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Résumé

�e ce soit pour le divertissement ou le design industriel, l’infographie est de plus en
plus présente dans notre vie quotidienne. Cependant, reproduire une scène réelle dans
un environnement virtuel reste une tâche complexe, nécessitant de nombreuses heures
de travail. L’acquisition de géométries et de matériaux à partir d’exemples réels est une
solution, mais c’est souvent au prix de processus d’acquisitions et de calibrations com-
plexes. Dans ce�e thèse, nous nous concentrons sur la capture légère de matériaux a�n
de simpli�er et d’accélérer le processus d’acquisition et de résoudre les dé�s industriels
tels que la calibration des résultats. Les textures et les ombres sont quelques-uns des
nombreux indices visuels qui perme�ent aux humains de comprendre l’apparence d’un
matériau à partir d’une seule image. La conception d’algorithmes capables de tirer parti
de ces indices pour récupérer des fonctions de distribution de ré�ectance bidirection-
nelles (SVBRDF) variant dans l’espace à partir de quelques images pose un dé� aux cher-
cheurs en infographie depuis des décennies. Nous explorons l’utilisation de l’apprentis-
sage profond pour la capture légère de matériaux et analyser ces indices visuels. Une fois
entraı̂nés, nos réseaux sont capables d’évaluer, par pixel, les normales, les albedos dif-
fus et spéculaires et une rugosité à partir d’une seule image d’une surface plane éclairée
par l’environnement ou un �ash tenu à la main. Nous montrons également comment
notre méthode améliore ses prédictions avec le nombre d’images en entrée et permet
des reconstructions de haute qualité en utilisant jusqu’à 10 images d’entrées — un bon
compromis entre les approches existantes.

Mots-clés: Acquisition de matériaux - Apprentissage profond





Abstract

Whether it is used for entertainment or industrial design, computer graphics is ever more
present in our everyday life. Yet, reproducing a real scene appearance in a virtual envi-
ronment remains a challenging task, requiring long hours from trained artists. A good
solution is the acquisition of geometries and materials directly from real world examples,
but this o�en comes at the cost of complex hardware and calibration processes. In this
thesis, we focus on lightweight material appearance capture to simplify and accelerate
the acquisition process and solve industrial challenges such as result image resolution
or calibration. Texture, highlights, and shading are some of many visual cues that al-
low humans to perceive material appearance in pictures. Designing algorithms able to
leverage these cues to recover spatially-varying bi-directional re�ectance distribution
functions (SVBRDFs) from a few images has challenged computer graphics researchers
for decades. We explore the use of deep learning to tackle lightweight appearance cap-
ture and make sense of these visual cues. Once trained, our networks are capable of
recovering per-pixel normals, di�use albedo, specular albedo and specular roughness
from as li�le as one picture of a �at surface lit by the environment or a hand-held �ash.
We show how our method improves its prediction with the number of input pictures to
reach high quality reconstructions with up to 10 images — a sweet spot between existing
single-image and complex multi-image approaches — and allows to capture large scale,
HD materials. We achieve this goal by introducing several innovations on training data
acquisition and network design, bringing clear improvement over the state of the art for
lightweight material capture.

Keywords: Material acquisition - Deep learning
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C h a p t e r 1

Introduction

In this section I provide a brief introduction to the topic of this thesis, I then summarize
the main challenges and our key contributions. I conclude this chapter with the overview
of how the research conducted over my PhD is supplemented with a contribution to
industrial challenges.

1.1 Motivation

Photo-realism has been pursued in Computer Graphics for decades. With be�er algo-
rithms and more computing power, it is now possible to render scenes that are virtually
impossible to distinguish from a photograph (Figure 1.1).

Nevertheless, creating realistic virtual scenes or characters takes hours for trained artists.
We ask the following questions in this thesis, and a�empt to provide �rst answers: can
we facilitate this process? Can we provide the tools which would allow non-expert users
to create their own virtual content?

In this thesis we make an important step towards achieving this goal. We build on the
idea that real scenes are a rich source of information that can be exploited for virtual
scene creation. �is will not only reduce the workload in the movie and games indus-
tries, but also facilitate every-day use of virtual content. For instance, one might be
interested in recreating their living space in order to experiment with lighting, wallpa-
pers, furniture, other design elements, or integrate familiar elements in larger scenes.

Real scene reproduction in a virtual environment is one of the big challenges at the
intersection between computer vision and computer graphics. To ensure an immersive
and convincing experience, the appearance of a scene has to be re-created accurately.
�is is a challenging task, as the appearance of real-world objects results from complex
interactions between light, material re�ectance, and geometry. While scene geometry
can be obtained with techniques such as multiview stereo algorithms or depth scanners,
recovering a numerical representation of materials from photographs or measurements
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Figure 1.1: A photo-realistic rendering which won the 2012 blenderGuru Photorealism
Competition. Author: Major4z

of a surface is at the heart of appearance capture algorithms, that is the focus of this
thesis.

�e visual appearance and an accurate physical representation of materials are impor-
tant in multiple industries. In industrial design, for example, it reduces the need for
physical prototypes by allowing to quickly and e�ciently test di�erent appearances and
to observe materials behavior under di�erent lighting conditions. For instance, accurate
reproduction of materials is crucial for the car industry, where re�ectance properties of
the materials have to be carefully taken into consideration before production (as illus-
trated in Figure 1.2).

Virtual content is also widely used in movie making, since it not only allows to create
entirely virtual environment, but also to reduce the shooting costs in di�cult environ-
ments, or conditions in terms of teams and equipment. Furthermore, it allows to create
multiple versions of the content and facilitates its editing. Figure 1.3 illustrates how such
techniques are used in recent movies. Visually consistent integration of characters, ob-
jects and visual e�ects is key to engaging users and maintaining their a�ention. �is
cannot be achieved without convincing material appearance.
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Figure 1.2: An example of virtual prototyping with Ansys so�ware. Image source:
www.3dprintingmedia.network

Figure 1.3: �e top part shows the scene capture by cameras, in contrast with the bo�om
part, showing the addition of Godzilla and the bridge. Image credit: Godzilla, ©Warner Bros, 2014
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1.2 Challenges and contributions

Traditionally, accurate material appearance capture requires dense sampling of light and
view directions in a controlled acquisition enviroment [SSW+14, XNY+16]. Such an
approach has been used in production for movie making for example. Expensive light
stages based on the design by Debevec et al. [DHT+00] were used for movies like Avatar
(2009) or Superman Returns (2006).

Such advanced capture setups are needed because many di�erent re�ectances, geome-
tries or lighting can yield the same observed image. For example, any single photograph
can be reproduced by a di�use albedo map, where highlights are “painted” over the
surface. Nevertheless, even given a single image, human observers can immediately
understand the material in many cases thanks to our prior knowledge.

Designing a priori assumptions about the space of plausible material solutions to guide
simpler acquisition processes has challenged researchers for decades [GGG+16]. Re-
cently, Deep Learning has emerged as a powerful method to automatically learn e�ective
priors from data.

In this thesis, we focus on the challenges of lightweight material capture and propose
supervised deep learning approaches. We train neural networks to solve the ill-posed
inverse problem of estimating a spatially-varying bi-directional re�ectance distribution
function (SVBRDF) from a limited number of pictures. SVBRDFs represent the behavior
of materials, depending on the incoming light and the view direction. We use the Cook-
Torrance [CT82] analytical material model, allowing to represent each pixel of a SVBRDF
with just a few parameters. We chose this model for its capacity to represent many
classes of materials and its wide use in industry.

To achieve high performance with Deep Learning approaches, one has to build a tailored
network architecture and loss function. Moreover, supervised learning requires a large
amount of representative training data. Acquiring such data is a common challenge of
deep-learning based approaches. I summarize below our solutions to these challenges
and detail them in the following chapters.
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Architecture design

�e task of our deep networks is to predict four maps corresponding to per-pixel Cook-
Torrance [CT82] parameters representing the material appearance. Importantly, this
model distinguishes the Di�use albedo, representing the light that is re�ected in all di-
rections by the material, and the Specular albedo, representing the light re�ected around
the mirror direction.

In this thesis I present a number of novel algorithms allowing the capture of a plausible
material representation using di�erent lightweight acquisition setups. Our algorithms
adapt to the available input, whether it is a single �ash picture, multiple ones, or a large
scale image.

Single-image acquisition. In Chapter 3 we propose an algorithm that requires one
single near-�eld �ash-lit photograph as input. Flash photographs are easy to acquire,
and have been shown to contain a lot of information that can be leveraged in inferring
the material properties from one [AP07, AWL15, AAL16] or multiple images [RPG16,
HSL+17]. In such images, the pixels showing the highlight provide strong cues about
specularity, whereas the outer pixels show di�use and normal variations more promi-
nently. To arrive at a consistent solution across the image, these regions need to share
information about their respective observations.

Our experiments reveal that existing deep learning architectures struggle to aggregate
distant information in an image. To address this limitation, we develop a secondary
network that extracts global features and propagates it through the main network, fa-
cilitating back-and-forth exchange of information across distant image regions.

Multiple-image acquisition. Our methods allow to retrieve a SVBRDF representa-
tion from just a single �ash picture, but in many cases a single photograph simply does
not contain enough information to completely acquire a material. In Chapter 4, we pro-
pose a method that is capable of aggregating the cues provided by additional pictures,
while retaining a lightweight capture procedure. With this method, we are able to im-
prove the results with more pictures until the user is satis�ed with the result. We discuss
both the quantitative and qualitative improvement of the results as they get closer to
ground truth with more inputs photographs.
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Acquisition scale, user control and high resolution. �e solutions proposed in
Chapters 3 and 4 —and concurrent work [LSC18, GLD+19] are nonetheless limited in
terms of resolution, scale of acquisition and user control. Indeed, near-�eld �ash light-
ing greatly restricts the scale at which materials can be captured – typically around
twenty centimeters wide using a cell phone held at a similar distance. Another common
limitation of the above methods is that they rely on black-box optimization or deep learn-
ing to infer SVBRDF parameters from few measurements, o�ering li�le user control on
their output. We address these two challenges in Chapter 5 by proposing a by-example,
multi-scale appearance capture method, which recovers SVBRDF parameter maps over
large-scale environmentally lit surfaces by propagating information from a few small-
scale exemplar SVBRDF patches.

An added bene�t of using environmental lighting is that we can split the large-scale
image into smaller tiles processed independently by our deep network, using the same
exemplars to promote coherence. �is mechanism allows us to treat high-resolution
images as collections of tiles that we stitch seamlessly in a post-process, resulting in
SVBRDF maps of up to 4K pixels wide. In contrast, existing deep learning methods
need to process the input images in their entirety to exploit the complementary visual
cues given by the spatially-varying �ash lighting, which limits these methods to small
resolutions to �t in GPU memory [DAD+18, LSC18, DAD+19, GLD+19].

�rough our work, we show that our deep learning based SVBRDF acquisition methods
are able to produce convincing results for complex spatially varying materials made from
multiple elements.

Data generation

To predict material models, we use supervised learning, which comes with the challenge
of �nding enough training data. We solve the lack of large real-world material datasets
by leveraging artist-created, procedural SVBRDFs [All19b], which we sample and render
under multiple lighting directions to create training images. We further augment the
data by randomly mixing these SVBRDFs together (Chapter 3) and introducing an in-
line rendering pipeline (Chapter 4), allowing for virtually in�nite material variation.
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Loss design

To train a network a suitable loss function must be de�ned, which evaluates the quality
of the output model parameters against the ground truth. A naive optimization function
(loss) would be to directly minimize the pixel-wise di�erence between predicted and
ground truth material model. But this approach is suboptimal, as it does not consider
the interactions between the di�erent material parameter maps. Intuitively, while a pre-
dicted map may look plausible when observed in isolation, it may yield an image far
from the ground truth when combined with the other parameter maps when evaluating
the BRDF function.

Furthermore, the numerical di�erences in the parameter maps might not consistently
correlate with di�erences in the material’s appearance, causing the naive loss to weight
the importance of di�erent features arbitrarily. We mitigate these shortcomings by for-
mulating a di�erentiable SVBRDF similarity metric that compares the renderings of the
predicted maps against renderings of the ground truth from several lighting and viewing
directions.

1.3 �esis Context

�is thesis was funded by a CIFRE (Academic/Industrial) collaboration between the
French government (ANRT), Inria and Optis, an ANSYS a�liate. We therefore took in-
dustrial challenges into account during the de�nition of our research axes. We describe
the experiments we conducted to address some of these challenges, while respecting the
required industrial con�dentiality.

Optis is a so�ware development company specialized in physics based lighting simula-
tion. More speci�cally, Optis proposes solutions for optical simulation, physics-based
rendering, virtual reality and physics-based sensor simulation for industry. �is allows
engineers and artists to prototype in a virtual environment and quickly iterate to not
only improve visual design, but also the assembly process, potential visual discomfort
or usability. �is process limits the need for costly physical prototypes and reduces de-
velopment time.

To physically simulate light behavior, Optis identi�ed a need in accurately measuring
materials. �e Hardware & Measure team is responsible for the evolution of the two
Goniore�ectometers developed at Optis. �e OMS2 is portable and capable of measuring



8 Chapter 1. Introduction

a BRDF in around a minute, while the OMS4 measure bench focuses on higher precision
and volumetric measurements. Both devices only provide one BRDF per material and do
not measure their spatial variations.

With lightweight acquisition, this thesis complements Optis’ expertise in material acqui-
sition. Our results simplify the process for artists to evaluate multiple materials during
the design phase or to recreate a familiar environment. With this, the heavy and long
measurement with specialized tools can be postponed to a phase where the product is
be�er de�ned.

In addition, my responsibilities during this thesis included knowledge transfer and adap-
tation of the academic research to industrial needs. In Chapter 6, I describe some of the
work done to answer to some of the issues encountered, such as inferring a di�erent
material model or evaluating our method against real measurements.

Finally, in the conclusion of this thesis, I discuss our methods, results and provide inter-
esting directions to explore for future work.
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Related Work

2.1 Materials and rendering

2.1.1 Rendering

�e goal of a rendering pipeline is to simulate the appearance of a 3D scene, given in-
formation about camera positions, scene geometry, surface materials and lighting con-
ditions. For the purpose of this thesis, I focus on realistic rendering systems aiming to
reproduce real world appearance. A rendering is obtained by simulating light interaction
with objects in a 3D environment, as de�ned by the rendering equation [Kaj86]:

Lo(x, ωo, λ, t) = Le(x, ωo, λ, t) +
∫
ω
fr(x, ωi, ωo, λ, t)Li(x, ωi, λ, t)(ωi · n)dωi

Lo represents the radiance depending on the wavelength λ, the location in space x, the
outgoing light direction ωo and time t. Le de�nes the emi�ed radiance, while the integral
over ω represents the interaction between the surface material and the incoming light
contributions over the hemisphere centered around the normal n to the surface. More
speci�cally, fr represents the material re�ective properties, function of the incoming
light direction ωi, ωo, x, t and λ . Li represents the incoming light as a function of
position x, ωi, t and λ. Finally (ωi · n) represents the a�enuation factor of in�uence of a
light source due to incident angle. Intuitively, this equation represents how the occlusion
of light, orientation and distance of di�erent objects drives the shading and how the
di�erent materials in the scene drive light re�ection, refraction or transmission. Multiple
rendering methods simulate the light behavior with various degrees of accuracy and
computational power required to produce a frame. �is thesis focuses on the acquisition
of the material re�ective properties fr from few images.

2.1.2 Materials

During the rendering process, light interacts with di�erent surfaces, each made of dif-
ferent materials. For each interaction, the renderer needs to resolve which part of the
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Figure 2.1: Light e�ects represented by a BRDF and a BTDF. �e BRDF represents the
re�ected part of light, while the BTDF represents the transmi�ed part. Credit: Wikipedia
User:Jurohi

light is absorbed, transmi�ed and re�ected. Bartel et al. [FEW81] de�ne the Bidirectional
sca�ering distribution function (BSDF) to represent both the transmi�ance (BTDF) and
the re�ectance (BRDF) of a material —fr in Kajiya rendering equation— , see Figure 2.1.
2.1.3 Material representation

In this thesis we focus on the re�ection and absorption properties of materials. �e most
common representation is the Bidirectional Re�ectance Distribution Function (BRDF)
which de�nes for each incident lighting angle (θi, φi) and outgoing view angle (θo, φo)
the amount of energy that is absorbed or re�ected for each considered wavelength λ. �e
BRDF is an approximation of the Bidirectional Subsurface Sca�ering Re�ectance Distri-
bution Function (BSSRDF) described by Nicodemus et al. [NRH+77]. With a BRDF, it
is assumed that all light enters and leave from the same point, while BSSRDFs allow
to model light behavior below material surfaces -such as in human skin. �e Spatially
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Figure 2.2: Examples of SVBRDFs rendered using a parametric model and a virtual en-
vironment.

Varying BRDF (SVBRDF) adds two spatial dimensions, allowing to de�ne maps of vary-
ing appearance (e.g. for multi-material objects). Figure 2.2 shows renderings generated
using SVBRDFs and a virtual environment.

A di�erent approach to material appearance representation was introduced by Dana
et al. [DVGNK99] in the form of Bidirectional Texture Function (BTF). �is represen-
tation consists of hundreds to thousands of di�erent pictures of a texture from di�er-
ent light/view angle. �e rendering process samples for each di�erent pixel the closest
view/light con�gurations available in the pictures, matching the rendering condition.
Unlike the BRDF, this representation includes meso-structures —small geometric de-
tails on the surface—, shading, sub-surface sca�ering, cast shadows and other subtle
e�ects visible on the material as they are present in the acquired pictures. �is cap-
ture of a wide variety of e�ects comes with the cost of a complex acquisition setup -see
Figure 2.3), a challenging interpolation between pictures for novel views and a signif-
icant amount of data for each material. �is representation is therefore not suited for
our lightweight acquisition problematic. Nevertheless, these challenges are addressed
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Figure 2.3: �e Dome II, a BTF acquisition device developped by the University of Bonn
[SSW+14].

in work such as Rainer et al. [RJGW19], Wu et al. [WDR11], Havran et al. [HFM10] or
Ruiters et al. [RK09].

While we use BTFs for comparison and evaluation of our work, our main material rep-
resentation in this thesis are SVBRDF.

2.1.4 Material models

Measured BRDFs are usually acquired in a tabulated representation. �e percentage of
re�ected light is stored for each θi, φi, θo, φo and wavelength λ. �is results in pre-
cise depiction of material interaction with light, but leads to large amounts of data and
therefore limits the edition possibilities —as �ve dimensional arrays can prove di�cult
to navigate. For more compact representations, material models approximate real world
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material behavior using mathematical functions. �ese models are separated in two
main categories, empirical -also called phenomenological- and physically-based models.

�e empirical models represent the appearance of a material with arbitrary parameters;
they do not rely on the underlying physics of light behavior. Empirical material models
include Phong [Pho75] or Ward [War92] for example. �e Phong model uses 3 param-
eters: di�use, specular power and specular exponent. It is a simple model allowing to
e�ciently compute the appearance of simple di�use or specular materials. As an empir-
ical model it does not aim at physical realism, for example, it does not respect energy
conservation and reciprocity. In 1992, the Ward [War92] model was proposed to be an
intermediate between theoretical models, too complex to e�ciently render, and fully
empirical model such as Phong [Pho75]. �e proposed model is ”physically plausible”,
satisfying energy conservation at most angles and reciprocity, while still being based on
empirical data.

On the opposite end of the spectrum, physically based models a�empt to derive a mean-
ingful set of parameters from physical theory. Examples of such models are Beckmann
[BS87], Torrance-Sparrow [TS67] or Cook-Torrance [CT82]. �e Beckmann model is
based on electromagnetic laws and rough surface modelling. On the other hand the
Torrance-Sparrow and Cook-Torrance are base on geometric optics and use a micro-
facets surface model. Each surface is composed of microscopic surfaces, oriented with
respect to the general surface normal. �e orientations are de�ned by a probability dis-
tribution function, varying between the di�erent methods. In our work, we use the GGX
distribution[WMLT07] of the Cook-Torrance model.

�e GGX model is driven by three parameters. �e �rst and second are di�use and
specular albedos which control the color and intensity of the light of the di�use and
specular behaviors at the interface with the material. �e third is the roughness, which
de�nes how glossy a material is by acting on the micro-facets orientation distribution.
Examples of materials parametrized with this model and their renderings is available
in Figure 2.4. �e exact equations we use in this thesis are described in the form of
pseudo-code in Appendix A.1. Figure 2.4 shows examples of parameter maps and their
associated renderings.

More details on the many di�erent material representations and models are discussed in
the extensive survey by Guarnera et al. [GGG+16].
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Renderings Normal Di�use Roughness Specular

Figure 2.4: Materials represented by their parametrization in the GGX [WMLT07] model
and the associated renderings. More details on the meaning of parameters are available
in section 2.1.4.

2.1.5 Material synthesis

Given the complex interaction between parameters during rendering, the generation of
a material with the desired appearance is a complex process. One option is to use special-
ized so�ware such as Substance Designer [All19a] or �ixel [�i19] for artistic design
of a material. �is solution allows for �exible creation and edition, but requires hours of
work from a highly trained artist to achieve the desired appearance. Figure 2.5 shows a
typical graph-based nodal representation for the creation of a procedural material.

In this context, the reproduction of a real world material appearance is complex, as it
requires a careful evaluation of its appearance and physical properties.

2.1.6 Material Acquisition

A solution to reproduce a real-world material in a more systematic way is acquisition.
Many di�erent methods have been proposed with various degrees of complexity and
precision.
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Figure 2.5: Screenshot from the nodal interface of Substance Designer [All19a]. Design-
ing a material requires the creation of a complex graph of nodes.

2.1.6.1 Complex material acquisition

Early acquisition systems are aimed at exhaustively measuring a material in all possi-
ble con�gurations of light and view directions. Goniore�ectometer designs were pro-
posed by Nicodemus et al. [NRH+77], Hsia and Richmond [HR76], Murray-Coleman
and Smith [MCS90] or Ward [War92] among others. Further e�orts focused on cap-
turing appearance under controlled view and lighting conditions, �rst using motorized
point lights and cameras [Mca02, DVGNK99] and later using complex light pa�erns such
as linear light sources [GTHD03], spherical gradients [GCP+09], Fourier basis [AWL13],
or deep-learned pa�erns [KCW+18].

Specialized hardware are developed for joint recovery of the SVBRDF and geometry
[HLZ10] and simpler compact BRDF acquisition device combined with higher scale ac-
quisition of di�use appearance [DWT+10].

More conveniently, the work of Riviere et al. [RPG16] uses semi-controlled, hand held
consumer grade hardware. While simplifying the acquisition process, the method still
requires a couple of hundred pictures to achieve good results.
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�ese methods provide high-quality capture of complex material e�ects —including anisotropy—
, but they require tens to hundreds of measurements acquired, o�en using dedicated
hardware.

2.1.6.2 Lightweight material acquisition

While complex acquisition hardware is reserved to a small, professional elite, lightweight
material acquisition aims at providing simpler methods, using consumer level hardware,
o�en at the cost of some precision. A good example is the work by Ren et al [RWS+11],
simplifying the use of a linear light source as proposed by Gardner et al. [GTHD03]. �is
method is based on a simple smartphone and hand held linear light source in combina-
tion with a set of known BRDF arranged in a chart visible in the pictures (Figure 2.6).
�is illustrates the aforementioned trade-o� of convenience against precision, simpli-
fying the acquisition setup and process while making the assumption that the acquired
SVBRDF is a combination of these provided set of references. Indeed, with less input
information the problem becomes ill-posed and requires priors about the acquired ma-
terial, the acquisition setup or environment.

In the case where only a few measurements of the material are available, a number of as-
sumptions have been proposed to reduce ambiguity. Common priors include spatial and
angular homogeneity [ZREB06] to exchange spatial resolution of pictures for higher an-
gular resolution, repetitive or random texture-like behavior [WSM11, AWL15, AAL16]
to leverage the lighting gradient, sparse environment lighting [LN16, DCP+14] allow-
ing for be�er lighting condition reconstruction, polarization of sky lighting [RRFG17] to
separate di�use and specular behaviors, mixture of basis BRDFs [RWS+11, HSL+17] for
material matching, optimal sampling directions [XNY+16] to maximize the information
available in the measurements, and user-provided constraints such as rough global shad-
ing or re�ectance information [DTPG11]. However, many of these assumptions restrict
the family of materials that can be captured. For example, while the method by Ai�ala
et al. [AAL16] takes a single �ash image as input, it cannot deal with non-repetitive
material samples.

A more detailed description of the materials acquisition methods up to 2015 is available
in the Guarnera et al.[GGG+16] survey.

In contrast to these methods, we do not want to manually design priors, potentially
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Figure 2.6: Capture setup of the method presented by Ren et al. [RWS+11] using a linear
source and a set of known BRDF.

limiting the scope and applicability of our method. We use deep learning to train a
network, automatically building priors directly from data.

2.2 Deep learning

Deep learning is a Machine learning technique, based on neural networks, designed
to learn how to solve complex tasks from large amounts of data. Computational Neural
networks were introduced by McCulloch & Pi�s [MP43] proposing a model based on the
idea that neural events can be treated by means of propositional logic. By combining
multiple simple ”logical” units, it is possible to represent complex expressions. Later
on, the perceptron was introduced by Rosenbla� [Ros58] as a binary classi�er neuron.
Given inputs (x1...xn), weights w1...wn and a bias b, the perceptron output is de�ned by
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Figure 2.7: Single layer perceptron network. All inputs are directly connected to the
output.

its activation function and will traditionally return 1 if
n∑

i=1

wixi + b >= 0

, 0 otherwise. Originally organized in a single layer, see Figure 2.7, with inputs directly
connected to the output, a multi-layer version -Figure 2.8, using the chain rule to de�ne
a back propagation protocol was introduced by Rumelhart et al. [RHW86].

�e processing of the input through the network is called a forward pass. �e inverse,
going from the output to the inputs of the network is de�ned as the backward pass.
�e back propagation of error uses the chain rule to de�ne the gradient for each neu-
ron during this backward pass with respect to the previous forward pass output. An
optimization process such as gradient descent then uses these gradients to adjust the
weights and bias associated to each neuron based on a di�erentiable optimization func-
tion —also called ”loss”. �is loss function is central to the success of the optimization
process. In this thesis, I show how problem speci�c knowledge is essential to designing
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Figure 2.8: Multi layer network. Hidden layers are inserted between the inputs and
the outputs, allowing for more complexity in the inference process. With more neu-
rons comes the need to �ne tune each of their weights and bias, this is where the back-
propagation of error is crucial.

a loss capable of guiding the optimization process to the best solution space, leading to
signi�cantly improved results compared to generic L1 function for example.

Based on the multi-layer networks, Lecun et al. [LBD+90] introduced the convolutional
neural network. With this new architecture, the neurons, which were previously all in-
ter connected from a layer to another, are only connected to a sub-part of the previous
layer in a sliding window fashion. With this improvement, it became possible to drasti-
cally reduce the number of parameters and connections between neurons, allowing the
technology to scale be�er to higher resolution input data. �e use of a sliding window
approach also made the features extracted by the deep network spatially invariant as
each “window” of the input to a layer of neurons will be treated similarly.

Recent deep networks are therefore composed of a combination of convolutional and
fully connected layers with millions of interconnected neurons. �e training process is
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based on large datasets providing su�cient information for the optimization process to
tune the weights and bias of the network through many iterations of back propagation.
At inference time, we use the trained weights and architecture to quickly process new
inputs.

2.2.1 Classical architectures

In recent years, deep learning has proven to be an e�cient solution for a variety of prob-
lems such as image processing [KSH12], translation [SVL14], speech recognition [HDY+12]
or geometry processing [QSMG16]. In 2012 Krizhevsky et al [KSH12] published AlexNet
and won the ImageNet [DDS+09] contest by an important margin. Since then, many ar-
chitectures were proposed opening new applications for deep learning, I will now brie�y
describe a few that strongly in�uenced the domain.

AlexNet is a classi�cation network made of an encoder. �e input picture is passed
through multiple layers, gradually reducing the resolution, creating an internal repre-
sentation -also called latent vector. In the case of classi�cation, the last network layers
transforms the internal representation in a probability distribution over all the possible
classi�cations.

He et al. [HZRS16] introduced ResNet to expand the depth of deep networks, tackling the
vanishing/exploding gradient [BSF94, GB10] problem by facilitating information �ow
between co-located features on di�erent layers through ”skip connection”, which makes
the training be�er behaved.

Adding to the encoder used to process and encode multiple scale information, the U-
Net [RPB15] architecture uses a decoder to expand the results back to the original image
resolution, allowing to solve image to image transformation problems such as image
segmentation. Skip connections are used to propagate high frequency details through
the architecture by directly connecting layers with the same resolution in the encoder
and decoder. Figure 2.9 describes the architecture in more details.

Generative Adversarial Nets(GANs) were proposed by Goodfellow et al.[GPAM+14], al-
lowing to generate new data through an adversarial network, judging the likelihood that
the generator network output is real or generated. A combination of U-Net and GAN
architecture was proposed by Isola et al. [IZZE17]. While this architecture shows good
result on many image to image translation problems, we didn’t �nd the GAN component
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Figure 2.9: �e U-Net architecture as described by Ronneberger et al. [RPB15]. We see
the encoder decoder structure with skip-connections between them.

to help on our challenges while reducing the stability of the training.

In this thesis, we therefore base our network designs around the U-Net architecture.

2.2.2 Non local information combination

�e need for combining local and global information appears in multiple image trans-
formation tasks. In particular, Iizuka et al. [ISSI16] observe that colors in a photograph
depend both on local features, such as an object’s texture, and global context, such as
being indoor or outdoor. Based on this insight, they propose a convolutional network
that colorizes a gray-level picture by separately extracting global semantic features and
local image features, which are later combined and processed to produce a color image.
Contextual information also plays an important role in semantic segmentation, which
motivates Zhao et al. [ZSQ+17] to aggregate the last layer feature maps of a classi�ca-
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tion network in a multi-scale fashion. While we also extract local and global features
separately, we exchange information between these two tracks a�er every layer, allow-
ing the network to repeatedly transmit information across all image regions. Wang et
al. [WGGH18] introduced a related non-local layer that mixes features between all pix-
els, and can be inserted at multiple points in the network to provide opportunities for
non-local information exchange. While they apply more complex nonlinear mixing op-
erations, they do not maintain an evolving global state across layers. �e architecture we
present in Chapter 3 has a complementary goal of aiding e�cient global coordination
between non-co-located points. Our scheme also opens up novel pathways, allowing
information to be directly transmi�ed between distant image regions.

2.2.3 Multi-inputs networks

Many computer vision tasks become be�er posed as the number of observations in-
creases, which calls for methods capable of handling a variable number of input images.
For example, classical optimization approaches assign a data ��ing error to each obser-
vation and minimize their sum. However, implementing an analogous strategy in a deep
learning context remains a challenge because most neural network architectures, such as
the popular U-Net used in this thesis and prior work [LDPT17, LSC18], require inputs of
a �xed size and treat these inputs in an ordered manner. �ese architectures thus cannot
simultaneously bene�t from powerful learned priors as well as multiple unstructured
observations. Choy et al. [CXG+16] faced this challenge in the context of multi-view 3D
reconstruction and proposed a recurrent architecture that processes a sequence of im-
ages to progressively re�ne its prediction. However, the drawback of such an approach
is that the solution still depends on the order in which the images are provided to the
method – the �rst image has a great impact on the overall solution, while subsequent
images tend to only modify details. �is observation motivated Wiles et al. [WZ17]
to process each image of a multi-view set through separate encoders before combining
their features through max-pooling, an order-agnostic operation. Ai�ala et al. [AD18]
and Chen et al. [CHW18] apply a similar strategy to the problems of burst image de-
blurring and photometric stereo, respectively. In the �eld of geometry processing, Qi
et al. [QSMG17] also apply a pooling scheme for deep learning on point sets, and show
that such an architecture is an universal approximator for functions whose inputs are
set-valued. Zaheer et al. [ZKR+17] further analyze the theoretical properties of pool-
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ing architectures and demonstrate superior performance over recurrent architectures
on multiple tasks involving loosely-structured set-valued input data. We build on this
family of work to o�er a method, described in Chapter 4, that processes images captured
in an arbitrary order, and that can handle un-calibrated viewing and lighting conditions.

2.3 Deep learning for material acquisition

2.3.1 Learning priors

Dror et al. [DAW01] were among the �rst to show that a machine learning algorithm can
be trained to classify materials from low-level image features. Since then, deep learning
emerged as an e�ective solution to related problems such as intrinsic image decomposi-
tion [NMY15, IRWM17] and re�ectance and illumination estimation [RGR+17].

Given these successes, we adapt deep learning to the material acquisition problem. We
use a data-driven approach to learn prior required by lightweights acquisition meth-
ods from the training data, leading to be�er results, simpli�ed acquisition process and
increased �exibility.

Most related to our approach is the work by Li et al. [LDPT17], who adopted an encoder-
decoder architecture similar to ours to estimate di�use re�ectance and normal maps.
However, their method only recovers uniform specular parameters over the material
sample. In contrast, we seek to recover per-pixel specular albedo and roughness by using
the cues provided by the �ash in the input picture. Furthermore, they trained separate
networks for di�erent types of materials, such as wood and plastic. Rather than imposing
such a hard manual clustering (which is ambiguous: consider the common case of plastic
imitation of wood), we train a single all-purpose network and follow the philosophy of
le�ing it learn by itself any special internal treatment of classes that it might �nd useful.

2.3.2 Rendering loss

Since our goal is to best reproduce the appearance of the captured material, we evaluate
the quality of a prediction using a di�erentiable rendering loss, which compares render-
ings of the predicted material with renderings of the ground truth given for training
and allows end to end back propagation. Rendering losses have been used by Tewari et
al. [TZK+17] and Liu et al. [LCY+17] for facial capture and material editing respectively.
Tewari et al. use a rendering loss to compare their reconstruction with the input image
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in an unsupervised manner, while Liu et al. use it to evaluate their reconstruction with
respect to both the input image and a ground-truth edited image.

For material acquisition, Ai�ala et al. [AAL16] also use a di�erentiable renderer to com-
pare the texture statistics of their material estimates with those of an input photograph.
However, they use this loss function within a standard inverse-rendering optimization
rather than to train a neural network. Using deep learning, Li et al. [LDPT17] choose a
L1 comparison between the predicted and ground truth BRDF parameters, which does
not account for the intricate interactions between them for the �nal appearance of the
material.

In a concurrent work to this thesis, Li et al. [LSC18] develop a method for single-image
acquisition with a similar rendering loss idea. Most material acquisition methods as-
sume a near planar surface to acquire. In further work, Li et al. [LXR+18] introduced a
method for non planar surface acquisition, extending the rendering loss idea through an
rendering approximation generated by a specialized deep network.

2.3.3 Multiple images acquisition

While impressive in many cases, the solutions produced by these single-image methods
[DAD+18, LSC18] are largely guided by the learned priors, and o�en fail to reproduce
important material e�ects simply because they are not observed in the image provided
as input, or are too ambiguous to be accurately identi�ed without additional observa-
tions. We address this limitation by designing an architecture that supports an arbitrary
number of input images. In a concurrent work, Gao et al. [GLD+19] propose a solution
to combine multiple picture by optimizing a deep latent vector, initializing the solution
with the result of our one image network presented in Chapter 3. �eir method exploits
known view position and light power as well as collocated light source to correct the
perspective on images and run a classical optimization comparing outputs and input
pictures.

2.3.4 Synthetic data & augmentation

Training a network in a supervised manner requires a large dataset of paired input and
ground truth to guide the training process. In the case of material acquisition, real world
picture and SVBRDF parameters pair dataset are extremely sparse. Because the contri-
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butions of shape, material and lighting are con�ated in the colors of real-world pictures,
many deep-learning methods for inverse rendering rely on synthetic training data to ob-
tain the necessary supervision on these separate components [RGR+17, LDPT17, LSC18,
LXR+18, LCY+17]. Given the success on previous work, we also use an entirely synthetic
training dataset. While in theory image synthesis o�ers the means to generate an ar-
bitrary large amount of training data, the cost of image rendering, storage and transfer
limits the size of the datasets used in practice. For example, Li et al. [LSC18] report train-
ing datasets of 150,000 images and for our project described in Chapter 3, we generated
a dataset of 200,000 images. Given the mentioned constrains, for our following project,
described in Chapter 4, we develop an online data generation allowing us to provide
the network with a new image at each iteration of the training, yielding up to millions
of training images in practice. Our online data generation also greatly simpli�es testing
with di�erent data distributions, a property that we exploit to compare multiple versions
of our approach.

To augment the diversity in the training dataset, multiple techniques exist, among which
most common are to apply rotation, cropping or resize during the training, to reduce the
number of times the network will see the same image. A more specialized approach to
materials is introduced by Li et al.[LDPT17] called self-augmentation to expand a small
synthetic training set with semi-synthetic data based on the network’s own predictions
for real-world photographs. �is strategy is complementary to our massive procedural
data generation. In this thesis we develop an augmentation scheme for material mixing
using linear combination and our online rendering process to generate a virtually in�nite
number of inputs pairs from a 2000 SVBRDFs dataset.

2.3.5 Resolution and scale of acquisition

Many of the methods for material acquisition based on deep learning [DAD+18, LSC18,
DAD+19, GLD+19] succeed in the task by targeting �ash pictures captured at a small dis-
tance from the material sample. In such con�gurations, the �ash produces a highlight
at the center of the image as well as di�use shading on its boundary, providing infor-
mation about the specular and di�use behavior of the surface respectively, as well as
complementary cues about normal variations. However, the use of a �ash imposes two
limitations on this family of methods. First, capturing large-scale surfaces would require
the use of large, powerful �ash, defeating the purpose of these lightweight methods. Sec-
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ond, because �ash lighting yields di�erent visual cues in di�erent places of the image,
existing methods need to process the image in its entirety, which is problematic for deep
learning methods as the networks resolution is limited by the GPU memory – related
methods were typically using images of 256 × 256 pixel resolution. While we build on
such methods to obtain our close-up SVBRDF patches, we complement them in Chap-
ter 5 by introducing a large scale guidance image, which can be captured several meters
away from the surface of interest. In addition, we assume that this large-scale image
is captured under ambient lighting that varies li�le across the surface, so that it can be
decomposed into independent tiles to �t in memory.

Our use of guidance and exemplar images makes our problem akin to image analogies
[HJO+01], where the goal is to copy the appearance of the exemplars onto the guidance,
based on a notion of similarity between exemplar and guidance pixels. �e image analo-
gies framework has been applied to a variety of problems, such as image colorization
[WAM02], style transfer [FJL+16], texture transfer [DBP+15]. All these methods share
the strength of providing high-level control on their output thanks to the exemplar, a
feature that we now provide in the context of SVBRDF capture. Closer to our applica-
tion domain is the work by Melendez et al. [MGSJW12], who used patch-based texture
synthesis to transfer di�use albedo and depth variations from small material exemplars
to large façade images. However, this approach assumes that every pixel of the guid-
ance can be put in correspondence to similar pixels of the exemplar, which yields visual
artefacts when the exemplars do not contain all the material variations of the guidance
image. Our deep learning approach alleviates this issue by complementing the exemplars
with priors on material appearance learned from a large dataset of SVBRDFs.

Deep learning has recently been applied to several of the above image analogies prob-
lems, which inspired the design of our deep network architecture. In particular, style
transfer with Adaptive Instance Normalization (AdaIN) [HB17] processes the content
and style images with two separate encoders, and then transfers information about the
style feature maps to the content feature maps, which are subsequently decoded to form
the output. �e main di�erence between the two approaches is that AdaIN only trans-
fers global statistics of the feature maps from one encoder to the other, while we concate-
nate the feature maps of the two encoders to maximize information sharing. In addition,
AdaIN relies on a pre-trained encoder (VGG-19), while we use dedicated encoders for the
image and SVBRDF branches of our network. We show that our approach be�er cap-
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tures the appearance of SVBRDF exemplars compared to generic style transfer. Another
source of inspiration is the colorization method by Zhang et al. [ZZI+17], that allows
users to provide a color histogram along with the grayscale input to control which colors
should appear in the output.

�e method of Chapter 5 also relates to guided super-resolution algorithms, which rely
on a high-resolution guidance image to super-resolve low resolution depth or normal
maps [dLDWS19, HLT16]. In particular, our deep network architecture shares ideas
with the one by Hui et al. [HLT16], where features computed by the guidance encoder
are concatenated to features computed by the depth map decoder. However, our prob-
lem di�ers since our prime goal is to augment the spatial extent of the SVBRDF ex-
emplars rather than their resolution. As a consequence, our SVBRDF exemplars are not
aligned with the guidance image, while guided super-resolution algorithms require such
an alignment. In addition, we designed our method to take as input an arbitrary number
of SVBRDF exemplars rather than a single depth map.

A wider overview of recent work on material acquisition methods based on deep learn-
ing from both Computer graphics and machine learning perspectives is available in the
Dong [Don19] survey.





C h a p t e r 3

Single-Image SVBRDF Capture with a
Rendering-Aware Deep Network

�e work presented in this chapter was done in collaboration with Miika Ai�ala, Fredo
Durand, George Dre�akis and Adrien Bousseau and published at Siggraph 2018 [DAD+18].

Figure 3.1: From a single �ash photograph of a material sample (insets), our deep learning
approach predicts a spatially-varying BRDF. See supplemental materials for animations
with a moving light.

In this chapter, we introduce a deep learning method to recover spatially-varying di�use,
specular and normal maps from a single image captured under �ash lighting. We achieve
this goal by introducing several innovations on training data acquisition and network
design.

For training, we leverage a large dataset of artist-created, procedural SVBRDFs1 which
we sample and render under multiple lighting directions. We further amplify the data by
material mixing to cover a wide diversity of shading e�ects, which allows our network
to work across many material classes.
Motivated by the observation that distant regions of a material sample o�en o�er com-
plementary visual cues, we design a network that combines an encoder-decoder convo-
lutional track for local feature extraction with a fully-connected track for global feature

1Our dataset is available here: https://team.inria.fr/graphdeco/projects/

deep-materials/
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Figure 3.2: Overview of our method: we use procedural SVBRDFs to generate our ground
truth (GT) training data, which we augment by random perturbations of the procedural
parameters and mixing of the SVBRDF maps (Figures 3.7 and 3.8, Section 3.2). We then
use physically-based rendering to synthesize the corresponding �ash images. �ese are
used to train our Deep Network (Figure 3.3, Sections 3.1.1 and 3.1.2) which compares
predicted SVBRDFs and ground truth using a rendering loss (Figure 3.5, Section 3.1.3).

extraction and propagation.
Many important material e�ects are view-dependent, and as such ambiguous when ob-
served in a single image. We tackle this challenge by de�ning the loss as a di�erentiable
SVBRDF similarity metric that compares the renderings of the predicted maps against
renderings of the ground truth from several lighting and viewing directions.
Combined together, these novel ingredients bring clear improvement over state of the
art methods for single-shot capture of spatially varying BRDFs.

3.1 Network Architecture

Our problem boils down to translating a photograph of a material into a coinciding
SVBRDF map representation, which is essentially a multi-channel image. �e U-Net
architecture [RPB15] has proven to be well suited for a wide range of similar image-to-
image translation tasks [ZZI+17, IZZE17]. However, our early experiments revealed that
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Figure 3.3: Architecture of our deep convolutional network, which takes as input a single
�ash-lit image (le�) and predicts four maps corresponding to per-pixel normal, di�use
albedo, specular albedo and specular roughness (right). Our network follows the popu-
lar U-Net encoder-decoder architecture (black), which we complement with a new global
features track (green) that processes vectors instead of feature maps. Taken together, the
full network consists of repeating “modules”, which are detailed in the bo�om part of
the �gure. At every stage of the network, the feature means subtracted by the instance
normalization a�er the convolutional layer are concatenated with the global feature vec-
tor, which is then processed by a fully connected layer and a non-linearity before being
added to the feature maps of the next stage. IN and FC denote instance normalizations
and fully connected layers respectively. We use SELU [KUMH17] and leaky ReLu acti-
vation functions. In the decoder, the set of layers also includes a skip-connection con-
catenation and a second convolution, which we omit for clarity. We provide the code of
our network to allow reproduction.

despite its multi-scale design, this architecture remains challenged by tasks requiring the
fusion of distant visual information. We address this limitation by complementing the
U-Net with a parallel global features network tailored to capture and propagate global
information.

3.1.1 U-Net Image-to-Image Network

We adopt the U-Net architecture as the basis of our network design, and follow Isola et
al. [IZZE17] for most implementation details. Note however that we do not use their
discriminator network, as we did not �nd it to yield a discernible bene�t in our problem.
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We now brie�y describe the network design. We provide the code of our network and
its learned weights to allow reproduction of our results2.

As illustrated in Figure 3.3, our base network takes a 3-channel photograph as input
and outputs a 9-channel image of SVBRDF parameters – 3 channels for the RGB di�use
albedo, 3 channels for the RGB specular albedo, 2 channels for the x and y components
of the normal vector in tangent plane parameterization, and 1 channel for the specular
roughness. We use low dynamic range images as input photographs due to the ease of
acquisition, and let the network learn how to interpret the saturated highlight regions.
Regardless, the dynamic range of �ash photographs can still be large. We �a�en the
dynamic range by transforming the input image into logarithmic space and compacting
it to the range [0, 1] via the formula log(x+0.01)−log 0.01

log(1.01)−log(0.01)
.

�e input image is processed through a sequence of 8 convolutional layers that perform
downsampling (the encoder), followed by a sequence of 8 upsampling and convolutional
layers (the decoder). Such a hourglass-shaped network gradually reduces the resolu-
tion of the image while increasing the feature size, forcing the encoder to compress the
relevant information into a concise, global feature vector. �e task of the decoder is
to expand these global features back into a full-sized image that matches the training
target. However, while the bo�leneck is critical to aggregate spatially-distant informa-
tion, it hinders the reproduction of �ne details in the output. Following Ronneberger et
al. [RPB15], we mitigate this issue by introducing skip connections between same-sized
layers of the encoder and decoder, helping the decoder to synthesize details aligned with
the input at each spatial scale.

Prior to the decoder, we insert a single convolutional layer with 64 output feature chan-
nels. �e feature counts in the encoder downscaling layers are 128, 256, 512, 512, 512,
512, 512 and 512. �e downsampling is implemented by using a stride of 2 in the con-
volutions. In the decoder, the same feature counts are used in reverse order. At each
scale, a nearest-neighbor upsampling is followed by concatenation of encoder features,
and two convolutions. We use the �lter size [4, 4] across all layers. For nonlinearities we
use the leaky ReLu activation function with a weight 0.2 for the negative part. �e �nal
output is mapped through a sigmoid to enforce output values in the range [0, 1].

Following each convolution layer (or pair thereof), we apply instance normalization,
2https://team.inria.fr/graphdeco/projects/deep-materials/



Chapter 3. Single-Image SVBRDF Capture with a Rendering-Aware Deep Network 33

which stabilizes training on image generation tasks [UVL17, IZZE17]. Finally, we regu-
larize by applying dropout at 50% probability on the three coarsest layers of the decoder.

3.1.2 Global Features Network

Distant regions of a material sample o�en o�er complementary information to each
other for SVBRDF recovery. �is observation is at the heart of many past methods for
material capture, such as the work of Lensch et al. [LKG+03] where the SVBRDF is as-
sumed to be spanned by a small set of basis BRDFs, or the more recent work of Ai�ala
et al. [AWL15, AAL16] where spatial repetitions in the material sample are seen as mul-
tiple observations of a similar SVBRDF patch. Taking inspiration from these successful
heuristics, we aim for a network architecture capable of leveraging redundancies present
in the data.

�e hourglass shape of the U-Net results in large footprints of the convolution kernels
at coarse spatial scales, which in theory provide long-distance dependencies between
output pixels. Unfortunately, we found that this multi-scale design is not su�cient to
properly fuse information for our problem. We �rst illustrate this issue on a toy example,
where we trained a network to output an image of the average color of the input, as
shown in Figure 3.4 (top row). Surprisingly, the vanilla U-Net performs poorly on this
simple task, failing to output a constant-valued image. A similar behavior occurs on
our more complex task, where visible residuals of the specular highlight and other �ne
details pollute the output maps where they should be uniform (Figure 3.4, 2nd to 4th
row).

In addition, we hypothesize that the ability of the network to compute global infor-
mation is partly hindered by instance (or batch) normalization, which standardizes the
learned features a�er every convolutional layer by enforcing a mean and standard devi-
ation learned from training data. In other words, while the normalization is necessary
to stabilize training, it actively counters the network’s e�orts to maintain non-local in-
formation about the input image. In fact, instance normalization has been reported to
improve artistic style transfer because it eliminates the output’s dependence on the in-
put image contrast [UVL17]. �is is the opposite of what we want. Unfortunately, while
we tried to train a U-Net without normalization, or with a variant of instance normal-
ization without mean subtraction, these networks yielded signi�cant residual shading
in all maps.



34 Chapter 3. Single-Image SVBRDF Capture with a Rendering-Aware Deep Network

(a) Input (b) GT Average (c) U-Net (d) Ours

N
or

m
al

D
i�

us
e

al
be

do
Ro

ug
hn

es
s

Sp
ec

ul
ar

al
be

do

(e) GT SVBRDF (f) U-Net (g) Ours

Figure 3.4: We trained a U-Net convolutional network to predict an image of the aver-
age color of the input (top row). Surprisingly, the basic U-Net fails to produce a constant
image (c). Similar artifacts appear when using the U-Net for SVBRDF prediction (f).
We address this issue by complementing the U-Net with a parallel network that explic-
itly computes and propagates global features. �is approach succeeds in computing the
average image (d) and reduces artifacts in SVBRDF maps (g).
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We propose a network architecture that simultaneously addresses both of these short-
comings. We add a parallel network track alongside the U-Net, which deals with global
feature vectors instead of 2D feature maps. �e structure of this global track mirrors
that of the main convolutional track, with convolutions changed to fully connected lay-
ers and skip connections dropped, and with identical numbers of features. See Figure 3.3
for an illustration and details of this architecture. �e global and convolutional tracks
exchange information a�er every layer as follows:

• Information from the convolutional track �ows to the global track via the instance
normalization layers. Whereas the standard procedure is to discard the means
that are subtracted o� the feature maps by instance normalization, we instead
incorporate them into the global feature vector using concatenation followed by
a fully connected layer and a nonlinearity. For the nonlinearity, we use the Scaled
Exponential Linear Unit (SELU) activation function, which is designed to stabilize
training for fully connected networks [KUMH17].

• Information from the global track is injected back into the local track a�er every
convolution, but before the nonlinearity. To do so, we �rst transform the global
features by a fully connected layer, and add them onto each feature map like biases.

Our global feature network does not merely preserve the mean signal of a given fea-
ture map – it concatenates the means to form a global feature vector that is processed
by fully connected layers before being re-injected in the U-Net at multiple scales. Each
pair of these information exchanges forms a nonlinear dependency between every pixel,
providing the network with means to arrive at a consistent solution by repeatedly trans-
mi�ing local �ndings between di�erent regions. In particular, the common case of near-
constant re�ectance maps becomes easier for the network to express, as it can source the
constant base level from the global features and the �ne details from the convolutional
maps (Figure 3.4).

3.1.3 Rendering Loss

Our network outputs a set of maps that describe BRDF parameters, such as specular
roughness and albedo, at every surface point. �e choice of parameterization is arbitrary,
as it merely acts as a convenient proxy for the actual object of interest: the spatio-angular
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Figure 3.5: Our rendering loss compares the appearance of the predicted SVBRDF and
ground truth by rendering both under the same random lighting and viewing con�gu-
rations.

appearance of the SVBRDF. In fact, the parameterizations of popular BRDF models arise
from a combination of mathematical convenience and relative intuitiveness for artists,
and the numerical di�erence between the parameter values of two (SV)BRDFs is only
weakly indicative of their visual similarity.

We propose a loss function that is independent of the parameterization of either the pre-
dicted or the target SVBRDF, and instead compares their rendered appearance. Speci�-
cally, any time the loss is evaluated, both the ground truth SVBRDF and the predicted
SVBRDF are rendered under identical illumination and viewing conditions, and the re-
sulting images are compared pixel-wise. We use the same Cook-Torrance BRDF model
[CT82] for the ground truth and prediction, but our loss function could equally be used
with representations that di�er between these two quantities.

We implement the rendering loss using an in-network renderer, similarly to Ai�ala et al.
[AAL16]. �is strategy has the bene�ts of seamless integration with the neural network
training, automatically-computed derivatives, and automatic GPU acceleration. Even
complicated shading models are easily expressed in modern deep learning frameworks
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Figure 3.6: When trained with the l1 loss (b), the SVBRDF predicted by the network for
a test input image does not accurately reproduce the appearance of the target material
when rendered. A network trained using the rendering loss (c) produces an SVBRDF
that, while not necessarily identical in terms of the parameter values, reproduces the
ground truth rendered appearance well (last row).
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such as TensorFlow [AAB+15]. In practice, our renderer acts as a pixel shader that eval-
uates the rendering equation at each pixel of the SVBRDF, given a pair of view and light
directions (Figure 3.5). Note that this process is performed in the SVBRDF coordinate
space, which does not require to output pixels according to the perspective projection
of the plane in camera space.

Using a �xed �nite set of viewing and lighting directions would make the loss blind to
much of the angular space. Instead, we formulate the loss as the average error over all
angles, and follow the common strategy of evaluating it stochastically by choosing the
angles at random for every training sample, in the spirit of stochastic gradient descent.
To ensure good coverage of typical conditions, we use two sets of lighting and viewing
con�gurations:

• �e �rst set of con�gurations is made of orthographic viewing and lighting direc-
tions, sampled independently of one another from the cosine-weighted distribu-
tion over the upper hemisphere. �e cosine weighting assigns a lower weight to
grazing angles, which are observed less o�en in images due to foreshortening.

• While the above con�gurations cover all angles in theory, in practice it is very
unlikely to obtain mirror con�gurations, which are responsible for visible high-
lights. Yet, highlights carry rich visual information about material appearance, and
should thus contribute to the SVBRDF metric. We ensure the presence of high-
lights by introducing mirror con�gurations, where we only sample the lighting
direction from the cosine distribution, and use its mirror direction for the viewing
direction. We place the origin at a random position on the material plane, and
choose independent random distances for both the light and the camera according
to the formula exp(d), where d ∼ Normal(µ = 0.5, σ = 0.75) for a material plane
of size 2 × 2. �e net e�ect of these con�gurations is to produce randomly-sized
specular highlights at random positions.

We compare the logarithmic values of the renderings using the l1 norm. �e logarithm
is used to control the potentially extreme dynamic range of specular peaks, and because
we are more concerned with relative than absolute errors. To reduce the variance of the
stochastic estimate, for every training sample we make 3 renderings in the �rst con�g-
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Leather Tiles Stones Ground Metal

Plastic Fabric Paint Wood

Figure 3.7: Example parametric SVBRDFs for each original material class. We produce
our �nal training set by perturbing and mixing such SVBRDFs.

uration and 6 renderings in the second, and average the loss over them. We provide a
detailed pseudo-code of our rendering loss in Appendix A.1.

Figure 3.6 compares the output of our network when trained with a naive l1 loss against
the output obtained with our rendering loss. While the l1 loss produces plausible maps
when considered in isolation, these maps do not reproduce the appearance of the ground
truth once re-rendered. In contrast, the rendering loss yields a more faithful reproduc-
tion of the ground truth appearance.

3.1.4 Training

We train the network with batch size of 8 for 400,000 iterations, using the Adam op-
timization algorithm [KB15] with a �xed learning rate of 0.00002. �e training takes
approximately one week on a TitanX GPU.

3.2 Procedural Synthesis of Training Data

While several recent papers have shown the potential of synthetic data to train neural
networks [SQLG15, ZSY+17, RVRK16], care must be taken to generate data that is rep-
resentative of the diversity of real-world materials we want to capture. We address this
challenge by leveraging Allegorithmic Substance Share [All19b], a dataset of more than
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Figure 3.8: Data augmentation. We create variations of each parametric SVBRDF by
randomly perturbing its parameters (�rst row). We additionally augment our dataset by
blending pairs of SVBRDFs (second row). Finally, we render each SVBRDF under various
orientations, scaling and lighting conditions (both rows).

Input Normal Di�use albedo Roughness Specular albedo Re-rendering
Figure 3.9: Based on the input photographs (le�), our method has recovered a set of
SVBRDF maps that exhibit strong spatially varying specular roughness and albedo ef-
fects. �e gold-colored paint (top) and the highly glossy black tiles (bo�om) are clearly
visible in the re-renderings of SVBRDF under environment illumination (right).
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800 procedural SVBRDFs designed by a community of artists from the movie and video
game industry. �is dataset has several key features relevant to our needs. First, it is
representative of the materials artists care about. Second, each SVBRDF is rated by the
community, allowing us to select the best ones. �ird, each SVBRDF exposes a range of
procedural parameters, allowing us to generate variants of them for data augmentation.
Finally, each SVBRDF can be converted to the four Cook-Torrance parameter maps we
want to predict [CT82].

We �rst curated a set of 155 high-quality procedural SVBRDFs from 9 material classes
– paint (6), plastic (5), leather (13), metal (35), wood (23), fabric (6), stone (25), ceramic
tiles (29), ground (13), some of which are illustrated in Figure 3.7. We also selected 12

challenging procedural SVBRDFs (6 metals, 3 plastics, 3 woods) to serve as an inde-
pendent testing set in our comparison to Li et al. [LDPT17]. Together with two artists,
we identi�ed the procedural parameters that most in�uence the appearance of each of
our training SVBRDFs. We obtained between 1 and 36 parameters per SVBRDF (7 on
average), for which we manually de�ned the valid range and default values.

We then performed four types of data augmentation. First, we generated around 1,850

variants of the selected SVBRDFs by applying random perturbations to their important
parameters, as illustrated in Figure 3.8 (top). Second, we generated around 20,000 con-
vex combinations of random pairs of SVBRDFs, which we obtained by α-blending their
maps. �e mixing greatly increases the diversity of low-level shading e�ects in the train-
ing data, while staying close to the set of plausible real-world materials, as shown in
Figure 3.8 (bo�om). �ird, we rendered each SVBRDF 10 times with random lighting,
scaling and orientation. Finally, we apply a random crop on each image at training time,
so that the network sees slightly di�erent data at each epoch.

�e scene we used to render each SVBRDF is composed of a textured plane seen from
a fronto-parallel camera and dimensioned to cover the entire image a�er projection.
�e light is a small white emi�ing sphere positioned in a plane parallel to the material
sample, at a random o�set from the camera center. �e camera has a �eld of view of 50◦

to match the typical �eld of view of cell-phone cameras a�er cropping to a square, and
is positioned at a �xed distance from the material sample. Note that there is a general
ambiguity between the scale of the SVBRDF, the distance of the camera, and the strength
of the light, which is why we hold the la�er parameters �xed. However, since such
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parameters are unknown in our casual capture scenario, the albedo maps we obtain
from real pictures at test time are subject to an arbitrary, global scale factor.

We used the Mitsuba renderer [Jak10], for which we implemented the Cook-Torrance
BRDF model [CT82] with GGX normal distribution [WMLT07] to match the model used
in Allegorithmic Substance. We rendered each SVBRDF as a linear low-dynamic range
image, similar to gamma-inverted photographs captured with a cell-phone. We also used
Mitsuba to render the parameter maps a�er random scaling and rotation of the material
sample, which ensures that the maps are aligned with the material rendering and that
the normal map is expressed in screen coordinate space rather than texture coordinate
space. Our entire dataset of around 200,000 SVBRDFs took around 16 hours to generate
on a cluster of 40 CPUs.
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Figure 3.10: A selection of results from our method on real-world photographs. In each
image pair, the le� image is a photograph of a surface, and the right image is a re-
rendering of the SVBRDF inferred from that image. �e illumination environment in
the re-renderings is an interior space with a large window on the le�.
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Figure 3.11: Comparison between relighting of our predictions and of measured BTFs
[WGK14].
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Figure 3.12: Comparison between relighting of our prediction and real pictures under
approximately the same lighting con�gurations. We adjusted the white balance of the
results to best match the one of the input.



Chapter 3. Single-Image SVBRDF Capture with a Rendering-Aware Deep Network 45

3.3 Evaluation

We now evaluate our approach on real-world photographs and compare it with recent
methods for single-image SVBRDF capture. We refer the reader to the supplemental
materials for more results and animated visualisations.

3.3.1 Real-world photographs

We used regular cell phones (iPhone SE and Nexus 5X) and their built-in �ash units to
capture a dataset of nearly 350 materials on which we applied our method. We cropped
the images to approximate the �eld of view used in the training data. �e dataset includes
samples from a large variety of materials found in domestic, o�ce and public interiors,
as well as outdoors. In fact, most of the photographs were shot during a casual walk-
around within the space of a few hours.

Figures 3.1 and 3.10 show a selection of representative pairs of input photographs, and
corresponding re-renderings of the results under novel environment illumination. �e
results demonstrate that the method successfully reproduces a rich set of re�ectance ef-
fects for metals, plastics, paint, wood and various more exotic substances, o�en mixed
together in the same image. We found it to perform particularly well on materials ex-
hibiting bold large-scale features, where the normal maps capture sharp and complex
geometric shapes from the photographed surfaces.

Figure 3.9 shows our result for two materials with interesting spatially varying specu-
larity behavior. �e method has successfully identi�ed the gold paint in the specular
albedo map, and the di�erent roughness levels of the black and white tiles. �e la�er
feature shows good consistency across the spatially distant black squares, and we �nd
it particularly impressive that the low roughness level was apparently resolved based
on the small highlight cues on the center tile and the edges of the outer tiles. For most
materials, the specular albedo is resolved as monochrome, as it should be. Similar glob-
ally consistent behavior can be seen across the result set: cues from sparsely observed
specular highlights o�en inform the specularity across the entire material.

Note that our dataset contains several duplicates, i.e. multiple shots of the same material
taken from slightly di�erent positions. �eir respective SVBRDF solutions generally
show good consistency among each other. We also captured a few pictures with an
SLR camera, for which the �ash is located further away from the lens than cell phones.
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Figure 3.13: Results of our method with a picture taken using a SLR and its �ash.

Figure 3.13 presents the resulting predicted maps, showing that our method is robust to
varying positions of the �ash.

3.3.2 Comparisons

3.3.2.1 Relighting

Figure 3.11 provides a qualitative comparison between renderings of our predictions and
renderings of measured Bidirectional Texture Functions (BTFs) [WGK14] under the same
lighting conditions. While BTFs are not parameterized according to the 4 maps we esti-
mate, they capture ground-truth appearance from arbitrary view and lighting conditions,
which ultimately is the quantity we wish to reproduce. Our method provides a faithful
reproduction of the appearance of the leather. It also captures well the spatially-varying
specularity of the wallpaper, even though it produces slightly more blurry highlights.
Please refer to supplemental materials for additional results on 20 BTFs.

In addition, Figure 3.12 compares renderings of our predictions with real photographs
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under approximately similar lighting conditions. Our method is especially e�ective at
capturing the normal variations of this wood carving.

3.3.2.2 Aittala et al. [AWL15, AAL16]

�e method by Ai�ala et al. [AAL16] is the most related to ours in terms of input, since
it also computes an SVBRDF representation from a single �ash-lit photograph. How-
ever, Ai�ala et al. [AAL16] exploit redundancy in the input picture by assuming that the
material is stationary, i.e. consists of small textural features that repeat throughout the
image.

We compare our method to theirs by feeding photographs from their dataset to our
network (Figure 3.14). Despite the similar input, the two approaches produce di�erent
outputs: whereas we produce a map that represents the entire input photo downsampled
to 256× 256, their method produces a tile that represents a small piece of the texture at
high resolution. Furthermore, the BRDF models used by the methods are di�erent. To
aid comparison, we show re-renderings of the material predicted by each method under
identical novel lighting conditions.

Both methods produce a good result, but show a clearly di�erent character. �e method
of Ai�ala et al. [AAL16] recovers sharp textural details that are by construction sim-
ilar across the image. For the same reason, their solution cannot express larger-scale
variations, and the result is somewhat repetitive. In contrast, our solution shows more
interesting large-scale variations across the image, but lacks some detail and consistency
in the local features.

Most of our real-world test images violate the stationarity requirement, and as such
would not be suitable for the method of Ai�ala et al. [AAL16]. Our method also has the
advantage in speed: whereas Ai�ala et al. [AAL16] use an iterative optimization that
takes more than an hour per material sample, our feedforward network evaluation is
practically instant.

Figure 3.14 also contains results obtained with an earlier method by Ai�ala et al. [AWL15].
�is method also assumes stationary materials, and requires an additional no-�ash pic-
ture to identify repetitive details and their large-scale variations. Our approach produces
similar results from a single image, although at a lower resolution.
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Table 3.1: RMSE comparison between Li et al. [LDPT17] and our method. Due to the
use of di�erent parametrizations, we cannot compute RMSE on specular terms for Li et
al. [LDPT17]. As their output albedo maps can have a di�erent scaling than the ground
truth with respect to lighting, we evaluate the re-rendering and di�use albedo RMSE
with multiple scaling factors on the albedo, and keep the best one (0.27).

Method Li et al. Ours
Re-Rendering error 0.169 0.083

Normal error 0.046 0.035
Di�use albedo error 0.090 0.019

Specular albedo error NA 0.050
Specular roughness error NA 0.129

3.3.2.3 Li et al. [LDPT17]

�e method by Li et al. [LDPT17] is based on a similar U-Net convolutional network
as ours. However, it has been designed to process pictures captured under environ-
ment lighting rather than �ash lighting, and it predicts a constant specular albedo and
roughness instead of spatially-varying maps. We �rst compare the two methods on our
synthetic test set for which we have the ground truth SVBRDFs (Figure 3.16 and Ta-
ble 3.1). For a fair comparison, we tested the method by Li et al. on several renderings of
the ground truth, using di�erent environment maps and di�erent orientations. We then
selected the input image that gave the best outcome. We compare the results of the two
methods qualitatively with re-renderings under a mixed illumination composed of an
environment map enriched with a �ash light, so as to ensure that neither method has an
advantage. For quantitative comparison, we compute the RMSE of each individual map,
as well as the RMSE of re-renderings averaged over multiple point lighting conditions;
our results have systematically lower error.

Overall, our method reproduces the specularity of the ground truth more accurately, as
evidenced by the sharpness of re�ections and highlights in the re-renderings. We believe
this is due to our use of near-�eld �ash illumination, as the apparent size and intensity
of the highlight caused by the �ash is strongly indicative of the overall glossiness and
albedo levels. �e method of Li et al. [LDPT17] must rely on more indirect and ambigu-
ous cues to make these inferences. While such cues are available in the input images
– for example, the re�ections of the illumination environment are blurred to di�erent
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degrees – their method has not reached an equally accurate estimate of the specular
roughness.

Similarly, �ash illumination highlights the surface normal variations by introducing spa-
tially varying directional shading e�ects into the image. Such variations do also have
a characteristic appearance in environment-lit images, but interpreting these cues may
be more di�cult due to ambiguities and uncertainties related to the unknown lighting
environment. Consequently, the normal maps recovered by Li et al. [LDPT17] are also
less accurate than ours.

We then compare the two methods on real pictures, captured with a �ash for our ap-
proach and without for the approach by Li et al. (Figure 3.17). Overall, the relative
performance of the methods appears similar to the synthetic case.

3.3.3 Limitations

Despite the diversity of results shown, the architecture of our deep network imposes
some limitations on the type of images and materials we can handle.

In terms of input, our network processes images of 256 × 256 pixels, which prevents
it from recovering very �ne details. While increasing the resolution of the input is an
option, it would increase the memory consumption of the network and may hinder its
convergence. Recent work on iterative, coarse-to-�ne neural image synthesis represents
a promising direction to scale our approach to high-resolution inputs [CK17, KALL18].
Our network is also limited by the low dynamic range of input images. In particular,
sharp, saturated highlights sometimes produce residual artifacts in the predicted maps
as the network struggles to inpaint them with plausible pa�erns (Figure 3.15). We also
noticed that our network tends to produce correlated structures in the di�erent maps.
As a result, it fails on materials like the one in Figure 3.15 (top row), where the packaging
has a clear coat on top of a textured di�use material. �is behavior may be due to the fact
that most of the artist-designed materials we used for training exhibit correlated maps.
Finally, while our diverse results show that our network is capable of exploiting subtle
shading cues to infer SVBRDFs, we observed that it resorts to naive heuristics in the
absence of such cues. For example, the normal map for the wool kni�ing in Figure 3.15
suggests a simple “dark is deep” prior.

In terms of output, our network parameterizes an SVBRDF with four maps. Additional
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maps should be added to handle a wider range of e�ects, such as anisotropic specular
re�ections. �e Cook-Torrance BRDF model we use is also not suitable for materials
like thick fabric or skin, which are dominated by multiple sca�ering. Extending our
approach to such materials would require a parametric model of their spatially-varying
appearance, as well as a fast renderer to compute the loss. Finally, since our method only
takes a fronto-parallel picture as input, it never observes the material sample at grazing
angle, and as such cannot recover accurate Fresnel e�ects.
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Figure 3.14: Comparison with Ai�ala et al. [AWL15, AAL16]. Note that the maps (other
than the normals) are not directly comparable due to di�erent parametrization of the
BRDF models. �e solution of Ai�ala et al. [AAL16] corresponds to a small region
of about 15% of the image dimension, intended to be repeated by texture synthesis or
tiling. �e earlier method by Ai�ala et al. [AWL15] captures the entire input image but
requires an additional no-�ash picture for guidance. In contrast, our method reproduces
the large-scale features well, and is applicable to non-repetitive materials captured with
a single �ash picture.
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Input Normal Di�use Roughness Specular Re-rendering
Figure 3.15: Failure cases and performance on materials violating our assumptions.
Our method generally struggles with otherwise uniform surfaces exhibiting structured
albedo detail, such as the text and the photograph on the product packaging (top).
Highly concentrated specular highlights are sometimes missed and result in overesti-
mated roughness and occasional highlight removal artifacts (top). Materials outside the
scope of the training data (e.g. anisotropic brushed metal, center) cannot be reproduced
properly, and result in an unde�ned assignment of the apparent shading e�ects (the
streak of the specular highlight) into the various maps of the SVBRDF. Nevertheless, the
method can produce reasonable approximations for materials violating the assumptions,
with varying degrees of success, as seen on the fuzzy wool (bo�om).



Chapter 3. Single-Image SVBRDF Capture with a Rendering-Aware Deep Network 53

3.4 Conclusion

In this chapter we present an architecture able to extract SVBRDF parameters from a
single �ash picture. We leverage computer graphics knowledge to design a rendering
loss and create a synthetic dataset and we show that our training on synthetic data
generalizes well to real world pictures. While our method generates convincing results
for most input pictures we tried, one image is sometime not enough to disambiguate all
the materials properties. We address this limitation in Chapter 4 by allowing to aggregate
the information available in multiple photographs.
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Figure 3.16: Comparison with Li et al. [LDPT17] on synthetic data. As the methods
produce output data using di�erent BRDF models, the values of the maps of Li et al.
[LDPT17] should not be compared directly to ours or the ground truth. We show them
to aid qualitative evaluation of the the spatial variation. To facilitate comparison, we
rendered the ground truth and each result under novel illumination conditions (right).
�e renderings for the results of Li et al. [LDPT17] were made with a lower exposure
due to di�erent albedo magnitudes predicted by the methods. �e input images (le�)
were rendered under �ash lighting for our method and under environment lighting for
the method by Li et al., in agreement with the type of input assumed by each method.
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Figure 3.17: Comparison with Li et al. [LDPT17] on real-world data. We captured the
input photographs under �ash lighting for our method and under environment lighting
for the method by Li et al., in agreement with the type of input assumed by each method.
Please refer to Figure 3.16 for notes on interpreting the results.





C h a p t e r 4

Flexible SVBRDF Capture with a Multi-Image
Deep Network

�e work presented in this chapter was done in collaboration with Miika Ai�ala, Fredo Du-
rand, George Dre�akis and Adrien Bousseau and published in the Eurographics Symposium
on Renderings 2019 [DAD+19].

(a) Input images

...

(b) Normals (c) Di�use albedo (d) Roughness (e) Re-rendering

1 img 3 img 10 img 1 img 3 img 10 img 1 img 3 img 10 img

1
3

10

Figure 4.1: Our deep learning method for SVBRDF capture supports a variable number
of input photographs taken with uncontrolled and uncalibrated light-view directions
(a, recti�ed). While a single image is enough to obtain a �rst plausible estimate of the
SVBRDF maps, more images provide new cues to our method, improving its prediction.
In this example, adding images reveals �ne normal variations (b), removes highlight
residuals in the di�use albedo (c), and reveals the di�erence of roughness between the
stone, the stripe, and the thin pa�ern (d). See suppl. materials for animated renderings.

While the method presented in Chapter 3 is able to produce convincing spatially-varying
material appearances using deep learning, a single image is o�en simply not enough to
observe the rich appearance of real-world materials. Figure 4.1(b-d) illustrates typical
failure cases of single-image methods, where the �ash lighting provides insu�cient cues
of the relief of the surface, and leaves highlight residuals in the di�use albedo and spec-
ular maps. Only additional pictures with side views or lights reveal �ne geometry and
re�ectance details.

We present a deep-learning method capable of estimating material appearance from a
variable number of uncalibrated and unordered pictures captured with a handheld cam-
era and �ash. �e key observation is that such image sets are fundamentally unstruc-
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tured. �ey do not have a meaningful ordering, nor a pre-determined type of content
for any given input. Following this reasoning, we adopt a pooling-based network archi-
tecture that treats the inputs in a perfectly order-invariant manner, giving it powerful
means to extract and combine subtle joint appearance cues sca�ered across the inputs.
�is architecture extracts the most useful information from each picture, while bene�t-
ing from strong priors learned from data.

We show how our method improves its prediction with the number of input pictures,
and reaches high quality reconstructions with as li�le as 1 to 10 images – a sweet spot
between existing single-image and complex multi-image approaches.

Figure 4.2: We use a simple paper frame to help register pictures taken from di�erent
viewpoints. We use either a single smartphone and its �ash, or two smartphones to cover
a larger set of view/light con�gurations.
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Figure 4.3: Overview of our deep network architecture. Each input image is processed by
its copy of the encoder-decoder to produce a feature map. While the number of images
and network copies can vary, a pooling layer fuses the output maps to obtain a �xed-size
representation of the material, which is then processed by a few convolutional layers to
produce the SVBRDF maps.

4.1 Capture Setup

We designed our method to take as input a variable number of images, captured under
uncontrolled light and view directions. Figure 4.2 shows the capture setup we experi-
mented with, where we place the material sample within a white paper frame and cap-
ture it by holding a smartphone in one hand and a �ash in the other, or by using the �ash
of the smartphone as a co-located light source. Similarly to Paterson et al. [PCF05] and
Hui et al. [HSL+17], we use the four corners of the frame to compute an homography
that recti�es the images, and crop the paper pixels away before processing the images
with our method. We capture pictures of 3456×3456 pixels and resize them to 256×256

pixels a�er cropping.

4.2 Multi-Image Material Inference

Our goal is to estimate the spatially-varying bi-directional re�ectance distribution func-
tion (SVBRDF) of a �at material sample given a few aligned pictures of that sample. We
adopt a parametric representation of the SVBRDF in the form of four maps representing
the per-pixel surface normal and di�use albedo, specular albedo and specular roughness
of a Cook-Torrance [CT82] BRDF model.
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�e core of our method is a multi-image network composed of several copies of a single-
image network 1, as illustrated in Figure 4.3. �e number of copies is dynamically cho-
sen to match the number of inputs provided by the user (or the training sample). All
copies are identical in their architecture and weights, meaning that each input receives
an identical treatment by its respective network copy. �e �ndings from each single-
image network are then fused by a common order-agnostic pooling layer before being
subsequently processed into a joint estimate of the SVBRDF.

We now detail the single-image network and the fusion mechanism, before describing
the loss we use to compare the network prediction against a ground-truth SVBRDF. We
detail our generation of synthetic training data in Section 4.3.

4.2.1 Single-image network

We base our architecture on the single-image network of Deschaintre et al. [DAD+18],
which was designed for a similar material acquisition task. �e network follows the
popular U-Net encoder-decoder architecture [RPB15], to which it adds a fully-connected
track responsible for processing and transmi�ing global information across distant pix-
els. While the original architecture outputs four SVBRDF maps, we modify its last layer
to instead output a 64-channel feature map, which retains more information to be pro-
cessed by the later stages of our architecture. We also provide pixel coordinates as extra
channels to the input to help the convolutional network reason about spatial information
[LLM+18, LSC18].

Since we are targeting a lightweight capture scenario, we do not provide the network
with any explicit knowledge of the light and view position. We rather count on the
network to deduce related information from visual cues.

4.2.2 Multi-image fusion

�e second part of our architecture fuses the multiple feature maps produced by the
single-image networks to form a single feature map of �xed size.

Speci�cally, the encoder-decoder track of each single-image network produces a 256×
256×64 intermediate feature map corresponding to the input image it processed. �ese
maps are fused into a single joint feature map of the same size by picking the maximum

1Source code of our network architecture along with pre-trained weights will be released.
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value reported by any single-image network at each pixel and feature channel. �is
max-pooling procedure gives every single-image network equal means to contribute
to the content of the joint feature map in a perfectly order-independent manner [AD18,
CHW18]. We explored the use of mean pooling to aggregate information from all images
for each pixel, but did not notice signi�cant improvement.

�e pooled intermediate feature map is �nally decoded by 3 layers of convolutions and
non-linearities, which provide the network su�cient expressivity to transform the ex-
tracted information into four SVBRDF maps. �e global features in the fully-connected
tracks are max-pooled and decoded in a similar manner. �rough end-to-end training,
the single-image networks learn to produce features which are meaningful with respect
to the pooling operation and useful for reconstructing the �nal estimate.

While we vary the number of copies of the single-view network between 1 and 5 during
training, an important property of this architecture is that it can process an arbitrar-
ily large number of images during testing because all copies share the same weights,
and are ultimately fused by the pooling layer to form a �xed-size feature map. In our
experiments, we vary the number of input images from 1 to 10 at testing time.

4.2.3 Loss

We evaluate the quality of the network prediction with a di�erentiable rendering loss [LSC18,
LXR+18, DAD+18]. We adopt the loss of Deschaintre et al. [DAD+18], which renders
the predicted SVBRDF under multiple light and view directions, and compare these ren-
derings with renderings of the ground-truth SVBRDF under the same conditions. �e
comparison is performed using an l1 norm on the logarithmic values of the renderings
to compress the high dynamic range of specular peaks.

Following Li et al. [LSC18], we complement this rendering loss with four l1 losses, each
measuring the di�erence between one of the predicted maps and its ground-truth coun-
terpart. We found this direct supervision to stabilize training. Our �nal loss is a weighted
mixture of all losses, L = LRender + 0.1

(
LNormal + LDiffuse + LSpecular + LRoughness

)
.

4.2.4 Training

We train our network for 7 days on a Nvidia GTX 1080 TI. We let the training run for 1
million iterations with a batch size of 2 and input sizes of 256× 256 pixels. We use the
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Adam optimizer [KB15] with a learning rate set to 0.0002 and β = 0.5.

4.3 Online Generation of Training Data

Following prior work on deep-learning for inverse rendering [RGR+17, LDPT17, DAD+18,
LSC18, LXR+18, LCY+17], we rely on synthetic data to train our network. While in the-
ory image synthesis o�ers the means to generate an arbitrary large amount of training
data, the cost of image rendering, storage and transfer limits the size of the datasets
used in practice. For example, Li et al. [LSC18] and Deschaintre et al. [DAD+18] report
training datasets of 150,000 and 200,000 images respectively. �is practical challenge
motivated us to implement an online renderer that generates a new SVBRDF and its
multiple renderings at each iteration of the training, yielding up to 2 million training
images in practice.

We �rst explain how we generate numerous ground-truth SVBRDFs, before describing
the main features of our SVBRDF renderer.

4.3.1 SVBRDF synthesis

We rely on procedural, artist-designed SVBRDFs to obtain our training data. Starting
from a small set of such SVBRDF maps, Deschaintre et al. [DAD+18] perform data aug-
mentation by computing 20,000 convex combinations of random pairs of SVBRDFs. We
follow the same strategy, although we implemented this material mixing within Ten-
sorFlow [AAB+15], which allows us to generate a unique SVBRDF for each training
iteration while only loading a small set of base SVBRDFs at the beginning of the train-
ing process. We use the dataset proposed by Deschaintre et al., which contains 1, 850

SVBRDFs covering common material classes such as plastic, metal, wood, leather, etc, all
obtained from Allegorithmic Substance Share [All19b].

4.3.2 SVBRDF rendering

We implemented our SVBRDF renderer in TensorFlow, so that it can be called at each
iteration of the training process. Since our network takes recti�ed images as input, we
do not need to simulate perspective projection of the material sample. Instead, our ren-
derer simply takes as input four SVBRDF maps along with a light and view position, and
evaluates the resulting rendering equation at each pixel. We augment this basic renderer
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with several features that simulate common e�ects encountered in real-world captures:

Viewing conditions. We distribute the camera positions over an hemisphere centered
on the material sample, and vary its distance by a random amount to allow a casual
capture scenario where users may not be able to maintain an exact distance from the
target. We also perform random perturbations of the �eld-of-view (set to 40◦ by default)
to simulate di�erent types of cameras. Finally, we apply a random rotation and scaling to
the SVBRDF maps before cropping them to 256× 256 pixels, which simulates materials
of di�erent orientations and scales.

Lighting conditions. We simulate a �ash light as a point light with angular fall-o�.
We again distribute the light positions over an hemisphere at a random distance to simu-
late a handheld �ash. Other random perturbations include the angular fall-o� to simulate
di�erent types of �ash, the light intensity to simulate varying exposure, and the light
color to simulate varying white-balance. Finally, we also include the simulation of a
surrounding lighting environment in the form of a second light with random position,
intensity and color, which is kept �xed for a given input SVBRDF.

Image post-processing. We have implemented several common image degradations
– additive Gaussian noise, clipping of radiance values to 1 to simulate low-dynamic range
images, gamma correction and quantization over 8 bits per channel.

While rendering our training data on the �y incurs additional computation, we found
that this overhead is compensated by the time gained in data loading. In our experiments,
training our system with online data generation takes approximately as much time as
training it with pre-computed data stored on disk, making the actual rendering virtually
free.

4.4 Results and Evaluation

We evaluate our method using a dataset of 32 ground truth SVBRDFs not present in
the set used for training data generation. We also use measured Bidirectional Texture
Functions (BTFs) [WGK14] to compare the re-renderings of our predictions to real-world
appearances. Finally, we used our method to acquire a set of around 80 real materials.
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Figure 4.4: SSIM of our predictions with respect to the number of input images, averaged
over our synthetic test dataset. �e SSIM of re-renderings increases quickly for the �rst
images, before stabilizing at around 10 images. �e normal maps strongly bene�t from
new images. Di�use and specular albedos also improve with additional inputs, which
is not the case of the roughness that remains stable overall. We provide similar RMSE
plots as supplemental materials.

Since our method does not assume a controlled lighting, we used either the camera �ash
or a separate smartphone as the light source for those acquisitions. All results in the �g-
ures of this chapter were taken with two phones; please see supplemental for all results
and examples acquired with a single phone. Resulting quality is similar in both cases.
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Figure 4.5: Ablation study. Comparison of SSIM between our method (green) and a
restricted version (black) where the network is trained with lighting and viewing direc-
tions chosen on a perfect hemisphere, and with all lighting parameters constant (fallo�
exponent, power, etc.). Our complete method achieves higher SSIM when tested on a
dataset with small variations of these parameters, showing that it is robust to such per-
turbations that are frequent in casual real world capture.

4.4.1 Number of input images

A strength of our method is its ability to cope with a variable number of photographs. We
�rst evaluate whether additional images improve the result using synthetic SVBRDFs,
for which we have ground truth maps. We measure the error of our prediction by re-
rendering our predicted maps under many views and lights, as done by the rendering
loss used for training. Figure 4.4 plots the SSIM similarity metric of these re-renderings
averaged over the test set for an increasing number of images, along with the SSIM
of the individual SVBRDF maps. While most improvements happen with the �rst �ve
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images, the similarity continues to increase with subsequent inputs, stabilizing at around
10 images. �e di�use albedo is the fastest to stabilize, consistent with the intuition that
few measurements su�ce to recover low-frequency signals. Surprisingly, the quality
of the roughness prediction seems on average independent of the number of images,
suggesting that the method struggles to exploit additional information for this quantity.
In contrast, the normal prediction improves with each additional input, as also observed
in our experiments with real-world data detailed next. We provide RMSE plots of the
same experiment as supplemental materials.

Using the same procedure, in Figure 4.5 we perform an ablation study to evaluate the
impact of including random perturbations of the viewing and lighting conditions in the
training data. As expected, the network trained without perturbation does not perform
as well as our complete method on our test dataset that includes view and light variations
similar to those in casual real world capture. We trained both networks for 750,000

iterations for this experiment.

Figure 4.6 shows our predictions on a measured BTF material from the Bonn database
[WGK14], using 1, 2, 3 and 10 inputs. For this material, normals, di�use albedo and
roughness estimations improve with more inputs. In particular, the normal map pro-
gressively captures more relief, the di�use albedo map becomes almost uniform, and the
embossed part on the upper right is quickly recognized as shinier than the remaining of
the sample.

For a real material capture we performed (Figure 4.7), we see similar e�ects: normals
are improved with more inputs, and the di�erence of roughness between di�erent parts
is progressively recovered. However, we do not have access to ground truth maps for
these real-world captures.

Overall, our results in Figure 4.4-4.10 and in supplemental material illustrate that our
method achieves our goals: adding more pictures greatly improves the results, notably
removing artifacts in the di�use albedo while improving normal estimation. Our method
enhances the quality of recovered materials while maintaining a casual capture.

4.4.2 Comparison to multi-image optimization

We compare our data-driven approach to a traditional optimization that takes as input
multiple images captured under the assumption of known and precisely calibrated light



Chapter 4. Flexible SVBRDF Capture with a Multi-Image Deep Network 67
1

in
pu

t
2

in
pu

ts
3

in
pu

ts
10

in
pu

ts

Inputs Renderings Normal Di�use Roughness Specular

Figure 4.6: Evaluation on a measured BTF. �ree images are enough to capture most of
normal and roughness maps. Adding images further improves the result by removing
lighting residual from the di�use albedo, and adding subtle details to the normal and
specular maps.

and viewing conditions. Given these conditions we solve for the SVBRDF maps that
minimize re-rendering error of the input images, as measured by our rendering loss.
We further regularize this optimization by augmenting the loss with a total-variation
term that favors piecewise-smooth maps. We solve the optimization with the Adam
algorithm [KB15]. While the optimization stabilizes a�er 900K iterations, we let it run
for a total of 2M iterations to ensure full convergence, which takes approximately 3.5

hours on an NVIDIA GTX 1080 TI. Given the non-convex nature of the optimization,
we initialize the solution to a plausible estimate obtained by se�ing the di�use albedo
map to the most fronto-parallel input, the normal map to a constant vector pointing
upward, the roughness to zero and the specular albedo to gray. We use synthetic data
for this experiment, which provides us with full control and knowledge of the viewing
and lighting conditions needed by the optimization, as well as with ground truth maps
to evaluate the quality of the outcome.
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Figure 4.7: A single �ash picture hardly provides enough information for surfaces com-
posed of several materials. In this example, adding images allows the recovery of normal
details, and the capture of di�erent roughness values in di�erent parts of the image. Note
in particular how the 4th image helps capturing a discontinuity of the roughness on the
right part.

Figure 4.8 compares the number of input images required to achieve similar quality be-
tween the classical optimization and our method, using view and light directions uni-
formly distributed over the hemisphere. On rather di�use materials (stones, tiles), the
optimization needs a few dozen calibrated images to achieve a result of similar quality to
the one produced by our method using only 5, uncalibrated images. A similar number of
images is necessary for a material with uniform shininess (scales). However more than
900 images were necessary for our optimization to reach the quality obtained by our
method on a material with signi�cant normal and roughness variations (wood). Overall,
our method achieves plausible results with much fewer inputs captured under unknown
lighting, although classical optimization can recover more precise SVBRDFs if provided
with enough carefully-calibrated images.
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(a) Stones (b) Scales

(c) Tiles (d) Wood

(5 inputs)

Figure 4.8: SSIM on re-renderings for the maps obtained by our method with 5 images
(do�ed blue) and by a classical optimization method with an increasing number of input
images (black). �e classical optimization requires several dozens of calibrated pictures
to outperform our method on rather di�use or uniform materials (stones, tiles, scales),
while requiring many more for a more complex material (wood).

4.4.3 Comparison to alternative deep learning methods

We �rst compare our architecture to a simple baseline composed of the network by
Deschaintre et al. [DAD+18] augmented to take 5 images instead of one. �is base-
line achieves an average SSIM of 0.826, similar to the SSIM of 0.847 produced by our
method for the same number of inputs. �is evaluation demonstrates that our multi-
image network performs as well as a �xed network while providing the freedom to vary
the number of input images.
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We next compare to the recent single-image methods of Deschaintre et al. [DAD+18]
and Li et al. [LSC18], which both take as input a fronto-parallel �ash photo. Figure 4.9
provides a visual comparison on synthetic SVBRDFs with ground truth maps, Figure 4.11
provides a similar comparison on BTFs measured from 81x81 pictures, which allow
ground-truth re-renderings, and Figure 4.10 provides a comparison on real pictures.
While developed concurrently, both single-image approaches su�er from the same lim-
itations. �e co-located lighting tends to produce low-contrast shading, reducing the
cues available for the network to fully retrieve normals. Adding side-lit pictures of the
material helps our approach retrieve these missing details. �e fronto-parallel �ash also
o�en produces a saturated highlight in the middle of the image, which both single-image
methods struggle to in-paint convincingly in the di�erent maps. While the strength of
the highlight could be reduced by careful tuning of exposure, saturated pixels are dif-
�cult to avoid in real-world capture. In contrast, our method bene�ts from additional
pictures to recover information about those pixels.

Another limitation of these two single-image methods is that the �ash highlight cannot
cover all parts of the material sample. �is lack of information can cause erroneous
estimations, especially when the sample is composed of multiple materials with di�erent
shininess. Providing more pictures gives a chance to our method to observe highlights
over all parts of the sample, as is the case in Figure 4.7, where the di�erence in roughness
in the upper right only becomes apparent with the 4th input.

4.4.4 Limitations

Since our method builds on the single-image network of Deschaintre et al. [DAD+18],
it inherits some of its limitations. First, the method is limited to materials that can be
well represented by an isotropic Cook-Torrance BRDF. We also observe that the method
tends to produce correlated maps and interpret dark materials as shiny, as shown in
Figure 4.12(top) where despite several pictures, albedo variations of the cardboard get
interpreted as normal variations, and the black le�ers get assigned a low roughness. �is
behavior re�ects the content of our training data, since most artist-designed SVBRDFs
have correlated maps.

Since we rectify the multi-view inputs with a simple homography, we do not correct
for parallax e�ects produced by surfaces with high relief. �is approximation may yield
misalignment in the input images, which in turn reduces the sharpness of the predicted
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maps. In addition, our SVBRDF representation, training data, and rendering loss do not
model cast shadows. While shadows are mostly absent in pictures taken with a co-
located �ash, they can appear when using a handheld �ash and remain visible in some
of our results, as shown in Figure 4.12 (bo�om).

Finally, our experiments on synthetic data suggest that providing additional images im-
proves quality on all SVBRDF parameters except roughness (Figure 4.4). �is limitation
may be partly due to the use of a point light source, which produces small specular
highlights, and to the uncertainty in the light distance and properties. Di�erentiable
rendering of other light sources (e.g., area lights or environment maps) might address
this partly, making capture somewhat more �exible and potentially improving perfor-
mance since gloss is be�er conveyed by extended lights [FDA03].
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Figure 4.9: Comparison against single-image methods on synthetic SVBRDFs. Our
method leverages additional input images to obtain SVBRDF maps closer to ground truth.
In particular, single-image methods under-estimate normal variations and fail to remove
the saturated highlight on shiny materials. See supplemental materials for more com-
parisons and results.
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Figure 4.10: Comparison against single-image methods on real-world pictures. Our
method recovers more normal details, and be�er removes highlight and shading resid-
uals from the di�use albedo. See supplemental materials for more comparisons and re-
sults.
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Figure 4.11: Comparison against single-image methods on a measured BTF with ground
truth re-renderings. Our method globally captures the material features be�er.
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Figure 4.12: Limitations. We inherits some of the limitations of the method by Deschain-
tre et al. [DAD+18], such as the tendency to produce correlated maps and to interpret
dark pixels as shiny (top). Our SVBRDF representation, training data and loss do not
model cast shadows. As a result, shadows in the input pollute some of the maps (bot-
tom).
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4.5 Conclusion

In this chapter, we described a data generation pipeline allowing for fast experimentation
on data simulating di�erent acquisition process. Using our tensor�ow based renderer, we
are able to transfer the time cost of reading data on a cluster to rendering new material
at each training step.

We also present a deep network architecture allowing to combine an arbitrary number of
pictures to retrieve high quality SVRBDF parameters. We are nonetheless still limited to
low resolution for GPU memory issues and small patches of materials as the acquisition
picture must be taken from close enough to maintain the �ash power. In Chapter 5 we
explore how to solve this limitation, and increase both the resolution and the scale of
the acquired surface.



C h a p t e r 5

By-Example Capture of Large-Scale SVBRDFs
�e work presented in this chapter was done in collaboration with Adrien Bousseau and
George Dre�akis and is under submission.

Figure 5.1: Our method estimates the SVBRDF of large surfaces from just a few pictures.
In a typical capture session, users only need to take a single picture of the entire surface,
along with a small number of close-ups. �is lightweight work�ow is particularly ad-
vantageous for on-site capture, as was the case for the shiny mural and tiled �oor shown
above. Alternatively, users can feed our method with an existing picture, along with a
small number of exemplar SVBRDF patches of similar materials. �is second work�ow
provides a new form of artistic control to material designers. Please see supplemental
materials for high-resolution SVBRDF parameter maps and animated renderings of all
our results, which give a much be�er impression of the material properties.
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Recent progress on lightweight appearance capture allows the recovery of real-world
spatially-varying re�ectance (SVBRDF) from just a few photographs of a surface. In
particular, multiple methods —such as the ones described in Chapters 3 and 4 and re-
cent work [AWL15, AAL16, RPG16, HSL+17, DAD+18, LSC18, DAD+19, GLD+19] —
take as input one or several photographs captured with a hand-held camera, where the
co-located �ash provides informative spatially-varying illumination over the measured
surface sample.

In this chapter, we complement such small-scale inputs with a picture of the entire sur-
face, taken under ambient lighting. Our method then fuses these two sources of informa-
tion to propagate the SVBRDFs estimated from each close-up �ash picture to all pixels
of the large image. To achieve this goal, we designed a deep neural network that takes
as input the large-scale image and an arbitrary number of small-scale exemplar SVBRDF
patches, and outputs a large SVBRDF aligned with the input image. �is design leverages
the complementary strengths of deep-learned priors and inference-time exemplars. Fur-
thermore, we describe how to decompose the large input into independent tiles, which
allows our method to process images that cannot �t entirely on GPU memory. �anks
to our two-scale approach, we can capture surfaces several meters wide, such as walls,
doors and furniture.

We demonstrate the strength of our approach in two usage scenarios. In our �rst sce-
nario – on-site acquisition – we capture a single photograph of a large surface as well as
a few close-up �ash photographs of its details. We then use our method, described in
Chapter 3 to extract SVBRDF maps from the �ash photographs [DAD+18], and use our
method to propagate this information to the large image, e�ectively acquiring SVBRDFs
several meters wide. In our second scenario – creative design – we use stock photographs
as our large-scale input, and artist-created SVBRDFs already available to us as our ex-
emplars, demonstrating �ne control on the creation of realistic SVBRDFs solely from ex-
isting data. �is new work�ow o�ers users the ability to control the materials assigned
to the large image by selecting di�erent exemplars, greatly enhancing the creative pos-
sibilities o�ered by capture-based materials.
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Figure 5.2: Overview of our method. We �rst split the input large-scale image into
overlapping tiles (a). Each tile is then processed by a U-Net encoder-decoder to pro-
duce SVBRDF maps (b, black blocks). �is convolutional network communicates with a
fully-connected network that extracts and processes global features of the material, as
proposed in Chapter 3 (b, green blocks). We complement this architecture with one or
several SVBRDF encoders (c) that process the material exemplars. Features extracted by
these encoders are fused and injected at multiple levels of the U-Net encoder, and in turn
transmi�ed to the U-Net decoder via its skip connections (b, black arrows). �e last step
of our method is to stitch the SVBRDF maps predicted from all tiles to form a large-scale
output (d).

5.1 Method

Our method takes as input a single picture of a large-scale surface captured under ambi-
ent lighting, along with a few close-up SVBRDF patches of the same or a similar surface.
�ese patches can be acquired with any existing small-scale SVBRDF capture method,
or taken from a library of real-world or synthetic SVBRDFs, possibly including di�erent
variants of the material. Intuitively, the large scale image represents the target surface
for which we want to estimate the SVBRDF, while the close-up patches serve as ex-
emplars of what this SVBRDF should look like locally. Our method supports a varying
number of exemplar patches, for instance to treat large-scale surfaces composed of a
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mixture of small-scale materials. �e close-up patches also o�er users a way to control
the SVBRDF reconstruction in ambiguous cases where multiple valid interpretations ex-
ist. For example, in the absence of highlights, the picture of a brick wall could equally be
interpreted as made of di�use bricks or of specular ceramic tiles. We demonstrate that
we can achieve either of these results by providing di�use or specular exemplar patches
to our method.

�e main task of our algorithm is to propagate information from a few exemplar patches
to all pixels of the large-scale image. Related work on guided image synthesis tackle a
similar challenge by building explicit correspondences between the target image and the
exemplars [MGSJW12] or between re�ectance intensity of a limited number of materials
to transfer roughness properties [RPG16]. However, our experiments reveal that this
strategy tends to fail when the exemplars are only representative of parts of the target
image, as is common in our application scenario. We instead propose a novel approach
based on deep learning, which allows our method to combine the information present
in the exemplar patches with material priors learned from a large dataset of SVBRDFs.

Our deep network is composed on two main branches. �e �rst branch processes the
large-scale image in an encoder-decoder fashion, similar to our network described in
Chapter 3 and recent work on single-image SVBRDF capture using deep learning [DAD+18,
LSC18]. �e other branch encodes each SVBRDF patch into a compact descriptor. We
aggregate the information extracted from all patches using max pooling layers, which
allows our method to handle an arbitrary number of exemplar patches in an order-
independent manner. Finally, we concatenate the feature maps computed by the SVBRDF
encoder to these computed by the large-scale image encoder, allowing the subsequent
decoder to exploit the two sources of information. Figure 5.2 provides a visual overview
of our method to extract SVBRDF parameter maps for large-scale surfaces. We �rst
describe typical inputs to our method, before explaining our deep neural network archi-
tecture and training process.

5.1.1 Inputs

Our goal is to generate SVBRDF parameter maps for large-scale planar surfaces, such as
walls, doors or furniture. To do so, our method takes two forms of input. First, a single
picture of the surface of interest, captured under ambient indoor or outdoor lighting.
Second, a series of SVBRDF patches that represent small parts of the surface, or of a
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similar material. To obtain these patches, we either capture close-up �ash pictures of
the surface and run our single-image SVBRDF method described in Chapter 3, or we
select SVBRDFs from a library of artist-designed materials [All19b].

As a pre-process, we split the large-scale image into tiles of 512 × 512 pixels to �t in
GPU memory. Neighboring tiles have an overlap of 256 pixels to facilitate subsequent
stitching of their SVBRDF maps. We assume that all tiles receive approximately the same
lighting, which is not the case for pictures taken with a �ash as used in our methods
described in Chapters 3 and 4 and prior work [DAD+18, LSC18, DAD+19, GLD+19].

Finally, we also render each exemplar SVBRDF patch under a random distant lighting
and provide these images as extra channels to help the method relate the input large-
scale image with the exemplars.

5.1.2 Neural network architecture and loss

Our method processes each tile of the input image independently to output four Cook-
Torrance [CT82] SVBRDF maps, corresponding to the normal, di�use albedo, specular
albedo, and specular roughness of each input pixel. �is task is performed by an encoder-
decoder convolutional neural network similar to the one used in Chapter 3 and recent
single-image methods [DAD+18, LSC18]. In particular, we adopt the architecture de-
scribed in Chapter 3, where a convolutional U-Net [RPB15] computes image features at
multiple scales while a fully-connected network extracts and transmits global informa-
tion across scales.

However, a single image o�en does not provide enough information to recover SVBRDF
parameters unambiguously, especially in the absence of �ash highlights. Our solution to
this challenge is to complement the image encoder-decoder with an SVBRDF encoder,
which extracts multi-scale features from an exemplar SVBRDF patch. We then inject
this additional information into the image network by concatenating the feature maps
extracted by the SVBRDF encoder with the feature maps of same resolution extracted
by the image encoder. �e features concatenated at each level are processed by the next
level of the U-Net encoder, and are also transmi�ed to the corresponding level of the
decoder thanks to the U-Net skip connections. Importantly, we train the image and
SVBRDF deep networks jointly, such that the SVBRDF encoder learns to extract multi-
scale features that best help the image encoder-decoder in its SVBRDF estimation task.
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An additional di�culty raised by our target application is that di�erent images might
require a di�erent number of exemplar patches to cover their constituent materials. We
designed our method to support an arbitrary number of exemplars by aggregating the
feature maps extracted by several instances of the SVBRDF encoder into a single pyramid
of feature maps. We perform this aggregation using max pooling over the set of feature
maps, which selects the strongest activations independently of the order in which the
patches are processed. A similar mechanism has been recently used for related problems,
such as multi-image material acquisition, described in Chapter 4 [DAD+19], photometric
stereo [CHW18], and burst image deblurring [AD18].

Similarly to our work described in Chapter 4 and recent work on deep material capture
[DAD+19, LSC18], we train our network to minimize a reconstruction loss that measures
the per-pixel L1 distance between each predicted parameter map and its ground truth,
as well as a rendering loss that measures the per-pixel L1 distance between renderings of
the predicted SVBRDF and ground truth under 9 di�erent view and light conditions. In
addition, we also account for the local structure of the material by evaluating a multi-
scale Structural SIMilarity metric (SSIM) on these renderings.

5.1.3 Post-processing

�e last step of our method consists in merging the predictions of all tiles into a large-
scale SVBRDF. Since all tiles are processed using the same exemplars, neighboring tiles
mostly agree in their predictions up to low frequency variations. We achieve a seamless
composite by blending the tiles over their overlap using a Gaussian weighting kernel
that gives a weight of 1 at the center of the tile and reaches almost 0 at its border. �is
mechanism allows our method to be applied on high-resolution inputs of arbitrary aspect
ratio.

5.1.4 Training

We trained our deep network with synthetic SVBRDFs [All19b] that provide ground
truth supervision for each parameter map. We rely on the same set of training SVBRDFs
as described in Chapter 3, except that we render them at a higher resolution of 2048 ×
2048 pixels. At each training step, a unique material is created by mixing two of these
pre-computed SVBRDFs. We then extract between 1 and 3 patches of 256×256 pixels to
form the SVBRDF exemplars. Finally, we extract a large crop to serve as the input image,
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which we resize to 512 × 512 pixels to be fed to the network. We vary the size of this
crop between 512× 512 and 1024× 1024 pixels, such that the input image and SVBRDF
exemplars contain features of di�erent scales. Similarly to Chapter 4, we perform all
these processing steps at training time in TensorFlow [AAB+15] to reduce storage and
data transfer.

We trained the network for 700 000 steps to obtain the results shown in this paper and
supplemental materials, which took around 6 days on a GV100 graphics card.

5.2 Evaluation

We �rst present results obtained by applying our method on our own photographs as
well as on internet images. We then compare our method with alternative approaches on
synthetic data for which we have ground truth SVBRDF maps. Please see supplemental
materials for high-resolution SVBRDF parameter maps and animated renderings of all
our results, which give a much be�er impression of the material properties.

5.2.1 Results

Our research was originally motivated by the need to quickly acquire the appearance of
large-scale surfaces with minimal hardware. Following this �rst usage scenario, we used
a smartphone to photograph a variety of planar objects (walls, �oors, furniture). For each
object, we �rst captured a single photograph showing the object in its entirety, under
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Figure 5.3: Real-world surface captured on-site with our method. We used a single �ash
picture to capture the shininess of the tiles, which is propagated to all tiles of the large
�oor. Please zoom on the .pdf to appreciate the high-resolution details of the individual
SVBRDF maps.
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Figure 5.4: Real-world surface captured on-site with our method. We used a single �ash
picture to capture the shininess of the tiles, which is propagated to all tiles of the mo-
saic. Please zoom on the .pdf to appreciate the high-resolution details of the individual
SVBRDF maps.

ambient lighting. We then captured one to three close-up �ash photographs of parts
that exhibit characteristic material features. Finally, we ran the single-image SVBRDF
estimation network described in Chapter 3 to obtain SVBRDF exemplars for each close-
up. Figure 5.1, 5.3 and 5.4 show tiled �oors, an ornamental mural, and a mosaic captured
on-site with this approach. �anks to the provided exemplars, our method faithfully
reproduces the varying shininess of the di�erent tiles, as well as the metallic appearance
of the golden mural.

A second usage scenario of our method is to estimate the SVBRDF maps of existing
pictures, using existing SVBRDFs as exemplars of similar materials. Figure 5.5 illustrates
this work�ow on three internet images, which we processed with exemplars taken from
results of our method described in Chapter 3 or from a library of artist-created procedural
SVBRDFs [All19b]. Our method transfers the relief and shininess of the exemplars across
the surface while conforming to the input image. Note for instance how the roughness
map predicted for the brick wall (Figure 5.5, 3rd row) makes the red bricks shinier than
the paint, yet includes variations correlated with the presence of dust.

Figure 5.6 further demonstrates the in�uence of the input exemplars on the output
SVBRDF. In this example, the SVBRDF patches obtained from �ash close-ups are quite
rough. Replacing these exemplars by a synthetic SVBRDF of shiny tiles lowers the rough-
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Figure 5.5: Various SVBRDFs estimated from internet images. We selected captured or
procedural SVBRDF patches as exemplar materials, which helps our method recover the
spatially-varying normals and roughness of stones, bricks, metal, paint. Please zoom on
the .pdf to appreciate the high-resolution details of the individual SVBRDF maps.
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Figure 5.6: Given the same input picture, we achieve di�erent outcomes by changing
the exemplars. �e exemplars in top row are less shiny than in the bo�om row, which
e�ectively translates to the predicted roughness map, and to the �nal rendering.

ness of the mosaic, yielding sharper highlights in the rendering.

Finally, Figure 5.10 showcases a variety of SVBRDFs created with our method, either via
on-site acquisition or from stock photographs. Note that most of these results represent
large, non-square surfaces encoded as high-resolution parameter maps, which contrasts
with the small material samples o�en shown in related work.

5.2.2 Comparisons

To our knowledge, our method is the �rst to o�er by-example guidance to deep SVBRDF
inference. We �rst compare to a baseline without exemplars, before comparing to related
work on style transfer. We use synthetic SVBRDFs for these comparisons.

Our method uses the single-image network described in Chapter 3 as a backbone for
SVBRDF prediction. Figure 5.7 shows results of their method when trained on our
dataset. In the absence of �ash highlights, the single-image network alone under-estimates
the material roughness, and tends to interpret variations of the di�use albedo as normal
variations. In contrast, our method transfers the overall appearance of the exemplar,
yielding a stronger roughness and a �a�er normal map, in accordance with the ground
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Figure 5.7: Comparison with our single-image method presented in Chapter 3 (top)
trained on images under ambient lighting. Our example-based approach be�er repro-
duces the �at normals and high roughness of this material.
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Figure 5.8: Comparison to a variant of our method that only transfers the low-resolution
feature maps of the SVBRDF exemplar. Our multi-scale design be�er captures local vari-
ations of normals, roughness and di�use albedo.

truth. However, both the baseline and our method struggle to capture the small, �ne
scratches, which are hardly visible even in ground-truth re-renderings.

Figure 5.8 provides a comparison against a variant of our method, where we only transfer
the lowest-resolution feature map of the SVBRDF encoder. �is ablation reveals the
bene�ts of transferring multi-scale features, in particular for the recovery of �ne details.

Our approach is most related to the method by Melendez et al. [MGSJW12], which trans-
fers di�use albedo and displacement maps using a patch-based texture synthesis algo-
rithm akin to image analogies [HJO+01]. We reproduced this approach using the state-
of-the-art patch-based synthesis algorithm of Fišer et al. [FJL+16], using the rendered
SVBRDF as guidance. Note that since this algorithm was originally developed for style



Chapter 5. By-Example Capture of Large-Scale SVBRDFs 89

Normal Di�use Specular Roughness Rendering

Ad
aI

n[
H

B1
7]

St
yl

eI
t[F

JL
+

16
]

Gr
ou

nd
Tr

ut
h

O
ur

m
et

ho
d

Ex
am

pl
es

Figure 5.9: Comparison to neural style transfer [HB17] and patch-based texture synthesis
[FJL+16]. Our method be�er transfers details of the surface compared to prior work,
which either only captures global statistics (1st row) or struggles to generalize from a
limited exemplar (2nd row).
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transfer, it assumes that the image to be synthesized only contains three color channels.
We coped with this limitation by running their code on each SVBRDF map separately.
Figure 5.9 provides the results of this experiment, where the patch-based synthesis lacks
variety in the maps due to the limited variety of the provided exemplar. While more
advanced synthesis algorithms have been proposed to interpolate between limited ex-
emplars [DBP+15], our method based on deep learning natively generalizes the exemplar
to the entire large-scale image.

Finally, Figure 5.9 also includes a comparison to AdaIN [HB17], a recent stylization al-
gorithm based on deep learning that transfers statistics of deep features between an
exemplar image and a target. Similarly to the above experiment, we applied the pre-
trained method on each SVBRDF parameter map separately. While this generic style
transfer algorithm reproduces the overall color distribution of the maps, it misses many
of the �ne details.

5.2.3 Limitations

As with previous deep-learning based methods for material capture, including the ones
described in Chapters 3 and 4 [DAD+18, DAD+19, LSC18], we cannot handle cast shad-
ows, or any other phenomenon that requires more than a normal/bump map. Extending
our approach to handle such cases, e.g., using a displacement map, would require a much
more complex learning pipeline to handle 3D and the consequent complexities of ren-
dering during training.

Our method has di�culty to distinguish di�erent materials that share similar colors,
such as the shiny leather and rough wood in Figure 5.11, which are interpreted as hav-
ing a similar average roughness. A possible solution to this limitation might be to aug-
ment the input image and exemplars with semantic guidance channels, as is commonly
done for style transfer [FJS+17]. Our method also assumes that the large-scale input is
captured under largely uniform lighting When this is not the case, large illumination
gradients pollute the SVBRDF maps, as shown in Figure 5.12.
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Figure 5.10: A variety of surfaces captured with our method.



92 Chapter 5. By-Example Capture of Large-Scale SVBRDFs

Input picture Examples Results Rendering

Re
nd

.
N

or
m

.
D

i�
.

Ro
ug

h.
Sp

ec
.

N
or

m
al

s

D
i�

us
e

Ro
ug

hn
es

s

Sp
e c

ul
ar

Figure 5.11: Limitation. In the absence of additional guidance, our method can have
di�culty distinguishing materials with similar colors, like this wood and leather. While
we selected a di�use wood and a shiny leather as exemplars, the predicted roughness
map assigns similar values to the two materials.
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Figure 5.12: Limitation. Our method is not designed to handle large illumination gradi-
ents over the surface.

5.3 Conclusion

In this chapter we presented a method for large-scale material acquisition which allows
more diversity and control in the capture. On one hand we provide user-control to the
acquisition process through the example patches, allowing to in�uence properties of
the material in the desired direction. On the other hand we allow material capture at
arbitrary scale, resolution and aspect ratios, signi�cantly improving the versatility in
the capture process. In the future, we would like to generalize our approach to curved
surfaces, possibly using some form of geometry reconstruction along with a suitable
representation for deep learning, such as texture atlases. Furthermore, we hope that this
work will inspire more research on deep material encoding for edition and acquisition.



C h a p t e r 6

Industrial challenges

My PhD was funded by a collaboration between french ”Agence Nationale Recherche
Technologie” (ANRT) and Optis, an ANSYS a�liate. While my main responsibility was
to lead research projects, it also included knowledge and technology transfer to Optis
and exploration of solutions to industrial challenges related to my research.

6.1 Research transfer

�e projects presented in this thesis were chosen to explore research directions close
to Optis’ interests. As challenges closer to industrial concerns arose, we pursued fur-
ther experiments to adapt our methods. In this section I develop the main industrial
concerns we encountered and how we tackled them. Some details are not included for
con�dentiality reasons.

6.1.1 Di�erent model training

During our project we selected the Cook-Torrance model [CT82], provided in Substance
Designer, for compatibility. �is ensures that we render the materials as close from the
original design as possible, for network training.

In comparison, Optis uses a material model, also inspired by Cook-Torrance, but using
a distribution closer to the one described by Beckmann & Spizzichino [BS87]. �is is a
challenge, as the material dataset we have was not design to be rendered using Optis’
model.

Fortunately, our rendering loss is agnostic to the material model since it compares the
renderings of the training data and outputs, rather than material parameters. We there-
fore don’t need the material models to be the same. We implement the output material
model equation in our di�erentiable renderer, as illustrated in Figure 6.1. With this, we
are able to train our network to output any material model able to represent the light
behavior visible in the training data.
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Figure 6.1: �e rendering loss is agnostic to the material model used. We can train our
network to output any material model able to represent all the e�ects displayed by the
targets.

6.1.2 Resolution

A second limitation for industrial use is the de�nition of the output material maps. Dur-
ing our research projects described in Chapter 3 and Chapter 4, we trained the network
with 256x256 images to increase the training speed and reduce the GPU memory con-
sumption. A much higher resolution is required in industrial use of SVBRDFs to avoid
the typical blurry appearance -visible in Figure 6.2. To solve this, we explored the possi-
bility to extend our network with a few layers at the beginning of the encoder and the end
of the decoder to use 1024x1024 inputs as shown in Figure 6.3. �is approach seems to
work well but requires long training time and large VRAM GPUs. In our experience, we
trained this ”HD” version for a week and see that despite it had not fully converged, the
training behavior was similar. A concern would be that the training becomes less stable
if we add too many layers. Karras et al. [KALL18] discuss a method to train GANs, which
are famously unstable, for higher resolution. �ey propose to progressively increase the
resolution during the training, by smoothly blending in new, higher resolutions, layers.
I believe a similar technique could help maintain our network stable.

Another approach is to use the convolutional nature of the network, making it invariant
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256x256 material 1024x1024 material

Figure 6.2: Images rendered on 1024x1024 resolution, using a 256x256 material on the le�
and a 1024x1024 resolution material on the right. �is illustrates the blurriness created
when the material resolution is too low compared to the rendering size.

Figure 6.3: We illustrate here the architecture modi�cation required to train a network
with 1024x1024 images. In blue are the additional layers.
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to the input size, as proposed by Gao et al.[GLD+19]. We present the result of this
experiment in Figure 6.1.2. While a small resolution increase seem to maintain most of
the network behavior, if we get too far from the original training size the quality goes
down signi�cantly. When increasing the size of the input, one also increases the size
of the intermediate features, while the �lters learned by the network do not adapt their
size. Depending on the application, it may be di�cult to maintain a good receptive �eld
for the convolutions and a good encoding for the de-convolutions. We believe that this
is the reason of the decreasing quality, visible in Figure 6.1.2

While these two options are interesting �rst approaches, we were still limited by the
GPU memory and our use of close-up �ash pictures for the resolution and scale of our
acquisition. �ese limitations lead us to our work described in Chapter 5, removing the
scale constraint, but also allowing for high resolution inference.
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Figure 6.4: As our architecture is fully convolutional, the size of the input can be changed
at inference time. Here we see the results of our one image method (described in chapter
3) using di�erent sizes inputs. We can see that the results slowly degrades as the input
resolution is further from the training size (256x256). �is is visible in the normal which
�a�ens, the metal specular behavior is slowly shi�ed to di�use, the roughness gets noisy
and the re-renderings are less faithful to the inputs with higher resolution. We believe it
is due to the feature and cues size dramatical change and the internal features becoming
too di�erent for the decoder to interpret correctly.

6.2 Evaluation against goniore�ectometer

Our lightweight material acquisition methods produce plausible results, but without in-
formation about light and camera properties they are not correctly calibrated. While
we evaluate our results in Chapter 3 and Chapter 4 against synthetic data ground truth,
industrial users such as engineers and designers rely on physically correct behaviors
of materials both for appearance and for optical property analysis. We therefore want
to evaluate the error in BRDFs acquired through our algorithms against a specialized
material acquisition hardware, and explore how to calibrate our results.
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6.2.1 Acquisition process

For this evaluation method we use two acquisitions setups.

Goniore�ectometer �e �rst setup is the Optis OMS2. It is a portable goniore�ec-
tometer commercialized by Ansys, measuring isotropic homogeneous opaque materials
in under a minute. �e acquired material is measured using multiple incidence and view
angles, producing a good quality tabulated BRDF representation. We consider the mea-
surements of this device as ground truth for our experiment. On a perfectly di�use
sample, the accuracy and repeatability of the device are below 5% of error. �e .brdf
�le that is produced, can be exported as conoscopic maps (see Figure 6.8), sampling, for
a given wavelength, 5 incident angles for 400 x 400 theta-phi outgoing directions. We
extract 3 conoscopic maps, corresponding to the RGB channels of usual analytic mate-
rial models, respectively at 600nm, 550 nm, 450nm. I refer to this ground truth as the
BRDFmeasured.

Deep learning �e second setup is our multi-image method, allowing to combine mul-
tiple pictures of a material from arbitrary light and view conditions to evaluate a Cook-
Torrance SVBRDF model (described in Chapter 4). In our experiment, we combine 6
pictures taken with a single phone and its �ash. Light and view direction are there-
fore almost collocated. Each picture is linearized and re-projected -as required by the
method- before inference. As the BRDFmeasured is spatially homogeneous BRDFs, we
remove the spatially varying component of the deep learning results by extracting an
average of the values of the albedos for each material in the SVBRDF. We refer to these
values in our experiment as the BRDFinferred.

6.2.2 Error computation

To compute the error of the analytical model inferred by our multi-image method, we
sample the material model function to generate a conoscopic map with the same repre-
sentation as the BRDFmeasured.

We de�ne three errors. �e ”Factor” is a �oat representing the average factor of multi-
plication between the inferred BRDF and the measured BRDF. Providing a ”global cor-
rection factor” for each wavelength.

Factor = 1
N

∑N
1

BRDFmeasured

BRDFInferred
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N is the number of di�erent light/view directions sampled in the conoscopic maps.

�e ”Absolute error” is de�ned by the absolute value of the di�erence between measured
and inferred BRDFs

ErrorAbsolute =
1
N

∑N
1 |BRDFmeasured −BRDFInferred|

And �nally, the ”Relative error” calculation, gives us an estimation of how precise the
BRDFInferred is, relatively to the value of the BRDFmeasured.

ErrorRelative =
1
N

∑N
1
|BRDFmeasured−BRDFInferred|

BRDFmeasured

�ese three metrics provide us with a good understanding of the error in the inferred
material, with both absolute error —ErrorAbsolute— representing the physical di�erence
and relative errors —Factor and ErrorRelative— pu�ing the error in perspective.

6.2.3 Experiment

We design an experiment to evaluate the use of an average factor to “correct” the inferred
BRDF. �e di�use and specular albedos are multiplied by this factor and we evaluate the
new errors of this ”corrected BRDF”. �is can be used to calibrate a spatially varying
material with high frequency variation of the same material for example.

6.2.4 Results

I will describe the result on one of the acquired material and present the kind of visual-
ization we use.

We use a X-Rite color checker to acquire sample materials as showed in Figure 6.5.

3D Projections

In Figure 6.6 & Figure 6.7 I evaluate with a 3D projection the measured BRDF (in blue)
and the inferred BRDF (in red). I present here the results for 2 di�erent incidences, before
and a�er factor correction. We can see that the factor helps to correct most of the error
caused by the unknown light power during acquisition, by correcting the albedos level,
but does not in�uence the BRDF “shape”.

Conoscopic maps
Conoscopic maps represent the amount of light re�ected for a given light incidence for
each outgoing θ and φ direction. Figure 6.8 & Figure 6.9 represent the conoscopic maps
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Figure 6.5: X-rite Color checker. I will focus on the results for the blue BRDF.

and the errors of measured BRDF and inferred BRDF for a light incidence of 10°, be-
fore and a�er factor correction. We see that most of the error -in the right columns- is
drastically reduced from over 200% to below 50% for this incidence angle.

BRDF slice
�e �gure 6.10 represents a slice of the BRDF with varying incident lighting (columns)
for each RGB channel (lines). It is computed for φLight = π and φV iew = 0. We found
this representation to be a good summary of the BRDFs behavior. We can clearly see
the e�ect of the factor correction, bringing the corrected BRDF (do�ed red) signi�cantly
closer to the measured one (blue). We also evaluate the di�erence of using a single global
factor for the whole BRDF (do�ed red), or one di�erent for each incidence (do�ed green)
and show that the di�erence is minor.

Finally, the Table 6.11 shows a summary of the quantitative errors.
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Figure 6.6: Blue BRDF intensity for 10° light incidence. Each row represents a color
channel (R,G,B). In red is the inferred BRDF and in blue, the measured BRDF. �e le�
column compares the intensities before correction and the right one a�er correction.

6.2.5 Conclusion

In this experiment, we show that a single inferred BRDF can be calibrated using a scaling,
bringing the relative error below 20% in all our tests. Our hypothesis is that the scaling
compensates for the unknown light power and white balance at acquisition time. An
interesting direction is to explore how a multi-material SVBRDF acquired in a single
picture set could be corrected and whether the correction is uniform. Future research
directions could be to evaluate the e�ects of white balance on the result of our method
or evaluate strongly specular materials such as metals.
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Figure 6.7: Blue BRDF intensity for 68.9° light incidence. Each row represents a color
channel (R,G,B). In red is the inferred BRDF and in blue, the measured BRDF. �e le�
column compares the intensities before correction and the right one a�er correction.

Figure 6.8: Column 1 and 2 represent the conoscopic map of the measured and inferred
BRDF respectively for a light incidence of 10°. �e two columns on the right are the
relative error and absolute error between the measured and inferred BRDF.
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Figure 6.9: Column 1 and 2 represent the conoscopic map of the measured and corrected
BRDF respectively for a light incidence of 10°. �e two columns on the right are the
relative error and absolute error between the measured and corrected BRDF

Figure 6.10: Cut in the blue BRDF for φLight = π and φV iew = 0. Each column represents
a di�erent light incidence angle (10°, 22°, 44.9°, 59.9°, 68.9°). Each line represents a channel
in R,G,B
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Correction/Error Type Factor Relative Error Absolute Error
Before correction 0.418 186% 0.0253
A�er correction 0.949 20% 0.0034

Figure 6.11: Summary of the di�erent metrics introduced for the Blue BRDF.
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Conclusion

In this thesis, we showed how Computer Graphics and Deep Learning can be used to-
gether to design solutions to extract material information from pictures. We have pre-
sented a number of contributions to the lightweight material acquisition problem and
will now summarize the main ones.

Data generation

When using supervised training, it can be di�cult to gather a su�cient amount of good
quality pairs of inputs and Ground Truth. We showed in Chapter 3 how Computer
Graphics and domain speci�c knowledge allows to generate training data that is re-
alistic enough to generalize well to real world examples. �is approach not only allows
to tackle complex problems for which large scale, precise labeled data is impossible to
acquire, but also to easily adapt the dataset to various tasks. For example, once acquired,
a real world dataset doesn’t allow the modi�cation of the camera or lighting conditions,
while changing such parameters is trivial with synthetic data. While a classical data gen-
eration pipeline can be time consuming, we showed in Chapter 4 how data can be gener-
ated on the �y during the training process. �is allows to quickly change the generation
parameters and explore new tasks requiring di�erent data, such as di�erent acquisition
setups in our context.

Loss design

In addition to the quantity and realism of our training data, the quality of our results
stems from an approach that is aware of how the maps of our SVBRDF model interact
together, thanks to our rendering loss presented in Chapter 3. With this contribution, we
show that injecting problem speci�c knowledge in the optimization function is crucial to
guide the training toward valid parts of the solution space. Furthermore, our rendering
loss allows to easily change the material model our method infers, without changing the
dataset ground-truths.
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Architecture design

To further improve our results, we designed architectures capable of fusing distant infor-
mation in the input image and to aggregate information available in an arbitrary number
of input pictures. By specializing our network in Chapter 3, we take into account the
speci�city of our input data. Using a global feature track, we are able to extract valuable
information from the �ash in the picture, while compensating for the over-exposure in
the photograph. In Chapter 4 we showed how to enhance the network to combine a
variable, order independent, number of input images, allowing users to capture as many
images as needed to exhibit all the visual e�ects of a material they want to capture.
With this contribution, our method bridges the gap between single-image and many-
image methods, allowing faithful material capture with a handful of images captured
from uncalibrated light-view directions.

Acquisition scale, user control and high resolution

In Chapter 5 we alleviate inherent limitations of �ash-based material acquisition meth-
ods, namely limited scale, low resolution, and lack of user control. By combining a
guidance image with a few close-up exemplars, our approach can recover SVBRDFs of
much larger surfaces, at high resolution and arbitrary aspect ratio. Furthermore, our
design greatly increases the creative freedom of material designers by le�ing them cre-
ate plausible SVBRDFs from existing photographs with �ne control on their constituent
materials.

Industrial environment

�e industrial collaboration allowed me to tackle important challenges, described in
Chapter 6 leading to the use of our methods in a production setup. I had the chance
to discuss with artists using Optis’ so�ware and read feedback on material use in the
industry. I was also able to access a goniore�ectometer, allowing me to work with com-
plex acquisition tools and evaluate the challenges from a di�erent perspective of material
acquisition.

I will now discuss some research directions inspired by our results and the challenges
encountered.
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7.1 Future work

7.1.1 Similarity based on material deep features

As shown in Chapter 3, a meaningful metric is central to the success of training a deep
network. We designed a loss to compare multiple renderings, taking the complex ren-
dering pipeline into account. While this alleviates the problem of comparing di�erent
parametric models, the error is dominated by the di�use albedo, as it impacts every sin-
gle pixel of the rendering. Normal, roughness and specularity maps contribute to the
total error less, as they have more spatially localized e�ects. �e de�nition of a mean-
ingful di�erence between materials remains an important challenge in the �eld.

I believe that new material representations would help to design a more representa-
tive perceptual distance. In the light of recent work on GANs and latent spaces [KLA18,
ZPIE17], I am interested in exploring how deep learning can help de�ne a more intuitive
material representation by leveraging the internal layers of a specialized deep network.
During training, these internal features are shaped into a compact encoding of the infor-
mation most relevant to the optimization task, providing a new representation to work
with and evaluate distance.

�e interest I see in such deep features for materials goes beyond acquisition: a bet-
ter perceptual representation would provide new leads for higher level edition, feature
transfer — explored in Chapter 5 — and interpolation between materials. Recent work by
Lagunas et al. [LMS+19] is an interesting approach to this problem, based on a massive
user study encoded in a trained deep network.

7.1.2 Deep learning for material appearance

In this thesis we explore the use of standard deep network architectures as an optimiza-
tion framework for material acquisition. Most network architectures are de�ned for
general image processing tasks, and I believe that further specializing architectures to
the material acquisition problem is essential. In Chapter 3, we show that adapting the
loss and modifying the architecture to leverage material speci�c knowledge leads to sig-
ni�cantly improved results.
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In Chapter 4 we presented a method to aggregate information from multiple pictures.
We can imagine that other sources of information can be provided to the network to
match the quality of hundreds or thousands of calibrated pictures. A few examples of
interesting information are white balance parameters, exposure levels, �eld of view or
illuminance.

Another source of signi�cant improvement in the same direction could be to leverage
information from several complementary inputs. An example is the use of polarization
�lters [RRFG17] to explicitly separate specular from di�use. Such intrinsic optical prop-
erties combined with deep learning would provide important input data. �eir properties
could be enforced in the loss function to guide the training, while maintaining a high
level of acquisition convenience.

Further, a multi-spectral approach could bring complementary information. �e near IR
spectrum, for example, could provide cues about structure and material segmentation
that can be lost due to over-exposure in a �ash picture — as described in Chapter 3.

Exploiting additional sources of information could open deep learning methods to more
complex material models, allowing to represent e�ects such as sub-sca�ering, transmis-
sion — important for faithful reproduction of materials like skin, glass — or cast shadows
for be�er geometry capture, and help in calibrating results to physical quantities.

7.1.3 Complex acquisition as ground truth

So far, lightweight acquisition research mostly relies on artist-designed materials for
training and lacks physically measured references to compare to. In Chapter 6, we pro-
pose a �rst step to solve this problem, but a more general approach is still required. For
example, complex acquisition could be used to generate a high-quality dataset contain-
ing physically measured materials, ��ed analytical models and multiple angle pictures:
this would provide an important data set against which to test new methods.

7.1.4 Novel application domains

In the future, by combining the knowledge from Computer Graphics, Computer Vision,
and Deep Learning, lightweight material acquisition methods could be improved to ac-
quire multiple objects or even an entire room with a few pictures. Combined with a
good geometry evaluation method, this would change the way virtual environments are
designed and authored.
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Two examples could be cultural heritage and medical examination of skin. Cultural
heritage would strongly bene�t from strong acquisition methods, designed to �t the
particular constraints of the domain, in term of light exposure, fragility or accessibility of
the artefacts for example. Finally, combined with more complex material representations
and medical expertise, lightweight acquisition could lead the way to fast preliminary
exams and treatment monitoring for medical applications such as skin lesion detection.
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Appendix

A.1 Rendering loss pseudo-code

Algorithm 1 Rendering loss
Require: Ground Truth material(Mgt), Inferred material (MI), Number of specular ren-

derings (NS), Number of di�use renderings (ND)
for n in NS do

PS ← Uniform(−1.0, 1.0) . Draw a position shi� from a uniform distribution
between -1 and 1

ωV ← Cosine() . Draw a 3D direction vector from the cosine distribution
function

PV ← (ωVe
Normal(µ=0.5,σ2=0.75)) + PS . View position computation

PL ← (ωV ∗ [−1,−1, 1])eNormal(µ=0.5,σ2=0.75)) + PS . Light position computation
Ls← linspace(−1, 1, 256)
C ← concatenate(meshgrid(Ls, Ls), axis = 2) . Create a plane coordinate grid

to calculate view/light direction
ωV ← PV − C . Near-�eld view direction computation
ωL ← PL − C . Near-�eld light direction computation
ωLV.add([ωV, ωL]) . Store Light/View directions for future renderings

end for
for n in ND do

ωV ← Cosine() . Distant view direction computation
ωL ← Cosine() . Distant light direction computation
ωLV.store([ωV, ωL]) . Store Light/View directions for future renderings

end for
for ωV, ωL in ωLV do

Rgt.add(Render(GTM , ωV, ωL)) . Render the ground truths using computed
directions

RI.add(Render(IM , ωV, ωL) . Render the inferred materials using computed
directions
end for
return mean(|log(Rgt + 0.01)− log(RI + 0.01)|) . Compute the mean distance
between all renderings
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Algorithm 2 Cosine Random function
r1 ← Uniform(0.001, 0.95)
r2 ← Uniform(0, 1)
r ← √r1

φ← 2πr2

x← rcos(φ)
y ← rsin(φ)
z ←

√
1.0− r2

return [x, y, z]

Algorithm 3 Rendering algorithm
Require: Incident lighting direction vectors (ωL), View direction vector (ωV), material
M = (Di�use map (d), Normal map (n), Specular map (s), Roughness map (r)
Performed at each surface point separately
h← Normalize((ωL + ωV)/2) . Half-vector computation
d← d(1−s)

π
. Di�use lighting computation

D ←
r2

(n.h)2(r4−1)+1

2

π
. Cook-Torrance micro-facet normal distribution

G← 1

(n.ωL)(1− r2

2
)+ r2

2

1

(n·ωV)(1− r2

2
)+ r2

2

. Cook-Torrance shadowing and masking term

F ← s+ (1− s)2((−5.55473(ωV·h))−6.98316)(ωV·h) . Fresnel e�ect approximation
return (FGD

4
+d)(n·ωL)

ωL[3]
. Final rendering equation compensated for low angles lighting

directions with ωL[3]
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Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya
Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasude-
van, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wa�enberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale
machine learning on heterogeneous systems, 2015. So�ware available from
tensor�ow.org.

[AAL16] Miika Ai�ala, Timo Aila, and Jaakko Lehtinen. Re�ectance modeling by
neural texture synthesis. ACM Transactions on Graphics (Proc. SIGGRAPH),
35(4), 2016.

[AD18] Miika Ai�ala and Fredo Durand. Burst image deblurring using permutation
invariant convolutional neural networks. In �e European Conference on
Computer Vision (ECCV), 2018.

[All19a] Allegorithmic. Substance designer, 2019.

[All19b] Allegorithmic. Substance share, 2019.

[AP07] Michael Ashikhmin and Simon Premoze. Distribution-based brdfs. Tech-
nical report, University of Utah, 2007.

[AWL13] Miika Ai�ala, Tim Weyrich, and Jaakko Lehtinen. Practical SVBRDF cap-
ture in the frequency domain. 32(4), 2013.

[AWL15] Miika Ai�ala, Tim Weyrich, and Jaakko Lehtinen. Two-shot SVBRDF
capture for stationary materials. ACM Trans. Graph. (Proc. SIGGRAPH),
34(4):110:1–110:13, July 2015.



114 BIBLIOGRAPHY

[BS87] P. Beckmann and A. Spizzichino. �e sca�ering of electromagnetic waves
from rough surfaces. 1987.

[BSF94] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies
with gradient descent is di�cult. IEEE Transactions on Neural Networks,
5(2):157–166, March 1994.

[CHW18] Guanying Chen, Kai Han, and Kwan-Yee K. Wong. Ps-fcn: A �exible learn-
ing framework for photometric stereo. In �e European Conference on Com-
puter Vision (ECCV), 2018.

[CK17] Qifeng Chen and Vladlen Koltun. Photographic image synthesis with cas-
caded re�nement networks. In International Conference on Computer Vision
(ICCV), 2017.

[CT82] R. L. Cook and K. E. Torrance. A re�ectance model for computer graphics.
ACM Transactions on Graphics, 1(1):7–24, 1982.

[CXG+16] Christopher Bongsoo Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, and
Silvio Savarese. 3d-r2n2: A uni�ed approach for single and multi-view
3d object reconstruction. In IEEE European Conference on Computer Vision
(ECCV), pages 628–644, 2016.

[DAD+18] Valentin Deschaintre, Miika Ai�ala, Frédo Durand, George Dre�akis, and
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Jingwan Lu, and Daniel Sýkora. StyLit: Illumination-guided example-
based stylization of 3d renderings. ACM Transactions on Graphics (proc.
SIGGRAPH), 35(4), 2016.
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