images (A, p,®) Normal Priors (A,0,4,05) VE | Encoder out Normal Priors (A, 0ty,04) VE #Branches DeepStP | SPW
1 v X X X X v X X X 2 30.26 40.75
2 v v X X X v X X X 2 29.14 39.18
3 v X v X X v X X X 2 20.98 3275
4 v X X v X v X X X 2 20.51 30.94
5 v X X v v v X X X 2 20.22 21.63
6 v X X X X v v X v 2 17.91 20.87
7 v X X X X v X v v 2 16.89 19.77
8 v X X X X v X v (w/o SPADE) v (w/o SPADE) 2 20.96 23.71
9 v X X X X v X v v 1 21.29 27.19
10 | SS-SfP: Without instance normalization in the encoder 18.29 21.38
11 | SS-SfP: Decoder with Self-Attention (as proposed in [LQX*22]) 19.69 21.78
12 | SS-SfP: without geometric constraint (Lgeo) 22.13 29.05
13 | SS-SfP: without polarization angle ratio constraint (£,4sio) 19.97 27.16

Table 1: Summary of quantitative ablation study over various design choices (ID 1-9) and architectural variations (ID 10-13) for the

proposed framework (repeated from main paper).

#Encoder and Decoder| MAE (in deg.)
Blocks DeepSfP SPW

2 28.57 33.07

3 19.18 26.35

4 18.02 21.64

5 16.89 19.77

6 16.84 20.14

8 18.23 21.78

10 19.11 22.16

Table 2: Ablation experiments for the number of encoder and de-
coder blocks on the DeepSfP and the SPW datasets. We choose 5
blocks each for the encoder and the decoder in our model accord-
ing to these quantitative results.

Figure 4 shows the quality of surface normals estimates under
different design choices. We find that the high-frequency details are
blurred out if we do not inject the reflectance cues (Figure 4 (a)).
Further, since the scenes are mostly diffuse-dominant, the network
fails to estimate normals in the specular regions precisely. While the
polarization angle ratio constraint does seem to help a bit (without
reflectance cues), it also fails at the highly specular regions (Fig-
ure 4 (b)). Moreover, adding total variation loss smoothens out the
surface normals (Figure 4 (c)). Therefore, we chose to inject the re-
flectance cues and used the geometric and ratio constraint for better
surface normal estimates (Figure 4 (d)).

Why should we reconstruct ¢ and p? The simple reason is to
allow the network to model a perfect relation between surface nor-
mals and the physically measurable quantities: DoP (p) and AoP
(0) under mixed polarization and handle the underlying ambigu-
ities. Furthermore, the derived quantities - ¢y, ¢s, Py, and, ps, can
only be measured if the surface is purely diffuse or specular, which
is seldom the case, and that too with the w-ambiguity. While there
are closed-form expressions to establish such a relation for diffuse
and specular reflections individually (see Section 1), there is no
such model concerning mixed polarization. By reconstructing ¢ and
p from the surface normal estimates, we force the network to learn
their inter-dependencies and further use them to reconstruct the po-

© 2023 The Authors.
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Figure 3: Learning curve of the proposed framework over the SPW
dataset [LOX*22]
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Figure 4: Qualitative effect of specific design choices on the net-
work performance. (a) without injecting the reflectance cues into
the decoder. (b) without reflectance cues, with L,qi0. (¢) with total
variation loss (d) with reflectance cues and L4, (ours). Note that
Lgeo is included in experiments (a), (b), (c), and (d).

larization images as per the standard polarization image formation
model, as described by Equation 1.

Why do we estimate both surface normals and depth? Since
surface normals can be obtained from depth derivatives, we could
have a single decoder in a deep network for surface normal esti-
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mates. However, as discussed in the main paper, we observe poor
performance quantitatively through just depth estimation (see ID
8, Table 1). This is attributed to the discontinuities offered by the
differentiation step in the depth estimates (and thus, surface normal
map) [YZS17]. One way could be to use smoothness constraints
such as minimizing total variation. However, they were found to
flatten out the normals (and smoothen out the high-frequency de-
tails), especially when there is no direct supervision for surface
normals. Moreover, such self-supervised frameworks get unsta-
ble when applied to real data (such as spikes in the depth maps)
[YZS17]. Therefore, we estimate surface normal and depth through
two different branches and enforce geometric constraint (Lge,) and
reflection-dependent ratio constraint (L,4,) for better results (see
IDs 12 and 13, Table 1).

5. Additional Qualitative Results

Figure 5 shows the qualitative results on three additional ob-
jects (BOX, VASE, and CHRISTMAS) of the DeepSfP dataset
[BGW™*20] that were not included in the main paper. Further,
it also shows the results on the other three objects (DRAGON,
FLAMINGO, and HORSE) observed from different views.

Figure 6 shows the results on some additional scenes chosen
from the test set of the SPW dataset [LQX*22]. The proposed
framework performs better than that of Lei ez al. for scenes in rows
1 and 2) and almost equally well for the scenes in rows 4 and 5
of Figure 6. To validate the performance under a self-supervised
setting, we also show the associated phase angle and degree of po-
larization in Figure 6.

6. Polarization Angle Ratio Constraint - Derivation

Let us start with the image formation model described in the main
paper in Section 4.2 (Equation 7).

1(@pot) = Am + Bincos(20p0; —20) “)

We deploy the findings of [LMSC19,MLC17] through a differential
formulation of SfP to model the polarization angle ratio constraint.

6.1. Diffuse Polarization

Let us consider the image formation for diffuse polarisation and
expand the cosine term to get the following.

0pa) = A+ Bl cos(20,) (2c0%00) - 1)

+25in(20,501)sin(94 ) cos (‘Pd)) &)

The first two components of the non-unit normal
vector to the surface N = (nx,ny,n;) are proportional
to Vz up to a factor depending on the focal length

f such that m = % = [g(Nzx 8Nz _I]T =
[sin(B)cos(¢) sin(B)sin(9) cos(e)]T. By substituting for

Ours

FLAMINGO DRAGON CHRISTMAS VASE

HORSE

Figure 5: Additional qualitative results on the test set of the
DeepSfP dataset [BGW*20].

cos(0) and sin() at ¢ = ¢, we obtain the following.

2
x

I(Qpot) = Aq+By (cos(2¢poz) (ZW - 1)

ZxZy ) (6)

+ 2Sin(2¢p0l)m

Here, for ease of understanding, we consider g(f) = 1 (ortho-
graphic case). However, the same set of constraints also applies to
the perspective case since the factor gets canceled out while taking
the ratio. Simplifying the Equation 6, we get,

I(§por) — Ag+Bgcos(20,01) =

2
B, (cos(Zq)pa/)Zx + Sin(Zq)pol)z}') &

aPsin2@)

Now, we consider the ratio of the Equation 7 evaluated at two po-
larizer angles ¢]1)ol and q)fm,.

1(0po)) —Ad +Bacos(20},

1(¢12wl) —Ay+ BdC05(2¢12001

)

)
c08(20po1)2x + 5in(20}01) 2

(

cos(2¢fml)zx + sin Zq)fml)zy

®

Cross multiplying and rearranging the Equation 8 gives us the fol-

© 2023 The Authors.
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Figure 6: Additional qualitative results on the test set of the SPW dataset [LOX*22]. We also demonstrate the recovered phase angle (AoP),

degree of polarization (DoP), and coarse depth maps.

lowing.
1 1 2
( (1(¢p01) —Ag+ Bdcos(2¢pol )) C0S(2¢p01)
1 2 1
- (1(¢p01) —Ag+ BdCOS(Z(I)pOI)) C05(2¢pol)> Zx
+ ((1<¢,£o,> — Ag+ Bacos(20}:) ) sin(20701)
1 2 . 1
- (I(¢pol) —Ayg +Bdcos(2¢pol))Sln(zq)pol))zy =0 ©
Evaluating Equation 9 at q)}m, =0and ¢fml = %, we get the final
form as follows.

Fyzx+Gazy =0 (10)

Here, Fy = (—1(§)+A,) and G, = (I(0) — A4+ By) are the com-
ponents of the bi-dimensional vector field v = (F, G)T characteriz-
ing the level set in the differential formulation VIVz =0, as per
Equation 9.

6.2. Specular Polarization

We need to account for a % phase shift for specular polarisation.
The bi-dimensional vector field v describing the level-set at a spec-

© 2023 The Authors.
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ular pixel has orthogonal direction to those at the diffuse pixel, ac-
counting for the inherent Tt-periodic ambiguity in the azimuth angle
represented by the phase angle ¢ [LMSC19, MLC17] such that the
following holds.

(0 = 41+ Brcos(aphan))sin263)
( ¢pol —As +B?Cos(zq)pol))sm(zq)pal))
( q)pol —As+ BScos(zq)[lJol)) cos(2¢12,01)

(I ¢pal —As +BSCOS(2¢pol)) cos(zq)[lwl)) 7y =0 an

Again, evaluating Equation 11 at ¢;ol =0and ¢§O, = %, we get the
following constraint.

—Gsszx +Eva =0 (12)

Here, Fy = (—1(§) +Ay) and Gs = (1(0) — A5+ Bs). We use Equa-
tion 10 and 12 as the constraints over diffuse and specular regions,
as described in the main paper.
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