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Programming the GPU:

Talk Overview

< The Evolution of GPU Programming Languages

High-LeVE' Shadlng Languages © GPU Programming Languages and the Graphics
Pipeline
Randy Fernando < Syntax

< Examples

Developer Technology Group / HLSL X framework

<

ZVIDIA. <
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NVIDIA’s Position on
GPU Shading Languages

The Evolution of GPU Programming
Languages

@
(AT&T, 1970s)
cr
(AT&T, 1983)

IRIS GL
(SGI, 1982)

RenderMan
(Pixar, 1988)

<~ Bottom line: please take advantage of all the
PixelFlow transistors we pack into our GPUs!
Shading .
Language < Use whatever language you like
(UNC, 1998) .
< We will support you

Real-Time < Working with Microsoft on HLSL compiler
Shad ' 8 . . J
R 2 NVIDIA compiler team working on Cg compiler

(Stanford, 2 Working with OpenGL ARB on GLSL compiler

< If you find bugs, send them to us and we'll get
them fixed

OpenGL
(ARB, 1992)

Java Reality Lab
(Sun, 1994)

(RenderMorphics, 1994)

Direct3D
(Microsoft, 1995)

(NVIDIA, 2002) (ARB, 2003)
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The Need for Programmability The Need for Programmability

VirtuaFighter
(SEGA Corporation)

Dead or Alive 3

(Tecmo Corporation)

(NVIDIA Corporation)

VirtuaFighter
(SEGA Corporation)

Dead or Alive 3

Dawn
(Tecmo Corporation) (NVIDIA Corporation)

NV1 Xbox (NV2A) GeForce FX (NV30) NV1 Xbox (NV2A) GeForce FX (NV30)
50K triangles/sec 100M triangles/sec 200M triangles/sec 16-bit color 32-bit color 128-bit color
1M pixel ops/sec 1G pixel ops/sec 2G pixel ops/sec 640 x 480 640 x 480 1024 x 768
1M transistors 20M transistors 120M transistors Nearest filtering Trilinear filtering 8:1 Aniso filtering
1995 2001 2003 1995 2001 2003
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delivered by

— EUROGRAPHICS
: DIGITAL LIBRARY
www.eg.org diglib.eg.org



http://www.eg.org
http://diglib.eg.org

Where We Are Now
222M Transistors
660M tris/second
64 Gflops
128-bit color

1600 x 1200

16:1 aniso
filtering

R

The Motivation for
High-Level Shading Languages

. Assembl
© Graphics hardware has become y
increasingly powerful T R, Shiyyzx, cl1a]. xyz
MU RO, RO.x, c[11].xyzx;
MV RL, c[3];
N ML RLRE X, ol Ol Xyzx;
<~ Programming powerful hardware DP3 R2/ RL-xyzx, RLXyzX;
] X RSQ R2, R2.X;
with assembly code is hard MERL R, RLxyz
AD R2! RO xyzx, RI. Xyzx
DP3 R3, R2.xyzx, R2.xyzx
R B rexyax
o GeForce FX and GeForce 6 S R e i
Series GPUs support programs MAX R2, c[3].z, R2.x;
MV R.z, c[3].y;
that are thousands of assembly MV R2. W, c[a].}’;
instructions long UT Gy
© Programmers need the benefits High-Level Language
of a high-level language:
float3 cSpecul ar = pow(max(0, dot(N, H),
< Easier programming phongExp) . xxx.
. float3 cPlastic = G * (cAnbient + cOiffuse) +
< Easier code reuse & * cspecular;
< Easier debugging

GPU Programming Languages
and the Graphics Pipeline
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The Graphics Pipeline

*»
Interpolation, Texturing,
and Coloring

Colored Vertices After
Vertex Transformation

Primitive Assembly Rasterization

=
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The Graphics Pipeline

Shaders and the Graphics Pipeline

T

Colored Vertices After Interpolation, Texturing,

Vertex Transformation PrmitiveAssembly Lot and Coloring
Vertex Fragment
Program Program
Executed Executed
Once Per Once Per
Vertex Fragment
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HLSL / Cg / GLSL Programs

' v

Co— Vertex Fragment
1' Shader 1' Shader 1'
Vertex data Interpolated Fragments
values

In the future, other parts of the graphics
pipeline may become programmable through
high-level languages.
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Compilation
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Application and API Layers

| 3D Application I

E: 2 44 Tutorial 5: Programming Graphics Hardware

Shading Language

T

BVIT1 A,

Using GPU Programming Languages

Compilation Targets

< Use 3D API calls to specify vertex and fragment
shaders

< Enable vertex and fragment shaders

< Load/enable textures as usual

<~ Draw geometry as usual

< Set blend state as usual

< Vertex shader will execute for each vertex

< Fragment shader will execute for each fragment

G
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< Code can be compiled for specific hardware
< Optimizes performance
< Takes advantage of extra hardware functionality
< May limit language constructs for less capable
hardware
< Examples of compilation targets:
ovs_11,vs 2 0,vs_ 30
ops_1.1,ps_2 0,ps_2 x,ps_2_a,ps_3_0
2 vs_3_0and ps_3_0 are the most capable profiles,
supported only by GeForce 6 Series GPUs

=
& 2 Y4 Tutorial 5: Programming Graphics Hardware

<

WEITI A,

Shader Creation

o Shaders are created (from
scratch, from a common
repository, authoring tools,
or modified from other
shaders) #

i

Trine] Lafradge |

< These shaders are used for
modeling in Digital Content
Creation (DCC) applications
or rendering in other
applications

2 A shading language compiler
compiles the shaders to a
variety of target platforms,
including APIs, OSes, and
GPUSs L
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Language Syntax
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Let’'s Pick a Language

Data Types

< HLSL, Cg, and GLSL have much in common
< But all are different (HLSL and Cg are much more similar to
each other than they are to GLSL)
< Let's focus on just one language (HLSL) to illustrate the key
concepts of shading language syntax
< General References:
< HLSL: DirectX Documentation
(http://www.msdn.com/DirectX)
2 Cg: The Cg Tutorial
(http://developer.nvidia.com/CgTutorial)
<2 GLSL: The OpenGL Shading Language

<
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< float 32-bit IEEE floating point

< hal f 16-bit IEEE-like floating point
< bool Boolean

< sanpl er Handle to a texture sampler

< struct  Structure as in C/C++

< No pointers... yet.

<
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Array / Vector / Matrix Declarations

Function Overloading

< Native support for vectors (up to length 4)
and matrices (up to size 4x4):
float4 nmycol or ;

float3x3 nymatri x;

< Declare more general arrays exactly as in C:
float |ightpower[8];

< But, arrays are first-class types, not pointers

float v[4] !'= float4 v
< Implementations may subset array
capabilities to match HW restrictions .@:
e 2 M4 Tutorial 5 Programming Graphics Hardware HYIDTA,

< Examples:
float nyfuncA(float3 x);
float nyfuncA(hal f3 x);

f1 oat
fl oat

fl oat

nyfuncB(float2 a,
nyfuncB(float3 a,
nyfuncB( float4 a,

float2 b);
float3 b);
float4 b);

Very useful with so many data types.

G
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Different Constant-Typing Rules

Support for Vectors and Matrices

< In C, it's easy to accidentally use high precision

hal f x, vy;
X =y * 2.0; /1 Miltiply is at
/'l float precision!
< Notin HLSL
X =y * 2.0 /1 Multiply is at

/1 half precision (fromy)
< Unless you want to
X =y * 2.0f; /1 Miltiply is at
/1 float precision

G
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< Component-wise + - */ for vectors
< Dot product
2dot(vl,v2); [// returns a scalar

< Matrix multiplications:
<~ assuming afl oat 4x4 Mandafloat4 v

< matrix-vector: mul (M, v); /'l returns a vector
< vector-matrix: mul (v, M; /'l returns a vector
< matrix-matrix: mul (M, N); /1 returns a matrix
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New Operators

o Swizzle operator extracts elements from vector or matrix

a = b. xxyy;
© Examples:
float4 vecl = float4(4.0, -2.0, 5.0, 3.0);
float2 vec2 = vecl.yx; Il vec2 = (-2.0,4.0)
float scalar = vecl.w Il scalar = 3.0

float3 vec3 = scalar.xxx; // vec3 = (3.0, 3.0, 3.0)
float4x4 nyMatri x;

/1 Set nyFloatScal ar to nyMatrix[3][2]
float nyFl oatScalar = nyMatrix._nB2;

o Vector constructor builds vector (ée_':_,_
a =float4(1.0, 0.0, 0.0, 1.0); s
HVIDT A,

Examples
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Sample Shaders

Looking Through a Shader

< Demonstration in FX Composer
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HLSL FX Framework

-

The Problem with Just a Shading
Language
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«

processor should behave
But how about:

< Texture state?

< Blending state?

< Depth test?

< Alphatest?

€

A shading language describes how the vertex or fragment

< All are necessary to really encapsulate the notion of an “effect”

«

geometry and textures
< Solution: .fx file format
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Need to be able to apply an “effect” to any arbitrary set of

G
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HLSL FX

Using Techniques

Powerful shader specification and interchange format
Provides several key benefits:
< Encapsulation of multiple shader versions
Level of detail

(

(

(

Each .fx file typically represents an effect
Techniques describe how to achieve the effect
Can have different techniques for:

Functionality
Performance
< Editable parameters and GUI descriptions
< Multipass shaders
< Render state and texture state specification
o FXshaders use HLSL to describe shading algorithms

< For OpenGL, similar functionality is available in the form of
CgFX (shader code is written in Cg)

<~ No GLSL effect format yet, but will appear eventually {E-L-"'
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< Level of detail

< Graphics hardware with different capabilities

< Performance

A technique is specified using the t echni que
keyword

Curly braces delimit the technique’s contents

(

[

&
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Multipass

HLSL .fx Example

< Each technique may contain one or more passes
© A pass is defined by the pass keyword

< Demonstration in FX Composer

< Curly braces delimit the pass contents

You can set different graphics API state in each
pass

L
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