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Abstract

In this paper, we propose a novel hybrid level set approach that locally balances the combined use of both Gradient Vector
Flow and region based energy cost function by means of the Bhattacharyya coefficient. The local neighborhood of each contour
point is naturally divided into an area encapsulated and one excluded by the contour. We propose utilizing the Bhattacharyya
coefficient of the intensity distributions of these local areas to determine a point-wise weighting scheme for the curve propa-
gation. The performance of our method regarding segmentation quality is evaluated on the segmentation of the hip joint in 10
MRI data sets. Our proposed method shows a clear improvement compared to conventional 3D level set approaches.

CCS Concepts

eComputing methodologies — Image segmentation; Image processing; eApplied computing — Imaging;

1. Introduction

In modern medicine, patient-specific models of anatomical struc-
tures play an increasingly important role, as they allow simulations
for various areas of tailored patient treatment. Especially the hu-
man hip joint is a structure of interest, as it carries a major por-
tion of the body weight, therefore being naturally prone to physical
deterioration. Regarding diagnosis, Cichon et al. [CRH*16] pro-
pose superimposing a simulation of the joint movement and pain
registration to further investigate femoroacetabular impingement, a
cause for secondary coxarthrosis that is difficult to interpret in static
medical images. Tsumura et al. [TKITO5] on the other hand present
a computational simulation of acetabular osteotomy for preopera-
tive planning purposes. For these kind of patient-specific simula-
tions, first the 3D models need to be generated by segmenting the
anatomical structures of interest. Manual segmentation, however,
is often a tedious and time consuming process, especially if large
3D datasets, such as MRI or CT scans are used. Additionally, expert
knowledge is required to correctly label the medical data sets. Many
medical segmentation approaches utilize statistical shape models
(SSM) to constrain uncontrolled shape deformation in the segmen-
tation process. Therefore, the obvious choices for hip joint segmen-
tation would be Active Shape Models (ASM) [CT92] and Active
Appearance Models (AAM) [CET98]. However, the amount of la-
beled medical training data is often limited, which might result in
an inadequate statistical model. In this case, another likely family
of segmentation methods to choose from are Active Contours, as
they do not require a-priori knowledge. In contrast to Kass et al.’s
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original formulation of active contours as Snakes [KWT88], Level
set methods provide a parameter free representation and were intro-
duced by Osher and Sethian [OS88]. Major advantages of level sets
are their simple and consistent formulation in higher dimensional
images, and their canonical support for topological changes.

Many bone segmentation approaches utilize CT scans, as bones are
more distinguishable from their background in CT scans than in
MR images and therefore easier to segment. However, we choose
to use MRI data sets due to the fact, that CT scans require patients
to be exposed to radiation, which can be harmful, especially for
young patients. This circumstance can be avoided by using MRI
data sets, which are additionally more suitable to capture soft tis-
sue components, such as the labrum acetabulare in case of the hip
joint.

2. Related Work
2.1. Hip Joint Segmentation

Given enough labeled training data, there have already been vari-
ous segmentation methods for the hip joint. Chu et al. [CCLZ15]
present a fully automatic hip joint segmentation approach for CT
scans, that uses random forests for landmark detection, and multi-
atlantes and articulated statistical shape models for segmentation.
Kainmiiller et al. [KLZH09] also present a fully automatic ap-
proach for CT scans, extending the common definition of statis-
tical shape models to Joint Statistical Shape Models by addition-
ally modeling the rotational displacement of femur to pelvis. Xia

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org



http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/vcbm.20171243

114 D.D.Pham et al. / MRI Hip Joint Segmentation: A Locally Bhattacharyya Weighted Hybrid 3D Level Set Approach

et al. [XFC*13] compare multi-atlas-based methods to ASM-based
approaches for hip joint segmentation from MR images. Schmid et
al. [SMTO8] propose a deformable model approach utilizing Prin-
ciple Component Analysis of global shape variations and Markov
Random Field of local deformations to segment bone structures
from low resolution MRI datasets.

2.2. Related Level Set Approaches

Caselles et al. [CKS97] introduce an edge-based level set formu-
lation, in which the contour propagates by means of energy mini-
mization on manifolds. Chan and Vese on the other hand formulate
the concept of active contours without edges as region-based level
sets [CVO1]. Lankton et al. [LTO8] propose a point-wise localiza-
tion scheme for general region-based level sets, and Jung and Jung
[JJO8] suggest a trade-off solution between Lankton’s localization
and Chan and Vese’s global formulation by only considering con-
tour points as well as points that are within an inner and outer band
of the contour. Zhang et al. [ZMSMO08] also propose a hybrid level
set approach, combining Caselles et al.’s edge-based approach with
Chan and Vese’s region-based formulation, using arbitrary weights.
In contrast to Zhan et al.’s work we present a hybrid approach us-
ing Xu and Prince’s Gradient Vector Flow (GVF) Field [XP98] and
a semi-localized formulation of Chan and Vese’s method, based
on Jung and Jung’s work. Additionally, we suggest a point-wise
weighting, utilizing the Bhattacharyya coefficient [Bha43] within a
point-wise local neighborhood, motivated by Lankton et al.’s local-
ization scheme.

3. Method
3.1. Level Set Methods

The general idea behind the level set formulation of active con-
tours is to represent a closed contour I" as the intersection of the
graph of a higher dimensional embedding function and the zero-
level set. Let 7 : Q C R" — R denote an n-dimensional image.
Then the embedding function ® : Q — R is defined, such that
{p|®(p) =0} =T A simple embedding function is the signed dis-
tance function, that returns the shortest distance of a given point
p € Q to the contour I', differentiating between points inside, out-
side, and on the contour. Thus, enclosed points can easily be dif-
ferentiated from excluded points and contour points by means of
®. With this formulation, the contour deformation towards object
boundaries is implicitly achieved by modifying & with the follow-
ing general update equation:
r+1 0%
T =9 + 5 €))
where @' denotes the embedding function at time 7.
Edge based level set methods use prominent edges in the image as
orientation for the contour evolution. In case of geodesic contours
the update term
! !

aai; = | V' |div (%) +Vo' Ve, )
is used according to Caselles et al. [CKS97], where ® is an edge
indicator function. The first term represents the scaled mean curva-
ture motion, and the second term ensures the propagation towards

edges.

However, in region based approaches, the contour propagation is
determined by minimization of an energy function E (@), that de-
pends on image statistics within the regions inside and outside the
contour, which will be referred to as inner and outer region, respec-
tively. In a gradient descent manner, (1) can be modified to

O = — VgE. 3)

A common energy is the Chan-Vese energy presented by Chan and
Vese [CVO1]. It penalizes intensity deviations from their respective
region’s current mean intensity and is formalized as

Eey (@) = /Q H(D (p))1(p) — pin (@)

+H(=2 (P)I(p) —pou (@) dp, (4

where

H(l)::{1 Lif1>0 )

0 ,else

is the Heaviside function for some level / € R and y;, and tour
denote the mean intensities of inner and outer region, respectively,
given current @'

3.2. Incorporation of Gradient Vector Flow Field in Level Sets

Xu and Prince [XP98] present the Gradient Vector Flow (GVF)
Field as a new external energy for Snakes to overcome the short-
comings of the traditional gradient based formulation, such as
noise-sensitivity, limited impact of strong edges on contour prop-
agation, and inability to segment concave objects. The GVF field
is a vector field v*, that determines the evolution of each contour
point. Given v*, the gradient vector field V@ in (2) can be replaced
by v*, resulting in the GVF field based update term
o' @ (p)

3 . \% *T t
7(1’) =(p)|VP (p)|div (W) +v(p)" V& (p).
(6)

3.3. Semi-Localization of Chan Vese Energy

Chan and Vese [CV01] propose a global energy approach, where
the entire inner and outer regions are considered. However, the
outer area can be large and often contains many different struc-
tures, potentially providing misleading information for the contour
deformation. Therefore, we suggest semi-localizing the region of
interest onto a band with radius r around the current contour, which
is loosely based on Jung and Jung’s work [JJO8]. In contrast to
Lankton’s localization approach [LTO8], where the energy is cal-
culated point-wise and therefore decoupled, in our variant a global
energy is nevertheless employed. However, the points contributing
to the energy are restricted to a band inside and outside the current
contour. Because of the need for reinitialization of @' in level set
methods, we get 0 < ®'(p) < r for points in the outer band and
—r < @ (p) < 0 for all points in the inner band. For the formal
description we therefore modify the original Heaviside function to

1 ,if0<i<r

Hor(l) = {

0 ,else
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and H_,(I) accordingly for arbitrary level [ € R, to be able to
access the points within the inner and outer band, respectively.
The mean intensity of the outer band is denoted by u+-(®'), and
u—r(®") represents the mean intensity of the inner band. The global
Chan Vese energy can then be reformulated in a semi-local fashion
to

Ecvy (@)= [ Hor(@ (0)I(1(p) ——r(@)

+ (@ (P)I(p) — (@) P dp.
@)
Using calculus of variations the negative gradient —V g Ecyy, is
derived as
0P’
e (p) i= =5 () 1(p)
+84r(@ (P)1(p) —psr(@), ®)

where &_, and d., represent the derivatives of H_, and H, for
r > 0, respectively.

— (@)

3.4. Hybrid Approach

The hybrid approach aims to combine the GVF-based level set for-
mulation with the semi-localized Chan Vese energy, described in
the previous sections. As the update terms (6) and (8) each pull
the contour towards respective local energy minima, the weighted
linear combination of both terms aai;’ = OFgyF + BFey,, with
o, >0 and o+ = 1, will pull the contour towards local min-
ima of the linear combination of both energy functionals. Fgy f and
Fey,, denote the update terms (6) and (8), respectively. If the cur-
rent contour is located in a rather homogeneous area, in which in-
ner and outer band region do not significantly differ, the GVF term
Fgyr is preferred to the semi-local term Fcyy, , as Fgyr has a wider
impact range. We propose utilizing the Bhattacharyya coefficient
as weighting scheme. The Bhattacharyya coefficient Bh measures
the relative similarity between two probability distributions pr; and

pra as

Bh(pry, pr)

with the property 0 < Bh(pry,pry) < 1.

For the hybrid method, we consider the local neighborhood of each
contour point and compute the Bhattacharyya coefficient of the in-
tensity distributions of the inner and outer regions. We choose the
local neighborhood based on Lankton et al.’s localization approach.
Fig. 1 illustrates the local neighborhood of a contour point from
which the intensity distributions are computed. Given a radius r > 0
the neighboring points of interest can be extracted by the indicator
function

if |[p—qll <r

L,
Br(pg) = {O else

where p € I' is the current contour point and ¢ € Q an arbitrary
point in the domain. With the help of the original Heaviside func-
tion as in Eq. (5) and the indicator function

X(m.n) = {1

0 ,else,

Jifn=m
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Figure 1: Lankton-Localization for Bhattacharyya weighting

where m,n € R denote arbitrary (gray-) values that need to be com-
pared, the intensity distributions of the inner and outer regions of
the contour point p € I, given a radius r > 0, are formalized by

Jyea Br(p: ) H(=®' (q))x(m.1(q))dq
Joca Br(p.a) (=P (q))dg

and prow (r, p,m) accordingly, where m € R denotes an arbitrary
gray value. Thus, if the embedding function @', the radius r > 0,
and the contour point p € I" are given, the intensity distributions
prin(r,p,m) and prow (r, p,m) are canonically implied. Therefore,
we can calculate the Bhattacharyya coefficient for each contour
point p € T, given the same radius r > 0 as the band for semi-
localization by means of

/ \/Prm VP, Prout(" p.m )d

mel(Q)

Prin(r,p,m) ==

Bhr(r,p)

If the intensity distributions of inner and outer region are rather
similar, Bhr(r, p) reaches values close to 1. In this case, we want to
weight Fgyr more heavily than Fey, , as Fgyr has a wider impact
range. Hence, we propose the point-wise weighting scheme with
o(p) := Bhr(r,p) and B(p) := 1 — Bhr(r, p) for the contour point

p €I and r > 0. To ensure the comparability of Fgyr and Fey,,
max |Fgyr|
max|FCVSL|
Fgyr. Altogether the new update term for our hybrid approach is
defined as

a factor { := is introduced to scale Fcy,, with respect to

aai;t(P) :=op)Fovr(p) +B(p)CFevy (p).

4. Experiments

We evaluated our proposed approach on 10 T1-weighted MRI
datasets of 8 different patients, as two patients were examined
both before and after surgical procedures. The MR images were
recorded using a Siemens Magnetom Area 1,5 Tesla MR tomo-
graph. The respective ground truths were validated by physicians.
As the hip joint consists of a joint socket (acetabulum) and a joint
head (femur head), for each data set a 3D shape model of the ac-
etabulum and a model for the femur head is generated from the
ground truths of the remaining patients as the mean of their statis-
tical shape models. We chose this procedure to avoid biased ini-
tial shapes in our evaluation. However, any arbitrary 3D model
of acetabulum and femur head are sufficient for our approach.
This model is then manually positioned, rotated, and scaled within
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(a) Original axial (b) Initial contour
slice

(g) Hybrid

(h) Ground Truth

Figure 2: (a) Whole axial slice of exemplary data set with (b) ini-
tial contour, (c)-(g) segmentation results of each method at iteration
n =200, and (h) ground truth. For better visualization of the con-
tours (b)-(h) are zoomed in. The femur head is depicted in yellow
and acetabulum in white.

the MRI data set, for acetabulum and femur head, respectively,
to serve as initial contours for our level set approach. The Dice
Similarity Coefficient (DSC) was used to measure segmentation
quality every 10 iterations within 500 iterations for each data set.
The results were compared to Lankton’s 3D implementation of the
global Chan Vese approach (CV-G), his localized method with the
Chan Vese energy (CV-L), our proposed semi-local Chan Vese en-
ergy approach based on Jung and Jung (CV-SL), and the GVF-
based method (GVF). For these methods we used grid search to
establish the most promising parameter settings to compare with
our approach. The CV-G and CV-L implementations were pro-
vided by Lankton [Lan07]. We used the same initial contours for
each method to ensure comparability. For the local and hybrid ap-
proaches we used a radius of 9 voxels. Exemplary segmentation
results of the whole hip joint are shown in Fig. 2, in which an axial
slice is pictured with the corresponding 2D contour slices of the 3D
segmentations.

4.1. Femur head

Table 1 shows the initial mean DSC and the mean DSC of the best
segmentation results of the femur head (FH) achieved by the re-
spective methods at iteration n = n* € {0, 10,20,...500} for each
data set. n* denotes the number of iterations for which the best
DSC result was achieved. It is easy to notice that the GVF-based
approach and our proposed method achieve the most promising
improvements regarding mean DSC, while the Chan Vese energy
based methods only show little or no improvement. This observa-
tion is also visible over time, as Fig. 3 shows the averaged DSC

n=0 n=n"
Initial | CV-G | CV-L | CV-SL | GVF | Hybrid

FH
1%} 0.79 0.80 0.80 0.81 0.84 0.84
std 0.03 0.02 0.02 0.02 0.02 0.02
AC
%) 0.82 0.84 0.83 0.83 0.86 0.87
std 0.02 0.02 0.02 0.02 0.01 0.01

Table 1: DSC segmentation results for the femur head (FH) and ac-
etabulum (AC) of each data set at initiation n = 0, and at iteration
n =n", where the the best result was achieved

Convergence of Averaged DSC
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Figure 3: DSC-Convergence of Level Set Methods (Femur head)

over all data sets plotted against the number of iterations. While
the DSC values of the Chan Vese methods decrease after an initial
improvement, the GVF-based approach shows the fastest increase,
followed by our hybrid method. Surprisingly, CV-G and CV-L per-
form poorly on 3D data sets. As for CV-G, given the whole image
for energy generation as in Eq. (4), the mean intensity of the outer
region is heavily influenced by image regions, that are far away
from the object boundary. The poor performance of CV-L is due
to the fixed radius r > O for all contour points. While the radius
for some contour points seem to be chosen sufficient to drive the
contour towards the object boundary, as seen in the lower contour
parts in Fig. 2 (d), the same radius might be too small or too large
for other contour points, especially in a 3D context. Although GVF
shows a faster increase in segmentation quality in time, a slight
continuing decrease is visible from around n ~ 180 on, while our
approach shows convergence (see Fig. 3).

4.2. Acetabulum

In Table 1 the initial mean DSC and the mean DSC of the best
segmentation results of the acetabulum achieved by the respective
methods at iteration n* for each data set are listed. Like for the
segmention of the femur head, the GVF-based approach and our
proposed method show the most promising improvements, while
the Chan Vese energy based methods only achieve little improve-
ment. Taking into consideration Fig. 4, in which the convergence
behavior of the averaged DSCs over all data sets from each level
set method is illustrated, one can observe that initial improvements
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of the Chan Vese based methods, are merely temporary, as their
graphs rapidly decrease in time. Again, GVF shows the earliest im-
provement, however, the graph decreases shortly thereafter, and in-
tersects the rising graph of our proposed approach. Nonetheless,
the graph of our approach also slightly drops at around iteration
n ~ 300. The worsening of GVF’s and Hybrid’s mean DSCs is
due to the fact, that in the acetabulum, there exists a bone region,
that is rather narrow. This part of the bone is difficult to segment
for all approaches, as can be seen in Fig. 2, where all considered
methods except for our hybrid approach fail to capture the narrow
part of the hip joint. However, our hybrid approach also gradually

Convergence of Averaged DSC

0.92
0.9 Global Chan Vese

- - -Localized Chan Vese

0.88 ——Semi-local Chan Vese

0.86

8 0.84
o

0.82

0.8

0.78

0.76

0 100 200 300 400 500
Number of Iterations

Figure 4: DSC-Convergence of Level Set Methods (Acetabulum)

excludes this narrow bone area, such that a slight decrease of its
graph in Fig. 4 becomes noticeable. Our proposed method alto-
gether achieves better results than GVF due to its combination with
CV-SL by means of the proposed local Bhattacharyya weighting
scheme.

5. Conclusion

In this paper, we propose a hybrid 3D level set method, that com-
bines the GVF-based approach with a semi-localized variant of
Chan and Vese’s region-based energy formulation by means of a
Bhattacharyya coefficient-based, Lankton-local weighting scheme.
Our method analyses the local neighborhood of each contour point
to determine if Fgyr or Fey,, is more suitable for this area. Our
contribution is threefold:

e We adapted Jung and Jung’s approach [JJO8] to formulate the
semi-localization of Chan und Vese’s global energy suggestion.

e We formalized our proposed local Bhattacharyya coefficient-
based weighting scheme.

e We evaluated our approach and compared it to conventional 3D
level set approaches on the example of hip joint segmentation.

With our proposed method we were able to improve level set based
hip joint segmentation in 3D MRI data sets compared to conven-
tional methods. We are aiming to extend our method by an adap-
tive window size approach, as suggested by Hoogi et al. [HBC*17],
and adaptive window orientation control. Additionally, we would
like to apply our approach on anatomical structures with a higher
degree of variation, such as the thyroid and other organs with soft
tissue.
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