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Abstract

Geometry processing is an established field in computer graphics, covering a
variety of topics that embody decades-long research. However, with the pressing
demand of reality digitization arising in recent years, classic geometry processing
solutions are confronted with new challenges.

For almost all geometry processing algorithms, a fundamental requirement is the
ability to represent, preserve and reconstruct geometric details. Many established
and highly-optimized geometry processing techniques rely heavily on educated
user inputs and careful per-instance parameter tuning. However, fueled by the
proliferation of consumer-level 3D acquisition devices and growing accessibility
of shape modeling applications for ordinary users, there is a tremendous need
for automatic geometry processing algorithms that perform robustly even under
incomplete and distorted data. In order to transform existing techniques to meet
the new requirements, a new mechanism is called for to distill the user expertise in
algorithms.

This thesis offers a solution to the aforementioned challenge by utilizing a contem-
porary technology from the machine learning community, namely: deep learning.
A general geometry processing pipeline includes the following key steps: raw data
processing and enhancement, surface reconstruction from raw data, and shape
modeling. Over the course of this thesis, we demonstrate how a variety of tasks in
each step of the pipeline can be automated and, more importantly, strengthened
by incorporating deep learning to leverage consistencies and high-level semantic
priors from data.

Specifically, this thesis proposes two point-based geometry processing algorithms
that contribute to the raw data processing step, as well as two algorithms involving
implicit representations for the surface reconstruction step, and one shape defor-
mation algorithm for the last shape modeling step of the geometry processing
pipeline. We demonstrate that, by designing suitable deep learning paradigms
and integrating them in the existing geometry processing pipeline, we can achieve
substantial progress with little or no user guidance especially for challenging, e.g.
noise-ridden, undersampled or unaligned, inputs. Correspondingly, the contribu-
tions in the thesis aim to enable autonomous and large-scale geometry processing
and drive forward the ongoing transition to digitized reality.
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Zusammenfassung

Geometrieverarbeitung ist ein etabliertes Feld in der Computergrafik, das eine
Vielzahl von Themen abdeckt, hinter welchen jahrzehntelange Forschung steht.
Mit der enormen Nachfrage nach der Digitalisierung der Realität in den letzten
Jahren, stehen klassische Lösungen der Geometrieverarbeitung jedoch vor neuen
Herausforderungen.

Für fast alle Geometrieverarbeitungsalgorithmen ist die Fähigkeit, geometrische
Details darzustellen, zu erhalten und zu rekonstruieren, eine grundlegende An-
forderung. Viele etablierte und hochoptimierte Geometrieverarbeitungstechni-
ken verlassen sich stark auf geschulte Benutzereingaben und eine sorgfältige
Parameterabstimmung pro Objekt. Angetrieben durch die Verbreitung von 3D-
Erfassungsgeräten auf Verbraucherebene und die zunehmende Verfügbarkeit von
Anwendungen zur Formmodellierung für normale Benutzer, entsteht ein enor-
mer Bedarf an automatischen Geometrieverarbeitungsalgorithmen, die selbst bei
unvollständigen und fehlerbehafteten Daten robust arbeiten. Um bestehende Tech-
niken an die neuen Anforderungen anzupassen, ist ein neuer Mechanismus er-
forderlich, um das Fachwissen fortgeschrittener Benutzer durch Algorithmen zu
ersetzen.

Diese Doktorarbeit bietet eine Lösung für die oben genannte Herausforderun-
gen durch den Einsatz einer zeitgemäßen Technologie aus dem Bereich Machine
Learning, nämlich Deep Learning. Eine allgemeine Geometrieverarbeitungspi-
peline umfasst die folgenden wichtigen Schritte: Rohdatenverarbeitung und -
verbesserung, Oberflächenrekonstruktion aus Rohdaten und Formmodellierung.
Im Verlauf dieser Dissertation zeigen wir, wie eine Vielzahl von Aufgaben in jedem
Schritt der Pipeline automatisiert und, was noch wichtiger ist, durch die Integrati-
on von Deep Neural Networks verbessert werden können, um Konsistenzen und
hochrangige semantische Muster in Daten auszunutzen.

Konkret schlägt diese Doktorarbeit zwei punktbasierte Algorithmen zur Geometrie-
verarbeitung von Rohdaten vor, zwei Algorithmen mit impliziten Darstellungen
für die anschließende Oberflächenrekonstruktion und einen Deformationsalgo-
rithmus für die abschliessende Formmodellierung. Indem wir geeignete Deep
Learning Paradigmen konzipieren und diese intelligent in die bestehende Geo-
metriebearbeitungspipeline integrieren, zeigen wir, dass wir mit geringer bis gar
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keiner Benutzerführung wesentliche Fortschritte erzielen können, besonders für
anspruchsvolle, z.B. rauschbehaftete, spärliche oder nicht ausgerichtete Daten. Ent-
sprechend treiben die Beiträge dieser Dissertation zur automatische Geometriebe-
arbeitung grosser Datenmengen den fortschreitenden Übergang zur digitalisierten
Wirklichkeit.
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C H A P T E R 1
Introduction

Sweeping digitization in our everyday life has been fundamentally reshap-
ing the way we experience and interact with the world – tangible cultural
heritage can be accessed and studied from the opposite side of the globe
in immersive digital formats [Uni21]; personal avatars capture increasingly
subtle motions to establish seamless human interactions despite geographical
distances [AG21; Inc19]; 3D models of organs can be created and modeled
for telemedicine [Est+21]; and immersive labs are created to promote equal
access to science [Lon; LB20]. Wherever we look, it is fair to say that we are
living amid a transition where the boundary between the real (physical) and
virtual (digital) world is becoming blurrier. Recently, the global pandemic
and the rising environmental threats not only bestowed new meanings to this
digital transition but also gave it hightened urgency.

As we humans perceive the surrounding environment in three dimensions,
weaving virtual threads into the fabric of reality calls for large amount of
high-quality 3D assets. Needless to say, the fidelity of these artifical 3D
content compared to their real-life counterparts have a profound impact
on the usability of the application in question. In particular, accurately
representing and reconstructing detailed geometry features is not only key
to creating realistic 3D scenes in AR/VR applications, but also critical in
robotics for analyzing the physical properties of the subjects in order to
correctly model their interactions with the real world.

However, constructing geometric details is very difficult. Creating them
from scratch is a tremendously demanding manual work and requires highly

1



1. Introduction

specialized skills. Even though many sophisticated softwares and intuitive
modeling tools [Gla+16; Jac+14; VSH19] have been developed to assist the
artistic creation, scalability issues still prohibit large-scale general-purpose
deployment. Alternatively, geometric details can be captured from the real
world. But since acquisition technologies are inevitably subject to hardware
limitations and external interferences, the captured geometry is prone to
various artifacts including noise and incompleteness. Consequently, post-
processing algorithms must be applied to reconstruct and enhance geometric
features.

At the same time, once the geometric details are constructed, preserving them
during further manipulation and editing is also challenging. While numerous
prior works have proposed outstanding solutions regarding this issue in the
context of surface parameterization, meshing and deformation, many of them
are designed for interactive shape modeling and thus require user guidance
to achieve the desired outputs. There are also exemplar-based shape manipu-
lation, where the necessary information for a desired output is extrapolated
from user-provided exemplars instead of extensive fine-grained user inputs.
While these approaches have potential to scale up for an automated pipeline,
the quality of outputs is at the mercy of the compatibility of the exemplars.
In order to produce plausible outputs even from suboptimal exemplars, prior
knowledge must be injected, which typically relies on direct control inputs
from the user or highly involved parameter tuning.

In face of these challenges, the incredible demand to push forward the digital
transition calls for new algorithms that can efficiently capture, reconstruct,
create and manipulate detailed 3D geometries. In order to account for un-
derconstrained working environment in everyday use, particularly sought
after are algorithms that exhibit good generalization properties and minimal
dependency on user interventions.

Deep learning and neural networks.

Deep learning is a subset of machine learning and lies in the center of artificial
intelligence. It is designed to enable computers to learn complex concepts
by hierarchically extracting knowledge from observations of the world. The
hierarchy is typically very deep, hence the name “deep” learning.

The most important machinery in deep learning is neural networks. Loosely
modeled on a human brain, neural networks comprise many computation
layers, each of which consists of many densely connected computation nodes,
assembling neurons in a human brain. The actual functionality of the neural
networks is governed by the millions of values stored in the neurons, called

2



“weights”. Even though each neuron only performs simple binary operations,
by the universal approximation thereom [Cyb89; Hor91; Has+95; HL94],
the collection of these simple neurons can approximate arbitrarily complex
functions when given appropriate weights. In other words, input signals from
raw data can be transformed to abstract and complex concepts, with each
layer of the neural network distilling knowledge gradually from simple and
local to abstract and global. The term “learning” refers to the optimization of
the neural networks’ weights such that given some input values the output
of the neural network fits an expected reference. For instance, in image
classification the input is RGB values of the image pixels, and the reference
can be the probability of the image belonging to different classes; or in image
super-resolution, the input can be pixel values of a downsampled image and
the reference is pixel values of the original image.

There are two reasons that make deep learning the promising instrument to
address the needs for efficient and robust geometry processing. First, as the
hallmark of deep learning, it is able to not only learn the mapping from certain
input representation to output, but also the representation itself. As a result,
there’s no longer need to craft hard-coded rules in order to extract useful
information from the raw data. Instead, neural networks learn to transform
the raw data to the suitable representations for the task at hand. Compared
to hand-crafted representations, these learned representations can be more
generalizable and robust, as they can capture statistical characteristics across
large dataset, e.g. implicitly learn the consistencies within the training data
and automatically account for noise and other variances of the input data.
Second, neural networks requires little to none human intervention during
the deployment, also known as the inference phase. This is because once
the weights of the network have been optimized in the training phase, the
inference typically only requires a feed-forward pass, i.e. the input data moves
through the fixed layers without additional tuning or adjustment from the
user. Furthermore, thanks to contemporary specialized hardware and recent
network optimization techniques, this feed-forward pass can be very fast and
efficient, ergo making large-scale online applications possible.

Due to these attractive properties, neural networks have become the Swiss
army knife for many long-standing problems in computer vision and natural
language processing. Particularly in image processing, where details are
equally important as in geometry processing, deep learning has become the
state-of-the-art approach for most tasks.

However, compared to image and natural language processing, 3D content
poses new challenges for neural networks. First, 3D data is presented in a
wide range of heterogeneous forms catering for different applications and

3



1. Introduction

needs. For instance, as the primary outputs of acquisition devices, point
clouds are the most common form in 3D understanding and reconstruc-
tion tasks, while meshes, which can be divided further into surface and
volumetric meshes, are mainly used for geometry manipulation for their
compactness and explicitness w.r.t. shape topology. Irregularity is another
problem related to the data form. Unlike word embedding and 2D pixels,
most common 3D data forms are unstructured or have irregular connec-
tivities. Consequently workarounds must be created to allow the neural
networks to traverse through the data efficiently, and more importantly, some
backbone operations such as convolution, which is the key contributor to the
success of deep learning in the 2D domain and is universally used in all image
processing neural networks, must be redesigned to handle the irregular input
forms. Last but not the least, due to higher acquisition requirements, the
amount and variety of 3D data for training neural networks is significantly
insufficient. For a method that excels by exploiting vast amount of data, data
scarcity creates a serious hurdle for deep learning to advance rapidly in the
3D domain.

During the course of this thesis, extensive effort and resources from different
corners of the community have been dedicated to address the aforementioned
challenges in hope to advance the state-of-the-art geometry processing with
deep learning. The work included in this thesis is part of this joint effort.

1.1. Topics in this thesis

A typical geometric processing pipeline comprises the following components:

1. data acquisition, which concerns the capture of point clouds or vol-
umetric data representing the surface or volume of the object of
interest;

2. data processing and enhancement, which includes the post-acquisition
treatment of defects in the acquired raw data, such as noise, distor-
tions and topological errors, as well as the enhancement of geometric
features, such as sharp edges, etc.;

3. surface reconstruction, which focuses on the approximation of surfaces,
most commonly in form of triangle meshes, from the (processed)
acquisition data;

4. shape manipulation, which covers various low-level surface processing
tasks such as surface smoothing, parameterization, remeshing, and
high-level shape modeling tasks such as deformation and stylization.
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1.1. Topics in this thesis

This thesis touches upon all the aspects of a geometry processing pipeline
after data acquisition, namely data processing and enhancement, surface
reconstruction and shape manipulation. In all these aspects, we focus on
elevating the geometric details in the outputs, while at the same time re-
duce the reliance on human intervention and optimize for efficiency and
generalizability.

1.1.1. Raw data processing and enhancement

Defects are omnipresent in raw data [BW10]. They arise from hardware
limitations and environmental constraints, but also from problematic surface
properties such as high reflectivity and self-occlusion. The most common
defects include holes, noise and distortions. The existence of these distortions
can gravely affect the outcome of surface reconstruction as well as other
downstream tasks. Moreover, due to inherent undersampling problem at
edge singularities [Hua+13a], reconstructing surfaces directly from raw data,
even if noise-free, often leads to blurred sharp features and oversmoothed
geometric details. Hence approporiate treatment is required to repair and
enhance the acquired raw data for accurate detail representation in the subse-
quent processing steps such as surface reconstruction or rendering.

Existing data acquisition methods either yield point clouds or volumetric
data such as depth map and voxels. In this thesis we focus on point cloud pro-
cessing and enhancement, a process also known as point cloud consolidation.
In traditional point-based geometry processing, point cloud consolidation is
formulated as a projection problem. The acquired 3D points, treated as noisy
samples of an underlying surface, are reprojected onto the surface by mini-
mizing an error metric that essentially measures point-to-surface distances.
In essense, these methods rely on the fitting of local geometry, e.g., normal
estimation, using local point distribution. In order to resolve ambiguity in
the solution space, hand-crafted priors such as smoothness assumptions etc.
must be injected into the formulation e.g. as regularizers. As a result, the
balance between sufficient outlier removal and successful feature recovery
(such as corners and edges) requires careful tuning of these regularizer terms
in the optimization objective based on subjective assessment. Consequently,
these methods struggle with robust multiscale structure preservation under
sparse sampling conditions and strong noise.

In this thesis, we take on a data-driven approach with the aim to learn the
mapping between the flawed and correct point distribution by observing
examples from data. Instead of addressing the ambiguity with hand-crafted
priors (consequently leading to algorithm bias), we use neural networks to
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learn more generalizable priors from large amount of data, thus achieving
improved robustness particularly under challenging sampling conditions.
The focus of our approach is to overcome the shortcomings of neural networks
in operating with unstructured data. Two methods are presented in this thesis,
which pursue this mission from two distinctive angles, nonetheless both
succeed by exploiting the advances of deep learning in the image processing
domain.

1.1.2. Surface reconstruction

Surface reconstruction refers to the procedure to convert point clouds and
volumetric data to polygon meshes. Polygon meshes are efficient to store and
render, the well-defined connectivity facilitates efficient evaluation of intrin-
sic geometric properties, such as topology, geodesic distance, etc. Therefore,
polygon meshes are regarded as the standard representation for most com-
mon geometry processing and shape modeling algorithms. Consequently,
surface reconstruction is an essential step in the general geometry processing
pipeline.

Existing surface reconstruction methods can be categorized into explicit and
implicit reconstructions. The explicit approaches either directly establish
connectivity from the point samples (in case of point clouds data) [TL94],
or determine the interior/exterior separation by casting the problem as 3D
segmentation task (in case of volumetric data) [SD99; FLBMB90; BBH08;
Vog+07; GCS06]. The implicit approaches [Hop+92a; Car+01; SOS04; KBH06;
KH13a; Kaz+20], on the other hand, use scalar functions (e.g. signed distance
functions) as an intermediator, from which the surface can be extracted as
a levelset of the implicit functions, i.e. {x| f (x) = C}. Implicit approaches
are less sensitive to noisy and misaligned data, and more advantageous for
detail reconstruction since they are free from resolution constraints during
discretization. However, an additional step is required to extract the final
polygon meshes from the fitted implicit function. Marching Cubes [LC87] is
the most widely used method for this purpose, which determines the mesh
vertices (and their connectivity) by approximating the roots of the implicit
function from grid samples.

Given that the nature of implicit surface reconstruction is a function ap-
proximation problem, neural network’s potential as a universal approxi-
mater [Cyb89; Hor91; Has+95; HL94] makes it a perfectly viable alternative
solution for surface reconstruction. Several works [Par+19; Mes+19; CZ19]
concurrently demonstrated this proposition by parameterizing the implicit
function with neural networks. Given 3D coordinates as inputs, the network
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1.1. Topics in this thesis

is trained to output the corresponding signed distance value [Par+19] or
occupancy probability [Mes+19; CZ19], therefore this type of networks are
also referred to as coordinate-based networks. Compared to previous works,
neural networks can potentially represent a larger range of functions than a
mixture of polynomials or Gaussians (as is previously the case). More impor-
tantly, by training from collections of shapes, the networks can capture useful
shape priors from the consistencies within the training dataset. As a result,
neural implicit functions can fill large missing area with plausible geometries.
Building upon this idea, some recent works extended the neural network to
approximate not only the implicit surface function but also the surface texture
and even view-dependent appearance in a similar manner. These methods
paved the way for simultaneous reconstruction of surface geometry and ap-
pearance from 2D observations – one of the most studied tasks in computer
vision, commonly referred to as multiview surface reconstruction (MVS).
By considering geometry and appearance jointly, these neural networks can
achieve superior reconstruction quality even under complex lighting and
challenging surface material, where the traditional MVS methods struggle
due to the difficulty to establish consistencies between different views.

As neural implicit surface representation is emerging as a prominent basis for
many long-standing tasks in computer graphics and vision alike, the research
community is dedicating significant attention to improve the generalizability,
robustness, efficiency as well as the representational power of neural implicit
surfaces. This thesis contributes to this research direction with two methods,
which address respectively the training efficiency and noise tolerance, and
the efficacy in regard to geometric detail representation.

1.1.3. Shape manipulation

There are a plentiful of shape manipulation operations. Remeshing, mesh
simplification and parameterization are a few examples of low-level shape
manipulation operations, which serve as the foundation to efficiently perform
further high-level shape manipulation tasks, such as shape deformation,
animation, stylization etc.

In this thesis, we focus on shape deformation, which refers to the task to
transform a given shape to a match specific pose or another aligned shape
without altering the topology (which prescribes a continuous and globally
bijective transformation) and geometric features (which requires the trans-
formation to be smooth). It is one of the most important shape modeling
tasks, and has been actively researched in the last decade. Automating shape
deformation provides an alternative way to generate new shapes efficiently
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by deforming existing shapes. It has many appealing applications including
3D stock amplification, automatic design and 3D character posing.

The main research focus for shape deformation has been about improving
the algorithm efficiency and reducing geometric distortion, so as to achieve
highly realistic real-time deformation for interactive shape modeling. It is
typically assumed that the deformation target is provided by the user either
directly or via an intermediary shape, in which case the deformation is driven
by sparse correspondences that can be specified by the user. Correspondingly,
whether the deformation is contextually correct and semantically feasible lies
in the user’s responsibility. The need for human guidance makes designing
an automated deformation paradigm very challenging, since such paradigms
must be able to implement abstract semantic knowledge.

To this end, several recent works started deploying deep learning for semantic
shape understanding, such as part segmentation and correspondence esti-
mation [GEM18; Mo+19; Wu+19; Gro+18b]. The learned high-level semantic
knowledge can be injected to deformation tasks. In essence, deep neural
nets are used in these approaches to learn a feasible deformation space of
certain shape categories by extracting data priors from compatible shape
pairs. While these learning-based methods have accomplished impressive
progress in correspondence matching, they seem to underperform in terms
of distortion minimization and geometric feature preservation - a caveat,
which may be ascribed to suboptimal network architecture and the difficulty
to come up with computationally efficient loss terms that are equivalent
to the instance-specific distortion energy used in classic non-data-driven
approaches.

In this thesis, we propose a novel shape deformation method, which on
one hand leverages priors learned from large dataset to generate plausible
deformations of a given shape category, on the other hand considerably
improves the quality of the deformation w.r.t. geometric detail preservation
via a novel network architecture that is feature-preserving by construction.

1.2. Contributions of this thesis

This thesis contributes to the instigation of deep geometric processing and
advances the general geometry processing pipeline in all its key steps with
five algorithms. The specific contributions are outlined as follows.
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1.2. Contributions of this thesis

1.2.1. Point cloud processing and enhancement

We propose two algorithms for point cloud processing and enhancement. In
the first one, we focus on point cloud upsampling and propose a novel neural
network to upsample point clouds even for large upscaling ratios (see Fig. 3.1).
In the second one, we focus on more general point cloud processing, where
we propose to manipulate the attributes of a given point set, e.g. the points’
positions, normal directions and colors, using 2D inputs via a differentiable
point renderer.

Both works focus on lifting neural network’s
weakness in regards to processing unstruc-
tured data. The former does so by transfer-
ring and adapting mature network designs
and training strategies deployed successfully
in image super-resolution. Particular care is
put into the architectural design such that geo-
metric structures across multiple scales can be
simultaneously attended to, and at the same time information from a more
global context flows efficiently to guide the output of the local reconstruction.
Correspondingly, the proposed method demonstrates superior performance
in terms of reconstruction accuracy for large upscaling ratio compared to pre-
vious state-of-the-art point upsampling methods, data-driven or not; and it is
able to produce plausible structures robustly even for severely undersampled
point clouds.

In the second work, we directly take advan-
tage of abundant image filtering techniques
by designing a novel point differentiable ren-
derer, which propagates edits from the 2D ren-
derings to point positions in the 3D domain.
It’s the first fully differentiable point cloud
renderer, which is differentiable w.r.t. both the
point positions and the point normals. The
main technical contribution of this work lies in 1) defining a surrogate gra-
dient for the rasterization function, which is discontinuous and thus non-
differentiable per se; 2) proposing two regularization terms to address opti-
mization local minima, mitigating non-surfacial point distribution and point
clustering artifacts. We show that the proposed differentiable point renderer
can be successfully applied to perform both large-scale deformations as well
as more fine-grained surface filtering. More importantly, it can be seamlessly
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integrated with any neural networks in the 2D domain, thus opening new
possibilities for creative point cloud processing.

1.2.2. Implicit surface reconstruction

We focus on the recent line of surface reconstruction approaches, which
represent surfaces with implicit functions that are parameterized with neural
networks. Two algorithms are proposed.

The first one focuses on the repre-
sentation itself. More concretely, It
tackles the well-known limitation
of neural networks in handling
high-frequency signals, termed as
spectral bias [Rah+19], which in-
evitably leads to insufficient detail
reconstruction. The key idea is a

novel factorization of the neural signed distance function, which is inspired
by displacement mapping - a classic technique to model surface details in
computer graphics. The main technical contribution lies in extending the
classic displacement mapping, which is discrete and lies only on the base
surface, to a continuous function in the R3 domain and incorporating it into
contemporary neural implicit representations. The resulting factorization,
which we call implicit displacement field, is an extremely compact surface rep-
resentation and has a significantly more stable convergence performance
during the fitting phase. More importantly, it demonstrates excellent rep-
resentational power for high-frequency geometric features while showing
superior memory efficiency.

The second algorithm focuses on the train-
ing efficiency and noise tolerance of neu-
ral implicit surfaces. We propose to use
“iso-points” as an explicit complementary
representation to a neural implicit function,
which allows us to impose geometry-aware
sampling and regularization that can signif-

icantly improve the fidelity of reconstructions. The main technical contribu-
tion of this work is a pipeline, where the iso-points can be computed and
updated on-the-fly during training to capture important geometric features
and impose geometric constraints on the optimization. We demonstrate that
our method can be adopted to improve state-of-the-art techniques for recon-
structing neural implicit surfaces from multi-view images or point clouds.
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1.3. Thesis outline

Quantitative and qualitative evaluations show that, compared with existing
sampling and optimization methods, our approach allows faster convergence,
better generalization, and accurate recovery of details and topology.

1.2.3. Shape deformation

We propose one algorithm for shape defor-
mation. In this work, we propose a neural
network to warp a source shape to match a
target shape, which can be topologically and
geometrically very dissimilar, without dense
correspondence estimation. The key contribu-
tion of our approach is to address the feature
distortion issue of existing learning-based de-
formation methods, which requires simulta-
neously optimizing two competing objectives:
1. close alignment with the target, 2. preservation of local geometric features
of the source. To this end, our method extends a traditional cage-based de-
formation technique, where the source shape is enclosed by a coarse control
mesh, termed cage, and translations prescribed on the cage vertices are inter-
polated to any point on the source mesh via special weight functions. The use
of this sparse cage scaffolding enables preserving surface details regardless
of the shape’s intricacy and topology. The proposed method succeeds in
generating feature-preserving deformations for synthesizing shape variations
and deformation transfer, and better preserves salient geometric features than
competing methods.

1.3. Thesis outline

The dissertation is divided in 6 chapters. The remaining chapters are orga-
nized as follows.

Chapter 2 presents an overview of previous works in the relevant topics of
the general geometry processing pipeline (namely point cloud processing,
surface reconstruction and shape deformation) and provides a more detailed
discussion about research that is closely related to our work.

Chapter 3 presents two algorithms for point cloud processing and enhance-
ment – one point cloud upsampling method using neural networks and one
point cloud transformation method using inverse rendering. Accordingly,
the chapter is divided in two parts. In the first part, we describe the design
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and training of a multi-scale progressive point upsampling neural network
and showcase the upsampling results for various challenging point cloud
inputs. The second part introduces the definition of point renderer and iden-
tifies the problem of non-differentiability introduced during rasterization. It
then describes our solution, including the definition of a surrogate gradient
where the rendering function is non-differentiable and two optimization reg-
ularizers to improve the point distribution on surfaces. The effectiveness of
this differentiable point renderer is then demonstrated in multi-view surface
reconstruction, image-based point cloud filtering and denoising.

Chapter 4 presents two algorithms for surface reconstruction. A reparameter-
ization for neural implicit surface is introduced in the first section. Implicit
displacement field, a novel neural surface representation, is formally defined
by extending displacement mapping. Then we outline the network architec-
ture and training scheme designed specifically for implicit displacement field
and demonstrate the advantage of this new representation over competitive
methods in surface reconstruction task. Finally we introduce transferability
to implicit displacement field and showcase its application in detail transfer.
In the second section, we focus on surface reconstruction from noisy and in-
complete inputs. A hybrid neural surface representation is developed, which
uses iso-points as an explicit representation for a neural implicit function. We
describe the mechanism to efficiently extract iso-points during network opti-
mization and demonstrate the utility of iso-points for reconstructing neural
implicit surfaces from multi-view images or noisy point clouds

Chapter 5 presents one algorithm for automatic shape deformation, which
utilizes cage deformation in interactive shape modeling to improve the preser-
vation of geometric details. It starts with a brief overview of the principles of
cage-based deformation, and then outlines the necessary steps to incorporate
these principles in neural networks so as to learn cage-based deformations
from collections of shapes. The utility of the novel deformation method is
demonstrated in two applications: 1. we generate shape variations by deform-
ing a 3D model using other shapes as well as images as targets; 2. we also use
our method to pose a human according to a target humanoid character, and,
given a few sparse correspondences, perform deformation transfer and pose
an arbitrary novel humanoid.

Chapter 6 summarizes our contributions and reflects on potential avenues
for future work.
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In the context of this thesis, the following work has been published:

[Yif+19a] Wang Yifan, Felice Serena, Shihao Wu, Cengiz Öztireli, and Olga
Sorkine-Hornung. “Differentiable Surface Splatting for Point-
based Geometry Processing”. In: ACM Transactions on Graphics
(proceedings of ACM SIGGRAPH ASIA) 38.6 (2019).

[Yif+19b] Wang Yifan, Shihao Wu, Hui Huang, Daniel Cohen-Or, and
Olga Sorkine-Hornung. “Patch-based Progressive 3D Point Set
Upsampling”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2019, pp. 5958–5967 (cit. on pp. 16,
90, 91).

[Yif+20a] Wang Yifan, Noam Aigerman, Vladimir G. Kim, Siddhartha
Chaudhuri, and Olga Sorkine-Hornung. “Neural Cages for
Detail-Preserving 3D Deformations”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). June 2020.

[Yif+21] Wang Yifan, Shihao Wu, Cengiz Oztireli, and Olga Sorkine-
Hornung. “Iso-Points: Optimizing Neural Implicit Surfaces
With Hybrid Representations”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR).
June 2021, pp. 374–383.

[YRSH21] Wang Yifan, Lukas Rahmann, and Olga Sorkine-Hornung.
Geometry-Consistent Neural Shape Representation with Implicit Dis-
placement Fields. 2021. arXiv: 2106.05187 [cs.CV].

During the course of this thesis, the following peer-reviewed papers were
also published:

[Cor+19] Victor Cornillere, Abdelaziz Djelouah, Wang Yifan, Olga
Sorkine-Hornung, and Christopher Schroers. “Blind image
super-resolution with spatially variant degradations”. In: ACM
Transactions on Graphics (TOG) 38.6 (2019), pp. 1–13.
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C H A P T E R 2
Related Work

In this chapter, we first provide a broader overview of the state-of-the-art
development in neural geometry processing (Sec. 2.1), then in Sec. 2.2-2.4 a
more in-depth review is provided over relevant prior works related to the
topics discussed in this thesis. 1.

2.1. Neural geometry processing

Neural geometry processing is evolving at an astounding speed. The ever-
expanding landscape may be charted roughly based on the choice of geometry
representations. To date, the most commonly used representations in neural
geometry processing are voxels, point clouds, meshes and implicit surfaces.

As the pixel-equivalent in R3, voxels are the earliest representation adopted
in neural geometry processing literatures. ShapeNets [Wu+15b] proposed
the first networks for shape understanding by directly replacing 2D convolu-
tions from neural image processing with 3D convolutions. After that, many
3D-convolutional networks have been proposed for various applications,
including completion [Wan+17b; DRQN17; Dai+18; Han+17; HTM17], multi-
view surface reconstruction [Pas+18; Tul+17], novel view synthesis [Sit+18;
Lom+19] and detailization [Che+21]. However, 3D convolutions on dense

1With exceptionally active development in neural geometry processing, there are excellent publi-
cations from fellow researchers extending the algorithms proposed in this thesis. We will refer
to the most relevant ones in the concluding sections of each chapter.
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voxels incur large memory and computation cost, which hinders the voxel
representation from being adopted for detail-centric geometry processing
tasks. Sparse 3D-convolution on structured grid, such as octree, was pro-
posed in [Wan+17a; ROUG17], yet since these compact data structures cannot
be easily updated on-the-fly, these methods are mainly limited to applications,
in which the shape is known a priori, such as classification and segmentation
of rigid shapes.

Points are a sparse representation of 3D shapes. Their unstructured and un-
ordered nature sparked active search for new types of neural networks, since
the popular convolutional neural network only works on structured data.
PointNet [Qi+17a] pioneered in this domain, proposing an order-invariant
operation composed of a point-wise non-linear mapping and a pooling layer.
Since then, many powerful improvements have been introduced in vari-
ous aspects of the algorithm, such as enhancing the "convolution" kernel
[Li+18b; AML18a; WQF19; Xu+18], enforcing rotational-invariance [Che+19;
Her+20b] and introducing hierarchical structures [Wan+18e; Qi+17b; Zha+19].
While the above works focused on the learning discriminative features from
point clouds, some other works searched for the suitable network design
for point cloud generations [FSG17; Ach+18]. FoldingNet [Yan+18] and At-
lasNet [Gro+18a] replace direct generation [FSG17] by mapping ("folding")
2D samples to the 3D space; PointGrow [Sun+20], on the other hand, mod-
els the generation process as a distribution transformation via continuous
normalizing flows. Thanks to these works, neural point processing has seen
success in a variety of applications, including object detection from large
lidar scans [SWL19; SR20], point cloud enhancement such as denoising and
upsampling [Rak+19; HRR19; Yu+18b; Yif+19b; Yu+18a; Li+19], object-level
shape completion and generation [Yua+18; WAJL20; Sun+20; Wen+20], as
well as deformation [Gro+18b; Gro+19; Wan+19].

Meshes are another sparse representation for shapes. Compared to points,
the known connectivity on the vertices allows information to traverse in
geodesic path. The initiation of neural mesh processing can be credited
to the study of deep learning on graphs [Est+14; HBL15; Mas+15; DBV16;
Mon+17; XDZ17; Bro+21], which generalizes euclidean 2D convolutions for
non-euclidean data either from the spectral domain or in the local spatial
neighborhood. A comprehensive survey on this line of works is provided by
Bronstein et al. [Bro+17]. When applied to mesh, these methods can extract
intrinsic geometric features and are successfully applied to find correspon-
dences between deformable 3D shapes. At the same time, several methods
used parameterization to map the surface meshes to another domain, such as
planar flat-torus [Mar+17; Hai+19] or icosahedral spheres [Jia+19] where con-
volutions can be carried out easily. However, these approaches can only be
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applied to a specific topology. Perhaps the real breakthrough of neural mesh
processing came with MeshCNN [Han+19]. It exploited the unique structures
and properties of triangle meshes and defines an efficient equivalence of con-
volution and pooling operations directly on triangle edges. While MeshCNN
was original proposed for discriminative tasks such as classification and seg-
mentation, it has been adopted as the basis for many other applications such
as surface reconstruction [Han+20], learning articulations [Li+21a], mesh
subdivision [Liu+20a] and texture synthesis [Her+20a].

Implicit surfaces are a relatively new representation in neural geometry pro-
cessing, yet thanks to its unique properties it has been gaining widespread
popularity especially in generative tasks such as surface reconstruction and
novel view synthesis. Implicit surfaces differ from other aforementioned
representations in that they are a continuous representation, thus they can
potentially represent geometries at infinite resolution. The first neural im-
plicit representations were proposed concurrently in [Par+19; CZ19; Mes+19]
for shape generation, where the implicit surface function is approximated by
a neural network. Soon after, many improvements were rapidly proposed
to achieve better surface reconstruction accuracy, e.g. by improving the train-
ing schemes [Xu+20; Dua+20], or by leveraging global-local context [Xu+19;
Erl+20] or by adopting specific parameterizations [Gen+19; Den+20; CTZ20],
or introducing spatial partitions [Gen+20; Tre+20; Cha+20a; Mar+21]. At
the same time, neural implicit representations have been extended to en-
code signals other than geometries, such as surface textures [Oec+19], de-
formations [Nie+19], surface light fields [Oec+20] and volumetric radiance
fields [Mil+20]. They enabled a holistic scene representation that unifies
the geometry, appearance and dynamics in a common framework. With
the recent development in differentiable renderers for neural implicit sur-
faces [SZW19; Nie+20; Yar+20; Mil+20], these aforementioned neural implicit
fields can be effectively learned using only 2D observations, which led to
exciting progresses in image-based 3D scene reconstruction [Yu+21; MB+21;
Sai+19; Sai+20; Pum+21] and geometry consistent view synthesis [Sch+20;
Cha+20b] and scene generations [NG21; Kos+21].

Each of the representations have their individual strengths and weaknesses.
For instance, while implicit functions are great at generative tasks, they are a
lesser choice for shape analysis compared to other explicit representations.
Meshes are uniquely positioned to encode intrinsic geometric features, but
they are not well suited for shape transformations or generations where the
change of topology is involved. Points are suitable for both analysis and
generations, but the ambiguity of neighborhood can lead to wrong topology
and distorted features. Voxels are also a valid choice for both shape analysis
and generation, but the resolution and performance is constrained by the
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computational power and network capacity. Therefore it is crucial to choose
the suitable representation depending on the requirements of applications. In
this thesis, two of the five introduced algorithms focus on points, two other
on implicit surfaces and one can be applied to both points and meshes.

2.2. Point cloud processing and enhancement

2.2.1. Point clouds upsampling

Optimization-based approaches. Early optimization-based point set up-
sampling methods rely on shape priors. Assuming a smooth underlying
surface, Alexa et al. [Ale+03] introduced the moving least squares (MLS)
surface model, and applied it for point clouds upsampling by inserting new
points at the vertices of the Voronoi diagram. Aiming to preserve sharp edges,
Öztireli et al. [ÖGG09] proposed the robust implicit moving least squares
(RIMLS) surface model, which iteratively optimizes the local implicit surface
function considering the point normal directions. Huang et al. [Hua+13a] em-
ployed an anisotropic locally optimal projection operator [Lip+07; Hua+09] to
consolidate and push points away from the edges, which is followed by a pro-
gressive edge-aware upsampling procedure. Wu et al. [Wu+15a] filled points
in large areas of missing data by jointly optimizing both the surface and the
inner points, using the extracted meso-skeleton to guide the surface point set
resampling. These methods fit local geometry, e.g., normal estimation, and
struggle with multiscale structure preservation.

Deep learning approaches. Zhang et al. [Zha+18a] extended a PointNet-
based point generation model [Ach+18] to point set upsampling. Exten-
sive experiments showed its generalization to different categories of shapes.
However, note that [Ach+18] is trained on the entire object, which limits its
application to low-resolution input. PU-Net [Yu+18b], on the other hand,
operates on patch level and thus it can handle high-resolution input, but the
upsampling results lack fine-grained geometry structures. Its follow-up work,
the EC-Net [Yu+18a], improves restoration of sharp features by minimizing a
point-to-edge distance but requires a rather expensive edge annotation for
training. We propose in this thesis a multi-step, patch-based neural network
architecture to channel the attention of the network to both global and local
features. Our method also differ from the PU-Net and EC-Net in feature
extraction, expansion, and loss computation.
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method objective position depth normal occlusion silhouette topology

OpenDR mesh 3 7 via position 7 3 7

NMR mesh 3 7 via position 7 3 7

Paparazzi mesh limited limited via position 7 7 7

Soft Rasterizer mesh 3 3 via position 3 3 7

Pix2Vex mesh 3 3 via position 3 3 7

Ours points 3 3 3 3 3 3

works released after the publication of our method
SynSin sphere 3 3 7 3 3 3

Pulsar sphere 3 3 via extra channel 3 3 3

Table 2.1.: Comparison of generic differential renderers. By design, OpenDR [LB14] and
NMR [KUH18] do not propagate gradients to depth; Paparazzi [LTJ18] has limitation in updating
the vertex positions in directions orthogonal their face normals, thus can not alter the silhouette
of shapes; Soft Rasterizer [Liu+19a] and Pix2Vex [Pet+19] can pass gradient to occluded vertices,
through blurred edges and transparent faces. All mesh renderers do not consider the normal field
directly and cannot modify mesh topology. Our method uses a point cloud representation, updates
point position and normals jointly, considers the occluded points and visibility changes and enables
large deformation including topology changes. SynSin [Wil+20] and Pulsar [LZ21a] are published
after our method, they use opaque spheres as the representation and do not yield surfaces points.

Upsampling in deep learning. Modern deep convolutional neural
networks (CNN) [KSH12] process multiscale information using skip-
connections between different layers, e.g. U-Net [RFB15], ResNet [He+16]
and DenseNet [Hua+17]. In image super-resolution, state-of-the-art methods
such as LapSRN [Lai+17] and ProSR [Wan+18d] gained substantial improve-
ment by carefully designing layer connections with progressive learning
schemes [Kar+18; Wan+18c], which usually contribute to faster convergence
and better preservation of all levels of detail. Intuitively, such multiscale
skip-connections are useful for point-based deep learning as well. A few
recent works have exploited the power of multiscale representation [KL17;
Wan+18b; GWM18; JWL18; Liu+18] and skip-connection [DBI18; Ret+18]
in 3D learning. In our method, we focus on point cloud upsampling and
propose intra-level and inter-level point-based skip-connections.

2.2.2. Point processing via inverse rendering.

General-purpose differentiable renderer. Loper and Black [LB14] devel-
opped a differentiable renderer framework called OpenDR that approximates
a primary renderer and computes the gradients via automatic differentiation.
Neural mesh renderer (NMR) [KUH18] approximates the backward gradient
for the rasterization operation using a handcrafted function for visibility
changes. Liu et al. [LTJ18] proposed Paparazzi, an analytic differentiable
renderer for mesh geometry processing using image filters. In concurrent
work, Petersen et al. [Pet+19] presented Pix2Vex, a C∞ differentiable renderer
via soft blending schemes of nearby triangles, and Liu et al. [Liu+19a] intro-
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duced Soft Rasterizer, which renders and aggregates the probabilistic maps of
mesh triangles, allowing flowing gradients from the rendered pixels to the
occluded and far-range vertices. Li et al. [Li+18a] and Azinovic et al. [Azi+19]
introduced a differentiable ray tracer to implement the differentiability of
physics-based rendering effects, handling camera position, lighting and tex-
ture. All these generic DR frameworks rely on mesh representation of the
scene geometry. We summarize the properties of these renderers in Table 2.1.

Differentiable rendering in neural networks. Numerous works have em-
ployed differentiable renderers in the neural network to infer 3D shapes from
2D images, such as in single view image reconstruction [Yan+16; Pon+17;
Zhu+17], face reconstruction [Ric+17], shape completion [Hu+19], and image
synthesis [Sit+18]. In comparison to these methods, the differentiable ren-
derer introduced in this thesis is a general purpose differentiable renderer not
tied to a pretrained network. It could be extended and adapted to the above
applications, but also it can be also as an independent module for general
shape editing, filtering, and reconstruction.

Differentiable point renderers. A number of works render depth maps of
point sets [LKL18; ID18; Rov+18b] for point cloud classification or generation.
These renderers do not define proper gradients for updating point positions
or normals, thus they are commonly applied as an add-on layer behind a point
processing network, to provide 2D supervision. Typically, their gradients
are defined either only for depth values [LKL18], or within a small local
neighborhood around each point. Such gradients are not sufficient to alter
the shape of a point cloud, as we show in a pseudo point renderer in Fig. 3.24.

Surface splatting. Surface splatting is fundamental to our method. Splat-
ting has been developed for simple and efficient point set rendering and
processing in the early seminal point based works [Pfi+00; Zwi+01; Zwi+02;
Zwi+04]. Recently, point based techniques have gained much attention for
their superior potential in geometric learning. To the best of our knowledge,
we are the first to implement high-fidelity differentiable surface splatting.

2.3. Implicit surface reconstruction

2.3.1. Detail-driven implicit surface representation.

Implicit surface representations. Implicit functions are a flexible representa-
tion for surfaces in 3D. Traditionally, implicit surfaces are represented globally
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or locally with radial basis functions (RBF) [Car+01], moving least squares
(MLS) [Lev98], volumetric representation over uniform grids [CL96], or adap-
tive octrees [KBH06]. Recent works investigated neural implicit surface
representations, i.e., using deep neural networks to encode implicit func-
tion [Par+19; SZW19], which achieved promising results in reconstructing
surfaces from 3D point clouds [AL20a; Sit+20; Erl+20] or images [LWL20;
Yar+20; Nie+20].

Compared with simple polynomial or Gaussian kernels, implicit functions
defined by nested activation functions, e.g., MLPs [CZ19] or SIREN [SZW19],
have more capability in representing complex structures. However, fitting
neural implicit functions requires clean points for supervision [Xu+20] and
careful optimization to prevent either overfitting to noise or underfitting to
details and structure.

Hierachical neural implicit shape representation. Neural implicit shape
representation was initially proposed by several works concurrently [Par+19;
CZ19; Mes+19], and since then many works have sought to introduce hierar-
chical structures into the neural representation for better expressiveness and
generalizability. The majority of these methods focus on spatial structures.
DLS [Cha+20a] and PiFU [Sai+19; Sai+20] use sparse regular voxels and
dense 2D grid, respectively, to improve detail reconstruction. In the spirit
of classic approaches [Fri+00; Oht+03], NSVF [Liu+20b], NGLOD [Tak+21]
and ACORN [Mar+21] leveraged shape-adaptive structured grids, leading to
significantly higher reconstruction quality and increased rendering speed. A
common disadvantage of these methods is that the memory use and model
complexity are directly tied to the desired geometric resolution. In parallel,
other proposed methods learn the spatial partition. Some of these meth-
ods decompose the given shape using parameterized templates, such as
anisotropic Gaussians [Gen+19], convex shape CVXNet [Den+20; CTZ20] or
simple primitives [Hao+20], while others represent local shapes with small
neural networks and combine them together either using Gaussians [Gen+20]
or surface patches [Tre+20]. Due to limitations of template functions and
delicate spatial blending issues, these methods can only handle very coarse
geometries.

High-frequency representation in neural networks As formally explained
in [Rah+19; Bas+20], neural networks have a tendency to learn low-frequency
functions. To combat this issue, Mildenhall et al. [Mil+20] incorporated “posi-
tional encoding” for neural rendering and demonstrate remarkable progress
in terms of detail reconstruction, which is a sinusoidal mapping for the input
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signal, a practice later theoretically justified by Tancik et al. [Tan+20]. Al-
ternatively, SIREN also shows impressive advances in detail representation
by replacing ReLU activation with sin functions. With these new networks
gaining popularity, a few works delve deeper and apply a coarse-to-fine
frequency hierarchy in the training process for deformable shape represen-
tation [Par+20] and meshing [Her+21]. In our method, we also create a
frequency hierarchy by leveraging this new form of networks – not only in
the training scheme but also explicitly in the construction of the networks to
reflect our geometry-motivated design principles.

Detail transfer using disentangled implicit functions. Detail transfer refers
to transplanting the disentangled geometric details from a source shape onto
a target object with high fidelity and plausibility. Classic detail transfer
methods represent surface details as normal displacements [Bot+10; Zho+07;
SB09]. The majority of them are parametric [Yin+01; Bie+02; Sor+04; Zho+06;
Tak+11], relying on a consistent surface parameterization between the source
and the target shape. Non-parametric approaches [Che+12; Ber+17], on
the other hand, find best-matching surface patches between the source and
target, and copy the details iteratively from coarse to fine. These classic
approaches produce high quality results, but often require a pre-defined base
surface or abundant user inputs. In the "deep" realm, DeepCage [Yif+20b]
proposed a neural deformation method that maps solely the coarse geometry,
hence allowing detail transfer without tackling detail disentanglement. Hertz
et al. [Her+20a] learn the coarse-to-detail correspondence iteratively from
multi-scale training data, while DecorGAN [Che+21] synthesizes details by
upsampling a coarse voxel shape according to a style code of another shape
using GANs. All of these approaches use explicit representations, hence they
are subject to self-intersection and resolution limitations. D2IM-Net [LZ21b]
uses two planar displacement maps to transfer surface details by mapping
the coordinates of the source and target shapes using part segementation,
thus limiting the application to man-made rigid shapes. In comparison, our
method does not require any correspondence mapping.

2.3.2. Optimizing neural implicit surfaces.

Optimizing neural implicit surfaces with partial observations. Given raw
3D data, Atzmon and Lipman [AL20a; AL20b] use sign agnostic regression to
learn neural implicit surfaces without using a ground truth implicit function
for supervision. Gropp et al. [Gro+20] use the Eikonal term for implicit
geometric regularization and provide a theoretical analysis of the plane

22



2.3. Implicit surface reconstruction

reproduction property possessed by the neural zero level set surfaces. Erler
et al. [Erl+20] proposed a patch-based framework that learns both the local
geometry and the global inside/outside information, which outperforms
existing data-driven methods. None of these methods exploit an explicit
sampling of the implicit function to improve the optimization. Poursaeed
et al. [Pou+20] use two different encoder-decoder networks to simultaneously
predict both an explicit atlas [Gro+18a] and an implicit function. In this thesis,
we propose a hybrid representation using a single network.

When the input observations are in the form of 2D images, differentiable ren-
dering allows us to use 2D pixels to supervise the learning of 3D implicit sur-
faces through automatic differentiation and approximate gradients [Kat+20;
Tew+20]. The main challenge is to render the implicit surface and compute
reliable gradients at every optimization step efficiently. Liu et al. [Liu+20c]
accelerate the ray tracing process via a coarse-to-fine sphere tracing algorithm
[Har96], and use an approximate gradient in back propagation. In [Liu+19c],
a ray-based field probing and an importance sampling technique are pro-
posed for efficient sampling of the object space. Although these methods
greatly improve rendering efficiency, the sampling of ray-based algorithms,
i.e., the intersection between the ray and the iso-surface, are intrinsically
irregular and inefficient. Most of the above differentiable renderers use ray
casting to generate the supervision points. Our method propose another type
of supervision points by sampling the implicit surface in-place.

Sampling implicit surfaces. In 1992, Figueiredo et al. [Fig+92] proposed a
powerful way to sample implicit surfaces using dynamic particle systems that
include attraction and repulsion forces. Witkin and Heckbert [WH94] further
developed this concept by formulating an adaptive repulsion force. While the
physical relaxation process is expensive, better initialization techniques have
been proposed, such as using seed flooding on the partitioned space [LGS06]
or the octree cells [PJS07]. Huang et al. [Hua+13b] resample point set surfaces
to preserve sharp features by pushing points away from sharp edges before
upsampling. When sampling a neural implicit surface, existing works such
as Atzmon et al. [Atz+19] project randomly generated 3D points onto the
iso-surface along with the gradient of the neural level set. However, such
sampled points are unevenly distributed, and may leave parts of the surface
under-sampled or over-sampled.
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2.4. Shape deformation

Learning 3D deformations. Many recent works in learning 3D geometry
have focused on generative tasks, such as synthesis [Gro+18a; Mes+19] and
editing [Zhu+18] of unstructured geometric data. These tasks are especially
challenging if one desires high-fidelity content with intricate details. A
common approach to producing intricate shapes is to deform an existing
generic [Wan+18a] or category-specific [Gro+18b] template. Early approaches
represented deformations as a single vector of vertex positions of a tem-
plate [Tan+18], which limited their output to shapes constructable by de-
forming the specific template, and also made the architecture sensitive to
the template tessellation. An alternative is to predict a freeform deformation
field over 3D voxels [Jac+18; Han+18; YM16]; however, this makes the defor-
mation’s resolution dependent on the voxel resolution, and thus has limited
capability to adapt to a specific shape categories and source shapes.

Alternatively, some architectures learn to map a single point at a time, condi-
tioned on some global descriptor of the target shape [Gro+18b]. These archi-
tectures can also work for novel sources by conditioning the deformation field
on features of both source and target [Gro+19; Wan+19]. Unfortunately, due
to network capacity limits, these techniques struggle to represent intricate
details and tend to blur high-frequency features.

Traditional methods for mesh deformation. Research on detail-preserving
deformations in the geometry processing community spans several decades
and has contributed various formulations and optimization techniques [SB09].
These methods usually rely on a sparse set of control points whose transfor-
mations are interpolated to all remaining points of the shape; the challenge
lies in defining this interpolation in a way that preserves details. This can be
achieved by solving an optimization problem to reduce the distortion of the
deformation such as [SA07]. However, defining the output deformation as
the solution to an intricate non-convex optimization problem significantly
limits the ability of a network to learn this deformation space.

Instead, we use cage-based deformations as our representation, where the
source shape is enclosed by a coarse cage mesh, and all surface points are
written as linear combinations of the cage vertices, i.e., generalized barycen-
tric coordinates. Many designs have been proposed for these coordinate
functions such that shape structure and details are preserved under interpo-
lations [JSW05; LLCO08; Jos+07; CB17; TTB12; SVJ15; XLG12].

Shape synthesis and deformation transfer. Automatically aligning a source
shape to a target shape while preserving details is a common task, used to
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synthesize variations of shapes for amplification of stock datasets [HWK15]
or for transferring a given deformation to a new model, targeting animation
synthesis [SP04]. To infer the deformation, correspondence between the two
shapes needs to be accounted for, either by explicitly inferring corresponding
points [LSP08; Li+12; Hua+08], or by implicitly conditioning the deformation
fields on the latent code of the target shape [Gro+19; Wan+19; Han+18]. Our
work builds upon the latter learning-based framework, but uses cages to
parameterize the space of deformations.

Gao et al. [Gao+18] automate the deformation transfer for unpaired shapes
using cycled generative adversarial networks, thus the trained method cannot
be easily adapted for new shape targets. Some prior techniques focus on trans-
ferring and interpolating attributes between various latent spaces trained
for shape generation [Yin+19; Gao+19]. These generative models are not
capable of fully preserving local geometric features, especially if the source
is not pre-segmented into simpler primitives (as assumed by [Gao+19]). In
general, such methods are only expected to perform well if the input shapes
are relatively similar to those observed at training time.
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C H A P T E R 3
Point Cloud Processing and
Enhancement

Point clouds are the most common input for the general geometric processing
pipeline, their quality has a substantial impact on the performance of all the
downstream applications. In reality, point clouds are often the result of a 3D
acquisition procedure and are typically sparse, noisy, and incomplete due
to hardware limitations and environmental constraints. In this chapter, we
introduce two algorithms, which enhance the quality of point clouds from
different perspectives.

3.1. Point cloud super-resolution

Undersampling is one of the most common defections found in point clouds
captured by typical 3D acquisition systems. It can be caused by a variety of
reasons, such as insufficient processing bandwidth, over-extended scanning
distance etc. If not treated, undersampled point clouds can lead to distortions
in the reconstructed surface varying from skewed geometric features to false
topological structures.

The success of neural super-resolution techniques in image space encour-
ages the development of upsampling methods for 3D point sets. A recent
plethora of deep learning super-resolution techniques have achieved signifi-
cant improvement in single image super-resolution performance [Don+16;
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Figure 3.1.: Illustrative overview of our point upsampling algorithm, MPU. Intuitively, our network
learns different levels of detail in multiple steps, where each step focuses on a local patch from
the output of the previous step. By progressively training our patch-based network end-to-end,
we successfully upsample a sparse set of input points, step by step, to a dense point set with rich
geometric details. Here we use discs for points rendering, which are color-coded by point normals.

KKLML16; Shi+16; Led+17]; in particular, multi-step methods have been
shown to excel in their performance [Lai+17; Fan+17; Zha+18b].

Dealing with 3D point sets, however, is challenging since, unlike images, the
data is unstructured and irregular [Li+18b; HTY18; Xu+18; Her+18; AML18b].
Moreover, point sets are often a result of customer-level scanning devices, and
they are typically sparse, noisy and incomplete. Thus, upsampling techniques
are particularly important, and yet the adaption of image-space techniques
to point sets is far from straightforward.

Neural point processing is pioneered by PointNet [Qi+17a] and Point-
Net++ [Qi+17b], where the problem of irregularity and the lack of structure is
addressed by applying shared multilayer perceptrons (MLPs) for the feature
transformation of individual points, as well as a symmetric function, e.g.,
max pooling, for global feature extraction. Yu et al. [Yu+18b] introduced
the first end-to-end point set upsampling network, PU-Net, where both the
input and the output are the 3D coordinates of a point set. PU-Net extracts
multiscale features based on PointNet++ [Qi+17b] and concatenates them to
obtain aggregated multi-scale features on each input point. These features
are expanded by replication, then transformed to an upsampled point set that
is located and uniformly distributed on the underlying surface. Although
multiscale features are gathered, the level of detail available in the input patch
is fixed, and thus both high-level and low-level geometric structures are ig-
nored. The method consequently struggles with input points representing
large-scale or fine-scale structures, as shown in Figures 3.7 and 3.8.

In this work, we present a patch-based progressive upsampling network for
point sets. The concept is illustrated in Figure 3.2 and 3.1. The multi-step
upsampling breaks a, say, 16×-upsampling network, into four 2× subnets,
where each subnet focuses on a different level of detail. To avoid exponential
growth in points and enable end-to-end training for large upsampling ratios
and dense outputs, all subnets are fully patch-based, and the input patch
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Figure 3.2.: Overview of our multi-step patch-based point set upsampling network with 3 levels
of detail. Given a sparse point set as input, our network predicts a high-resolution set of points that
agree with the ground truth. Instead of training an 8×-upsampling network, we break it into three
2× steps. In each training step, our network randomly selects a local patch as input, upsamples
the patch under the guidance of ground truth, and passes the prediction to the next step. During
testing, we upsample multiple patches in each step independently, then merge the upsampled
results to the next step.
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Figure 3.3.: Illustration of three upsampling network units. Each unit has the same structure but
applied on different levels.

size is adaptive with respect to the present level of detail. Last but not least,
we propose a series of architectural improvements, including novel dense
connections for point-wise feature extraction, code assignment for feature
expansion, as well as bilateral feature interpolation for inter-level feature
propagation. These improvements contribute to further performance boost
and significantly improved parameter efficiency.

We show that our model is robust under noise and sparse inputs. It com-
pares favorably against existing state-of-the-art methods in all quantitative
measures and, most importantly, restores fine-grained geometric details.

3.1.1. Method

Given an unordered set of 3D points, our network generates a denser point
set that lies on the underlying surface. This problem is particularly challeng-
ing when the point set is relatively sparse, or when the underlying surface
has complex geometric and topological structures. In this work, we propose
an end-to-end progressive learning technique for point set upsampling. Intu-
itively, we train a multi-step patch-based network to learn the information
from different levels of detail. As shown in Figures 3.2 and 3.3, our model
consists of a sequence of upsampling network units. Each unit has the same
structure, but we employ it on different levels of detail. The information of
all levels is shared via our intra-level and inter-level connections inside and
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between the units. By progressively training all network units end-to-end,
we achieve significant improvements over previous works. We first present
the global design of our network and then elaborate on the upsampling units.

Multi-step upsampling network

Multi-step supervision is common practice in neural image super-
resolution [Lai+17; Fan+17; Zha+18b]. In this section, we first discuss
the difficulties in adapting multi-step learning to point set upsampling,
which motivates the design of our multi-step patch-based supervision method.
Next, we illustrate the end-to-end training procedure for a cascade of up-
sampling network units for large upsampling ratios and high-resolution
outputs.

Multi-step patch-based receptive field. Ideally, a point set upsampling
network should span the receptive field adaptively for various scales of
details to learn geometric information from multiple scales. However, it
is challenging to apply a multi-scope receptive field on a dense irregular
point set due to practical constraints. In contrast to images, point sets do not
have the regular structure, and the neighborhoods of points are not fixed
sets. Neighborhood information must be collected by, e.g., k-nearest neighbors
(kNN) search. This per-layer and per-point computation is rather expensive,
prohibiting a naive implementation of a multi-step upsampling network to
reach large upsampling ratios and dense outputs. Therefore, it is necessary to
optimize the network architecture, such that it is scalable to a high-resolution
point set.

Our key idea is to use a multi-step patch-based network, and the patch
size should be adaptive to the scope of receptive fields at the present step.
Note that in neural point processing, the scope of a receptive field is usually
defined by the kNN size used in the feature extraction layers. Hence, if
the neighborhood size is fixed, the receptive field becomes narrower as the
point set grows denser. This observation suggests that it is unnecessary
for a network to process all the points when the receptive field is relatively
narrow. As shown in Fig. 3.2, our network recursively upsamples a point set
while at the same time reduces its spatial span. This multi-step patch-based
supervision technique allows for a significant upsampling ratio.

Multi-step end-to-end training. Our network takes L steps to upsample
a set of points by a factor of 2L. For L levels of detail, we train a set of
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Figure 3.4.: Illustration of the feature extraction unit with dense connections.

subnet units {U1, U2, . . . , UL}. We train such a sequence of upsampling units
by progressively activating the training of units; it has been used in many
multiscale neural image processing works [Wan+18d; Kar+18].

More specifically, our entire training process has 2L − 1 stages, i.e., every
upsampling unit has two stages except the first one. We denote the currently
targeted level of detail by L̂. In the first stage of UL̂ we fix the network
parameters of units U1 to UL̂−1 and start the training of unit UL̂. In the second
stage, we unleash the fixed units and train all the units simultaneously. This
progressive training method is helpful because an immature unit can impose
destructive gradient turbulence on the previous units [Kar+18].

We denote the ground truth model, prediction patch and reference patch with
T, P and Q respectively and use L̂ and ` to denote the targeted level of detail
and an intermediate level, as illustrated in Fig. 3.2 and 3.6. In practice, we
recursively shrink the spatial scope by confining the input patch to a fixed
number of points (N). For more technical detail about extracting such input
patches on-the-fly and updating the reference patches accurately, please refer
to Sec. 3.1.1.

Upsampling Network Unit

Let us now take a closer look at an upsampling network unit U`. It takes
a patch from P`−1 as input, extracts deep feature, expands the number of
features, compresses the feature channels to d-dimensional coordinates P`. In
the following, we explain each component in greater detail.

Feature extraction via intra-level dense connections. We strive for extracting
structure-aware features (N × C) from an input point set (N × d). In neural
image processing, skip-connection is a powerful tool to leverage features
extracted across different layers of the network [He+16; Hua+16; Hua+17;
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Lin+18]. Following PointNet++ [Qi+17b], most existing point-based net-
works extract multiple scales of information by hierarchically downsampling
the input point sets [LCL18; Yu+18b]. Skip-connections have been used to
combine multiple levels of features. However, a costly point correspondence
search must be applied prior to skip-connections, due to the varying point
locations caused by the downsampling step.

We propose an architecture that facilitates efficient dense connections on
point sets. Inspired by the dynamic graph convolution [Wan+18e; She+18],
we define our local neighborhood in feature space. The point features are
extracted from a local neighborhood that is computed dynamically via kNN
search based on feature similarity. As a result, our network obtains long-range
and nonlocal information without point set subsampling.

As shown in Fig. 3.4, our feature extraction unit is composed of a sequence of
dense blocks. In each dense block, we convert the input to a fixed number
(C′) of features, group the features using feature-based KNN, refine each
grouped feature via a chain of densely connected MLPs, and finally compute
an order-invariant point feature via max-pooling.

We introduce dense connections both within and between the dense blocks.
Within the dense blocks, each MLP’s output, i.e., a fixed number (G) of
features, is passed to all subsequent MLPs; between the blocks, the point
features produced by each block are fed as input to all following blocks. All
these skip-connections enable explicit information re-use, which improves
the reconstruction accuracy while significantly reducing the model size, as
demonstrated in Sec. 3.1.2. Overall, our 16×-upsampling network with
four 2×-upsampling units has much fewer network parameters than a 4×-
upsampling PU-Net [Yu+18b]: 304K vs. 825K.

Feature expansion via code assignment. In the feature expansion unit, we
aim to transform the extracted features (N × C) to an upsampled set of
coordinates (2N × d).

PU-Net [Yu+18b] replicates the per-point features and then processes each
replicant independently by an individual set of MLPs. This approach may
lead to clustered points around the original points positions, which is alle-
viated by introducing a repulsion loss. Instead of training the network to
disentangle the replicated features in-place, we explicitly offer the network
the information about the position variation.

In conditional image generation models [MO14], a category-variable is usu-
ally concatenated to a latent code to generate images of different categories.
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Figure 3.5.: Illustration of one upsampling network unit.

Similarly, we assign a 1D code, with value −1 and 1, to each of those dupli-
cated features to transform them to different locations, as shown in Fig. 3.5.
Next, we use a set of MLPs to compress the 2N × (C + 1) features to 2N × d
residuals, which we add to the input coordinates to generate the output
points.

Our experiments show that the proposed feature expansion method results
in a well distributed point set without using an additional loss. Also, the
number of network parameters is independent of the upsampling ratio, since
all expanded features share the consecutive MLPs.

Our feature expansion method is also related to recent point cloud generative
models FoldingNet [Yan+18] and AtlasNet [Gro+18a], where the coordinates
of a 2D point are attached to the learned features for point generation. Here,
we show that the choice of an attached variable can be as simple as a 1D
variable.

Inter-level skip connection via bilateral feature interpolation. We introduce
inter-level skip-connections to enhance the communication between the up-
sampling units, which serves as bridges for features extracted with different
scopes of the receptive fields, as shown in Fig. 3.3.

To pass features from previous levels the current level, the key is a feature
interpolation technique that constructs corresponding features from the pre-
vious upsampling unit, as the upsampling and patch extraction operations
change the point correspondence. Specifically, we use bilateral interpolation.
For the current level `, we denote by pi and fi the coordinates of the i-th point
and its features generated by the feature extraction unit respectively, and N ′i
denotes the spatial kNN of pi from level `′. the interpolated feature for f̃i can
be written as:

f̃i =
∑i′∈N ′i θ(pi, pi′)ψ( fi, fi′) fi′

∑i′∈N ′i θ(pi, pi′)ψ( fi, fi′)
, (3.1)
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with the joint weighting functions: θ(p1, p2) = e−
( ‖p1−p2‖

r

)2

, ψ( f1, f2) =

e−
( ‖ f1− f2‖

h

)2

. The width parameters r and h are computed using average
distance to the closest neighbor.

One way to implement the inter-level connection is to interpolate and concate-
nate f̃i from all previous layers, i.e., use dense links the same as those within
the feature extraction units. However, doing so would result in a very wide
network, with `C features in level ` (typically C = 216), causing scalability
issues and optimization difficulties [Wan+18d]. Instead, we apply residual
skip-connections, i.e., fi = f̃i + fi. By applying such residual links per-level,
contextual information from coarser scales can be propagated through the
entire network and incorporated for the restoration of finer structures. We
learn through experiments that both dense links and residual links contribute
positively to the upsampling result, but the latter has better performance in
terms of memory efficiency, training stability and reconstruction accuracy.

Implementation details

Iterative patch extraction. In each training step, the target resolution
L̂ is fixed. PL̂ and QL̂ denote the prediction and reference patch in L̂,
whereas TL̂ denotes the entire reference shape in this resolution. We
compute PL̂ and QL̂ iteratively from a series of intermediate predic-
tions and references, denoted as P` and Q̃` where ` = 1 . . . L̂ − 1.

Figure 3.6.: Extraction of patches for L̂ = 3 during training.
In this example, since there are only a small number of
input points in 2D data, the first level contains the whole
input shape (N = |P0|).

More specifically, the in-
put to level ` is obtained us-
ing kNN (k = N) around
a random point p∗`−1 in
P`−1. Q̃` should matche
the spatial extent of P`
but has a higher resolu-
tion, hence it can be ex-
tracted by kNN search in
Q̃`−1 using the same query
point p∗`−1, whereas k =

2L̂−l+1N. Note that we normalize the patches to a unit cube to improve
the computational stability. In Fig. 3.6 we illustrate the described procedure
for L̂ = 3.

For inference, the procedure differs from above in two points: 1. In each level,
we extract H overlapping input patches to ensure coverage of the entire input
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point set, the query points are sampled with farthest sampling; 2. We obtain
P` by first merging the H overlapping partial outputs and then resampling
with farthest sampling such that |P`| = 2|P`−1|. The resampling leads to
uniform point distribution despite overlapping regions.

Using a small N could theoretically restrict the contextual information, while
a larger N could unnecessarily increase the input complexity thus training
difficulty. In our experiments, the choice of the input patch size N is not that
critical for the upsampling quality.

Loss function. We use Euclidean distance for patch extraction for its speed
and flexibility. This implies that the patch pairs P` and Q` might have mis-
alignment problems on their borders. We observe that the loss computed
on those unmatched points adds noise and outliers in the result. Thus, we
propose a modified Chamfer distance:

L(P,Q)=
1
|P| ∑

p∈P
ξ

(
min
q∈Q
‖p−q‖2

)
+

1
|Q| ∑

q∈Q
ξ

(
min
p∈P
‖p−q‖2

)
, (3.2)

where the function ξ filters outliers above a threshold δ:

ξ (d) =

{
d, d ≤ δ

0, otherwise
.

We set δ to be a multiple of the average nearest neighbor distance so as to
dynamically adjust to patches of different scales.

3.1.2. Results

In this section, we compare our method quantitatively and qualitatively with
state-of-the-art point upsampling methods, and evaluate various aspects of
our model. Please refer to the supplementary for further implementation
details and extended experiments.

The metrics used for evaluation are (i) Chamfer distance, (ii) Hausdorff
distance [Ber+13] and (iii) point-to-surface distance computed against the
ground truth mesh.

Training and testing data. We generate two datasets for our experiments:
MNIST-CP, Sketchfab and ModelNet10[Wu+15b]. MNIST-CP consists of 50K
and 10K training and testing examples of 2D contour points extracted from the
MNIST dataset [LC10]. Given a set of 2D pixel points, we apply Delaunay
triangulation [Boi+02], Loop surface subdivision [Loo87], boundary edge
extraction, and WLOP [Hua+09] to generate a uniformly distributed point set
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lying on the contour curve of the image. The number of points in input P and
ground truth point sets T1, T2 and T3 are 50, 100, 200 and 800, respectively.
Sketchfab consists of 90 and 13 highly detailed 3D models downloaded from
SketchFab [Skea] for training and testing, respectively. ModelNet10 is com-
prised of 10 categories, containing 3991 and 908 CAD meshes for training and
testing, respectively. We use the Poisson-disk sampling [CCS12] implemented
in Meshlab [Cig+08] to sample input and ground truth point sets with the
number of points ranging from 625 to 80000. Our data augmentation includes
random rotation, scaling and point perturbation with gaussian noise.

Comparison. We compare our method on relatively sparse (625 points) and
dense (5000 points) inputs with three state-of-the-art point set upsampling
methods: EAR [Hua+13a], PU-Net [Yu+18b] and EC-Net [Yu+18a].

The code of these methods is publicly available. For EAR, we set the param-
eter σn = 35◦ to favor sharp feature preservation. For PU-Net and EC-Net,
we obtain 16× results by iteratively applying their 4×-upsampling model
twice, as advised by the authors. As for comparison, we train a four-step 16×
model using our method, where the initial patch size falls into a similar level
of detail as PU-Net. For all experiments, we add to the input Gaussian noise
with 0.25% magnitude of the model dimensions.

Method
Sparse input Dense input

# Param.
CD HD P2F CD HD P2F

EAR 0.67 7.75 5.25 0.09 1.82 1.88 -
PU 0.72 9.24 6.82 0.41 5.45 3.39 814K
EC 0.91 13.4 6.42 0.24 4.21 2.64 823K

Ours 0.54 6.92 3.32 0.06 1.31 1.11 304K

Table 3.1.: Quantitative comparison with state-of-the-art ap-
proaches for 16× upsampling from 625 and 5000 input points
tested on Sketchfab dataset.

Table 3.1 and 3.2 sum-
marizes the quantita-
tive comparison con-
ducted using Sketchfab
and ModelNet10. Note
that because many
models in ModelNet10
are not watertight,
we omit the point-to-
surface distance in Ta-

ble 3.2. Examples of the upsampling results are provided in Figures 3.7
and 3.8 for visual comparison, where we apply surface reconstruction to the
upsampled point sets using PCA normal estimation (neighborhood number
= 25) [Hop+92b] and screened Poisson reconstruction (depth = 9) [KH13b].

As seen in Figures 3.7 and 3.8, EAR generates competitive results for denser
inputs but struggles with sparse inputs. As shown in Table 3.1, the perfor-
mance of PU-Net on sparse and dense inputs is similar, revealing its limitation
for high levels of detail. For denser inputs, EC-Net produces clean and more
well defined outputs than PU-Net, but also shows signs of over-sharpening.
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3.1. Point cloud super-resolution

Figure 3.7.: 16× upsampling results from 625 input points (left) and reconstructed mesh (right).

Figure 3.8.: 16× upsampling results from 5000 input points (left) and reconstructed mesh (right).
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10−3 bathtub bed chair desk dresser monitor n. stand sofa table toilet
C

D

PU 1.01 1.12 0.82 1.22 1.55 1.19 1.77 1.13 0.69 1.39
EC 1.43 1.81 1.8 1.30 1.43 2.04 1.88 1.79 1.00 1.72

ours 0.70 0.77 0.90 0.96 1.13 0.83 1.37 0.67 0.58 1.02

H
D PU 10.77 12.39 10.38 13.29 14.08 14.01 16.21 11.66 9.7 14.74

EC 15.71 23.17 18.65 16.12 16.37 30.48 20.29 19.97 12.42 18.58
ours 7.76 9.36 9.70 9.19 11.33 9.90 13.52 8.37 5.87 10.95

Table 3.2.: Quantitative comparison with state-of-the-art approaches on ModelNet10 dataset for
16× upsampling from 625 input points.

Removed/Replaced component
CD

10−3
HD
10−3

P2F
10−3 Param.

1. Multi-stage architecture 0.69 9.98 4.07 65K
2. End-to-end training 0.73 9.91 3.34 263K
3. Progressive end-to-end training 0.55 7.46 3.49 304K
4. Dense feature extraction 0.61 9.17 4.17 2855K
5. Feature expansion 0.73 9.83 5.30 1642K
6. Inter-level skip-connections 0.61 7.65 3.38 263K

Our full model 0.54 6.92 3.32 304K

Table 3.3.: Ablation study with 16×-upsampling factor tested on the Sketchfab dataset using 625
points as input. We evaluate the contribution of each proposed component quantitatively with
Chamfer distance (CD), Hausdorff distance (HD) and mean point-to-surface distance (P2F), and
also report the number of parameters in the rightmost column.

For sparse input though, EC-Net produces more artifacts, possibly because
the geodesic KNN, which EC-Net is built upon, becomes unreliable under
sparse inputs. In comparison, our method outperforms all these methods
quantitatively by a large margin. Qualitatively, our results are less noisy and
contain notably more details.

Ablation study. An ablation study quantitatively evaluates the contribution
of each of our proposed components:

1. Multi-stage architecture: we train a 2×-upsampling model for all levels of
detail and test by iteratively applying the model 4 times.

2. Progressive training: instead of progressively activating the training of each
upsampling unit as described in Sec. 3.1.1, we train all units simultaneously.

4-6. Dense feature extraction, expansion, and inter-level skip-connections: we
either remove or replace each of these modules with their counterpart in
PU-Net.
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3.1. Point cloud super-resolution

(a) (b) (c) (d)

Figure 3.9.: Visual comparison for ablation study. We perform 16×-upsampling from 625 points
(left). (a)-(d) show a point patch of the input and the results from the single-stage model, separately
trained model and our full model.

As Table 3.3 shows, all components contributes positively to the full model.
In particular, removing multi-stage architecture significantly increased the
difficulty of the task, resulting in artifacts shown in Fig. 3.9b. We observe
similar artifacts when the upsampling units are trained separately (Fig. 3.9c),
as the networks cannot counteract the mistakes made in previous stages.
The proposed dense feature extraction, feature expansion, and inter-level
skip-connections considerably improve the upsampling results. Moreover,
the feature extraction and expansion unit contribute to significant parameter
reduction.

Study of patch-based progressive upsampling. We evaluate the effect of
our core idea, patch-based progressive upsampling, in greater detail. For
this purpose, we start from the architecture proposed by PU-Net and add
the techniques introduced in Sec. 3.1.1 one by one. Specifically, we conduct
the following experiments on MNIST-CP dataset: (i) train a PU-Net with
direct 16× upsampling, (ii) train one 2× PU-Net using training examples
sampled with all available patch densities and then apply it iteratively 4
times, (iii) train a network for each level of detail separately, (iv) progres-
sively train all networks but omit the per-stage patch extraction technique
introduced in Sec. 3.1.1, and finally (v) progressively train all networks with
patch extraction.

The results are shown in Fig. 3.10. Both direct upsampling and single-stage
model ((i) and (ii)) are unable to reconstruct faithful geometry in curvy
regions, suggesting that a multi-stage architecture is necessary for capturing
high levels of detail. The multi-stage PU-Net (iii) notably improves the result
but shows more artifacts compared with an end-to-end multi-stage model
(iv), since the network has a chance to correct the mistakes introduced in
earlier stages. Finally, applying adaptive patch extraction (v) further refines
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input (i) (ii) (iii) (iv) (v) GT

Figure 3.10.: Study of patch-based progressive upsampling. From left to right: input with 50
points, (i) direct 16× upsampling, (ii) iterative 2× upsampling trained with augmented data, (iii)
multi-stage network trained separately, (iv) multi-stage network trained progressively, (v) patch-
based multi-stage network trained progressively, and ground truth.

increasing noise

(a)

increasing sparsity

(b)

Figure 3.11.: Stress test with increasing noise (a) and sparsity (b). The model is trained using 50
input points and Gaussian noise of 0.25% magnitude of the point set dimensions. In (a) we test
with noise level of 0, 0.25%, 0.5%, 1%, 1.5% and 2%; in (b) we test with 50, 45, 40, 35, 30, and 25
input points.

the local geometry, indicating that it helps the network to focus on local
details by adapting the spatial span of input to the scope of receptive fields.

Stress test. To test the robustness to noise and sparsity, we subject an input
point set to different noise levels ranging from 0% to 2%, and for sparsity we
randomly remove 10% to 50% of the points from the input.

The corresponding results from MNIST-CP datasets are shown in Fig-
ures 3.11a and 3.11b. Compared to PU-Net, our model is more robust against
noise and sparsity.

Upsampling of scanned data. We test our method for real world data in two
settings.
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In the first one, we diretly apply the trained model (trained using uniformly
sampled point clouds) for scanned data. The input scanned data is acquired
using a hand-held 3D scanner Intel RealSense SR300. Albeit dense, such
data is severely ridden with noise and outliers. Therefore, we first employ
WLOP [Hua+09], a point set denoising tool known to be robust against noise
and outliers, to consolidate and simplify the point set. We then apply our
model to the resulting, denoised yet sparse point set and obtain a dense and
clean output, as shown in Fig. 3.12c.

(a) (b) (c)

Figure 3.12.: 16× upsampling results using a real scan as
input. Given a noisy input (a), we use WLOP [Hua+09] to
obtain a consolidated point set (b), to which we apply our
upsampling network (c).

In the second setting, we re-
train our model using syn-
thetic scans. To this end, we
implement a virtual scanner
to scan the training set of the
Sketchfab dataset from a ran-
dom viewpoint using differ-
ent camera resolutions. By
gradually increasing the cam-
era resolution, we obtain a list
of virtual scans with increas-
ing density.

We test the trained model on both virtual and real scans. The results are
shown in Fig. 3.13a and 3.13b. The virtual scans are generated from the
testing set of the Sketchfab dataset, while the real scans are acquired via the
Intel RealSense SR300 scanner. As an alternative to the WLOP consolidation,
we use the scanner’s built-in filter to obtain a relatively clean input, which
typically smears the fine-grained details and reduces the frame rate. As
shown in Fig. 3.13a, our model is able to reveal fine-grained geometry from
very sparse inputs. In addition, it can fill holes and preserve sharp features,
as shown in Fig. 3.13b.
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(a) 16× upsampling results on virtual scans. (b) 16× upsampling results on real scans.

Figure 3.13.: Upsampling results using models trained with virtual scanning data.
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3.2. Point processing via inverse rendering

In this section, we introduce different approach for point cloud processing.
Instead of directly operating in the 3D domain, we administer changes solely
in the 2D renderings the 3D scene. Then, in a process called inverse rendering,
the changes from 2D domain are propagated back and applied to the 3D
scene. This seemingly deviant approach is often favored over the direct
approach, given that 2D data is substantially easier to acquire and has a
larger range of processing tools including especially the contemporary neural
image processing.

The key to inverse rendering is differentiable renderer (DR). A differentiable
rendererR takes scene-level information θ such as 3D scene geometry, light-
ing, material and camera position as input, and outputs a synthesized image
I = R(θ). Any changes in the image I can thus be propagated to the pa-
rameters θ, allowing for image-based manipulation of the scene. Assuming
a differentiable loss function L(I) = L(R(θ)) on a rendered image I, we
can update the parameters θ with the gradient ∂L

∂I
∂I
∂θ . This view provides a

generic and powerful shape-from-rendering framework where we can exploit
vast image datasets available, deep learning architectures and computational
frameworks, as well as pre-trained models. The challenge, however, is being
able to compute the gradient ∂I/∂θ in the renderer.

Existing DR methods can be classified into three categories based on their
geometric representation: voxel-based [NP+18; Tul+17; Liu+17], mesh-
based [LB14; KUH18; LTJ18], and point-based [ID18; LKL18; Rov+18a;
Raj+18]. Voxel-based methods work on volumetric data and thus come
with high memory requirements even for relatively coarse geometries. Mesh-
based DRs solve this problem by exploiting the sparseness of the underlying
geometry in the 3D space. However, they are bound by the mesh structure
with limited room for global and topological changes, as connectivity is not
differentiable. Equally importantly, acquired 3D data typically comes in an un-
structured representation that needs to be converted into a mesh form, which
is itself a challenging and error-prone operation. Point-based DRs circum-
vent these problems by directly operating on point samples of the geometry,
leading to flexible and efficient processing. However, existing point-based
DRs use simple rasterization techniques such as forward-projection or depth
maps, and thus come with well-known deficiencies in point cloud processing
when capturing fine geometric details, dealing with gaps and occlusions
between near-by points, and forming a continuous surface.

In this work, we introduce Differentiable Surface Splatting (DSS), the first
high fidelity point based differentiable renderer. We utilize ideas from surface
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splatting [Zwi+01], where each point is represented as a disk or ellipse in the
object space, which is projected onto the screen space to form a splat. The
splats are then interpolated to encourage hole-free and antialiased renderings.
For inverse rendering, we carefully design gradients with respect to point
locations and normals by taking each forward operation apart and utilizing
domain knowledge. In particular, we introduce regularization terms for
the gradients to carefully drive the algorithms towards the most plausible
point configuration. There are infinitely many ways splats can form a given
image due to the high degree of freedom of point locations and normals.
Our inverse pass ensures that points stay on local geometric structures with
uniform distribution.

We apply DSS to render multi-view color images as well as auxiliary maps
from a given scene. We process the rendered images with state-of-the-art tech-
niques and show that this leads to high-quality geometries when propagated
utilizing DSS. Experiments show that DSS yields significantly better results
compared to previous DR methods, especially for substantial topological
changes and geometric detail preservation. We focus on the particularly
important application of point cloud denoising.

3.2.1. Method

In essence, a differentiable rendererR is designed to propagate image-level
changes to scene-level parameters θ. This information can be used to optimize
the parameters so that the rendered image I = R (θ) matches a reference
image I∗. Typically, θ includes the coordinates, normals and colors of the
points, camera position and orientation, as well as lighting. Formally, this
can be formulated as an optimization problem

θ∗ = arg min
θ
L (R (θ) , I∗) , (3.3)

where L is the image loss, measuring the distance between the rendered and
reference images.

Methods to solve the optimization problem (3.3) are commonly based on
gradient descent which requires R to be differentiable with respect to θ.
However, gradients w.r.t. point coordinates p and normals n, i.e., dI

dp and
dI
dn , are not defined everywhere, sinceR is a discontinuous function due to
occlusion events and edges.

The key to our method is two-fold. First, we define a gradient dI
dp and dI

dn
which enables information propagation from long-range pixels without addi-
tional hyper-parameters. Second, to address the optimization difficulty that
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pk

xk

x

Figure 3.14.: Illustration of forward splatting using EWA [Zwi+01]. A point in space pk is rendered
as an anisotropic ellipse centered at the projection point xk. The final pixel value Ix at a pixel x in
the image (shown on the right) is the normalized sum of all such ellipses overlapping at x.

arises from the significant number of degrees of freedom due to the unstruc-
tured nature of points, we introduce regularization terms that contribute to
obtaining clean and smooth surface points.

In this section, we first review screen space EWA (elliptical weighted av-
erage) [Zwi+01; Hec89], which we adopt to efficiently render high-quality
realistic images from point clouds. Then we propose an occlusion-aware
gradient definition for the rasterization step, which, unlike previously pro-
posed differential mesh renderers, propagates gradients to depth and allows
large deformation. Lastly, we introduce two novel regularization terms for
generating clean surface points.

Forward pass

The forward pass refers to the generation of a 2D image from 3D scene-level
information, I = R (θ). Our forward pass closely follows the screen space
elliptical weighted average (EWA) filtering described in [Zwi+01]. In the
following, we briefly review the derivation of EWA filters.

In a nutshell, the idea of screen space EWA is to apply an isotropic Gaussian
filter to the attribute Φ of a point in the tangent plane (defined by the normal
at that point). The projection onto the image plane defines elliptical Gaussians,
which, after truncation to bounded support, form a disk, or splat, as shown in
Fig. 3.14. For a point pk, we write the filter weight of the isotropic Gaussian
at position p as

Gpk,Vk (p) =
1

2π|Vk|
1
2

e(p−pk)
>V−1

k (p−pk), Vk = σ2
k I, (3.4)
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where σk is the standard deviation and I is the identity matrix.

Now we consider the projected Gaussian in screen space. Points pk and p are
projected to xk and x, respectively. We write the Jacobian of this projection
from the tangent plane to the image plane as Jk; we refer the reader to the
original surface splatting paper [Zwi+01] for the derivation of Jk. Then at x,
the screen space elliptical Gaussian weight is

rk (x) = GVk

(
J−1

k (x− xk)
)

=
1∣∣∣J−1
k

∣∣∣GJkVkJ>k
(x− xk) . (3.5)

Note that rk is determined by the point position pk and the normal nk, because
Jk is determined by pk and nk.

Next, a low-pass Gaussian filter with variance I is convolved with Eq. (3.5) in
screen space. Thus the final elliptical Gaussian is

ρ̄k (x) =
1∣∣∣J−1
k

∣∣∣GJkVkJ>k+I (x− xk) . (3.6)

In the final step, two sources of discontinuity are introduced to the fully
differentiable ρ̄. First, for computational reasons, we limit the elliptical
Gaussians to a limited support in the image plane for all x outside a cutoff
radius C, i.e., 1

2x>
(
JVkJ>+ I

)
x > C. Second, we set the Gaussian weights

for occluded points to zero. Specifically, we keep a list of the maximum K
(we choose K = 5) closest points at each pixel position, and compute their
depth difference to the front-most point, and then set the Gaussian weights to
zero for points that are behind the front-most point by more than a threshold
T (we set T = 1% of the bounding box diagonal length). These K points
are cached for gradient evaluation in backward pass, as will be explained in
Sec. 3.2.1.

The resulting truncated Gaussian weight, denoted as ρk, can be formally
defined as

ρk (x) =


0, if 1

2x>
(
JVkJ>+ I

)
x > C,

0, if pk is occluded,
ρ̄k, otherwise.

(3.7)

The final pixel value is simply the normalized sum of all filtered point at-
tributes {wk}N

k=0 evaluated at the center of pixels, i.e.,

Ix =
∑N−1

k=0 ρk (x) wk

∑N−1
k=0 ρk (x)

. (3.8)

In practice, this summation can be greatly optimized by computing the
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Figure 3.15.: Examples of images rendered using DSS. From left to right, we render the normals,
inverse depth values and diffuse shading with three RGB-colored sun light sources.

bounding box of each ellipse and only considering points whose elliptical
support covers the pixel x.

The point value Φ can be any point attribute, e.g., albedo color, shading,
depth value, normal vector, etc. In most of our experiments, we use diffuse
shading under three orthogonally positioned RGB-colored sun lights. This
way, Φ carries strong information about point normals, and at the same
time it is independent of point position (unlike with point lights), which
greatly simplifies the factorization for gradient computation, as explained
in Sec. 3.2.1.

Fig. 3.15 shows some examples of rendered images. Unlike many pseudo
renderers which achieve differentiability by blurring edges and transparent
surfaces, our rendered images faithfully depict the actual geometry in the
scene.

Backward pass

The backward pass refers to the information flow from the rendered image
I = R (θ) to the scene parameters θ based on approximating the gradient dI

dθ .
As discussed, the key to address the discontinuity ofR lies in the approxima-
tion of the gradient dI

dp and dI
dn .

The discontinuity of R is encapsulated in the truncated Gaussian weights
ρk as described Eq. (3.7). We can factorize the discontinuous ρk into the fully
differentiable term ρ̄k and a discontinuous visibility term hx ∈ {0, 1}, i.e.,
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(a) The ellipse centered at pk,0 is not visible at x.

qx

qxpk,0

pk,0

qx

qx

dΦx
dpk

∣∣∣+
pk,0

= ∆Ix
∆p+k

dΦx
dpk

∣∣∣−
pk,0

= ∆Ix
∆p−k

pk

Φx

pixel intensity at x

move away

pixel intensity at x

move toward

pk,0

pk,0
pk

Φx

(b) The ellipse centered at pk,0 is visible at x.

Figure 3.16.: An illustration of the artificial gradient in two 1D scenarios: the ellipse centered at pk,0
is invisible (Fig. 3.16a) and visible (Fig. 3.16b) at pixel x. Φx,k is the pixel intensity Ix as a function
of point position pk, qx is the coordinates of the pixel x back-projected to world coordinates.
Notice the ellipse has constant pixel intensity after normalization (Eq. (3.8)). We approximate
the discontinuous Φx,k as a linear function defined by the change of pixel intensity ∆Ix and the
movement of the ∆pk during a visibility switch. As pk moves toward (∆p+

k ) or away (∆p−k ) from
the pixel, we obtain two different gradient values. We define the final gradient as their sum.

ρk = hxρ̄k, where hx is defined as

hx (pk) =


0, if1

2x>
(
JVkJ>+ I

)
x > C,

0, if pk is occluded,
1, otherwise.

(3.9)

Note that even though hx is indirectly influenced by nk through J, since this
only impacts the visibility of a small set of pixels around the ellipse, we omit
this nk in this formulation. Therefore, if we write Ix as a function of wk, ρ̄k
and hk, then by the chain rule we have

dIx (wk, ρ̄k, hx)

dnk
=

∂Ix

∂wk

∂wk
∂nk

+
∂Ix

∂ρ̄k

∂ρ̄k
∂nk

, (3.10)

dIx (wk, ρ̄k, hx)

dpk
=

∂Ix

∂wk

∂wk
∂pk

+
∂Ix

∂ρ̄k

∂ρ̄k
∂pk

+
∂Ix

∂hx

∂hx

∂pk
, (3.11)

where Eq. (3.10) is fully differentiable but Eq. (3.11) is not, as ∂hx
∂pk

is undefined
at the edge of ellipses.

We focus on the partial gradient ∂Ix
∂hx

∂hx
∂pk

. Denoting Φx (pk) = Ix (hx (pk)), this

gradient can be written as dΦx
dpk

, which describes the change of a pixel intensity
Ix due to the visibility change of a point caused by its varying position pk.

1D scenario. Let us first consider a simplified scenario where a single point
only moves in 1D space. As shown in Fig. 3.16, Φx is generally discontinuous;
it is zero almost everywhere except in a small region around qx, the coor-
dinates of the pixel x back-projected to world coordinates. Similar to NMR
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Figure 3.17.: Illustration of the 3 cases for evaluating Eq. (3.12) for 3D point clouds.

[KUH18], we approximate Φx as a linear function defined by the change of
point position ∆pk and the pixel intensity ∆I before and after the visibility
change.

As pk moves toward or away from qx, we obtain two different linear functions

with gradients dΦx
dpk

∣∣∣+
pk,0

and dΦx
dpk

∣∣∣−
pk,0

, respectively. Specifically, when pk is in-

visible at x (Fig. 3.16a), moving away will always induce zero gradient, while
when pk is visible, we obtain two gradients with opposite signs (Fig. 3.16b).
The final gradient is defined as the sum of both, i.e.,

dΦx

dpk

∣∣∣∣
pk,0

=


∆Ix

‖∆p+
k ‖2+ε

∆p+
k , pk invisible at x

∆Ix
‖∆p−k ‖2+ε

∆p−k + ∆Ix
‖∆p+

k ‖+ε
∆p+

k , otherwise,
(3.12)

where ∆p−k and ∆p+
k denote the point movement toward and away from

x, starting from the current position pk,0. The value ε is a small constant
(we set ε = 10−5). It prevents the gradient from becoming extremely large
when pk is close qx, which would lead to overshooting, oscillation and other
convergence problems.

3D cases. Extending the single point 1D-scenario to a point cloud in 3D re-
quires evaluating ∆I and ∆p with care. As depicted in Fig. 3.17, the following
cases are considered: (a) pk is not visible at x and x is not rendered by any
other ellipses in front of pk; (b) pk is not visible at x and x is rendered by other
ellipses in front of pk; (c) pk is visible at x.

For (a) and (c), we only need to compute the gradient in screen space, whereas
for (b), pk must move forward in order to become visible, resulting in a
negative depth gradient. Furthermore, for (a) and (b) we evaluate the new
Ix using Eq. (3.8), adding the contribution from pk, while for (c) we need
to subtract the contribution of pk, which may include previously occluded
ellipses into Eq. (3.8). For this purpose, as mentioned in 3.2.1, we cache an
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3. Point Cloud Processing and Enhancement

ordered list of the top-K (we choose K=5) closest ellipses that can be projected
onto each pixel and save their ρ, Φ and depth values during the forward pass.
The value of K is related to the merging threshold T , and as T is typically
small, we find K = 5 is sufficient even for dense point clouds. Finally, similar
to NMR, when evaluating Eq. (3.12) for the optimization problem Eq. (3.3),
we set the gradient to zero if the change of pixel intensity cannot reduce the
image loss L, i.e.,

dΦx

dpk

∣∣∣∣
pk=pk,0

= 0 if
dL
dIx

∆Ix >= 0. (3.13)

Comparison to other differentiable renderers A few differential renderers
have been proposed for meshes. In Paparazzi [LTJ18], the rendering function
is simplified enough such that the gradients can be computed analytically,
which is prohibitive for silhouette change where handling significant occlu-
sion events is required. OpenDR [LB14] computes gradients only in screen
space from a small set of pixels near the boundary, which is conceptually
less accurate than our definition. SoftRasterizer [Liu+19a] alters the forward
rendering to make the rasterization step inherently differentiable; this leads
to impeded rendering quality and relies on hyper-parameters to control the
differentiability (i.e., support of non-zero gradient). The work related most
closely to our approach in terms of gradient definition is the neural mesh
renderer (NMR) [KUH18]. We both construct Φx depending on the change
of pixel ∆Ix, but our method differs from NMR in the following aspects:
1. we consider the movement of pk in 3D space, while NMR only considers
movement in the image plane, hence neglecting the gradient in z-dimension.
2. we define the gradient for all dimensions of p jointly. In contrast, NMR
evaluates the 1D gradients separately and consequently considers only pixels
in the same row and column; 3. we consider a set of occluded and occluding
ellipses projected to pixel x. This not only leads to more accurate gradient
values, but also encourages noisy points inside the model to move onto the
surface, to a position with matching pixel color.

Comparison to filter-based gradient approximation. Alternatively, related
to SoftRasterizer [Liu+19a] and Pix2Vex [Pet+19], one can define the gradient
of the discontinuous function Φx,k by replacing it with a C∞ function, e.g., a
radial basis function (RBF). This is a seemingly natural choice for EWA-based
point rendering, since each point is represented as a RBF in the forward
pass. We compare the RBF-derived gradient with our approximation in a
single point 1D scenario, and evaluate the gradient value and convergence
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Figure 3.18.: Comparison between RBF-based gradient and our gradient approximation in terms
of the gradient value at pixel x and residual in image space x− xk as we optimize the point position
pk in the initial rendered image to match the target image. While our approximation (blue) is
invariant under the choice of the hyper-parameter σk, the RBF-based gradient (purple, orange and
the dashed pink curves) is highly sensitive to its value. Small variations of σk can severely impact
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Figure 3.19.: Optimization progress using our gradient approximation and RBF-derived gradient.
The RBF-derived gradient is prone to local minima when optimizing for multiple points.

rate. As shown in Fig. 3.18, the RBF-derived gradient is highly sensitive to
the Gaussian filter’s standard deviation σk. A small σk leads to diminishing
gradient for distant pixels, causing convergence issues, as demonstrated with
the dashed plot. For a large σk, ‖ dΦx

dpk
‖ can increase with x− xk when the pixel

is outside the ellipse boundary; as a result, the optimization is prone to fall
into a local minima in multi-point scenario as shown in Fig. 3.19. Lastly, it
is not obvious how to extend the RBF derivation for the depth dimension,
while the linear approximation naturally applies to all dimensions.
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Surface regularization

The lack of structure in point clouds, while providing freedom of massive
topology changes, can pose a significant challenge for optimization. First, the
gradient derivation is entirely paralleled; as a result, points move irrespective
of each other. Secondly, as the movement of points will only induce small
and sparse changes in the rendered image, gradients on each point are less
structured compared to corresponding gradients for meshes. Without proper
regularization, one can quickly end up in local minima.

Inspired by [Hua+09; ÖGG09], we propose regularization to address this
problem based on two parts: a repulsion and a projection term. The repulsion
term is aimed at generating uniform point distributions by maximizing the
distances between its neighbors on a local projection plane, while the projec-
tion term preserves clean surfaces by minimizing the distance from the point
to the surface tangent plane.

Obviously, both terms require finding a reliable surface tangent plane. How-
ever, this can be challenging, since during optimization, especially in the
case of multi-view joint optimization, intermediate point clouds can be very
noisy and contain many occluded points inside the model, hence we propose
a weighted PCA to penalize the occluded inner points. In addition to the
commonly used bilateral weights which considers both the point-to-point
euclidean distance and the normal similarity, we propose a visibility weight,
which penalizes occluded points, since they are more likely to be outliers
inside the model.

Let pi denote a point in question and pk denote one point in its neighborhood,
pk ∈ {p| ‖p− pi‖ ≤ D}, we propose computing a weighted PCA using the
following weights

ψik = exp
(
−‖pi − pk‖2

D2

)
(3.14)

θik = exp

(
−

(
1− n>kni

)2

max (1e−5, 1− cos (Θ))

)
(3.15)

φik =
1

ok + 1
, (3.16)

where ψik and θik are bilateral weights which favor neighboring points that
are spatially close and have similar normal orientation respectively, and φik is
the proposed visibility weight which is defined using an occlusion counter ok
that counts the number of times pk is occluded in all camera views. Then a
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Figure 3.20.: The effect of repulsion regularization. We deform a 2D grid to the teapot. Without
the repulsion term, points cluster in the center of the target shape. The repulsion term penalizes
this type of local minima and encourages a uniform point distribution.

without projection term with projection term

Figure 3.21.: The effect of projection regularization. The projection term effectively enforces points
to form a local manifold. For a better visualization of outliers inside and outside of the object, we
use a small disk radius and render the backside of the disks using light gray color.

reliable projection plane can be obtained using singular value decomposition
from weighted vectors wik

(
pi −∑K

k=0 wikpk

)
, where wik =

ψikθikφik

∑K
i=0 ψikθikφik

.

For the repulsion term, the projected point-to-point distance is obtained
via dik = ṼṼ>(pi − pk), where Ṽ contains the first 2 principal components.
We define the repulsion loss as follows and minimize it together with the
per-pixel image loss

Lr =
1
N ∑

N
∑
K

ψik

d2
ik + 10−4

. (3.17)

For the projection term, we minimize the point-to-plane distance via dik =
VnV>(pi − pk), where Vn is the last components. Correspondingly, the pro-
jection loss is defined as

Lp =
1
N ∑

N
∑
K

wikd2
ik. (3.18)
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The effect of repulsion and projection terms are clearly demonstrated in
Fig. 3.20 and Fig. 3.21. In Fig. 3.20, we aim to move points lying on a 2D grid
to match the silhouette of a 3D teapot. Without the repulsion term, points
quickly shrink to the center of the reference shape, which is a common local
minima since the gradient coming from surrounding pixels cancel each other
out. With the repulsion term, the points can escape such local minima and
distribute evenly inside the silhouette. In Fig. 3.21 we deform a sphere to
bunny from 12 views. Without projection regularization, points are scattered
within and outside the surface. In contrast, when the projection term is
applied, we can obtain a clean and smooth surface.

Implementation details.

Optimization objective. We choose Symmetric Mean Absolute Percentage
Error (SMAPE) as the image loss LI. SMAPE is designed for high dynamic
range images such as rendered images therefore it behaves more stable for
unbounded values [Vog+18]. It is defined as

LI =
1

HW ∑
x∈I

C

∑
c

|Ix,c − I∗x,c|
|Ix,c|+ |I∗x,c|+ ε

, (3.19)

where H and W are the dimensions of the image, the value of ε is typically
chosen as 10−5.

The total optimization objective corresponding to Eq. (3.3) for a set of views
V amounts to

V

∑
v=0
L (Iv, I∗v) =

V

∑
v=0
LI (Iv, I∗v) + γpLp + γrLr. (3.20)

Loss weights γp and γr are typically chosen to be 0.02, 0.05 respectively.

Alternating normal and point update For meshes, the face normals are de-
termined by point positions. For points, though, normals and point positions
can be treated as independent entities thus optimized individually. Our pixel
value factorization in Eq. (3.11) and Eq. (3.10) means that, the gradient on
point positions p mainly stems from the visibility term, while gradients on
normals n can be derived from wk and ρk. Because the gradient w.r.t. n and p
assumes the other stays fixed, we apply the update of n and p in an alternat-
ing fashion. Specifically, we start with normals, execute optimization for Tn
times then we optimize point positions for Tp times.

As observed in many point denoising works [ÖGG09; Hua+09; Gue+18],
finding the right normal is the key for obtaining clean surfaces. Hence
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we efficiently utilize the improved normals even if the point positions are
not being updated, in that we directly update the point positions using
the gradient from the regularization terms ∂Lp

∂pk
and ∂Lr

∂pk
. In fact, for local

shape surface modification, this simple strategy consistently yields satisfying
results.

Error-aware view sampling

Figure 3.22.: DSS deforms a cube to three different Yoga models. Noisy points may occur when
camera views are under-sampled or occluded (as shown in the initial result). We apply an additional
refinement step improving the view sampling as described in Sec. 3.2.1.

View selection is very important for quick convergence. In our experiments,
we aim to cover all possible angles by sampling camera positions from a
hulling sphere using farthest point sampling. Then we randomly perturb the
sampled position and set the camera to look at the center of the object. The
sampling process is repeated periodically to further improve optimization.

However, for shapes with complex topology, such a sampling scheme is not
enough. We propose an error-aware view sampling scheme which chooses
the new camera positions based on the current image loss.

Specifically, we downsample the reference image and the rendered result,
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then compute the pixel position with the largest image error. Then we find K
points whose projection is closest to the found pixel. The mean 3D position of
these points will be the center of focus. Finally, we sample camera positions
on a sphere around this focal point with a relatively small distance. Such
techniques help us to improve point positions in small holes during large
shape deformation. An example of applying this sampling technique is
shown in Fig. 3.22.

3.2.2. Results

We evaluate the performance of DSS by comparing it to state-of-the-art DRs,
and demonstrate its applications in point-based geometry editing and filter-
ing.

Our method is implemented in Pytorch [Pas+17], we use stochastic gradient
descent with Nesterov momentum [Sut+13] for optimization. A learning rate
of 5 and 5000 is used for points and normals, respectively. In all experiments,
we render in back-face culling mode with 256× 256 resolution and diffuse
shading, using RGB sun lights fixed relative to the camera position.

Unless otherwise stated, we optimize for up to 16 cycles of Tn and Tp opti-
mization steps for point normal and position (for large deformation Tp = 25
and Tn = 15; for local surface editing Tn = 19 and Tp = 1). In each cycle, 12
randomly sampled views are used simultaneously for an optimization step.
To test our algorithms for noise resilience, we use random white Gaussian
noise with a standard deviation measured relative to the diagonal length of
the bounding box of the input model.

Comparison of different DRs.

We compare DSS in terms of large geometry deformation to the state-
of-the-art mesh-based DRs, i.e., OpenDR [LB14], NMR [KUH18] and Pa-
parazzi [LTJ18]. For the mesh DRs, we use the publicly available code pro-
vided by the authors and report the best results among experiments using
different parameters (e.g., number of cameras and learning rate). All methods
use the same initial and target shape, and similar camera positions.

The results are shown in Fig. 3.23. Among the mesh-based methods, OpenDR
can best deform an input sphere to match the silhouette of a target teapot.
However, none of these methods can handle topology changes (see the han-
dle) and struggle with large deformation (see the spout). In comparison, DSS
recovers these geometry structures with high fidelity and at the same time
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Figure 3.23.: Large shape deformation with topological changes, compared with three mesh-based
DRs, namely Paparazzi [LTJ18], OpenDR [LB14] and Neural Mesh Renderer [KUH18]. Compared
to the mesh-based approaches, DSS faithfully recovers the handle and cover of the teapot thanks to
the flexibility of the point-based representation.

Figure 3.24.: A simple projection-based point renderer which renders depth values fails in defor-
mation and denoising tasks.
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Figure 3.25.: Examples of DSS-based geometry filtering. We apply image filters on the DSS
rendered multi-view images and propagate the changes of pixel values to point positions and
normals. From left to right are the Poisson reconstruction of input points, points filtered by L0-
smoothing, and superpixel segmentation. In the first row, a clean point cloud is used as input, while
in the second row, we add 1% white Gaussian noise. In both cases, DSS can update the geometry
accordingly to match the changes in the image domain.

produces more elaborate surface details (see the pattern on the body of the
teapot).

Finally, we compare with a naive point DR based on [Rov+18a; Rov+18b;
ID18], where the pixel intensities are represented by the sum of smoothed
depth values. As shown in Fig. 3.24, such a naive implementation of point-
based DR cannot handle large-scale shape deformation nor fine-scale de-
noising, because position gradient is confined locally restricting long-range
movement and normal information is not utilized to fine-grained geometry
update.

Application: shape editing via image filter

As demonstrated in Paparazzi, one important application of DR is shape edit-
ing using existing image filters. It allows many kinds of geometric filtering
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Figure 3.26.: Paparazzi [LTJ18] successfully applies a L0 image filter to a clean mesh (Left) but fails
on an input containing 0.5 % noise (Right).

and style transfer, which would have been challenging to define purely in
the geometry domain. This benefit also applies to DSS.

We experimented with two types of image filters, L0 smoothing [Xu+11] and
superpixel segmentation [Ach+12]. These filters are applied to the original
rendered images to create references. Like Paparazzi, we keep the silhouette
of the shape and change the local surface geometry by updating point nor-
mals, then the projection and repulsion regularization are applied to correct
the point positions.

As shown in Fig. 3.25, DSS successfully transfers image-level changes to
geometry. Even under 1% noise, DSS continues to produce reasonable results.
In contrast, mesh-based DRs are sensitive to input noise, because it leads to
small piecewise structures and flipped faces in image space (see Fig. 3.26),
which are troublesome for the computation of gradients. In comparison,
points are free of any structural constraints; thus, DSS can update normals
and positions independently, which makes it robust under noise.

Application: point cloud denoising

One of the benefits of the shape-from-rendering framework is the possibility
to leverage powerful neural networks and vast 2D data. We demonstrate
this advantage in a point cloud denoising task, which is known to be an ill-
posed problem where handcrafted priors struggle with recovering all levels
of smooth and sharp features.

First, we train an image denoising network based on the Pix2Pix [Iso+17]
framework, which utilizes the generative adversarial network [Goo+14] to
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Figure 3.27.: Examples of the input and output of the Pix2Pix denoising network. We train two
models to target two different noise levels (0.3% and 1.0%). In both cases, the network is able to
recover smoothly detailed geometry, while the 0.3% noise variant generates more fine-grained
details.

add plausible details for improved visual quality (we refer readers to Ap-
pendix for further details on the training data preparation as well as the
adapted network architecture). During test time, we render images of the
noisy point cloud from different views and use the trained Pix2Pix network
to reconstruct geometric structure from the noisy images. Finally, we update
the point cloud using DSS with the denoised images as reference.

To maximize the amount of hallucinated details, we train two models for
1.0% and 0.3% noise respectively. Fig. 3.27 shows some examples of the input
and output of the network. Hallucinated delicate structures can be observed
clearly in both noise levels. Furthermore, even though our Pix2Pix model
is not trained with view-consistency constraints, the hallucinated details
remain mostly consistent across views. In case small inconsistencies appear
in regions where a large amount of high-frequency details are created, DSS is
still able to transfer plausible details from the 2D to the 3D domain without
visible artefacts, as shown in Fig. 3.30, thanks to simultaneous multi-view
optimization.

Evaluation of DSS denoising. We perform quantitative and qualitative com-
parison with state-of-the-art optimization-based methods WLOP [Hua+09],
EAR [Hua+13a], RIMLS [ÖGG09] and GPF [Lu+18], as well as a learning-
based method, PointCleanNet [Rak+19], using the code provided by the
authors. For quantitative comparison, we compute Chamfer distance (CD)
and Hausdorff distance (HD) between the reconstructed and ground truth
surface.

First, we compare the denoising performance on a relatively noisy (1% noise)
and sparse (20K points) input data, as shown in Fig. 3.29. Optimization-
based methods can reconstruct a smooth surface but also smear the low-
level details. The learning-based PointCleanNet can preserve some detailed
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Figure 3.28.: Examples of multi-view Pix2Pix denoising on the same 3D model. As our Pix2Pix
model processes each view independently, inconsistencies across different views might occur in
the generated high-frequency details. In spite of that, DSS recovers plausible structures in the 3D
shape (see Fig. 3.30) thanks to our simultaneous multi-view optimization.

structure, like the fingers of armadillo, but cannot remove all high-frequency
noise. We test DSS with two image filters, i.e., the L0 smoothing and the
Pix2Pix model trained on data with 20K points and 1% noise. L0-DSS has
a similar performance with the optimization-based method. Pix2Pix-DSS
outperforms the other compared methods quantitatively and qualitatively.

Second, we evaluate on a relatively smooth (0.3% noise) and dense (100K
points) input data, as shown in Fig. 3.30. Optimization-based methods and
L0-DSS produce high-accuracy reconstruction. PointCleanNet’s result de-
teriorates significantly, due to generalizability issues which is common for
direct learning-based methods. In contrast, the proposed image-to-geometry
denoising method is inherently less sensitive to the characteristic of points
sampling. As a result, even though our Pix2Pix model is trained with 20K
points, Pix2Pix-DSS reconstructs a clean surface, and at the same time shows
abundant hallucinated details.

Finally, we evaluate Pix2Pix-DSS using real scanned data.

We acquire a 3D scan of a dragon model by ourselves using a hand-held
scanner and resample 50K points as input. We compare the point cloud
cleaning performance of EAR, RIMLS, PointCleanNet and Ours as shown
in Fig. 3.31. EAR outputs clean and smooth surfaces but tends to produce
underwhelming geometry details. RIMLS preserves sharp geometry features,
but compared to our method, its result contains more low-frequency noise.
The output of PointCleanNet is notably noisier than other methods, while
its reconstructed model falls between EAR and RIMLS in terms of detail
preservation and surface smoothness. In comparison, our method yields
clean and smooth surfaces with rich geometry details.
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Figure 3.29.: Quantitative and qualitative comparison of point cloud denoising. The Chamfer
distance (CD) and Hausdorff distance (HD) scaled by 10−4 and 10−3. With respect to HD, our
method outperforms its competitors, for CD only PointCleanNet can generate better, albeit noisy,
results.

Performance

Our forward and backward rasterization passes are implemented in CUDA.
We benchmark the runtime using an NVIDIA 1080Ti GPU with CUDA 10.0
and summarize the runtime as well as memory demand for all of the appli-
cations mentioned above on one exemplary model in Table 3.4. As before,
models are rendered with 256× 256 resolution and 12 views are used per
optimization step.

As a reference, for the teapot example, one optimization step in Paparazzi and
Neural Mesh Renderer takes about 50ms and 160ms respectively, whereas it

Fig. 3.23 Fig. 3.25 Fig. 3.30

number of points 8003 20000 100000
total opt. steps for position 200 8 8
total opt. steps for normal 120 152 152

avg. forward time (ms) 19.3 42.8 258.1
avg. backward time (ms) 79.9 164.6 680.2

total time (s) 336 665 1951
GPU memory (MB) 1.7MB 1.8MB 2.3MB

Table 3.4.: Runtime and GPU memory demand for exemplar models in different applications. The
images are rendered with 256× 256 resolution and 12 views are used per optimization step.
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Figure 3.30.: Quantitative and qualitative comparison of point cloud denoising with 0.3% noise.
We report CD and HD scaled by 10−4 and 10−3. Despite some methods performing better with
respect to quantitative evaluation, our result matches the ground truth closely in contrast to other
methods.

Figure 3.31.: Qualitative comparison of point cloud denoising on a dragon model acquired using a
hand-held scanner (without intermediate mesh representation). Our Pix2Pix-DSS outperforms the
compared methods.
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takes us 100ms (see the second row in Table 3.4). However, since Paparazzi
does not jointly optimize multiple-views, it requires more iterations for con-
vergence. In the L0-Smoothing example (see Fig. 3.26), it takes 30 minutes
and 30000 optimization steps to obtain the final result, whereas DSS needs
160 steps and 11 minutes for a similar result (see the third row in Table 3.4).

3.3. Concluding remarks

Contributions. In this chapter, we presented two algorithms for point cloud
processing and enhancement.

First, we proposed a multi-scale progressive point set upsampling network
(MPU) that reveals detailed geometric structures from sparse and noisy in-
puts. Specifically, we introduced a) an end-to-end progressive multi-scale
neural network architecture, designed to attend to different levels of detail for
high-resolution point upsampling; b) a patch-based architecture, which adjust
the spatial span depending on the scope of the receptive field; c) a series of
architectural improvements, which contribute to higher efficiency and better
performance, including dense connections for feature extraction, code assign-
ment for efficient feature expansion, as well as bilateral feature interpolation
for interlinks across the steps. Extensive experiments and studies demon-
strate the superiority of our method compared with previous state-of-the-art
techniques.

In the second work, we developed a high-quality differentiable point ren-
derer based on surface splatting, called Differentiable Surface Splatting (DSS).
DSS inherits the flexibility of point-based representations and can propagate
gradients to point positions and normals to produce accurate geometries and
topologies. We showcased a few applications of how such a renderer can be
utilized for image-based geometry processing. In particular, combining DSS
with contemporary deep neural network architectures yielded state-of-the-art
results.

Limitations. Both MPU and DSS are one of the first achievements in their
respective research area of point cloud processing. There exist several draw-
backs that can be or have been revamped since their publications.

Trained with point clouds obtained either from uniform sampling or virtual
partial scans, MPU assumes fixed homogeneous point distribution. Although
MPU performs reasonably robust under mild violation of this assumption –
as it can fill holes in the real scanned data – its quality degenerates when the
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test data contains large missing areas or has a distribution pattern different
from the one observed in the training data. One solution to this problem
is to use another loss function in place of (or in addition to) the proposed
Chamfer Distance to reduce the overfitting to the training data and encourage
the discovery of “natural” point distribution. PU-GAN [Li+19] explored
in the direction by using an adversarial training loss. To further improve
uniformity in the upsampled point clouds, a two-stage approach, such as
the one proposed by Li et al. [Li+21b], can be adopted to first densify the
points then refine them to improve uniformity. In the similar spirit, one can
address the larger holes in the input data by first reconstructing the missing
regions then upsampling the entire point cloud to obtain the dense output.
Wang et al. [WAJL20] combined this idea with the previously mentioned
adversarial loss for point cloud completion.

The first limitation of DSS is the performance. This is mainly due to the heavy
computation during the gradient approximation, since one must re-evaluate
the color of each pixel for every splat, resulting in an extra forward pass
during the backward pass. Essentially, this approach assumes that during
the optimization of the point positions the colors and normals of the points
stay constant. Correspondingly, it works well with alternating optimization
strategy as described in Sec. 3.2.1. While our initial implementation closely
follows this approach, we considerably simplified the formulation in our
revised implementation by dropping the dependency of color information, i.e.
replacing the change of pixel color in Eq. (3.12) with the change of silhouette.
Together with other GPU-specific tricks [Rav+20], this revised implementa-
tion yielded a 20× performance gain. Another limitation of DSS lies in the
locally defined surface regularization terms. Since both the repulsion and
projection terms rely on local plane fitting using PCA, they are not robust un-
der the presence of strong outliers. Therefore, a more global geometric prior
is desirable. Alternatively, as proposed by Lassner and Zollhofer [LZ21a], a
very different approach would be to consider volumetric splatting, where
each point additionally carries an opacity attribute. When the extraction of
the surface is not strictly required, the volumetric approach bypasses surface
regularizations and the need for a known 2D silhouette.
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C H A P T E R 4
Implicit Surface Reconstruction

Implicit surface representations are a family of continuous surface represen-
tations. They represent a surface S as the levelset of some parameterized
scalar functions f : R3 7→ R, i.e. S =

{
x ∈ R3| f (x) = C

}
, where C is a scalar

constant. Implicit surface representations are a powerful representation for
surfaces because they are not tied to a specific resolution, which makes them
a favorable choice for representing highly detailed surfaces.

Obviously, the choice of f determines the surface properties. Traditionally,
f is commonly modeled as piecewise polynomial functions to favor arbi-
trary smoothness. Recently, neural networks have emerged as a powerful
alternative. In this case, the weights of the networks are trained to “overfit"1

(samples of) the implicit function. Often, this results in an efficient repre-
sentation that can be conveniently deployed for further applications such as
neural rendering [Yar+20; Mil+20; Nie+20] and simulation [Den+20].

In this chapter, we enhance neural implicit representations with two algo-
rithms. The first one introduces a novel formulation of signed distance func-
tions, which leads to a corresponding novel network architecture that boosts
the representational power of neural networks in approximating highly de-
tailed surfaces; The second one proposes a technique that complements the
optimization of neural implicit functions and enhances the quality and per-
formance of implicit surface reconstruction under imperfect data.

1“overfit" underlines the difference to the typical use of neural nets in machine learning frame-
works, where the neural networks are trained and deployed in two distinct data sets.
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4. Implicit Surface Reconstruction

4.1. Detail-driven implicit surface representation

While neural implicits can theoretically model geometry with infinite resolu-
tion, in practice the output resolution is dependent on the representational
power of neural nets. So far, the research community approaches the prob-
lem from two main directions. The first is to partition the implicit function
using spatial structures [Cha+20a; Jia+20; Liu+20b; Tak+21], thus making the
memory and computation demands dependent on the geometric complexity.
The other direction focuses on improving networks’ ability to represent high-
frequency signals, either in a preprocessing step (referred to as positional
encoding) [Mil+20] or by using sinusoidal representation networks (SIREN)
[Sit+20]. However, training these networks is very challenging, as they are
prone to overfitting and optimization local minima.

Figure 4.1.: Displacement mapping in
1D. The detailed surface (upper blue) is
created by offsetting samples of the base
surface (upper black) using the height
map shown below.

Inspired by the classic computer graphics
technique, displacement mapping [Coo84;
CCC87], we propose a novel parameter-
ization of neural implicit functions, im-
plicit displacement field, abbreviated as IDF,
to circumvent the above issues. Our
method automatically disentangles a given
detailed shape into a coarse base shape rep-
resented as a continuous, low-frequency
signed distance function and a continuous
high-frequency implicit displacement field,
which offsets the base iso-surface along the
normal direction.

The key novelty of our approach lies in ex-
tending the classic displacement mapping,

which is discrete and lies only on the base surface, to a continuous function
in the R3 domain and incorporating it into contemporary neural implicit
representations, ergo achieving a disentanglement of geometric details in an
unsupervised manner.

Our main technical contribution includes

1. a principled and theoretically grounded extension of explicit discrete
displacement mapping to the implicit formulation,

2. a neural architecture that creates a geometrically interpretable fre-
quency hierarchy in the neural implicit shape representation by ex-
ploiting the inductive bias of SIRENs, and
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4.1. Detail-driven implicit surface representation

+ =

base SDF implicit displacement detailed SDF

Figure 4.2.: Method overview. We represent detailed geometries as a sum of a coarse base shape
represented as low-frequency signed distance function and a high-frequency implicit displacement
field, which offsets the base iso-surface along the base’s normal directions.

3. introducing transferable implicit displacement fields by replacing the
common coordinates input with carefully constructed transferrable
features, thus opening up new opportunities for implicit geometry
manipulation and shape modeling.

Systematic evaluations show that our approach is significantly more powerful
in representing geometric details, while being lightweight and highly stable
in training.

4.1.1. Method

implicit inverse displacement

implicit displacement

Figure 4.3.: An implicit displacement
field for a 1D-curve. The displace-
ment is defined not only on the zero-
isosurface S0 but also on arbitrary iso-
surfaces Sτ

We represent a shape with fine geometric
details using two SIREN networks of differ-
ent frequencies in the activation functions.
The SIREN with lower frequency describes a
smooth base surface; the SIREN with higher
frequency adds microstructure to the base
iso-surface by producing an implicit dis-
placement field along the base’s normal di-
rection (see Fig. 4.2).

In this section, we first formally define im-
plicit displacement field by generalizing the
classic explicit and discrete displacement mapping in Sec. 4.1.1, then in
Sec. 4.1.1 we introduce the network architectures and training strategies
that are tailored to this definition, finaly in Sec. 4.1.1 we extend the implicit
displacement to address transferability.
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4. Implicit Surface Reconstruction

Implicit displacement fields

In classic displacement mapping as shown in Fig. 4.1, high-frequency geomet-
ric details are obtained on a smooth base surface by taking samples from the
base surface and offsetting them along their normal directions by a distance
obtained (with interpolation) from a discrete height map. Two elements
in this setting impede a direct adaptation for implicit shape representation:
1. the displacement mapping is defined discretely and only on the base sur-
face, whereas implicit surface functions are typically defined continuously
on the R3 domain; 2. the base surface is known and fixed, whereas our goal
is to learn the base surface and the displacement jointly on-the-fly.

Addressing the above challenges, we first define implicit displacement fields
(IDF), which are continuous analog to height maps that extend displacement
mapping to the R3 domain.

Definition 1. Given two signed distance functions f and f̂ and their respective iso-surfaces
at a given value τ ∈ R, Sτ =

{
x ∈ R3| f (x) = τ

}
and Ŝτ =

{
x ∈ R3| f̂ (x) = τ

}
, an

implicit displacement field d: R3 → R defines the deformation from Sτ to Ŝτ such that

f (x) = f̂ (x + d (x)n) , where n =
∇ f (x)
‖∇ f (x) ‖ . (4.1)

This definition is schematically illustrated in Fig. 4.3, where the iso-surface
S0 and Sτ are mapped to Ŝ0 and Ŝτ with the same implicit displacement
field d. Notably, the height map in classic displacement mapping is a discrete
sampling of IDF for the limited case τ = 0.

In the context of surface decomposition, our goal is to estimate the base
surface f and the displacement d given an explicitly represented detailed
surface Ŝ0. Following Eq. (1), we can do so by minimizing the difference
between the base and the ground truth signed distance at query points x ∈ R3

and their displaced position x̂ = x + d (x)n, i.e., min | f (x)− f̂GT (x̂) |.
However, this solution requires evaluating f̂GT (x̂) dynamically at variable
positions x̂, which is a costly operation as the detailed shapes are typically
given in explicit form, e.g., as point clouds or meshes. Hence, we consider the
inverse implicit displacement field d̂, which defines a mapping from Ŝτ to
Sτ, f

(
x̂ + d̂ (x̂)n

)
= f̂ (x̂), as depicted in Fig. 4.3.

Assuming the displacement distance is small, we can approximate n, the
normal after inverse displacement, with that before the inverse displacement,
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4.1. Detail-driven implicit surface representation

i.e.

f
(

x̂ + d̂ (x̂) n̂
)
= f̂ (x̂) , where n̂ =

∇ f (x̂)
‖∇ f (x̂) ‖ . (4.2)

This is justified by the following theorem and corollary, which we prove in
the Appendix A.1.

Theorem 1. If function f : Rn → R is differentiable, Lipschitz-continuous with con-
stant L and Lipschitz-smooth with constant M, then ‖∇ f (x + δ∇ f (x))−∇ f (x) ‖ ≤
|δ|LM.

Corollary 1. If a signed distance function f satisfying the eikonal equation up to error ε >
0, |‖∇ f ‖ − 1| < ε, is Lipschitz-smooth with constant M, then ‖∇ f (x + δ∇ f (x))−
∇ f (x) ‖ < (1 + ε)|δ|M.

Given n = ∇ f (x)
‖∇ f (x)‖ , n̂ = ∇ f (x̂)

‖∇ f (x̂)‖ , and x̂ = x + d (x)n, let δ = d(x)
‖∇ f (x)‖ , we

can show ‖n̂− n‖ ≤ 1 + ε

1− ε
|δ|M (c.f . Appendix A.1). In other words, the

difference of n̂ and n is bounded by a small constant. Thus we obtain the ap-
proximation in Eq. (4.2), which allows us to presample training samples {x̂}
and use precomputed f̂ (x̂) or its derivatives (see Sec 4.1.1) for supervision.

Network design and training

The formulation of (inverse) implicit field in the previous section is based
on three assumptions: (i) f is smooth, (ii) d is small, (iii) f satisfies the
eikonal constraint up to an error bound. In this section, we describe our
network architecture and training technique, with emphasis on meeting these
requirements.

Network architecture. We propose to model f and d̂ with two SIRENs denoted
as N ωB and N ωD , where ωB and ωD refer to the frequency hyperparameter
in the sine activation functions x 7→ sin (ωx). Evidently, as shown in Fig. 4.4,
ω dictates an upper bound on the frequencies the network is capable of
representing, thereby it also determines the network’s inductive bias for
smoothness. Correspondingly, we enforce the smoothness of f and detail-
representing capacity of d̂ using a smaller ωB and a larger ωD. Empirically,
we find that ωB = 15 and ωD = 60 fits our needs in most cases. Moreover,
we add a scaled tanh activation to the last linear layer of N ωD , i.e. α tanh (·),
which ensures that the displacement distance is smaller than the constant α.

Networks containing high-frequency signals, e.g.N ωD , require large amounts
of accurate ground truth data for supervision to avoid running into opti-
mization local minima [Par+20]. Consequently, when dense and accurate
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4. Implicit Surface Reconstruction

Figure 4.4.: Smoothness control via SIREN’s frequency
hyperparameter ω. Overfitting SIREN to the first image
with ω = 30 (middle) and ω = 60 (right) shows that
smaller ω leads to a smoother result.
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Figure 4.5.: Attenuation as a function
of base SDF.

ground truth SDF values are not available, high-frequency signals often cre-
ate artifacts. This is often the case in void regions when learning from point
clouds, as only implicit regularization and fuzzy supervision is applied (see
the first and last terms of Eq. (4.4)). Hence, we apply an attenuation function
χ (N ωB) = 1

1+(NωB (x)/ν)
4 to subdue N ωD far from the base surface, where ν

determines the speed of attenuation as depicted in Fig. 4.5.

Combining the aforementioned components, we can compute the signed
distance of the detailed shape at query point x in two steps:

f (x) = N ωB (x) , f̂ (x) = N ωB

(
x + χ ( f (x)) N ωD (x)

∇ f (x)
‖∇ f (x) ‖

)
. (4.3)

Training. We adopt the loss from SIREN, which is constructed to learn SDFs
directly from oriented point clouds by solving the eikonal equation with
boundary constraint at the on-surface points. Denoting the input domain as Ω

(by default set to [−1, 1]3) and the ground truth point cloud as P = {(pi, ni)},
the loss computed as in Eq. (4.4), where λ{0,1,2,3} denote loss weights:

L f̂ = ∑x∈Ω λ0

∣∣∣‖∇ f̂ (x) ‖ − 1
∣∣∣ + ∑

(p,n)∈P

(
λ1| f̂ (p) |+ λ2

(
1−

〈
∇ f̂ (p) , n

〉) )
+ ∑

x∈Ω\P
λ3 exp

(
−100 f̂ (x)

)
. (4.4)

As the displacement and the attenuation functions depend on the base net-
work, it is beneficial to have a well-behaving base network when training
the displacement (see Sec. 4.1.2). Therefore, we adopt a progressive learning
scheme, which first trains N ωB , and then gradually increase the impact of
N ωD . Notably, similar frequency-based coarse-to-fine training techniques are
shown to improve the optimization result in recent works [Par+20; Her+21].

We implement the progressive training via symmetrically diminish-
ing/increasing learning rates and loss weights for the base/displacement
networks. For brevity, we describe the procedure for loss weights only, and
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Figure 4.6.: Illustrations for transferable and non-transferable implicit fields. The transferable
modules are in pink and the shape-specific modules are in yellow. Instead of consuming the
euclidean coordinates, the transferable displacement network takes a scale-and-translation invariant
feature as inputs, which describes the relative position of the query point to the base shape.

we apply the same to the learning rates in our implementation. First, we train
N ωB by substituting f̂ in the loss Eq. (4.4) with f , resulting a base-only loss
denoted L f . Then, starting from a training percentile Tm ∈ [0, 1], we combine

L f and L f̂ via κ L f + (1− κ)L f̂ with κ =
1
2

(
1 + cos

(
π

(t−Tm)
(1−Tm)

))
, where

t ∈ [Tm, 1] denotes the current training progress.

Transferable implicit displacement field.

In classic displacement mapping, the displacement is queried by the UV-
coordinates from surface parameterization, which makes the displacement
independent of deformations of the base surface. We can achieve similar
effect without parameterization by learning query features, which emulate the
UV-coordinates to describe the location of the 3D query points w.r.t. the base
surface.

We construct the query features using two pieces of information: (i) a global
context descriptor, φ (x), describing the location of the query point in relation
to the base surface in a semantically meaningful way, (ii) the base signed
distance value f (x), which gives more precise relative location with respect to
the base surface. Since both are differentiable w.r.t. the euclidean coordinates
of the query point, we can still train N ωD using derivatives as in Eq. (4.4).

Our global context descriptor is inspired by Convolutional Occupancy Net-
works [Pen+20]. Specifically, we project the sparse on-surface point features
obtained using a conventional point cloud encoder onto a regular 3D (or 2D,
c.f . Sec. 4.1.2) grid, then use a convolutional module to propagate sparse on-
surface point features to the off-surface area, finally obtain the query feature
using bilinear interpolation. We use normals instead of point positions as
the input to the point cloud encoder, making the features scale-invariant and
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4. Implicit Surface Reconstruction

translation-invariant. Note that ideally the features should also be rotation-
invariant. Nevertheless, as we empirically show later, normal features can in
fact generalize under small local rotational deformations, which is sufficient
for transferring displacements between two roughly aligned shapes. We
leave further explorations in this direction for future work.

N ωD is tasked to predict the displacement conditioning on φ (x) and f (x).
However, empirical studies [Cha+20b] suggest that SIREN does not han-
dle high-dimensional inputs well. Hence, we adopt the FiLM condition-
ing [Per+18; Dum+18] as suggested by Chan et al. [Cha+20b], which feeds
the conditioning latent vector as an affine transformation to the features
of each layer. Specifically, a mapping network M converts φ (x) to a set
of C-dimensional frequency modulators and phase shifters {γi, βi}, which
transform the i-th linear layer to

(
1 + 1

2 γi

)
◦ (Wi x + bi) + βi, where Wi and

bi are the parameters in the linear layer and ◦ denotes element-wise multi-
plication. Finally, since SIREN assumes inputs in range (−1, 1), we scale f
using f̄ (x) = tanh

(
1
ν f (x)

)
to capture the variation close to the surface area,

where ν is the attenuation parameter described in Sec. 4.1.1.

Fig. 4.6 summarizes the difference between transferable and non-transferable
displacement fields. Formally, the signed distance function of the detailed
shape in Eq. (4.3) can be rewritten as

f̂ (x) = N ωB

(
x + χ ( f (x)) T ωD

(
f̄ (x) , M (φ (x))

) ∇ f (x)
‖∇ f (x) ‖

)
. (4.5)

4.1.2. Results

We now present the results of our method. In Sec. 4.1.2, we evaluate our
networks in terms of geometric detail representation by comparing with
state-of-the-art methods on the single shape fitting task. We then evaluate
various design components in an ablation study in Sec. 4.1.2. Finally, we
validate the transferability of the displacement fields in a detail transfer task
in Sec. 4.1.2.

Implementation details. By default, both the base and the displacement nets
have 4 hidden layers with 256 channels each. The maximal displacement α,
attenuation factors ν, and the switching training percentile is set to Tm are
set to 0.05, 0.02 and 0.2 respectively; The loss weights λ{0,1,2,3} in Eq. (4.4) are
set to 5, 400, 40 and 50. We train our models for 120 epochs using ADAM
optimizer with initial learning rate of 0.0001 and decay to 0.00001 using cosine
annealing [LH16] after finishing 80% of the training epochs. We presample
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4.1. Detail-driven implicit surface representation

4 million surface points per mesh for supervision. Each training iteration
uses 4096 subsampled surface points and 4096 off-surface points uniformly
sampled from the [−1, 1]3 bounding box. To improve the convergence rate,
we initialize SIREN models by pre-training the base model N ωB (and baseline
SIREN, c.f . Sec. 4.1.2) to a sphere with radius 0.5. This initialization is optional
for our training but is critical for baseline SIRENs.

Data. We test our method using 16 high-resolution shapes, including 14 from
Sketchfab [Skeb] and 2 from Stanford 3DScanRepo [Sta]. Our transferable dis-
placement model is tested using shapes provided by Berkiten et al. [Ber+17],
Yang et al. [Yan+20], and Zhou and Jacobson [ZJ16].

Detail representation.
Chamfer distance points to point distance ·10−3 / normal cosine distance ·10−2

model
Progressive

FFN
NGLOD
(LOD4)

NGLOD
(LOD6)

SIREN-3
ω = 60

SIREN-7
ω = 30

SIREN-7
ω = 60

Direct
Residual

D-SDF Ours

angel 6.00/4.19 2.28/2.87 1.47/1.43 9.54/5.47 5.57/2.85 -/- 251/87.9 3.36/3.70 1.30/0.89
asian dragon 4.96/4.02 1.66/4.05 1.03/1.91 6.13/5.28 3.65/2.36 7.24/4.03 269/92.7 2.84/1.80 0.93/1.36

camera 4.62/1.51 1.56/1.15 1.32/0.62 6.50/2.38 4.11/1.10 -/- 281/38.5 1.99/2.01 1.25/0.34
compressor 5.55/1.35 1.64/0.88 1.52/0.44 8.83/2.82 4.63/0.82 -/- 330/56.9 2.66/3.71 1.39/0.23

dragon 5.10/4.00 1.80/3.77 1.39/2.37 7.04/4.75 3.80/2.49 -/- 263/76.4 2.68/1.21 1.24/1.50
dragon warrior 5.94/7.25 2.46/8.12 1.52/5.21 7.27/8.45 3.68/4.83 5.96/8.01 6.09/9.77 2.22/4.46 1.47/4.56

dragon wing 5.68/5.41 2.01/4.98 1.47/2.87 6.40/5.46 7.92/3.84 -/- 167/76.7 2.66/4.09 1.31/1.49
dragon china 6.20/2.31 2.32/1.75 1.39/1.01 9.15/4.35 6.20/2.29 -/- 272/69.7 3.31/7.06 1.40/0.51
dragon cup 4.39/3.13 1.83/3.57 1.24/1.17 7.67/4.69 5.50/2.15 -/- 173/86.9 3.21/4.93 1.10/0.51

helmet 4.79/1.02 1.70/0.871 1.40/0.410 8.40/2.72 5.19/0.83 -/- 263/94.6 2.59/1.99 1.29/0.13
hunter 4.17/4.66 2.03/5.08 1.18/2.08 8.96/6.66 3.40/2.58 -/- 3.39/3.64 2.61/4.89 0.91/1.14
luyu 7.22/4.29 2.19/3.30 1.53/1.81 8.98/6.83 6.16/3.16 -/- 206/94.6 5.10/9.76 1.28/1.02

pearl dragon 7.48/5.97 2.37/6.10 1.49/2.67 10.1/9.56 5.05/4.07 -/- 66.1 /49.8 3.26/6.24 1.30/1.43
ramesses 4.24/2.30 1.47/2.47 0.97/1.93 6.40/3.77 4.20/2.33 -/- 3.78/6.60 3.16/9.66 0.92/1.58

Thai Statue 5.23/7.01 7.16/16.7 1.30/4.77 6.27/7.48 3.81/4.17 -/- 117/45.2 1.76/2.46 1.07/2.92
Vase Lion 5.92/1.93 1.86/2.18 1.39/0.77 39.9/25.6 4.68/1.02 -/- 227/54.8 2.26/2.31 1.31/0.43

AVG 5.47/3.77 2.27/4.24 1.35/1.97 9.85/6.64 4.85/2.56 -/6.02 181/59.0 2.85/4.39 1.22/1.25

Table 4.1.: Quantitative comparison. Among the benchmarking methods, only NGLOD at LOD-6,
using 256× number of parameters compared to our model, can yield results close to ours. SIREN

models with larger ω have convergence issues: despite our best efforts, the models still diverged in
most cases.

The methods we compare with are 1. Fourier feature network [Tan+20]
with SOFTPLUS activation and 8 frequency bands trained from coarse-to-
fine, as suggested by Park et al. [Par+20]; a total of 8 hidden layers each of
size 256 are used to match our model size; additionally we apply a skip-
connection in the middle layer as proposed in DeepSDF Park et al. [Par+19];
2. NGLOD [Tak+21] trained using 4 and 6 levels of detail (LODs) corre-
sponding to 643 and 2563 spatial resolution respectively, with LOD4 com-
parable with our model in terms of the number of parameters, 3. baseline
SIREN, for which we trained three different variations in hope of overcom-
ing training divergence issues; 4. direct residual, where we compose the
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Figure 4.7.: Comparison of detail reconstruction (better viewed with zoom-in).
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4.1. Detail-driven implicit surface representation

a. direct residual b. D-SDF

Figure 4.8.: Examples of the direct residual and D-SDF models. Direct residual doesn’t enforce
displacement directions and produces large structural artifacts; D-SDF fails to learn meaningful
displacement due to the lack of constraints.

signed distance value simply as the sum of base and displacement nets, i.e.
f̂ (x) = N ωB (x) +N ωD (x); 5. D-SDF (inspired by [Pum+21; Par+20]), in
which the displacement is a vector in arbitrary direction, i.e. f̂ = f (x + ∆),
where ∆ ∈ R3 is predicted in the second network. We follow network specs
of D-Nerf [Pum+21], which contains 2 8-layer MLP networks with RELU
activation and positional encodings.

Among these, NGLOD, direct residual and D-SDF requires ground truth SDF
for supervision, the rest are trained using our training loss. Two-way point-
to-point distance and normal cosine distance are computed as the evaluation
metrics on 5 million points randomly sampled from meshes extracted using
marching cubes with 5123 resolution. As shown in Table 4.1 and Fig. 4.7, our
method outperforms the baseline methods with much higher reconstruction
fidelity. NGLOD with 6 LODs is the only method onpar with ours in terms
of detail representation, however it requires storing more than 300 times as
many as parameters as our model. SIREN networks with larger ω have se-
vere convergence issues even with sphere initialization (c.f . Implementation
Details) and gradient clipping. Direct residual doesn’t enforce displacement
directions and produces large structural artifacts (Fig. 4.8a). D-SDF yields
qualitatively poor results, as the displacement net is unable to learn meaning-
ful information shown in Fig. 4.8b due to the lack of constraints.

Ablation study

We study the contributions of different design components described in
Sec. 4.1.1, including the displacement scaling α tanh, the attenuation function
χ and the progressive training Eq. (4.4), as well as the effect of the scaling
factor α and attenuation speed ν.

First, as Table 4.2 shows, all the test modes converge within comparable
range, even for the model with the least constraints. This shows that our
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4. Implicit Surface Reconstruction

α test (with ν = 0.02) ν test (with α = 0.05)
0.01 0.02 0.05 0.1 0.2 0.01 0.02 0.05 0.1 0.2

point-to-point distance
(
·10−3) 1.178 1.171 1.147 1.146 1.149 1.146 1.147 1.147 1.149 1.152

normal cosine distance
(
·10−2) 1.525 1.490 1.252 1.251 1.260 1.254 1.253 1.251 1.250 1.274

Table 4.3.: Study of the hyperparameters α (left) and ν (left). The reconstruction accuracy remains
stable and highly competetive throughout hyperparameters variation. The results are averaged
over 8 test models.

model is robust against violations of theoretical assumptions specified in
Sec. 4.1.1. At the same time, the performance rises with increasingly con-
strained architecture and progressive training, suggesting that the proposed
mechanisms further boost training stability.

α tanh χ
prog.

training
average

CD ·10−3

1.44
X 1.41
X X 1.38
X X X 1.24

Table 4.2.: Ablation study. Our model benefits
from the proposed architectural and training de-
signs, yet it is also robust against variations.

Table 4.3 shows that in a reason-
able range of α and ν there is
very little variance across different
hyperparameter values, indicating
again that the designed model is
robust to violations of the assump-
tions. If α is too small (0.01, 0.02
in Table 4.3), the displacement dis-
tance is capped also in the small
range, then the displacement may

no longer be sufficient to correct the difference between the base and the
ground truth surface. This explains the slight increase of chamfer distances
in the table for α = {0.01, 0.02}. Also, when ν is too large (0.2), i.e. the high
frequency signal is not suppressed in the void region, the chamfer distances
also increase due to off-surface high-frequency noise.

Noise tolerance

Chamfer distance
points to point distance / normal cosine distance ·10−2

training points noise σ ours
poisson

reconstruction

40000 0.002 1.07/7.54 1.08/7.78
40000 0.005 1.05/7.57 1.08/7.82
400000 0.002 1.00/6.01 1.04/6.63
400000 0.005 1.00/5.99 1.04/6.60

Table 4.4.: Quantitative evaluation given sparse
and noisy inputs.

While we used dense and clean
sampled point clouds as inputs in
the paper, as our focus is on detail
representation, we examine the be-
havior of our method under noisy
and sparse inputs. Specifically, we
train our network with 400 thou-
sand and 40 thousand sampled
points (10% and 1% of the amount

in our main experiment, respectively), and added σ = 0.002 and σ = 0.005
Gaussian noise on both the point normals and the point positions. From the
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4.1. Detail-driven implicit surface representation

Figure 4.9.: Qualitative evaluation given sparse and noisy inputs.

qualitative and quantitative results shown in Fig. 4.9 and Table 4.4, we can see
that our method recovers geometric details better than Poisson reconstruction
given sufficient training data (c.f. the left half of the figure). When the training
sample is sparse, our method tends to generate more high-frequency noise as
a result of overfitting.

Transferability

We apply our method to detail transfer in order to validate the transferability
of IDF. Specifically, we want to transfer the displacements learned for a source
shape to an aligned but different target shape. In the first test scenario, the
base shape is provided and lies closely to the ground truth detailed surface.
In the second scenario, we are only provided with the detailed shapes and
thus need to estimate the base and the displacements jointly. The pipeline
consists of the following steps: 1) trainingN ωB by fitting the source shape (or
the source base shape if provided), 2) training T ωD ,M and the query feature
extractor φ jointly by fitting the source shape using Eq. (4.5) while keeping
N ωB fixed, 3) training N ωB

new by fitting the target shape (or the target base
shape if provided), 4) evaluating Eq. (4.5) by replacing N ωB with N ωB

new. To
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4. Implicit Surface Reconstruction

source (top) / target
(bottom) ours ours w/o mapping ours w/o φ DGTS

Figure 4.11.: Transferring spatially-variant geometric details using various methods. Small to
severe distortions are introduced when removing different components of the proposed transferable
IDF. Thanks to the combination of global/local query feature, our method transfers spatially-variant
details while [Her+20a] only focuses on spatially-invariant isometric details.

prevent the base network from learning high-frequency details when the base
is unknown, we use ωB = 5 and three 96-channel hidden layers for N ωB .

source learned source base

target learned target base

learned source base +
displacement

target base +
transferred displacement

source learned source base

target learned target base target base +
transferred displacement

learned source base +
displacement

Figure 4.10.: Transferable IDF applied to detail transfer. Upper:
the base shape is provided and lies closely to the ground truth
detailed surface; Lower: only the detailed shapes are provided,
thus the base and the displacements need to estimated jointly.

Example outputs for
both scenarios are
shown in Figure 4.10;
the base shapes are
provided for the shorts
model. We use a 323

and a 1282 grid (for
the frontal view), for
the shorts and face
model respectively
in φ to extract the
query features. Our
displacement fields,
learned solely from
the source shape, gen-
erate plausible details
on the unseen target
shape. The transferred
details contain high-
frequency signals (e.g.
the eyebrows on the
face), which is chal-
lenging for explicit
representations. How-

ever, for the second scenario the performance degenerates slightly since the
displacement field has to compensate errors stemming specifically from the
base SDF.

In additional, we evaluate the design of the transferable IDF model by
removing the mapping net and the convolutional context descriptor φ.
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4.1. Detail-driven implicit surface representation

Figure 4.12.: De-
tail transfer without
scaling f̄ .

For the former case, we drop the FiLM conditioning and sim-
ply use concatenation of φ (x) and f̄ (x) as the inputs to N ωD ;
for the latter we directly use the normal at the sampled po-
sition as the context descriptor, i.e. φ (x) = ∇ f (x). As Fig-
ure 4.11 shows, the removal of mapping net and φ lead to
different degrees of feature distortions. We also compare with
the DGTS [Her+20a], which fails completely at this example
since it only consumes local intrinsic features. Furthermore, the
effect of scaling f̄ is shown in Fig. 4.12, where using unscaled
f as input to T ωD leads to artifacts at the boundary.

Inference and training time

Training the models as described in the paper takes 2412 seconds ( 40 minutes),
which amounts to 120 epochs, i.e., around 20 seconds per epoch, where each
epoch comprises 4 million surface samples and 4 million off-surface samples.
In comparison, the original implementation of NGLOD6 takes 110 minutes
to train 250 epochs, where each epoch comprises 200000 surface samples
and 300000 off-surface samples. As for inference, using the same evaluation
setup, NGLOD6 takes 193.9s for 5123 points, while our inference takes 250.06
seconds for 5123 query points. All benchmarking is performed on a single
Nvidia 2080 RTX GPU. These timings could be improved by optimizing the
model for performance, which we did not. For example, instead of using
autodiff for computing the base surface normals, one could exploit the fact
that the differentiation of SIREN is also a SIREN and explicitly construct a
computation graph for computing the base surface normals.
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4. Implicit Surface Reconstruction

4.2. Optimizing neural implicit surfaces.

vanilla 
optimization

optimization with
iso-points

input

Figure 4.13.: The iso-points allow us to aug-
ment optimization pipelines in a variety of ways:
geometry-aware regularizers are incorporated to
reconstruct a surface from a noisy point cloud
(first row); geometric details are preserved in
multi-view reconstruction via feature-aware sam-
pling (second row); iso-points can serve as a 3D
prior to improve the topological accuracy of the
reconstructed surface (third row).

Fitting neural implicit surfaces to
various input observations has
many practical applications, such
as surface reconstruction from
point clouds and multi-view recon-
struction from images. For most
cases, the observations are noisy
and incomplete. This leads to fun-
damental geometric and topolog-
ical problems in the final recon-
structed surface, as the network
overfits to the imperfect data. We
observe that this problem remains,
and can become more prominent
with the recent powerful architec-
tures, e.g. sine activations [SZW19]
and Fourier features [PJH16].

We show examples of problems
in fitting neural implicit func-
tions in Fig. 4.13. When fit-
ting a neural surface to a noisy
point cloud, “droplets" and bumps

emerge where there are outlier points and holes (first row); when fitting a
surface to image observations, fine-grained geometric features are not cap-
tured due to under-sampling (second row); topological noise is introduced
when inadequate views are available for reconstruction (third row).

In this work, we propose to alleviate these problems by introducing a hybrid
neural surface representation using iso-points. The technique converts from
an implicit neural surface to an explicit one via sampling iso-points, and
goes back to the implicit representation via optimization. The two-way
conversion is performed on-the-fly during training to introduce geometry-
aware regularization and optimization. This approach unlocks a large set of
fundamental tools from geometry processing to be incorporated for accurate
and robust fitting of neural surfaces.

A key challenge is to extract the iso-points on-the-fly efficiently and flexibly
during the training of a neural surface. Extending several techniques from
point-based geometry processing, we propose a multi-stage strategy, consist-
ing of projection, resampling, and upsampling. We first obtain a sparse point
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4.2. Optimizing neural implicit surfaces.

cloud on the implicit surface via projection, then resample the iso-points to
fix severely under-sampled regions, and finally upsample to obtain a dense
point cloud that covers the surface. As all operations are GPU friendly and
the resampling and upsampling steps require only local point distributions,
the entire procedure is fast and practical for training.

We illustrate the utility of the new representation with a variety of appli-
cations, such as multi-view reconstruction and surface reconstruction from
noisy point clouds. Quantitative and qualitative evaluations show that our
approach allows for fast convergence, robust optimization, and accurate
reconstruction of details and topology.

4.2.1. Method

S
t

P
t

s = f
t
(p; 𝜃) sampling , 

regularization

project resample upsample 

t

Figure 4.14.: Overview of our hybrid represen-
tation. We extract a dense, uniformly distributed
set of iso-points as an explicit representation for
a neural implicit surface. Since the extraction is
fast, iso-points can be integrated back into the op-
timization as a 3D geometric prior, enhancing the
optimization.

Given a neural implicit function
ft(p; θt) representing the surface St,
where θt are the network parameters
at the t-th training iteration, our goal
is to efficiently generate and utilize a
dense and uniformly distributed point
set on the zero level set, called iso-
points, which faithfully represents the
current implicit surface St. Intuitively,
we can deploy the iso-points back into
the ongoing optimization to serve var-
ious purposes, e.g. improving the sam-
pling of training data and providing
regularization for the optimization,
leading to a substantial improvement in the convergence rate and the fi-
nal optimization quality.

In this section, we first focus on how to extract the iso-points via projection
and uniform resampling. We then explain how to utilize the iso-points for
better optimization in practical scenarios.

Iso-surface sampling

As shown in Fig. 4.14, our iso-surface sampling consists of three stages. First,
we project a set of initial points Qt onto the zero level set to get a set of
base iso-points Q̃t. We then resample Q̃t to avoid clusters of points and fill
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4. Implicit Surface Reconstruction

large holes. Finally, we upsample the points to obtain dense and uniformly
distributed iso-points Pt.

Projection. Projecting a point onto the iso-surface can be seen as using
Newton’s method [BI66] to approximate the root of the function starting
from a given point. Atzmon et al. [Atz+19] derive the projection formula
for functions modeled by generic networks. For completeness, we recap the
steps here, focusing on f : R3 → R.

Given an implicit function f (p) representing a signed distance field and an
initial point q0 ∈ R3, we can find an iso-point p on the zero level set of f
using Newton iterations: qk+1 = qk − J f (qk)

+ f (qk), where J+f is the Moore-
Penrose pseudoinverse of the Jacobian. In our case, J f is a row 3-vector,

so that J+f (qk) =
J>f (qk)

‖J f (qk)‖2 , where the Jacobian J f (qk) can be conveniently

evaluated in the network via backpropagation.

However, for some contemporary network designs, such as sine activation
functions [Sit+20] and positional encoding [Mil+20], the signed distance field
can be very noisy and the gradient highly non-smooth. Directly applying
Newton’s method then causes overshooting and oscillation. While one could
attempt more sophisticated line search algorithms, we instead address this
issue with a simple clipping operation to bound the length of the update, i.e.

qk+1 = qk − τ

(
J>f (qk)

‖J f (qk)‖2 f (qk)

)
, (4.6)

where τ(v) = v
‖v‖ min(‖v‖, τ0). We set τ0 = D

2|Qt| with D denoting the
diagonal length of the shape’s bounding box.

In practice, we initializeQt with randomly sampled points at the beginning of
the training and then with iso-pointsPt−1 from the previous training iteration.
Similar to [Atz+19], at each training iteration, we perform a maximum of
10 Newton iterations and terminate as soon as all points have converged,
i.e. | f (qk)| < ε, ∀q ∈ Qt. The termination threshold ε is set to 10−4 and
gradually reduced to 10−5 during training.

Uniform resampling. The projected base iso-points Q̃t can be sparse and
hole-ridden due to the irregularity present in the neural distance field, as
shown in Fig. 4.14. Such irregular sample distribution prohibits us from many
downstream applications described later.

The resampling step aims at avoiding over- and undersampling by iteratively
moving the base iso-points away from high-density regions, i.e.

q̃← q̃− αr, (4.7)
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4.2. Optimizing neural implicit surfaces.

where α =
√

D/|Q̃t| is the step size. The update direction r is a weighted
average of the normalized translations between q̃ and its K-nearest points
(we set K = 8):

r = ∑
q̃i∈N (q̃)

w(q̃i, q̃)
q̃i − q̃
‖q̃i − q̃‖ . (4.8)

The weighting function is designed to gradually reduce the influence of
faraway neighbors, specifically

w(q̃i, q̃) = e−
‖q̃i−q̃‖2

σp , (4.9)
where the density bandwidth σp is set to be 16D/|Q̃t|.

Upsampling. Next, we upsample the point set to the desired density while
further improving the point distribution. Our upsampling step is based on
edge-aware resampling (EAR) proposed by Huang et al. [Hua+13b]. We
explain the key steps and our main differences to EAR as follow.

First, we compute the normals as the normalized Jacobians and apply bilateral
normal filtering, just as in EAR. Then, the points are pushed away from the
edges to create a clear separation. We modify the original optimization
formulation with a simpler update consisting of an attraction and a repulsion
term. The former pulls points away from the edge and the latter prevents the
points from clustering.

∆pattraction =
∑pi∈N (p) φ(ni, pi − p)(p− pi)

∑pi∈N (p) φ(ni, pi − p)
, (4.10)

∆prepulsion = 0.5
∑pi∈N (p) w(pi, q)(pi − p)

∑pi∈N (p) w(pi, q)
, (4.11)

p← p− τ(∆prepulsion)− τ(∆pattraction), (4.12)

where φ(ni, p− pi) = e−
(n>i (p−pi))

2

σp is the anisotropic projection weight, ni is
the point normal of neighbor pi and w is the spatial weight defined in (4.9).
We use the same directional clipping function τ as before to bound the two
update terms individually, which improves the stability of the algorithm for
sparse point clouds.

By design, new points are inserted in areas with low density or high cur-
vature. The trade-off is controlled by a unifying priority score P(p) =
maxpi∈N (p) B(p, pi), where B is a distance measure (see [Hua+13b] for the
exact definition). Denoting the point with the highest priority as p∗, a
new point is inserted at the midpoint between p∗ and neighbor p∗i∗ , where
p∗i∗ = arg maxpi∈N (p∗) B(p∗, pi). In the original EAR method, the insertion is
done iteratively, requiring an update of the neighborhood information and
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recalculation of B after every insertion. Instead, to allow parallel compu-
tation at GPU, we approximate this process by simultaneously inserting a
maximum of |P|/10 points each step. In this way, however, inserting the
midpoint of point pairs would lead to duplicated new points. Thus, we insert
asymmetrically at 1

3(p
∗
i∗ + 2p∗) instead.

We then project the upsampled iso-points to the iso-surface. As shown in
Fig. 4.14, the final iso-points successfully reflect the 3D geometry of the
current implicit surface.

Compared with using marching cubes to extract the iso-surface, our adaptive
sampling is efficient. Since both the resampling and upsampling steps only
require information of local neighborhood, we implement it on the GPU.
Furthermore, since we use the iso-points from the previous iteration for
initialization, the overall point distribution improves as the training stabilizes,
requiring fewer (or even zero) resampling and upsampling steps at later
stages.

Utilizing iso-points in optimization

We introduce two scenarios of using iso-points to guide neural implicit surface
optimization: (i) importance sampling for multi-view reconstruction and (ii)
regularization when reconstructing neural implicit surfaces from raw input
point clouds.

Iso-points for importance sampling. Optimizing a neural implicit function
to represent a high-resolution 3D shape requires abundant training samples –
specifically, many supervision points sampled close to the iso-surface to cap-
ture the fine-grained geometry details accurately. However, for applications
where the explicit 3D geometry is not available during training, the question
of how to generate training samples remains mostly unexplored.

We exploit the geometry information and the prediction uncertainty carried
by the iso-points during training. The main idea is to compute a saliency
metric on iso-points, then add more samples in those regions with high
saliency. To this end, we experiment with two types of metrics: curvature-
based and loss-based. The former aims at emphasizing geometric features,
typically reflected by high curvature. The latter is a form of hard example
mining, as we sample more densely where the higher loss occurs, as shown
in Fig. 4.15.

Since the iso-points are uniformly distributed, the curvature can be approx-
imated by the norm of the Laplacian, i.e. Rcurvature(p) = ‖p−∑pi∈N (p) pi‖.
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For the loss-based metric, we project the iso-points on all training views and
compute the average loss at each point, i.e.Rloss(p) = 1

N ∑N
i loss(p), where

N is the number of occurrences of p in all views.

Figure 4.15.: Examples of importance sampling based on
different saliency metrics. Uniform iso-points treat different
regions of the iso-surface equally. We compute different
metrics on the uniform iso-points, based on which more
samples can be gathered in certain regions. The curvature-
based metric emphasizes geometric details, while the loss-
based metric allows for hard example mining.

As both metrics evolve
smoothly, we need not up-
date them in each train-
ing iteration. Denoting
the iso-points at which we
computed the metric as
T and the subset of tem-
plate points with high met-
ric values by T ∗ = {t∗},
the metric-based insertion
for each point p in the cur-
rent iso-point set Pt can be
written as

pnew,i =
2
3p + 1

3pi, ∀pi ∈ N (p), if mint∗ ‖p− t∗‖ ≤ σ.
The neighborhood radius σ is the same one used in (4.8).

Iso-points for regularization. The access to an explicit representation of the
implicit surface also enables us to incorporate geometry-motivated priors
into the optimization objective, exerting finer control of the reconstruction
result.

Figure 4.16.: Progression of overfitting. When optimizing a
neural implicit surface on a noisy point cloud, the network
initially outputs a smooth surface, but increasingly overfits
to the noise in the data. Shown here are the reconstructed
surfaces after 1000, 2000 and 5000 iterations. The input point
cloud is acquired in-house using an Artec Eva scanner.

Let us consider fitting a neu-
ral implicit surface to a point
cloud. Depending on the ac-
quisition process, the point
cloud may be sparse, dis-
torted by noise, or distributed
highly unevenly. Similar
to previous works [UVL18;
Wil+19], we observe that the
neural network tends to re-
construct a smooth surface at
the early stage of learning, but then starts to pick up higher frequency signals
from the corrupted observations and overfits to noise and other caveats in
the data, as shown in Fig. 4.16. This characteristic is consistent across net-
work architectures, including those designed to accommodate high-frequency
information, such as SIREN.

Existing methods that address overfitting include early stopping, weight
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decay, drop-out etc. [Goo+16]. However, whereas these methods are generic
tools designed to improve network generalizability for training on large
datasets, we propose a novel regularization approach that is specifically tai-
lored to training neural implicit surfaces and serves as a platform to integrate
a plethora of 3D priors from classic geometry processing.

Our main idea is to use the iso-points as a consistent, smooth, yet dynamic ap-
proximation of the reference geometry. Consistency and smoothness ensure
that the optimization does not fluctuate and overfit to noise; the dynamic
nature lets the network pick up consistent high-frequency signals governed
by underlying geometric details.

Figure 4.17.: Iso-points for regularization. At the early
stage of the training, the implicit surface is smooth (left),
and we extract iso-points (middle) as a reference shape,
which can facilitate various regularization terms. In the
example on the right, we use the iso-points to reduce the
influence of outliers (shown in red).

To this end, we extract
iso-points after a short
warmup training (e.g. 300
iterations). Because of the
aforementioned smooth
characteristic of the net-
work, the noise level in
the initial iso-points is
minimal. Then, during
subsequent training, we
update the iso-points pe-
riodically (e.g. every 1000

iterations) to allow them to gradually evolve as the network learns more
high-frequency information.

The utility of the iso-points includes, but is not limited to 1) serving as
additional training data to circumvent data scarcity, 2) enforcing additional
geometric constraints, 3) filtering outliers in the training data.

Specifically, for sparse or hole-ridden input point clouds, we take advantage
of the uniform distribution of iso-points and augment supervision in under-
sampled areas by enforcing the signed distance value on all iso-points to be
zero:

LisoSDF =
1
|P| ∑

p∈P
| f (p)|. (4.13)

Given the iso-points, we compute their normals from their local neighborhood
using principal component analysis (PCA) [Hop+92a]. We then increase
surface smoothness by enforcing consistency between the normals estimated
by PCA and those computed from the gradient of the network, i.e.

LisoNormal =
1
|P| ∑

p∈P
(1− | cos(J>f (p), nPCA)|). (4.14)
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The larger the PCA neighborhood is, the smoother the reconstruction becomes.
Optionally, additional normal filtering can be applied after PCA to reduce
over-smoothing and enhance geometric features. Finally, we can use the
iso-points to filter outliers in the training data. Specifically, given a batch
of training points Q = {q}, we compute a per-point loss weight based on
their alignment with the iso-points. Here, we choose to use bilateral weights
to take both the Euclidean and the directional distance into consideration.
Denoting the normalized gradient of an iso-point p and a training point q as
np and nq, respectively, the bilateral weight can written as

v(q) = min
p∈P

φ(np, p− q)ψ(np, nq), with (4.15)

ψ(np, nq) = e
−
(

1− 1−n>pnq
1−cos(σn)

)2

, (4.16)
where σn regulates the sensitivity to normal difference; we set σn = 60◦ in
our experiments. This loss weight can be incorporated into the existing loss
functions to reduce the impact of outliers. A visualization of the outliers
detected by this weight is shown in Fig. 4.17.

4.2.2. Results

Iso-points can be incorporated into the optimization pipelines of existing
state-of-the-art methods for implicit surface reconstruction. In this section,
we demonstrate the benefits of the specific techniques introduced in Sec. 4.2.1.

We choose state-of-the-art methods as the baselines, then augment the op-
timization with iso-points. Results show that the augmented optimization
outperforms the baseline quantitatively and qualitatively.

Sampling with iso-points

We evaluate the benefit of utilizing iso-points to generate training samples
for multi-view reconstruction. As the baseline, we employ the ray-tracing
algorithm from a state-of-the-art neural implicit renderer IDR [Yar+20], which
generates training samples by ray-marching from the camera center through
uniformly sampled pixels in the image. As shown in Fig. 4.18, three types
of samples are used for different types of supervision: on-surface sam-
ples, which are ray-surface intersections inside the object’s 2D silhouette,
in-surface samples, which are points with the lowest signed distance on the
non-intersecting rays inside 2D silhouette, and out-surface samples, which
are on the rays outside the 2D silhouette either at the surface intersection or
at the position with the lowest signed distance.
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baseline
(ray-tracing)

uniform curvature-
based

loss-
based

CD ·10−4(position) 17.24 1.80 1.83 1.71
CD ·10−1(normal) 1.51 1.10 0.99 0.95

Table 4.5.: Quantitative effect of importance sampling with iso-points. Compared to the baseline,
which generates training points via ray-marching, we use iso-points to draw more attention on
the implicit surface. The result is averaged over 10 models selected from the Sketchfab dataset
[Yif+19b].

in-surface sample

sampling with ray-tracing sampling with iso-points

on-surface sample out-surface sample

Figure 4.18.: A 2D illustration of two sampling strategies
for multi-view reconstruction. Ray-tracing (left) generates
training samples by shooting rays from camera C through
randomly sampled pixels; depending on whether an in-
tersection is found and whether the pixel lies inside the
object silhouette, three types of samples are generated: on-
surface, in-surface and out-surface points. We generate on-
surface samples directly from iso-points, obtaining evenly
distributed samples on the implicit surface, and also use
the iso-points to generate more reliable in-surface samples.

On this basis, we incorpo-
rate the iso-points directly
as on-surface samples. We
can direct the learning
attention by varying the
distribution of iso-points
using the saliency met-
rics described in Sec. 4.2.1.
The iso-points also pro-
vide us prior knowledge
to generate more reliable
in-surface samples. More
specifically, as shown in
Fig. 4.18 (right), we gen-
erate the three types of
samples as follows: a) on-
surface samples: we re-
move occluded iso-points

by visibility testing using a point rasterizer, and select those iso-points whose
projections are inside the object silhouette; b) in-surface samples: on the
camera rays that pass through the on-surface samples, we determine the
point with the lowest signed distance on the segment between the on-surface
sample and the farther intersection with the object’s bounding sphere. c) out-
surface samples: we shoot camera rays through pixels outside the object
silhouette, and choose the point with the lowest signed distance.

Below, we demonstrate two benefits of the proposed sampling scheme.

Surface details from importance sampling. First, we examine the effect of
drawing on-surface samples using iso-points by comparing the optimization
results under fixed optimization time and the same total sample count.

As inputs, we render 512× 512 images per object under known lighting and
material from varied camera positions. When training with the iso-points,
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Figure 4.19.: Qualitative comparison between sampling strategies for multi-view reconstruction.
Using the same optimization time and similar total sample count, sampling the surface points with
uniformly distributed iso-points considerably improves the reconstruction accuracy. A loss based
importance sampling further improves the recovery of small-scale structures. The models shown
here are the COMPRESSOR and ANGEL2 from the Sketchfab dataset [Yif+19b].

we extract 4,000 iso-points after 500 iterations, then gradually increase the
density until reaching 20,000 points. To match the sample count, in the ray-
tracing variation, we randomly draw 2,048 pixels per image and then increase
the sample count until reaching 10,000 pixels. We use a 3-layer SIREN model
with the frequency multipliers set to 30, and optimize with a batch size of 4.

We evaluate our method quantitatively using 10 watertight models from the
Sketchfab dataset [Yif+19b]. As shown in Table 4.5, we compute 2-way cham-
fer point-to-point distance (‖pi − pj‖2) and normal distance (1− cos(ni, nj))
on 50K points, uniformly sampled from the reconstructed meshes.

Results show that using uniform iso-points as on-surface samples compares
favorably against the baseline, especially in the normal metric. It suggests
that we achieve higher fidelity on the finer geometric features, as our surface
samples overcome under-sampling issues occurring at small scale details. We
also see that importance sampling with iso-points and loss based upsampling
exhibits a substantial advantage over other variations, demonstrating the
effectiveness of smart allocation of the training samples according to the
current learning state. In comparison, curvature-based sampling performs
similarly to the baseline, but notability worse than with the uniform iso-
points. We observe that the iso-points, in this case, are highly concentrated on
a few spots on the surface and ignore regions where the current reconstruction
is problematic (Fig. 4.15).

The improvement is more pronounced qualitatively, as shown in Fig. 4.19.
Sampling on-surface with uniform iso-points clearly enhances reconstruction
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accuracy compared to the baseline with ray-tracing. The finer geometric
details further improve with loss-based importance sampling.

Figure 4.20.: Topological correctness of the reconstructed
surface in multi-view reconstruction. The erroneous inner
structures of IDR are indicated by the artifacts in the images
rendered by Blender [Hes10] (using glossy and transparent
material) and by the contours of the signed distance field
on cross-sections.

IDR can reconstruct
impressive geometric
details on the DTU
dataset [Jen+14], but a
closer inspection shows
that the reconstructed sur-
face contains a consider-
able amount of topological
errors inside the visible
surface. We use iso-points
to improve the topological
accuracy of the reconstruc-
tion.

Topological correctness
from 3D prior. We use the
same network architecture
and training protocol as
IDR, which samples 2048
pixels from a randomly
chosen view in each opti-

mization iteration. We use uniform iso-points in this experiment. To keep
a comparable sample count, we subsample the visible iso-points to obtain
a maximum of 1500 on-surface samples per iteration. Since our strategy
automatically creates more in-surface samples (as shown in Fig. 4.18), we
halve the loss weight on the in-surface samples compared to the original
implementation.

We visualize the topology of the reconstructed surface in Fig. 4.20. To show
the inner structures of the surface, we render it in transparent and glossy
material with a physically-based renderer [Hes10] and show the back faces of
the mesh. Dark patches in the rendered images indicate potentially erroneous
light transmission caused by inner structures. Similarly, we also show the
contour lines of the iso-surface on a cross-section to indicate the irregularity
of the reconstructed implicit function. In both visualizations, the incorrect
topology in IDR reconstruction is apparent. In contrast, our sampling enables
more accurate reconstruction of the signed distance field inside and outside
the surface with more faithful topological structure.
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4.2. Optimizing neural implicit surfaces.

Regularization with iso-points

We evaluate the benefit of using iso-points for regularization. As an example
application, we consider surface reconstruction from a noisy point cloud.

As our baseline method, we use the publicly available SIREN codebase and
adopt their default optimization protocol. The noisy input point clouds are
either acquired with a 3D scanner (Artec Eva) or reconstructed [FP09] from
the multi-view images in the DTU dataset.

In each optimization iteration, the baseline method randomly samples an
equal number of oriented surface points Qs = {qs, ns} from the input point
cloud and unoriented off-surface points Qo = {qo} from bounding cube’s
interior. The optimization objective is comprised of four parts:

L = γonSDFLonSDF + γnormalLnormal + γoffSDFLoffSDF + γeikonalLeikonal,
where

LonSDF =
∑qs∈Qs | f (qs)|

|Qs|
, Lnormal =

∑qs∈Qs |1− cos(J>f (qs), ns)|
|Qs|

,

LoffSDF =
∑qo∈Qo e−α| f (qo)|

|Qo|
, Leikonal =

∑q∈Qo∪Qs |1− ‖J>f (q)‖|
|Qs|+ |Po|

and γonSDF = 1000, γnormal = 100, γoffSDF = 50, γeikonal = 100. We alter this
objective with the outlier-aware loss weight defined in (4.16), and then add
the regularizations on iso-points LisoSDF (4.13) and LisoNormal (4.14). The final
objective becomes

L = γonSDF(LonSDF + LisoSDF) + γnormal(Lnormal + LisoNormal)+

γoffSDFLoffSDF + γeikonalLeikonal,
where the loss terms with on-surface points are weighted as follows:

LonSDF =
1
|Qs| ∑

qs∈Qs

v(qs)| f (qs)|,

Lnormal =
1
|Qs| ∑

qs∈Qs

v(qs)|1− cos(J>f (qs), ns)|.

The iso-points are initialized by subsampling the input point cloud by 1/8
and updated every 2000 iterations.

The comparison with the baseline, i.e., vanilla optimization without regu-
larization, is shown in Fig. 4.21. For the DTU-MVS data, we also conduct
quantitative evaluation following the standard DTU protocol as shown in
Table 4.6, i.e., L1-Chamfer distance between the reconstructed and refer-
ence point cloud within a predefined volumetric mask [Aan+16]. For clarity,
we also show the results of screened Poisson reconstruction [KH13a] and
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screened Poissonbaselineinput ours

CD:0.42 CD:0.50 CD:0.46 CD:0.46

points2surf

CD:0.56 CD:0.69 CD:0.69 CD:0.98

Figure 4.21.: Implicit surface reconstruction from noisy and sparse point clouds. From left to
right: input, reconstruction with our proposed regularizations, baseline reconstruction without
our regularizations, screened Poisson reconstruction and Points2Surf. CD denotes L1-Chamfer
distance. The sparse point cloud in the first row is acquired with an Artec Eva scanner, whereas the
inputs in the second row and third row are reconstructed from DTU dataset (model 105 and 122)
using [FP09].

Points2Surf [Erl+20]. The former reconstructs a watertight surface from an
oriented point set by solving local Poisson equations; the latter fits an implicit
neural function to an unoriented point set in a global-to-local manner. Com-
pared with the baseline and screened Poisson, our proposed regularizations
significantly suppresses noise. Points2Surf can handle noisy input well, but
the sign propagation appears to be sensitive to the point distribution, leading
to holes in the reconstructed mesh. Moreover, since their model does not use
the points’ normal information, the reconstruction lacks detail.

94



4.2. Optimizing neural implicit surfaces.

ID ours baseline point2surf screened Poisson

55 0.37 0.41 0.56 0.42
69 0.59 0.65 0.61 0.63
105 0.56 0.69 0.98 0.69
110 0.54 0.51 0.61 0.55
114 0.38 0.45 0.45 0.37
118 0.45 0.49 0.59 0.55
122 0.42 0.50 0.46 0.46

Average 0.53 0.61 0.52 0.47

Table 4.6.: Quantitative evaluation for surface reconstruction from a noisy sparse point cloud. We
evaluate the two-way L1-chamfer distance on a subset of the DTU-MVS dataset.

Performance analysis

The main overhead in our approach is the projection step. One newton iter-
ation requires a forward and a backward pass. On average, the projection
terminates within 4 iterations. This procedure is optimized by only consid-
ering points that are not yet converged at each iteration. Empirically, the
computation time of extracting the iso-points once is typically equivalent
to running 3 training iterations. In practice, as we extract iso-points only
periodically, the total optimization time only increases marginally.
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Figure 4.22.: Validation error in relation to optimization
time. The first time stamp is at the 100-th iteration.

In the case of multi-view re-
construction, since the ray-
marching itself is an expen-
sive operation, involving mul-
tiple forward passes per ray,
the overhead of our approach
is much less notable. As dis-
cussed, we filter the occluded
iso-points before the projec-
tion, which also saves opti-
mization time. The trade-off between optimization speed and quality is
depicted in a concrete example in Fig. 4.22, where we plot the evolution of the
chamfer distance during the optimization of the COMPRESSOR model (first
row of Fig. 4.19). Compared to the baseline optimization with ray-tracing, it
is evident that the iso-points augmented optimization consistently achieves
better results at every timestamp. In other words, with iso-points we can
reach a given quality threshold faster.
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4. Implicit Surface Reconstruction

4.3. Concluding remarks

Contributions. In this chapter, we presented two algorithms for surface
reconstruction via neural implicit surface representations.

First, we proposed a new parameterization of neural implicit functions for
detailed geometry representation, named implicit displaced field (IDF). Ex-
tending displacement mapping, a classic shape modeling technique, our
formulation represents a given shape by a smooth base surface and a high-
frequency displacement field that offsets the base surface along its normal
directions. This resulting frequency partition enables the network to con-
centrate on regions with rich geometric details, significantly boosting its
representational power. Thanks to the theoretically grounded network de-
sign, the high-frequency signal is well constrained. As a result our model
shows improved convergence qualities compared to other models leveraging
high-frequency signals, such as SIREN and positional encoding. Furthermore,
emulating the deformation-invariant quality of classic displacement mapping,
we extend our method to enable transferability of the implicit displacements,
thus making it possible to use implicit representations for new geometric
modeling tasks.

In the second algorithm, we introduced a complementary representation,
iso-points, for learning implicit surfaces. Implicit surfaces can represent 3D
structures in arbitrary resolution and topology but lack an explicit form to
adapt the optimization process to input data. Iso-points, as a point cloud
adaptively distributed on the underlying surface, are fairly straightforward
and efficient to manipulate and analyze the underlying 3D geometry.

We presented effective algorithms to extract and utilize iso-points. Extensive
experiments show the power of our hybrid representation. We demonstrate
that iso-points can be readily employed by state-of-the-art neural 3D re-
construction methods to significantly improve optimization efficiency and
reconstruction quality.

Limitations. The main limitation of IDF centers around its transferability and
the application of detail transfer. Since we used normals as a descriptor, which
is not orientation invariant, the demonstrated detail transfer application as-
sumes pre-align shape inputs, thus limiting the applicability to arbitrary
deformable and unaligned shapes. To address this limitation, one option is to
consider exploring sparse correspondences as part of the input, which is a
common practice in computer graphics applications, to facilitate subsequent
automatic shape alignment. Another limitation of the transferable IDF is
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associated with the use of 3D convolutions as the context descriptor. 3D
convolutions have a large memory footprint and also induce slower training
and inference. More importantly, while convolutions are effective in prop-
agating translation-invariant features to off-surface areas, they also tend to
oversmooth features. One promising direction to address this issue is to
consider the features of an off-surface point as a learnable aggregation of
obtained on-surface features. To this end, attention-based mechanisms such
as Transformers [Vas+17] may serve as a potential apparatus.

In the iso-points project, one limitation lies in the proposed sampling strategy
in that it is mainly determined by the geometry of the underlying surface
and does not explicitly model the appearance. In the future, we would like
to extend our hybrid representation to model the joint space of geometry
and appearance, which can in turn allow us to apply path-tracing for global
illumination, bridging the gap between existing neural rendering approaches
and classic physically based rendering. Secondly, in the current implementa-
tion, we experimented with object-level reconstruction. Further optimization
is required to scale up to multi-object scene-level reconstruction.
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C H A P T E R 5
Shape Deformation

Deformation of 3D shapes is a ubiquitous task, arising in many vision and
graphics applications. For instance, deformation transfer [SP04] aims to infer
a deformation from a given pair of shapes and apply the same deformation
to a novel target shape. As another example, a small dataset of shapes from
a given category (e.g., chairs) can be augmented by synthesizing variations,
where each variation deforms a randomly chosen shape to the proportions
and morphology of another while preserving local detail [Xu+10; Wan+19].

In this chapter, we present a learning-based shape deformation algorithm,
which deforms a shape in a given shape category, e.g. chairs, to match an
arbitrary shape in the same category without correspondence information. In
particular, unlike previous learned deformation methods, the proposed ap-
proach is detail-preserving by construction, which is achieved by leveraging
a classic technique in interactive shape modeling: cage-based deformation.

5.1. Neural cage deformation

Deformation techniques usually need to simultaneously optimize at least
two competing objectives. The first is alignment with the target, e.g., match-
ing limb positions while deforming a human shape to another human in a
different pose. The second objective is adhering to quality metrics, such as
distortion minimization and preservation of local geometric features, such
as the human’s face. These two objectives are contradictory, since a perfect
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5. Shape Deformation

alignment of a deformed source shape to the target precludes preserving the
original details of the source.

Sparse 
correspondences

for a neutral pose

Training 
domain

(SMPL)
Targets

Targets
Sources

Figure 5.1.: Applications of our neural cage-based
deformation method. Top: Complex source chairs
(brown) deformed (blue) to match target chairs (green),
while accurately preserving detail and style with non-
homogeneous changes that adapt different regions dif-
ferently. No correspondences are used at any stage.
Bottom: A cage-based deformation network trained
on many posed humans (SMPL) can transfer vari-
ous poses of novel targets (SCAPE, skeleton, X-Bot,
in green) to a very dissimilar robot of which only a
single neutral pose is available. A few matching land-
marks between the robot and a neutral SMPL human
are required. Dense correspondences between SMPL
humans are used only during training.

Due to these conflicting ob-
jectives, optimization tech-
niques [LSP08] require param-
eter tuning to balance the
two competing terms, and are
heavily reliant on an inferred
or manually supplied corre-
spondence between the source
and the target. These param-
eters vary based on the shape
category, representation, and
the level of dissimilarity be-
tween the source and the tar-
get.

To address these limitations,
recent techniques train a neu-
ral network to predict shape de-
formations. This is achieved
by predicting new positions
for all vertices of a template
shape [Tan+18] or by implic-
itly representing the deforma-
tion as a mapping of all points
in 3D, which is then used to
map each vertex of a source
shape [Wan+19; Gro+19]. Ex-

amples of the results of some of these methods can be seen in Fig 5.4, which
demonstrates the limitations of such approaches: the predicted deformations
corrupt features and exhibit distortion, especially in areas with thin structures,
fine details or gross discrepancies between source and target. These artifacts
are due to the inherent limitations of neural networks to capture, preserve,
and generate high frequencies.

In this work, we circumvent the above issues via a classic geometry processing
technique called cage-based deformation [JSW05; LLCO08; Jos+07], abbreviated
to CBD. In CBD, the source shape is enclosed in a very coarse scaffold mesh
called the cage (Fig 5.2). The deformation of the cage is transferred to the
enclosed shape by interpolating the translations of the cage vertices. Fittingly,
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5.1. Neural cage deformation

the interpolation schemes in these classic works are carefully designed to
preserve details and minimize distortion.

Our main technical contribution is a novel neural architecture in which, given
a source mesh, learnable parameters are optimized to predict both the posi-
tioning of the cage around the source shape, as well as the deformation of that
cage, which drives the deformation of the enclosed shape in order to match a
target shape. The source shape is deformed by deterministically interpolating
the new positions of its surface points from those of the cage vertices, via a
novel, differentiable, cage-based deformation layer. The pipeline is trained
end-to-end on a collection of randomly chosen pairs of shapes from a training
set.

The first key advantage of our method is that cages provide a much more
natural space for predicting deformations: CBD is feature-preserving by con-
struction, the degrees of freedom in deformation only depends on the number
of vertices on the coarse cage. In short, our network makes a prediction in a
low-dimensional space of highly regular deformations.

The second key advantage is that our method is not tied to a single source
shape, nor to a single mesh topology. As the many examples in this paper
demonstrate, the trained network can predict and deform cages for similar
shapes not observed during training. The target shape can be crude and
noisy, e.g., a shape acquired with cheap scanning hardware or reconstructed
from an image. Furthermore, dense correspondences between the source and
target shapes are not required in general, though they can help when the
training set has very varied articulations. Thus the method can be trained on
large datasets that are not co-registered and do not have consistently labeled
landmarks.

We show the utility of our method in two main applications. We generate
shape variations by deforming a 3D model using other shapes as well as
images as targets. We also use our method to pose a human according to a
target humanoid character, and, given a few sparse correspondences, perform
deformation transfer and pose an arbitrary novel humanoid. See Figures 5.1,
5.7, 5.9 and 5.4 for examples.

5.1.1. Method

We now detail our approach for learning cage-based deformations (CBD). We
start with a brief overview of the principles of CBD, and then explain how
we train a network to control these deformations from data.
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Figure 5.2.: Overview. A source Ss and a target St are encoded by the same PointNet encoder EPN

into latent codes fs and ft, resp. An AtlasNet-style decoder DAN
c decodes fs to a source cage Cs in

the cage module Nc. Another decoder DAN
d creates the offset for Cs in the deformation module Nd

from the concatenation of fs and ft, yielding a deformed cage Cs→t. Given a source cage and shape,
our novel MVC layer computes the mean value coordinates φCs(Ss), which are used to produce a
deformed source shape Ss→t from the cage deformation Cs→t.

Cage-based deformations

CBD are a type of freeform space deformations. Instead of defining a defor-
mation solely on the surface S , space deformations warp the entire ambient
space in which the shape S is embedded. In particular, a CBD controls this
warping via a coarse triangle mesh, called a cage C, which typically encloses
S . Given the cage, any point in ambient space p ∈ R3 is encoded via gen-
eralized barycentric coordinates, as a weighted average of the cage vertices
vj: p = ∑ φCj (p) vj, where the weight functions

{
φCj
}

depend on the rela-

tive position of p w.r.t. to the cage vertices
{

vj
}

. The deformation of any
point in ambient space is obtained by simply offsetting the cage vertices and
interpolating their new positions v′j with the pre-computed weights, i.e.

p′ = ∑
0≤j<|VC |

φCj (p) v′j. (5.1)

Previous works on CBD constructed various formulae to attain weight func-
tions

{
φCj
}

with specific properties, such as interpolation, linear precision,
smoothness and distortion minimization. We choose mean value coordinates
(MVC) [JSW05] for their feature preservation and interpolation properties, as
well as simplicity and differentiability w.r.t. the source and deformed cages’
coordinates.
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5.1. Neural cage deformation

Learning cage-based deformation

As our goal is an end-to-end pipeline for deforming shapes, we train the
network to predict both the source cage and the target cage, in order to
optimize the quality of the resulting deformation. Given a source shape
Ss and a target shape St, we design a deep neural network that predicts
a cage deformation that warps Ss to St while preserving the details of Ss.
Our network is composed of two branches, as illustrated in Fig 5.2: a cage-
prediction model Nc, which predicts the initial cage Cs around Ss, and a
deformation-prediction model Nd, which predicts an offset from Cs, yielding
the deformed cage Cs→t, i.e.

Cs = Nc (Ss) + C0, Cs→t = Nd (St,Ss) + Cs (5.2)
Since both branches are differentiable, they can be both learned jointly in an
end-to-end manner.

The branches Nc and Nd only predict the cage and do not directly rely on
the detailed geometric features of the input shapes. Hence, our network
does not require high-resolution input nor involved tuning for the network
architectures. In fact, both Nc and Nd follow a very streamlined design:
their encoders and decoders are simplified versions of the ones used in
AtlasNet [Gro+18a]. We remove the batch normalization and reduce the
channel sizes, and instead of feeding 2D surface patches to the decoders,
we feed a template cage C0 and the predicted initial cage Cs to the the cage
predictor and deformer respectively, and let them predict the offsets. By
default, C0 is a 42-vertex sphere.

Loss terms

Our loss incorporates three main terms. The first term optimizes the source
cage to encourage positive mean value coordinates. The two latter terms
optimize the deformation, the first by measuring alignment to target and the
second by measuring shape preservation. Together, these terms comprise our
basic loss function:

L = αMVCLMVC + Lalign + αshapeLshape. (5.3)
We use αMVC = 1, αshape = 0.1 in all experiments.

To optimize the mean value coordinates of the source cage, we penalize
negative weight values, which emerge when the source cage is highly concave,
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self-overlapping, or when some of the shape’s points lie outside the cage:

LMVC =
1

|Cs||Ss|
|Ss|
∑
i=1

|Cs|
∑
j=1

∣∣min
(
φji, 0

)∣∣2 , (5.4)

where αMVC is the loss weight, and φji denotes the coordinates of pi ∈ Ss w.r.t.
vj ∈ Cs.

Lalign is measured either via chamfer distance in the unsupervised case sans
correspondences, or as the L2 distance when supervised with correspon-
dences.

The above two losses drive the deformation towards alignment with the
target, but this may come at the price of preferring alignment over feature
preservation. Therefore, we add terms that encourage shape preservation.
Namely, we draw inspiration from Laplacian regularizers [Gro+18b; Wan+19;
Liu+19b], but propose to use a point-to-surface distance as an orientation-
invariant, second-order geometric feature. Specifically, for each point p on
the source shape, we fit a PCA plane to a local neighborhood B (we use
the one-ring of the mesh), and then compute the point-to-plane distance
as d = ‖nT (p− pB) ‖, where n denotes the normal of the PCA plane and
pB = 1

|B| ∑q∈B(p) q is the centroid of the local neighborhood around p. We
then penalize change in the distance di for each vertex on the surface:

Lp2f =
1
|Ss|

|Ss|
∑
i=1
‖di − d′i‖2 (5.5)

where d′i is the distance post deformation. In contrast to the uniform Lapla-
cian, which considers the distance to the centroid and hence yields a non-zero
value whenever the local neighborhood is not evenly distributed, the pro-
posed point-to-surface distance better describes the local geometric features.

For man-made shapes, we use two additional losses that leverage priors of
this shape class. First, normal consistency is important for, e.g., preserving
the planarity of elements like tabletops. To encourage this, we penalize the
angular difference of PCA normals before and after deformation:

Lnormal =
1
|Ss|

|Ss|
∑

i
(1− nT

i n′i), (5.6)

where n′ denotes the PCA-normal after the deformation. As demonstrated
later, this normal penalty considerably improves the perceptual quality of
the deformation. Second, similarly to Wang et al. [Wan+19], we also use the
symmetry loss Lsymm, measured as the chamfer distance between the shape
and its reflection around the x = 0 plane. We apply this loss to the deformed
shape Ss→t as well as the cage Cs. Thus, our final shape preservation loss is:
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5.1. Neural cage deformation

Lshape =Lp2f+Lnormal+Lsymm for man-made shapes and Lshape =Lp2f for
characters.

5.1.2. Applications

We now showcase two applications of the trained cage-based deformation
network.

Stock amplification via deformation

Target

Source

Figure 5.3.: Synthesizing variations of source shapes
(brown), by deforming them to match targets (green).

Creating high-quality 3D as-
sets requires significant time,
technical expertise, and artis-
tic talent. Once the asset is
created, the artist commonly
deforms the model to create
several variations of it. In-
spired by prior techniques
on automatic stock amplifica-
tion [Wan+19], we use our
method to learn a meaningful
deformation space over a col-
lection of shapes within the
same category, and then use
random pairs of source and
target shapes to synthesize
plausible variations of artist-

generated assets.

Training details. We train our model on the chair, car and table categories
from ShapeNet [Cha+15] using the same splitting into training and testing
sets as in Groueix et al. [Gro+19]. We then randomly sample 100 pairs from
the test set. Each shape is normalized to fit in a unit bounding box and is
represented by 1024 points.

Variation synthesis examples. Fig 5.3 shows variations generated from
various source-target pairs, exhibiting the regularizing power of the cages:
even though our training omits all semantic supervision such as part labels,
these variations are plausible and do not exhibit feature distortions; fine
details, such as chair slats, are preserved.
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Source Target Ours
non-rigid ICP

[Hua+18]
CC

[Gro+19]
3DN

[Wan+19]
ALIGNet
[Han+18]

Figure 5.4.: Comparison of our method with other non-homogeneous deformation methods. Our
method achieves superior detail preservation of the source shape in comparison to optimization-
based [Hua+18] and learning-based [Gro+19; Wan+19; Han+18] techniques, while still aligning the
output to the target.

Comparisons. We compared our target-driven deformation method to other
methods that strive to achieve the same goal. Results are shown in Fig 5.4.
While in many cases alternative techniques do align the deformed shape the
target, in all cases they introduce significant artifacts in the deformed meshes.

Source Target Ours
Anisotropic

Scaling

Figure 5.5.: Comparison of our method
with anisotropic scaling. Our method
better matches corresponding semantic
parts.

We first compare to a non-learning-based
approach: non-rigid ICP [Hua+18], a
classic registration technique that alter-
nates between correspondence estima-
tion and optimization of a non-rigid de-
formation to best align corresponding
points. We show results with the opti-
mal registration parameters we found
to achieve detail preservation. Clearly,
ICP is sensitive to wrong correspon-
dences that cause convergence to artifact-
ridden local minima. We also compare to
learning-based methods that directly pre-
dict per-point transformations and lever-
age cycle-consistency (CC) [Gro+19] or
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Figure 5.6.: Quantitative evaluation of our method vs alternative methods. Each point represents
a method, embedded according to its average alignment error (Chamfer Distance) and distortion
(∆CotLaplacian). Points near the bottom-left corners are better.

feature-preserving regularization (3DN) [Wan+19] to learn low-distortion
shape deformations. Both methods blur and omit features, while also creating
artifacts by stretching small parts. We also compare to ALIGNet [Han+18],
a method that predicts a freeform deformation over a voxel grid, yielding
a volumetric deformation of the ambient space similarly to our technique.
Contrary to our method, the coarse voxel grid cannot capture the fine defor-
mation of the surface needed to avoid large artifacts. Our training setup is
identical to CC, and we retrained 3DN and ALIGNet with the same setup
using parameters suggested by the authors.

In Fig 5.5 we compare our results to the simplest of deformation methods –
anisotropic scaling, achieved by simply rescaling the source bounding box to
match that of the target. While local structure is well preserved, this method
cannot account for the different proportion changes required for different
regions, highlighting the necessary intricacy of the optimal deformation in
this case.

Quantitative comparisons. in Fig 5.6, we quantitatively evaluate the var-
ious methods using two metrics: distance to the target shape, and detail
preservation, measured via chamfer distance (computed over a dense set
of 5000 uniformly sampled points) and difference in cotangent Laplacians,
respectively. Note that these metrics do not favor any method, since all op-
timize for a variant of chamfer distance, and none of the methods optimize
for the difference in the cotangent Laplacian. Each 2D point in the figure
represents one method, with the point’s coordinates prescribed with respect
to the two metrics, the origin being ideal. This figure confirms our qualitative
observations: our method is more effective at shape preservation than most
alternatives while still capturing the gross structure of the target.

Using images as targets. Often, a 3D target is not readily available. Images
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Target
Image

Target
Proxy [Gro+18a]

Example 1
Source Output

Example 2
Source Output

Figure 5.7.: We use our method to deform a 3D shape to match a real 2D image. We first use
AtlasNet [Gro+18a] to reconstruct a 3D proxy target. Despite the poor quality of the proxy, it still
serves as a valid target for our network to generate a matching output preserving the fine details of
the source.

are more abundant and much easier to acquire, and thus pose an appealing
alternative. We use a learning-based single-view reconstruction technique to
create a proxy target to use with our method to find appropriate deformation
parameters. We use publicly available product images of real objects and
execute AtlasNet’s SVR reconstruction [Gro+18a] to generate a coarse 3D
proxy as a target. Fig 5.7 shows that even though the proxy has coarse
geometry and many artifacts, these issues do not affect the deformation, and
the result is still a valid variation of the source.

Deformation transfer

Given a novel 3D model, it is much more time-efficient to automatically
deform it to mimic an existing example deformation, than having an artist
deform the novel model directly. This automatic task is called deformation
transfer. The example deformation is given via a model in a rest pose Ss,
and a model in the deformed pose St. The novel 3D model is given in a
corresponding rest post Ss′ . The goal is to deform the novel model to a
position St′ so that the deformation Ss′ → St′ is analogous to Ss → St. This
task can be quite challenging, as the example deformation St may have
very different geometry, or even come from an ad-hoc scan, and thus dense
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Source Target 1 Deformed 1 Target 2 Deformed 2 Target 3 Deformed 3

Figure 5.8.: The deformation model, trained to deform a fixed source (left) to various articulations.

correspondences between Ss and St are unavailable, preventing the use of
traditional mesh optimization techniques such as [SP04]. Furthermore, as the
novel character Ss′ may be significantly different from all models observed
during training, it is impossible to a-priori learn a deformation subspace for
Ss′ unless sufficient pose variations of Ss′ is available, as in Gao et al. [Gao+18].

We demonstrate that our learning-based approach can be used to perform
deformation transfer on arbitrary humanoid models. The network infers the
deformation from the source Ss to the target St, without any given correspon-
dences, and then an optimization-based method transfers this deformation
to a novel shape Ss′ to obtain the desired deformation St′ . Hence, given
any arbitrarily-complex novel character, all our method requires are sparse
correspondences supplying the necessary alignment between the two rest
poses, Ss and Ss′ . We now overview the details of our learned cage-based
human deformation model and the optimization technique used to transfer
the deformations.

Learning cage-based human deformation. To train our human-specific
deformation model, we use the dataset [Gro+18b] generated using the SMPL
model [Bog+14] of 230K models of various humans in various poses. Since
our application assumes that the exemplar deformation is produced from
a single canonical character, we picked one human in the dataset to serve
as Ss. Subsequently, since we only have one static source shape Ss, we
use a static cage Cs manually created with 77 vertices, and hence do not
need the cage prediction network Nc and only use the deformation network
Nd. We train Nd to deform the static Ss using the static Cs into exemplars
St from the dataset (with targets not necessarily stemming from the same
humanoid model as Ss). We then train with the loss in Eq. (5.3), but with one
modification: in similar fashion to prior work, during training we use ground
truth correspondences and hence replace the chamfer distance with the L2
distance w.r.t the known correspondences. Note that these correspondences
are not used at inference time.
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Template Source Test Targets

Novel Source

Figure 5.9.: Deformation transfer. We first learn the cage deformation space for a template source
shape (top left) with known pose and body shape variations. Then, we annotate predefined
landmarks on new characters in neutral poses (left column, rows 2-4). At test time, given novel
target poses (top row, green) without known correspondences to the template, we transfer their
poses to the other characters (blue).

Lastly, during training we also optimize the static source cage Cc by treating
its vertices as degrees of freedom and directly optimizing them to reduce the
loss so as to attain a more optimal, but still static cage after training.

Fig 5.8 shows examples of human-specific cage deformations predicted for
test targets (not observed while training). Note how our model successfully
matches poses even without knowing correspondences at inference time,
while preserving fine geometric details such as faces and fingers.

Transferring cage deformations. After training, we have at our disposal the
deformation network Nd and the static Cs,Ss. We assume to be given a novel
character Ss′ with 83 landmark correspondences aligning it to Ss, and an
example target pose St. Our goal is to deform Ss′ into a new pose St′ that is
analogous to the deformation of Ss into St.

We first generate a new cage Cs′ for the character Ss′ . Instead of a network-
based prediction, we simply optimize the static cage Cs, trying to match mean
value coordinates between corresponding points of Ss,Ss′ :
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5.1. Neural cage deformation

template 
source

novel 
source

transferred deformation: 
cage and shape

geometric details

Figure 5.10.: In deformation transfer, the manually created cage for a template shape (leftmost) is
fitted to a novel source shape (second left) by optimizing MVC of a sparse set of aligned landmarks.
The learnt deformation can be directly applied to the fitted source cage (columns 3-4), preserving
rich geometric features (right).

Lconsistency = ∑
j

∑
(p,q)
‖φCs

j (p)− φ
C ′s
j (q)‖2 (5.7)

where (p, q) are corresponding landmarks. We also regularize with respect to
the cotangent Laplacian of the cage:

LClap = ∑
0≤j<|Cs|

(
‖Lcotvj‖ − ‖Lcotv′j‖

)2
. (5.8)

Then, we compute Cs′ by minimizing L = Lconsistency + 0.05LClap, with Cs

used as initialization, solved via the Adam optimizer with step size 5 · 10−4

and up to 104 iterations (or until Lconsistency < 10−5).

Finally, given the cage Cs′ for the novel character, we compute the deformed
cage Cs′→t′ , using our trained deformation network, by applying the predicted
offset to the optimized cage: Cs′→t′ = Nd (St,Ss′) + Cs′ . The final deformed
shape St′ is computed by deforming Ss′ using the cage Cs′→t′ via Eq. (5.1). This
procedure is illustrated in Fig 5.10, while more examples can be found in the
supplemental material. Due to the agnostic nature of cage-deformations to the
underlying shape, we are able to seamlessly combine machine learning and
traditional geometry processing to generalize to never-observed characters.
To demonstrate the expressiveness of our method, we show examples on
extremely dissimilar target characters in Figures 5.1 and 5.9.

5.1.3. Evaluation

In this section, we study the effects and necessity of the most relevant com-
ponents of our methods. To measure the matching error we use chamfer
distance computed on 5000 uniformly resampled points, and to measure the
feature distortion we use the distance between cotangent Laplacians. All
models are normalized to a unit bounding box.

Benefit of learning CBD from data. Instead of learning the CBD from a
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Example 1 Example 2

Source Target Opt. Ours Source Target Opt. Ours

Figure 5.11.: Our approach produces more plausible inter-shape correspondences and deforma-
tions than per-pair optimization.

Source Ss TargetSt
Source
Cage

Deformed 
Cage

Deformed 
Cs

αMVC = 1

Cs→t Ss→t

αMVC = 10

Source
Cage

Deformed 
Cage

Deformed 
Cs Cs→t Ss→t

Figure 5.12.: Effect of LMVC. Higher regularization yields more conservative deformations.

collection of data, one could minimize Eq. (5.3) for a single pair of shapes,
which is essentially a non-rigid Iterative-Closest-Point (ICP) parameterised by
cage vertices. As shown in Fig 5.11, when correct correspondence estimation
becomes challenging, the optimization alternative produces non-plausible
outputs. In contrast, the learnt approach utilizes domain knowledge em-
bedded in the network’s parameters [ZF14; SDM19], amounting to better
reasoning about the plausibility of inter-shape correspondences and defor-
mations. The learned domain knowledge can generalize to new data. As
demonstrated in Sec 5.1.2, even though our network is trained with ground-
truth correspondences, it is able to automatically associate the source shape
to a new target without correspondences during inference, while optimization
methods require accurate correspondence estimation for every new target.

Effect of the negative MVC penalty, LMVC. in Fig 5.12 we show the ef-
fect of penalizing negative mean value coordinates. We train our architec-
ture on 300 vase shapes from COSEG [Wu+14], while varying the weight
αMVC ∈ {0, 1, 10}. Increasing this term brings the cages closer to the shapes’
convex hulls, leading to more conservative deformations. Quantitative re-
sults in Table 5.1a also suggest that increasing the weight αMVC favors shape
preservation over alignment accuracy. Completely eliminating this term hurts
convergence, and increases the alignment error further.

Effect of the shape preservation losses, Lshape. In Fig 5.13 we compare
deformations produced with the full loss (Lshape = Lp2f + Lnormal + Lsymm)
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Ablation CD ∆CotLaplacian

αMVC = 0 1.64 9.04
αMVC = 1 1.44 8.74
αMVC = 10 2.65 8.27

(a) Effect of the MVC loss, LMVC

Lshape=Llap+Lsymm 5.16 4.75
Lshape=Lp2f+Lsymm 4.86 4.70
Lshape=Lnormal+Lsymm 5.45 4.33
(b) Effect of the shape preservation losses, Lshape

Nc=Identity 3.27 5.65
Nc=Source-invariant 3.11 12.05
Nc=Ours 3.06 10.45
(c) Design choices for cage prediction network, Nc

Table 5.1.: We evaluate effect of different losses (LMVC,Lshape) and components (Nc) of our
pipeline with respect to chamfer distance (CD, scaled by 102) and cotangent Laplacian (scaled by
103).

Source Ss Target St Llap Lp2f Lnormal

Figure 5.13.: The effect of different shape preservation losses, note that all results include Lsymm.

to ones produced with only one of the first two loss terms. While we did not
use the Laplacian regularizer Llap as in [Wan+19], it seems to have an effect
equivalent to Lp2f. As expected, Lnormal prevents bending of rigid shapes. We
quantitatively evaluate these regularizers in Table 5.1b, which suggests that
Lp2f is slightly better as the deformed shape is more aligned with the target
than Llap, even though shape preservation has not been sacrificed. Lnormal
reduces distortion even further.

Design choices for the cage prediction network, Nc. The cage prediction
network Nc morphs the template cage mesh (a 42-vertex sphere) into the
initial cage enveloping the source shape. In Fig 5.14 and Table 5.1c we
compare to two alternative design choices for this module: an Identity module
retains the template cage, and a source-invariant module in which we optimize
the template cage’s vertex coordinates with respect to all targets in the dataset,
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Source
Cage

Deformed 
Cage

Deformed 
Cs Cs→t Ss→t

Source
Cage

Deformed 
Cage

Deformed 
Cs Cs→t Ss→t

Nc = IdentityNc = Ours

Nc = Ours Nc = Source-invariant

Source Ss TargetSt

Figure 5.14.: The effect of source-cage prediction. We compare our per-instance prediction of Nc
with (1) a static spherical cage (top right) and (2) a single optimized cage prediction over the entire
training set (bottom right). Our approach achieves better alignment with the target shape.

but then use the same fixed cage for testing. Learning source-specific cages
produces deformations closest to the target with minimum detail sacrifice.
As expected, fixing the template cage produces more rigid deformations,
yielding lower distortion at the price of less-aligned results.

5.2. Concluding remarks.

Contributions. We show that classical cage-based deformation provides a
low-dimensional, detail-preserving deformation space directly usable in a
deep-learning setting. We implement cage weight computation and cage-
based deformation as differentiable network layers, which could be used in
other architectures. Our method succeeds in generating feature-preserving
deformations for synthesizing shape variations and deformation transfer, and
better preserves salient geometric features than competing methods.

Limitations. One limitation of our approach is that our losses are not quite
sufficient to always ensure rectilinear/planar/parallel structures in man-
made shapes are perfectly preserved (Fig 5.13).

Also, we would like to incorporate alternative cage weight computation
layers, such as Green Coordinates [LLCO08]. Unlike MVC, this technique is
not affine-invariant, and thus would introduce less affine distortion for large
articulations (see the second row fourth column in Fig 5.9).
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C H A P T E R 6
Conclusion

The momentous trend of reality digitization has made geometry processing a
ubiquitous and crucial technological subject. A general geometry processing
pipeline encapsulates a line of techniques to create and modify 3D content,
which are principally divided into raw data processing, surface reconstruc-
tion, and shape modeling. This thesis investigated all the above sub-domains
and presented a set of novel solutions to various relevant geometry process-
ing tasks, which not only pushed forward the state-of-the-art performance
of the task in question, but also offered brand-new use-cases. In particu-
lar, the contributions made in the thesis belong to the pioneering effort to
revolutionize geometry processing by incorporating emerging and evolving
toolkits from the machine learning community. In all five of the algorithms
we presented in the thesis, we have developed paradigms that either directly
improve the way deep learning was deployed, or created new possibilities to
utilize deep learning for the task at hand. The incorporation of deep learning
is motivated by its ability to discover domain knowledge, which is typically
impossible to rigorously define otherwise. The result, as we have demon-
strated in this thesis, is consistent improvements on the output quality and
especially notable advantages when the input is under-constrained, e.g. noise-
ridden, undersampled or unaligned. The use of neural networks also relieves
the system from dense user inputs, thus paving the way for autonomous
and large-scale deployment, which is essential for the ongoing transition to
digitized reality.
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6.1. Recapitulation of core contributions

Raw data processing and enhancement. In Chapter 3, we introduced two
algorithms to process and enhance point clouds. Point cloud processing
and enhancing has particular significance in many in-demand industries
such as robotics and autonomous driving, since point clouds are the major
output form for most industrial 3D acquisition devices. The first algorithm,
introduced in Sec. 3.1, tackles a common problem in acquired point clouds
- undersampling, which leads to lost or distorted geometric features in the
downstream tasks. Previous filtering-based approaches is limited to fitting
local point distributions, hence do not handle very sparse inputs well. We
presented a deep neural network to upsample point clouds. It circumvents
the difficulty of handling very sparse inputs using a patch-based progressive
multi-scale neural network, which dedicates a chain of specialized subnet
to upsample the point cloud in each progressive step. It brought consid-
erable improvement compared to previous state-of-the-art methods, as the
multi-stage network is able to learn scale-variant features, and – through the
interconnections between the subnets and end-to-end training – simultaneous
optimization across different scales.

In Sec. 3.2, we presented the first differentiable point renderer, which provides
a way to change the attributes of point clouds, e.g. point positions, normals
and colors, through image-level updates. This seemingly indirectly point
processing approach provides means to utilize a vast pool of image processing
techniques including, importantly, a plethora of tremendously successful
neural techniques. In this thesis, we demonstrated in a point denoising task
how a generative image-to-image translation network can be used hand in
hand with the proposed differentiable renderer to produce more geometric
details in the denoised point clouds. Given the relative maturity of neural
image processing and practically unlimited data resource, it is certain that
many challenging tasks in the 3D domain will benefit from differentiable
rendering methods like the one proposed in this thesis.

Surface reconstruction. In Chapter 4 we delved into implicit surface re-
construction, which is the most widely adopted approach to convert 3D
acquisition, e.g. volumetric or point clouds, to polygon meshes for further
processing and modeling tasks. Recently, neural networks have emerged as a
powerful tool to approximate implicit surface functions, which are tradition-
ally modeled as a series of polynomial functions. We offered two algorithms
that improve the state of this highly active research field. In Sec. 4.1, we
introduced a new formulation of implicit surface functions to improve the
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representation of geometric details. Named implicit displacement field, this
new formulation draws inspiration from displacement mapping, a classic
method from surface deformation, to represent the surface details as an offset
from a base smooth shape. Guided by the mathematical formulation, we
proposed an elegantly simple neural network design that inherently supports
the base/detail separation. The result is a novel neural implicit representa-
tion that demonstrates superior representational power for geometric details
while being extremely memory efficient and resilient to common optimization
difficulties. Building upon the base/detail separation, we demonstrated how
the proposed approach can be extended for detail transfer application. Com-
pared to previous methods, it can transfer spatially-variant high-resolution
geometric details without parameterization or correspondences, with a trade-
off that the input shapes should be aligned.

While implicit displacement field addresses the surface representation itself,
in Sec. 4.2 we focused on the optimization of existing popular neural implicit
functions when the training data is imperfect. We demonstrated that the
quality and the speed for learning neural implicit functions can benefit from
an explicit representation of the shape under optimization. The challenge,
however, is to extract such an explicit representation efficiently and accurately
on-the-fly, since popular existing surface extraction methods, such as March-
ing Cubes, are slow and hence unsuited for our online application. Thereby
we proposed a method to extract dense uniformly distributed point clouds,
called iso-points, on the iso-surface of the implicit function. We demonstrated
that iso-points can boost the performance and quality of the optimization
in various surface reconstruction applications using different input modali-
ties, such as multiview images and noisy point clouds, through shape-aware
sampling and regularizers.

Shape manipulation. In Chapter 5, we visited one of the most important
subjects in shape modeling, shape deformation. In particular, we presented a
novel algorithm for exemplar-based deformation. Given two arbitrary shapes,
it deforms one to match the other without correspondence information while,
importantly, preserving the geometric details of the original shape. Since
human inputs are spared, exemplar-based deformation methods find applica-
tions in many large-scale modeling tasks such as character posing and shape
generation via variation. The core of the method proposed in this thesis is a
neural network that operates on a low dimension deformation space based
on cage-based deformation from classic shape modeling. It addresses two
critical shortcomings of previous approaches. One one hand, by learning to
align random pairs of a specific shape category, the neural network essentially
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learns to estimate semantic correspondences. This is extremely challenging
with conventional optimization-based learning approaches, since the two
shapes may be semantically compatible yet drastically dissimilar geomet-
rically and topologically. Furthermore, by having a novel network design
that performs cage-based deformation, it effectively reduces feature distor-
tions, and preserves surface details and complex topologies with constant
computation. The efficacy of the cage-based neural deformation method was
demonstrated in shape generation and deformation transfer applications.

6.2. Future work

Neural geometry processing is an expansive venue for many future research
directions.

Dynamic point clouds. The modeling of dynamic point clouds is a highly
valuable yet relatively less explored subject. Development of this field will
have a pivotal impact in extended fields such as robotics. The analysis and
processing of dynamic point clouds may benefit from additional input modal-
ities, such as videos. Recently, researches in artificial general intelligence
have shown promising advances in multi-model learning, where multiple
input modalities are jointly analyzed and modelled in a common latent space.
Adopting similar ideas for dynamic point cloud processing is an extremely
stimulating direction.

Neural implicit surface editing Although implicit surface representations
have many compelling advantages over the polygon meshes as stated in the
earlier chapters, they can not yet be sufficiently utilized in shape modeling,
where polygon meshes are still indisputably the most adopted representation.
Therefore, developing a paradigm to directly model and edit the implicit
surfaces is a relevant topic for the community. Transferable IDF and some
other recent works such as DualSDF [Hao+20] can be regarded as an initial
step in this direction. Yet much remains to be accomplished to make implicit
representations really compatible for shape modeling. In this regard, it is
crucial to improve the interpretability and controllability of existing neural
representations so as to provide tangible "handles" for more intuitive and
targeted editing. This may be addressed by learning a structured latent space
in a generative model analog to controllable image translation, or alternatively
via a tightly coupled implicit-explicit hybrid representation, where the explicit
representation can actively and directly alter its implicit counterpart (whereas
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in the iso-points project, iso-points assert influence over the implicit functions
indiretly via sampling and regularization of the optimization process). At
the same time, when considering potential integration to interactive shape
modeling, real-time response is one important factor, which may be addressed
with more modular factorizations of the implicit representation.
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A P P E N D I X A
Appendix

A.1. Proof for Sec. 4.1.1

Theorem 1. If function f : Rn → R is differentiable, Lipschitz-continuous with con-
stant L and Lipschitz-smooth with constant M, then ‖∇ f (x + δ∇ f (x))−∇ f (x) ‖ ≤
|δ|LM.

Proof. If a differentiable function f is Lipschitz-continuous with constant L and
Lipschitz-smooth with constant M, then

‖∇ f (x) ‖ ≤ L (A.1)
‖∇ f (x)−∇ f (y) ‖ ≤ M‖x− y‖. (A.2)

‖∇ f (x + δ∇ f (x))−∇ f (x) ‖ ≤ M‖δ∇ f (x) ‖ by (A.2)
≤ |δ|LM by (A.1)

Corollary 1. If a signed distance function f satisfying the eikonal equation up to error ε >

0,
∣∣∣‖∇ f ‖ − 1

∣∣∣ < ε, is Lipschitz-smooth with constant M, then ‖∇ f (x + δ∇ f (x))−
∇ f (x) ‖ < (1 + ε)|δ|M.

Proof.
∣∣∣‖∇ f ‖ − 1

∣∣∣ < ε ⇒ ‖∇ f ‖ < ε + 1. This means f is Lipschitz-continuous

with constant ε + 1. Then by Theorem 1, ‖∇ f (x + δ∇ f (x))−∇ f (x) ‖ < |δ|(1 +
ε)M.
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Finally we show the upper bound for the normalized gradient, i.e.,

‖n̂− n‖ ≤ 1 + ε

1− ε
|δ|M,

where n = ∇ f (x)
‖∇ f (x)‖ , n̂ = ∇ f (x̂)

‖∇ f (x̂)‖ and x̂ = x + d (x)n with d (x) denoting the
small displacement.

Proof.

‖n̂− n‖ =
∥∥∥∥ ∇ f (x̂)
‖∇ f (x̂)‖ −

∇ f (x)
‖∇ f (x)‖

∥∥∥∥ . (A.3)

For brevity, we denote ∇ f (x̂) and ∇ f (x) as u and v. Without loss of generality,
we assume ‖u‖ ≤ ‖v‖. Then

‖n̂− n‖ =
∥∥∥∥ u
‖u‖ −

v
‖v‖

∥∥∥∥ (A.4)

(∗)
≤ 1
‖u‖‖u− v‖ (4.6)

≤ 1
1− ε

‖u− v‖ by Eikonal constraint

(A.5)

=
1

1− ε
‖∇ f (x̂)−∇ f (x)‖ (A.6)

=
1

1− ε

∥∥∥∥∇ f
(

x +
d (x)∇ f (x)
‖∇ f (x)‖

)
−∇ f (x)

∥∥∥∥ . (A.7)

Since |d (x)| is a small and ‖∇ f (x)‖ is close to 1, we can set δ =
d (x)
‖∇ f (x)‖ . Thereby

using Corrolary 1, we conclude

1
1− ε

∥∥∥∥∇ f
(

x +
d (x)∇ f (x)
‖∇ f (x)‖

)
−∇ f (x)

∥∥∥∥ ≤ 1 + ε

1− ε
|δ|M, (A.8)

thus

‖n̂− n‖ ≤ 1 + ε

1− ε
|δ|M. (A.9)

Eq. (4.6) can be proved as follows∥∥∥∥∥∥∥∥
d︷ ︸︸ ︷

u
‖u‖ −

v
‖v‖

∥∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥∥
d′︷ ︸︸ ︷

u
‖u‖ −

v
‖u‖ +

e︷ ︸︸ ︷
(

v
‖u‖ −

v
‖v‖ )

∥∥∥∥∥∥∥∥ , (A.10)

which depicts the distance of the unit sphere projections of u and v. Obviously, as
shown in Figure A.1, ‖d‖ ≤ ‖d′‖ if ^(d, e) ≥ 90◦.

Since e = ( 1
‖u‖ − 1

‖v‖ )v and ( 1
‖u‖ − 1

‖v‖ ) ≥ 0), to show that ^〈d, e〉 ≥ 90◦ is the
same as to show that ^〈d, v〉 ≥ 90◦. Indeed:
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Figure A.1.: Sketch for proof.

〈d, v〉 =
〈

u
‖u‖ −

v
‖v‖ , v

〉
(A.11)

=
〈u, v〉
‖u‖ − ‖v‖ (A.12)

≤ ‖u‖‖v‖‖u‖ − ‖v‖ by Cauchy-Schwarz inequality (A.13)

= 0 (A.14)
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Mark Pauly, and Szymon Rusinkiewicz. “Temporally Coherent
Completion of Dynamic Shapes”. In: ACM Trans. Graph. 31.1
(2012) (cit. on p. 25).

[Li+18a] Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen.
“Differentiable monte carlo ray tracing through edge sampling”.
In: ACM Trans. on Graphics (Proc. of SIGGRAPH Asia). ACM.
2018, p. 222 (cit. on p. 20).

[Li+18b] Yangyan Li, Rui Bu, Mingchao Sun, and Baoquan Chen.
“PointCNN”. In: arXiv preprint arXiv:1801.07791 (2018) (cit. on
pp. 16, 28).

[Li+19] Ruihui Li, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and
Pheng-Ann Heng. “Pu-gan: a point cloud upsampling adver-
sarial network”. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. 2019, pp. 7203–7212 (cit. on pp. 16,
65).

[Li+21a] Peizhuo Li, Kfir Aberman, Rana Hanocka, Libin Liu, Olga
Sorkine-Hornung, and Baoquan Chen. “Learning Skeletal Ar-
ticulations with Neural Blend Shapes”. In: ACM Transactions on
Graphics (TOG) 40.4 (2021), p. 1 (cit. on p. 17).

[Li+21b] Ruihui Li, Xianzhi Li, Pheng-Ann Heng, and Chi-Wing Fu.
“Point Cloud Upsampling via Disentangled Refinement”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2021, pp. 344–353 (cit. on p. 65).

[Lin+18] Di Lin, Yuanfeng Ji, Dani Lischinski, Daniel Cohen-Or, and
Hui Huang. “Multi-Scale Context Intertwining for Semantic
Segmentation”. In: Proc. Euro. Conf. on Computer Vision. 2018,
pp. 603–619 (cit. on p. 32).

139



Bibliography

[Lip+07] Yaron Lipman, Daniel Cohen-Or, David Levin, and Hillel Tal-
Ezer. “Parameterization-free projection for geometry reconstruc-
tion”. In: ACM Trans. on Graphics (Proc. of SIGGRAPH) 26.3
(2007), 22:1–22:6 (cit. on p. 18).

[Liu+17] Guilin Liu, Duygu Ceylan, Ersin Yumer, Jimei Yang, and Jyh-
Ming Lien. “Material editing using a physically based rendering
network”. In: Proc. IEEE Conf. on Computer Vision & Pattern
Recognition. 2017, pp. 2261–2269 (cit. on p. 43).

[Liu+18] Xinhai Liu, Zhizhong Han, Yu-Shen Liu, and Matthias Zwicker.
“Point2Sequence: Learning the Shape Representation of 3D
Point Clouds with an Attention-based Sequence to Sequence
Network”. In: arXiv preprint arXiv:1811.02565 (2018) (cit. on
p. 19).

[Liu+19a] Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. “Soft raster-
izer: A differentiable renderer for image-based 3D reasoning”.
In: Proc. Int. Conf. on Computer Vision. 2019, pp. 7708–7717 (cit.
on pp. 19, 50).

[Liu+19b] Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. “Soft Raster-
izer: A Differentiable Renderer for Image-Based 3D Reasoning”.
In: ICCV. 2019 (cit. on p. 104).

[Liu+19c] Shichen Liu, Shunsuke Saito, Weikai Chen, and Hao Li. “Learn-
ing to infer implicit surfaces without supervision”. In: Proc. IEEE
Int. Conf. on Neural Information Processing Systems (NeurIPS).
2019, pp. 8295–8306 (cit. on p. 23).

[Liu+20a] Hsueh-Ti Derek Liu, Vladimir G. Kim, Siddhartha Chaudhuri,
Noam Aigerman, and Alec Jacobson. “Neural Subdivision”.
In: ACM Trans. Graph. 39.4 (July 2020). ISSN: 0730-0301. DOI:
10.1145/3386569.3392418. URL: https://doi.org/10.1145/
3386569.3392418 (cit. on p. 17).

[Liu+20b] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and
Christian Theobalt. “Neural Sparse Voxel Fields”. In: Proc. IEEE
Int. Conf. on Neural Information Processing Systems (NeurIPS).
Ed. by H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan,
and H. Lin. Vol. 33. Curran Associates, Inc., 2020, pp. 15651–
15663. URL: https://proceedings.neurips.cc/paper/2020/
file/b4b758962f17808746e9bb832a6fa4b8-Paper.pdf (cit. on
pp. 21, 68).

140

https://doi.org/10.1145/3386569.3392418
https://doi.org/10.1145/3386569.3392418
https://doi.org/10.1145/3386569.3392418
https://proceedings.neurips.cc/paper/2020/file/b4b758962f17808746e9bb832a6fa4b8-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/b4b758962f17808746e9bb832a6fa4b8-Paper.pdf


Bibliography

[Liu+20c] Shaohui Liu, Yinda Zhang, Songyou Peng, Boxin Shi, Marc
Pollefeys, and Zhaopeng Cui. “DIST: Rendering deep implicit
signed distance function with differentiable sphere tracing”. In:
Proc. IEEE Conf. on Computer Vision & Pattern Recognition. 2020,
pp. 2019–2028 (cit. on p. 23).

[LKL18] Chen-Hsuan Lin, Chen Kong, and Simon Lucey. “Learning effi-
cient point cloud generation for dense 3D object reconstruction”.
In: AAAI Conference on Artificial Intelligence. 2018 (cit. on pp. 20,
43).

[LLCO08] Yaron Lipman, David Levin, and Daniel Cohen-Or. “Green
coordinates”. In: ACM Trans. Graph. 27.3 (2008) (cit. on pp. 24,
100, 114).

[Lom+19] Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel
Schwartz, Andreas Lehrmann, and Yaser Sheikh. Neural vol-
umes: Learning dynamic renderable volumes from images. arXiv
preprint arXiv:1906.07751. 2019 (cit. on p. 15).

[Lon] Imperial College London. Virtual Labs and Simulation Tools for
Remote Education | Staff | Imperial College London. https://
www.imperial.ac.uk/immersive-technology-initiative/
virtual - labs - and - simulation - tools - for - remote -
education/. (Accessed on 07/08/2021) (cit. on p. 1).

[Loo87] Charles Loop. “Smooth subdivision surfaces based on trian-
gles”. In: Master’s thesis, University of Utah, Department of Mathe-
matics (1987) (cit. on p. 35).

[LSP08] Hao Li, Robert W. Sumner, and Mark Pauly. “Global Correspon-
dence Optimization for Non-Rigid Registration of Depth Scans”.
In: SGP. 2008 (cit. on pp. 25, 100).

[LTJ18] Hsueh-Ti Derek Liu, Michael Tao, and Alec Jacobson. “Pa-
parazzi: surface editing by way of multi-view image process-
ing.” In: ACM Trans. on Graphics (Proc. of SIGGRAPH Asia) 37.6
(2018), pp. 221–1 (cit. on pp. 19, 43, 50, 56, 57, 59).

[Lu+18] Xuequan Lu, Shihao Wu, Honghua Chen, Sai-Kit Yeung, Wenzhi
Chen, and Matthias Zwicker. “GPF: GMM-inspired feature-
preserving point set filtering”. In: IEEE Trans. Visualization &
Computer Graphics 24.8 (2018), pp. 2315–2326 (cit. on p. 60).

[LWL20] Chen-Hsuan Lin, Chaoyang Wang, and Simon Lucey. SDF-SRN:
Learning Signed Distance 3D Object Reconstruction from Static
Images. arXiv preprint arXiv:2010.10505. 2020 (cit. on p. 21).

141

https://www.imperial.ac.uk/immersive-technology-initiative/virtual-labs-and-simulation-tools-for-remote-education/
https://www.imperial.ac.uk/immersive-technology-initiative/virtual-labs-and-simulation-tools-for-remote-education/
https://www.imperial.ac.uk/immersive-technology-initiative/virtual-labs-and-simulation-tools-for-remote-education/
https://www.imperial.ac.uk/immersive-technology-initiative/virtual-labs-and-simulation-tools-for-remote-education/


Bibliography

[LZ21a] Christoph Lassner and Michael Zollhofer. “Pulsar: Efficient
Sphere-based Neural Rendering”. In: Proc. IEEE Conf. on Com-
puter Vision & Pattern Recognition. 2021, pp. 1440–1449 (cit. on
pp. 19, 65).

[LZ21b] Manyi Li and Hao Zhang. “D2IM-Net: Learning Detail Disen-
tangled Implicit Fields from Single Images”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2021 (cit. on p. 22).

[Mar+17] Haggai Maron, Meirav Galun, Noam Aigerman, Miri Trope,
Nadav Dym, Ersin Yumer, Vladimir G Kim, and Yaron Lipman.
“Convolutional neural networks on surfaces via seamless toric
covers.” In: ACM Trans. Graph. 36.4 (2017), pp. 71–1 (cit. on
p. 16).

[Mar+21] Julien N. P. Martel, David B. Lindell, Connor Z. Lin, Eric R.
Chan, Marco Monteiro, and Gordon Wetzstein. “Acorn: Adap-
tive Coordinate Networks for Neural Scene Representation”.
In: ACM Trans. Graph. 40.4 (July 2021). ISSN: 0730-0301. DOI:
10.1145/3450626.3459785. URL: https://doi.org/10.1145/
3450626.3459785 (cit. on pp. 17, 21).

[Mas+15] Jonathan Masci, Davide Boscaini, Michael Bronstein, and Pierre
Vandergheynst. “Geodesic convolutional neural networks on
riemannian manifolds”. In: Proceedings of the IEEE international
conference on computer vision workshops. 2015, pp. 37–45 (cit. on
p. 16).

[MB+21] Ricardo Martin-Brualla, Noha Radwan, Mehdi S. M. Sajjadi,
Jonathan T. Barron, Alexey Dosovitskiy, and Daniel Duckworth.
“NeRF in the Wild: Neural Radiance Fields for Unconstrained
Photo Collections”. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). June 2021,
pp. 7210–7219 (cit. on p. 17).

[Mes+19] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian
Nowozin, and Andreas Geiger. “Occupancy networks: Learning
3D reconstruction in function space”. In: Proc. IEEE Conf. on
Computer Vision & Pattern Recognition. 2019, pp. 4460–4470 (cit.
on pp. 6, 7, 17, 21, 24).

[Mil+20] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan
T Barron, Ravi Ramamoorthi, and Ren Ng. “Nerf: Representing
scenes as neural radiance fields for view synthesis”. In: European

142

https://doi.org/10.1145/3450626.3459785
https://doi.org/10.1145/3450626.3459785
https://doi.org/10.1145/3450626.3459785


Bibliography

Conference on Computer Vision. Springer. Springer International
Publishing, 2020, pp. 405–421 (cit. on pp. 17, 21, 67, 68, 84).

[MO14] Mehdi Mirza and Simon Osindero. “Conditional generative
adversarial nets”. In: arXiv preprint arXiv:1411.1784 (2014) (cit.
on p. 32).

[Mo+19] Kaichun Mo, Shilin Zhu, Angel X. Chang, Li Yi, Subarna Tri-
pathi, Leonidas J. Guibas, and Hao Su. “PartNet: A Large-Scale
Benchmark for Fine-Grained and Hierarchical Part-Level 3D
Object Understanding”. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR). June
2019 (cit. on p. 8).

[Mon+17] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele
Rodola, Jan Svoboda, and Michael M Bronstein. “Geometric
deep learning on graphs and manifolds using mixture model
cnns”. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2017, pp. 5115–5124 (cit. on p. 16).

[NG21] Michael Niemeyer and Andreas Geiger. “GIRAFFE: Represent-
ing Scenes As Compositional Generative Neural Feature Fields”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). June 2021, pp. 11453–11464 (cit. on
p. 17).

[Nie+19] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and An-
dreas Geiger. “Occupancy flow: 4d reconstruction by learning
particle dynamics”. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. 2019, pp. 5379–5389 (cit. on p. 17).

[Nie+20] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and
Andreas Geiger. “Differentiable volumetric rendering: Learn-
ing implicit 3D representations without 3D supervision”. In:
Proc. IEEE Conf. on Computer Vision & Pattern Recognition. 2020,
pp. 3504–3515 (cit. on pp. 17, 21, 67).

[NP+18] Thu H Nguyen-Phuoc, Chuan Li, Stephen Balaban, and
Yongliang Yang. “Rendernet: A deep convolutional network
for differentiable rendering from 3D shapes”. In: Proc. IEEE Int.
Conf. on Neural Information Processing Systems (NeurIPS). 2018,
pp. 7891–7901 (cit. on p. 43).

[Oec+19] Michael Oechsle, Lars Mescheder, Michael Niemeyer, Thilo
Strauss, and Andreas Geiger. “Texture fields: Learning tex-
ture representations in function space”. In: Proceedings of the

143



Bibliography

IEEE/CVF International Conference on Computer Vision. 2019,
pp. 4531–4540 (cit. on p. 17).

[Oec+20] Michael Oechsle, Michael Niemeyer, Christian Reiser, Lars
Mescheder, Thilo Strauss, and Andreas Geiger. “Learning Im-
plicit Surface Light Fields”. In: 2020 International Conference on
3D Vision (3DV). 2020, pp. 452–462. DOI: 10.1109/3DV50981.
2020.00055 (cit. on p. 17).

[ÖGG09] A Cengiz Öztireli, Gael Guennebaud, and Markus Gross. “Fea-
ture preserving point set surfaces based on non-linear kernel
regression”. In: Computer Graphics Forum (Proc. of Eurographics).
Vol. 28. 2. 2009, pp. 493–501 (cit. on pp. 18, 52, 54, 60).

[Oht+03] Yutaka Ohtake, Alexander Belyaev, Marc Alexa, Greg Turk, and
Hans-Peter Seidel. “Multi-Level Partition of Unity Implicits”.
In: ACM Trans. Graph. 22.3 (2003), 463–470. ISSN: 0730-0301. DOI:
10.1145/882262.882293. URL: https://doi.org/10.1145/
882262.882293 (cit. on p. 21).

[Par+19] Jeong Joon Park, Peter Florence, Julian Straub, Richard New-
combe, and Steven Lovegrove. “DeepSDF: Learning continu-
ous signed distance functions for shape representation”. In:
Proc. IEEE Conf. on Computer Vision & Pattern Recognition. 2019,
pp. 165–174 (cit. on pp. 6, 7, 17, 21, 75).

[Par+20] Keunhong Park, Utkarsh Sinha, Jonathan T. Barron, Sofien
Bouaziz, Dan B Goldman, Steven M. Seitz, and Ricardo Martin-
Brualla. “Deformable Neural Radiance Fields”. In: arXiv preprint
arXiv:2011.12948 (2020) (cit. on pp. 22, 71, 72, 75, 77).

[Pas+17] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan,
Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison,
Luca Antiga, and Adam Lerer. “Automatic differentiation in
PyTorch”. In: NIPS-W. 2017 (cit. on p. 56).

[Pas+18] Despoina Paschalidou, Osman Ulusoy, Carolin Schmitt, Luc
Van Gool, and Andreas Geiger. “Raynet: Learning volumetric
3d reconstruction with ray potentials”. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2018,
pp. 3897–3906 (cit. on p. 15).

[Pen+20] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Polle-
feys, and Andreas Geiger. “Convolutional Occupancy Net-
works”. In: European Conference on Computer Vision (ECCV).
Cham: Springer International Publishing, Aug. 2020 (cit. on
p. 73).

144

https://doi.org/10.1109/3DV50981.2020.00055
https://doi.org/10.1109/3DV50981.2020.00055
https://doi.org/10.1145/882262.882293
https://doi.org/10.1145/882262.882293
https://doi.org/10.1145/882262.882293


Bibliography

[Per+18] Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin,
and Aaron Courville. “Film: Visual reasoning with a general
conditioning layer”. In: Proceedings of the AAAI Conference on
Artificial Intelligence. 2018 (cit. on p. 74).

[Pet+19] Felix Petersen, Amit H Bermano, Oliver Deussen, and Daniel
Cohen-Or. “Pix2Vex: Image-to-Geometry Reconstruction us-
ing a Smooth Differentiable Renderer”. In: arXiv preprint
arXiv:1903.11149 (2019) (cit. on pp. 19, 50).

[Pfi+00] Hanspeter Pfister, Matthias Zwicker, Jeroen Van Baar, and
Markus Gross. “Surfels: Surface elements as rendering primi-
tives”. In: Proc. Conf. on Computer Graphics and Interactive tech-
niques. 2000, pp. 335–342 (cit. on p. 20).

[PJH16] Matt Pharr, Wenzel Jakob, and Greg Humphreys. Physically
based rendering: From theory to implementation. Morgan Kauf-
mann, 2016 (cit. on p. 82).

[PJS07] João Proença, Joaquim A Jorge, and Mario Costa Sousa. “Sam-
pling Point-Set Implicits.” In: Eurographics Symposium on Point-
Based Graphics. 2007, pp. 11–18 (cit. on p. 23).

[Pon+17] Jhony K Pontes, Chen Kong, Sridha Sridharan, Simon Lucey,
Anders Eriksson, and Clinton Fookes. “Image2Mesh: A Learn-
ing Framework for Single Image 3D Reconstruction”. In: arXiv
preprint arXiv:1711.10669 (2017) (cit. on p. 20).

[Pou+20] Omid Poursaeed, Matthew Fisher, Noam Aigerman, and
Vladimir G Kim. Coupling explicit and implicit surface representa-
tions for generative 3D modeling. arXiv preprint arXiv:2007.10294.
2020 (cit. on p. 23).

[Pum+21] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc
Moreno-Noguer. “D-NeRF: Neural Radiance Fields for Dy-
namic Scenes”. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR). June 2021, pp. 10318–
10327 (cit. on pp. 17, 77).

[Qi+17a] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
“Pointnet: Deep learning on point sets for 3d classification and
segmentation”. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2017, pp. 652–660 (cit. on pp. 16,
28).

145



Bibliography

[Qi+17b] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas.
“PointNet++: Deep hierarchical feature learning on point sets in
a metric space”. In: In Advances in Neural Information Processing
Systems (NIPS). 2017, pp. 5099–5108 (cit. on pp. 16, 28, 32).

[Rah+19] Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler,
Min Lin, Fred Hamprecht, Yoshua Bengio, and Aaron Courville.
“On the spectral bias of neural networks”. In: International Con-
ference on Machine Learning. PMLR. 2019, pp. 5301–5310 (cit. on
pp. 10, 21).

[Raj+18] Sai Rajeswar, Fahim Mannan, Florian Golemo, David Vazquez,
Derek Nowrouzezahrai, and Aaron Courville. “Pix2Scene:
Learning Implicit 3D Representations from Images”. In: (2018)
(cit. on p. 43).

[Rak+19] Marie-Julie Rakotosaona, Vittorio La Barbera, Paul Guerrero,
Niloy J Mitra, and Maks Ovsjanikov. “POINTCLEANNET:
Learning to Denoise and Remove Outliers from Dense Point
Clouds”. In: arXiv preprint arXiv:1901.01060 (2019) (cit. on pp. 16,
60).

[Rav+20] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Taylor Gor-
don, Wan-Yen Lo, Justin Johnson, and Georgia Gkioxari.
“Accelerating 3D Deep Learning with PyTorch3D”. In:
arXiv:2007.08501 (2020) (cit. on p. 65).

[Ret+18] Dario Rethage, Johanna Wald, Jürgen Sturm, Nassir Navab, and
Federico Tombari. “Fully-Convolutional Point Networks for
Large-Scale Point Clouds”. In: arXiv preprint arXiv:1808.06840
(2018) (cit. on p. 19).

[RFB15] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-net:
Convolutional networks for biomedical image segmentation”.
In: International Conference on Medical Image Computing and
Computer-assisted Intervention. Springer. 2015, pp. 234–241 (cit.
on p. 19).

[Ric+17] Elad Richardson, Matan Sela, Roy Or-El, and Ron Kimmel.
“Learning detailed face reconstruction from a single image”.
In: IEEE Trans. Pattern Analysis & Machine Intelligence. 2017,
pp. 1259–1268 (cit. on p. 20).

[ROUG17] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger. “Oct-
net: Learning deep 3d representations at high resolutions”. In:
Proceedings of the IEEE conference on computer vision and pattern
recognition. 2017, pp. 3577–3586 (cit. on p. 16).

146



Bibliography

[Rov+18a] Riccardo Roveri, A Cengiz Öztireli, Ioana Pandele, and Markus
Gross. “PointProNets: Consolidation of Point Clouds with Con-
volutional Neural Networks”. In: Computer Graphics Forum 37.2
(2018), pp. 87–99 (cit. on pp. 43, 58).

[Rov+18b] Riccardo Roveri, Lukas Rahmann, Cengiz Oztireli, and Markus
Gross. “A network architecture for point cloud classification
via automatic depth images generation”. In: Proc. IEEE Conf.
on Computer Vision & Pattern Recognition. 2018, pp. 4176–4184
(cit. on pp. 20, 58).

[SA07] Olga Sorkine and Marc Alexa. “As-Rigid-As-Possible Surface
Modeling”. In: SGP. 2007 (cit. on p. 24).

[Sai+19] Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Mor-
ishima, Angjoo Kanazawa, and Hao Li. “Pifu: Pixel-aligned
implicit function for high-resolution clothed human digitiza-
tion”. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. 2019, pp. 2304–2314 (cit. on pp. 17, 21).

[Sai+20] Shunsuke Saito, Tomas Simon, Jason Saragih, and Hanbyul
Joo. “Pifuhd: Multi-level pixel-aligned implicit function for
high-resolution 3d human digitization”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2020, pp. 84–93 (cit. on pp. 17, 21).

[SB09] Olga Sorkine and Mario Botsch. “Tutorial: Interactive Shape
Modeling and Deformation”. In: EUROGRAPHICS. 2009 (cit. on
pp. 22, 24).

[Sch+20] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas
Geiger. “GRAF: Generative Radiance Fields for 3D-Aware Im-
age Synthesis”. In: Proc. IEEE Int. Conf. on Neural Information
Processing Systems (NeurIPS). 2020 (cit. on p. 17).

[SD99] Steven M Seitz and Charles R Dyer. “Photorealistic scene recon-
struction by voxel coloring”. In: International Journal of Computer
Vision 35.2 (1999), pp. 151–173 (cit. on p. 6).

[SDM19] Tamar Rott Shaham, Tali Dekel, and Tomer Michaeli. “Singan:
Learning a generative model from a single natural image”. In:
ICCV. 2019 (cit. on p. 112).

[She+18] Yiru Shen, Chen Feng, Yaoqing Yang, and Dong Tian. “Mining
point cloud local structures by kernel correlation and graph
pooling”. In: Proc. IEEE Conf. on Computer Vision & Pattern Recog-
nition. 2018 (cit. on p. 32).

147



Bibliography

[Shi+16] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz, An-
drew P Aitken, Rob Bishop, Daniel Rueckert, and Zehan Wang.
“Real-time single image and video super-resolution using an
efficient sub-pixel convolutional neural network”. In: Proc. IEEE
Conf. on Computer Vision & Pattern Recognition. 2016, pp. 1874–
1883 (cit. on p. 28).

[Sit+18] Vincent Sitzmann, Justus Thies, Felix Heide, Matthias Nießner,
Gordon Wetzstein, and Michael Zollhöfer. “DeepVoxels: Learn-
ing Persistent 3D Feature Embeddings”. In: arXiv preprint
arXiv:1812.01024 (2018) (cit. on pp. 15, 20).

[Sit+20] Vincent Sitzmann, Julien Martel, Alexander Bergman, David
Lindell, and Gordon Wetzstein. “Implicit Neural Representa-
tions with Periodic Activation Functions”. In: Advances in Neural
Information Processing Systems. Ed. by H. Larochelle, M. Ranzato,
R. Hadsell, M. F. Balcan, and H. Lin. Vol. 33. Curran Associates,
Inc., 2020, pp. 7462–7473. URL: https://proceedings.neurips.
cc/paper/2020/file/53c04118df112c13a8c34b38343b9c10-
Paper.pdf (cit. on pp. 21, 68, 84).

[Skea] Sketchfab. Sketchfab. https://sketchfab.com (cit. on p. 36).

[Skeb] Sketchfab. https://sketchfab.com. 2021 (cit. on p. 75).

[Sor+04] Olga Sorkine, Daniel Cohen-Or, Yaron Lipman, Marc Alexa,
Christian Rössl, and H-P Seidel. “Laplacian surface editing”. In:
Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium
on Geometry processing. 2004, pp. 175–184 (cit. on p. 22).

[SOS04] Chen Shen, James F. O’Brien, and Jonathan R. Shewchuk. “In-
terpolating and Approximating Implicit Surfaces from Poly-
gon Soup”. In: Proceedings of ACM SIGGRAPH 2004. Los Ange-
les, California: ACM Press, Aug. 2004, pp. 896–904. URL: http:
//graphics.cs.berkeley.edu/papers/Shen-IAI-2004-08/
(cit. on p. 6).

[SP04] Robert W. Sumner and Jovan Popović. “Deformation Transfer
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