e ™
E'C' 2 ot 4
Tutorial 5: Programming Graphics Hardware

Programming the GPU:

Talk Overview

< The Evolution of GPU Programming Languages

High-LeVE' Shadlng Languages © GPU Programming Languages and the Graphics
Pipeline
Randy Fernando < Syntax

< Examples

Developer Technology Group / HLSL X framework

<

ZVIDIA. <

BE 28 1yrias: Programming Graphics Hardware I A,

NVIDIA’s Position on
GPU Shading Languages

The Evolution of GPU Programming
Languages

@
(AT&T, 1970s)
cr
(AT&T, 1983)

IRIS GL
(SGI, 1982)

RenderMan
(Pixar, 1988)

<~ Bottom line: please take advantage of all the
PixelFlow transistors we pack into our GPUs!
Shading .
Language < Use whatever language you like
(UNC, 1998) .
< We will support you

Real-Time < Working with Microsoft on HLSL compiler
Shad ' 8 . . J
R 2 NVIDIA compiler team working on Cg compiler

(Stanford, 2 Working with OpenGL ARB on GLSL compiler

< If you find bugs, send them to us and we'll get
them fixed

OpenGL
(ARB, 1992)

Java Reality Lab
(Sun, 1994)

(RenderMorphics, 1994)

Direct3D
(Microsoft, 1995)

(NVIDIA, 2002) (ARB, 2003)

WD A, EG 2.4

HEIDIA,

Tutorial 5: Programming Graphics Hardware

The Need for Programmability The Need for Programmability

VirtuaFighter
(SEGA Corporation)

Dead or Alive 3

(Tecmo Corporation)

(NVIDIA Corporation)

VirtuaFighter
(SEGA Corporation)

Dead or Alive 3

Dawn
(Tecmo Corporation) (NVIDIA Corporation)

NV1 Xbox (NV2A) GeForce FX (NV30) NV1 Xbox (NV2A) GeForce FX (NV30)
50K triangles/sec 100M triangles/sec 200M triangles/sec 16-bit color 32-bit color 128-bit color
1M pixel ops/sec 1G pixel ops/sec 2G pixel ops/sec 640 x 480 640 x 480 1024 x 768
1M transistors 20M transistors 120M transistors Nearest filtering Trilinear filtering 8:1 Aniso filtering
1995 2001 2003 1995 2001 2003
& 2B 1uornias: Programming Graphics Hardware ﬁli-']’]‘:ﬂ_ﬁ. e 28 Tycorias: Programming Graphics Hardware

HEIDIA,

delivered by

— EUROGRAPHICS
: DIGITAL LIBRARY
www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org

Where We Are Now
222M Transistors
660M tris/second
64 Gflops
128-bit color

1600 x 1200

16:1 aniso
filtering

R

The Motivation for
High-Level Shading Languages

. Assembl
© Graphics hardware has become y
increasingly powerful T R, Shiyyzx, cl1a]. xyz
MU RO, RO.x, c[11].xyzx;
MV RL, c[3];
N ML RLRE X, ol Ol Xyzx;
<~ Programming powerful hardware DP3 R2/ RL-xyzx, RLXyzX;
] X RSQ R2, R2.X;
with assembly code is hard MERL R, RLxyz
AD R2! RO xyzx, RI. Xyzx
DP3 R3, R2.xyzx, R2.xyzx
R B rexyax
o GeForce FX and GeForce 6 S R e i
Series GPUs support programs MAX R2, c[3].z, R2.x;
MV R.z, c[3].y;
that are thousands of assembly MV R2. W, c[a].}’;
instructions long UT Gy
© Programmers need the benefits High-Level Language
of a high-level language:
float3 cSpecul ar = pow(max(0, dot(N, H),
< Easier programming phongExp) . xxx.
. float3 cPlastic = G * (cAnbient + cOiffuse) +
< Easier code reuse & * cspecular;
< Easier debugging

GPU Programming Languages
and the Graphics Pipeline

= m
e 2 44 Tutorial5: Programming Graphics Hardware

The Graphics Pipeline

*»
Interpolation, Texturing,
and Coloring

Colored Vertices After
Vertex Transformation

Primitive Assembly Rasterization

=
& 2 44 Tutorial5: Programming Graphics F

The Graphics Pipeline

Shaders and the Graphics Pipeline

T

Colored Vertices After Interpolation, Texturing,

Vertex Transformation PrmitiveAssembly Lot and Coloring
Vertex Fragment
Program Program
Executed Executed
Once Per Once Per
Vertex Fragment

et 2 S8 Tutorial5: Programming Graphics

HLSL / Cg / GLSL Programs

' v

Co— Vertex Fragment
1' Shader 1' Shader 1'
Vertex data Interpolated Fragments
values

In the future, other parts of the graphics
pipeline may become programmable through
high-level languages.

e 28 Tycorias: Programming Graphics Hardware BVITIT A,

Compilation

HVITIT A,

EC 2 44 Tutorial5: Programming Graphics Hardware

Application and API Layers

| 3D Application I

E: 2 44 Tutorial 5: Programming Graphics Hardware

Shading Language

T

BVIT1 A,

Using GPU Programming Languages

Compilation Targets

< Use 3D API calls to specify vertex and fragment
shaders

< Enable vertex and fragment shaders

< Load/enable textures as usual

<~ Draw geometry as usual

< Set blend state as usual

< Vertex shader will execute for each vertex

< Fragment shader will execute for each fragment

G

HEITIT A,

= m
e 2 24 Tutorial 5: Programming Graphics Hardware

< Code can be compiled for specific hardware
< Optimizes performance
< Takes advantage of extra hardware functionality
< May limit language constructs for less capable
hardware
< Examples of compilation targets:
ovs_11,vs 2 0,vs_ 30
ops_1.1,ps_2 0,ps_2 x,ps_2_a,ps_3_0
2 vs_3_0and ps_3_0 are the most capable profiles,
supported only by GeForce 6 Series GPUs

=
& 2 Y4 Tutorial 5: Programming Graphics Hardware

<

WEITI A,

Shader Creation

o Shaders are created (from
scratch, from a common
repository, authoring tools,
or modified from other
shaders) #

i

Trine] Lafradge |

< These shaders are used for
modeling in Digital Content
Creation (DCC) applications
or rendering in other
applications

2 A shading language compiler
compiles the shaders to a
variety of target platforms,
including APIs, OSes, and
GPUSs L

e F T 1
iy | P

Language Syntax

et 2 44 Tutorial 5: Programming Graphics Hardware

BT A,

Let’'s Pick a Language

Data Types

< HLSL, Cg, and GLSL have much in common
< But all are different (HLSL and Cg are much more similar to
each other than they are to GLSL)
< Let's focus on just one language (HLSL) to illustrate the key
concepts of shading language syntax
< General References:
< HLSL: DirectX Documentation
(http://www.msdn.com/DirectX)
2 Cg: The Cg Tutorial
(http://developer.nvidia.com/CgTutorial)
<2 GLSL: The OpenGL Shading Language

<

e: 2 F4 Tutoriais: Programming Graphics Hardware HVIDT A,

< float 32-bit IEEE floating point

< hal f 16-bit IEEE-like floating point
< bool Boolean

< sanpl er Handle to a texture sampler

< struct Structure as in C/C++

< No pointers... yet.

<

e: 2 24 Tutorials: Programming Graphics Hardware HVIDTA,

Array / Vector / Matrix Declarations

Function Overloading

< Native support for vectors (up to length 4)
and matrices (up to size 4x4):
float4 nmycol or ;

float3x3 nymatri x;

< Declare more general arrays exactly as in C:
float |ightpower[8];

< But, arrays are first-class types, not pointers

float v[4] !'= float4 v
< Implementations may subset array
capabilities to match HW restrictions .@:
e 2 M4 Tutorial 5 Programming Graphics Hardware HYIDTA,

< Examples:
float nyfuncA(float3 x);
float nyfuncA(hal f3 x);

f1 oat
fl oat

fl oat

nyfuncB(float2 a,
nyfuncB(float3 a,
nyfuncB(float4 a,

float2 b);
float3 b);
float4 b);

Very useful with so many data types.

G

& 2 & Tutorial5: Programming Graphics Hardware HVITT A,

Different Constant-Typing Rules

Support for Vectors and Matrices

< In C, it's easy to accidentally use high precision

hal f x, vy;
X =y * 2.0; /1 Miltiply is at
/'l float precision!
< Notin HLSL
X =y * 2.0 /1 Multiply is at

/1 half precision (fromy)
< Unless you want to
X =y * 2.0f; /1 Miltiply is at
/1 float precision

G

e 2 A Tutorial 5: Programming Graphics Hardware MVITT A,

< Component-wise + - */ for vectors
< Dot product
2dot(vl,v2); [// returns a scalar

< Matrix multiplications:
<~ assuming afl oat 4x4 Mandafloat4 v

< matrix-vector: mul (M, v); /'l returns a vector
< vector-matrix: mul (v, M; /'l returns a vector
< matrix-matrix: mul (M, N); /1 returns a matrix
et 2 28 Tutorials: Programming Graphics Hardware ﬁl"\.-']’]‘}T_ﬁ..

New Operators

o Swizzle operator extracts elements from vector or matrix

a = b. xxyy;
© Examples:
float4 vecl = float4(4.0, -2.0, 5.0, 3.0);
float2 vec2 = vecl.yx; Il vec2 = (-2.0,4.0)
float scalar = vecl.w Il scalar = 3.0

float3 vec3 = scalar.xxx; // vec3 = (3.0, 3.0, 3.0)
float4x4 nyMatri x;

/1 Set nyFloatScal ar to nyMatrix[3][2]
float nyFl oatScalar = nyMatrix._nB2;

o Vector constructor builds vector (ée_':_,_
a =float4(1.0, 0.0, 0.0, 1.0); s
HVIDT A,

Examples

e: 2 4 Tutorial 5: Programming Graphics Hardware

BVIT1 A,

Sample Shaders

Looking Through a Shader

< Demonstration in FX Composer

& 2 & Tutorial5: Programming Graphics Hardware

G

WEITI A,

EC .

HLSL FX Framework

-

The Problem with Just a Shading
Language

2 A Tutorial 5: Programming Graphics Hardware HVEIDT A,

«

processor should behave
But how about:

< Texture state?

< Blending state?

< Depth test?

< Alphatest?

€

A shading language describes how the vertex or fragment

< All are necessary to really encapsulate the notion of an “effect”

«

geometry and textures
< Solution: .fx file format

et 2 & Tutorial5: Programming Graphics Hardware

Need to be able to apply an “effect” to any arbitrary set of

G

BT A,

HLSL FX

Using Techniques

Powerful shader specification and interchange format
Provides several key benefits:
< Encapsulation of multiple shader versions
Level of detail

(

(

(

Each .fx file typically represents an effect
Techniques describe how to achieve the effect
Can have different techniques for:

Functionality
Performance
< Editable parameters and GUI descriptions
< Multipass shaders
< Render state and texture state specification
o FXshaders use HLSL to describe shading algorithms

< For OpenGL, similar functionality is available in the form of
CgFX (shader code is written in Cg)

<~ No GLSL effect format yet, but will appear eventually {E-L-"'

e: 2 A Tutorial 5: Programming Graphics Hardware HVIDT A,

< Level of detail

< Graphics hardware with different capabilities

< Performance

A technique is specified using the t echni que
keyword

Curly braces delimit the technique’s contents

(

[

&
WFIDIT A,

e: 2 4 Tutorial 5: Programming Graphics Hardware

Multipass

HLSL .fx Example

< Each technique may contain one or more passes
© A pass is defined by the pass keyword

< Demonstration in FX Composer

< Curly braces delimit the pass contents

You can set different graphics API state in each
pass

L

L (S

BT A,

e 2 4 Tutorial5: Programming Graphics Hardware HEIDT A & 2 & Tutorial5: Programming Graphics Hardware
T
et 2 A Tutorial 5: Programming Graphics Hardware HEITT A

