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Abstract

A scheme for improving the efficiency of parallel isosurfacing for very large datasets is presented. The scheme
is aimed at improving performance in multi-processor environments, especially for environments in which inter-
processor communication limitations become a bottleneck, such as when the number of processors can scale up
without commensurate scale up in inter-processor communication bandwidth. The scheme enables load-balanced
computation while also limiting unnecessary communication between processors through the use of communi-
cation piggybacking and interleaving. Empirical results are also presented and suggest that the scheme reduces
communication by about 15% and overall isosurfacing time by about 13% over a highly efficient non-piggybacked

parallel isosurfacing approach.

Categories and Subject Descriptors (according to ACM CCS): 1.3.6 [Computer Graphics]: Graphics data structures

and data types

1. Introduction

Visualization techniques are often used to aid the process of
information discovery from scientific or medical data. One
of the most popular of the visualization techniques [Ano05]
is the Marching Cubes isosurfacing [LC87, Nie0O3]. Isosur-
facing involves the extraction and display of a surface of
constant value. Typically, isosurface-aided discovery pro-
cesses involve performing a series of isoqueries (i.e., extrac-
tions of surfaces of different constant values). A common
goal for the series of isoqueries is to discover structures or
phenomena captured in the dataset.

The standard Marching Cubes (MC) approach is applica-
ble to volumetric data organized as scalar values sampled on
a rectilinear lattice. Such datasets, which include Comput-
erized Tomography (CT) and Magnetic Resonance Imaging
(MRI) data, are widely used. The MC processes the dataset
in a cube-by-cube fashion to produce an approximate isosur-
face in the form of a collection of triangular facets.

Various methods for improving the performance of the
Marching Cubes and other isosurfacing mechanims have
been described in the literature. While methods such as
the standard Marching Cubes can be performed relatively
quickly on desktop PCs and workstations for small datasets,
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achieving fast performance for large datasets can be a chal-
lenge. Parallel approaches to isosurfacing have been ex-
plored as one means for fast performance. However, there
are a number of challenges that limit the performance of par-
allel isosurfacing, especially for large datasets. A chief chal-
lenge is effectively handling the input data and the produced
facets, especially for datasets too large to be processed en-
tirely in-core. In-core processing means that the memory re-
quired for the isosurfacing is less than the amount of resident
RAM. The standard approach to Marching Cubes can re-
quire out-of-core processing for large datasets, which causes
at least some components of processing to slow by several
orders of magnitude once the storage requirements exceed
the amount of RAM. This slow-down is primarily due to the
secondary storage (i.e., virtual memory) having a higher la-
tency than the primary storage (i.e., RAM). A second per-
formance challenge that is endemic to multi-processor re-
alizations of the MC is that the amount of interprocessor
communication (IPC) scales up as problem size scales up,
yet the network is a shared resource and its capacity, like
RAM, is usually fixed. Thus, the shared resource becomes
a performance bottleneck that serializes components of MC
processing. While parallel approaches optimized for out-of-
core processing of large datasets have been developed, none
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of the published approaches have addressed IPC-related bot-
tlenecks. IPC bottlenecks are particularly limiting for de-
ployments for the quite popular cluster computing environ-
ments since those environments nearly always have fixed
inter-processor communication (IPC) bandwidths.

In this paper, a new scheme that addresses both the out-
of-core processing challenge and the IPC bandwidth limi-
tations without sacrificing computational performance is in-
troduced. Although the scheme can improve performance on
any multi-processor platform, it is aimed primarily at im-
provement of isosurfacing on cluster computers. The paper
is organized as follows. Related work is described in Section
2. The new scheme is presented in the Section 3. Results of
applying the scheme and an analysis of those results are de-
scribed in the Section 4. The conclusion is in Section 5.

2. Background

Many of the attempts to achieve fast isosurfacing have in-
volved optimization of Marching Cubes-like isosurfacing.
In MC, the dataset is processed cube-by-cube in sequential,
forward-marching order, where the i-th cube is the subset
of the lattice bounded by points (x;,y;,z;) and (x; + 1,y; +
1,z;+ 1). For each cube that is active, that is, intersected by
the isosurface, a high resolution triangulation that approxi-
mates the isosurface within the cube is constructed. The con-
struction process involves first marking lattice points whose
scalar values are greater than or equal to the isovalue. The
triangular facet vertices are located on cubes edges that are
terminated by one marked and one unmarked lattice point.
There are 23 unique triangulation topologies that can be
formed if cubes that are rotationally symmetric are held to be
topologically equivalent [Nie03]. The 23 topological cases
are shown in Figure 1. Typically, these topologies are en-
coded in a look-up table (LUT) to support quick determina-
tion of each active cube’s triangulation.

2.1. Related Work

Approaches for improving isosurface performance include
techniques that avoid regions of space containing no active
cells, techniques that use parallel computation, and tech-
niques that do both. Since our focus is improvement of par-
allel computation, we focus on techniques that include such
a component.

2.1.1. Activity Determination

Isosurfacing performance can be improved by avoiding pro-
cessing in regions of the dataset that are not active. Active
region determination has been considered using a number of
means, including approaches based on the octrees and en-
codings of intervals, such as the span space [LSJ96] and the
interval tree.

2.1.2. Parallel Computation

Most of the parallel approaches for Marching Cubes-based
isosurfacing have used data-parallel strategies since each
cube can be processed independently of other cubes. Task-
parallel strategies are not as attractive since processing each
cube involves a sequence of activities in which most steps
in the sequence are dependent on the results of the preced-
ing step. For multi-processor environments, the data-parallel
processing typically involves a final phase of assembling
each processor’s output on a “master” CPU. The master CPU
is simply the CPU that is responsible for sending the scene
description (that is, the isosurface facets) to the graphics
head for display. This assembly phase is where the primary
IPC bottleneck occurs.

The existing approaches attempt to achieve load-balanced
computation on the individual processors using various
schemes. For instance, estimates of computation for each
layer of a dataset have been used to divide layers of a dataset
among processors such that each processor has an approxi-
mately equal amount of work [MN95]. Load-balancing on a
blocklet basis [BPTZ99] has also been used. A blocklet is a
small set of contiguous cells. The blocklet-based approaches
have included strategies that address out-of-core concerns
as well as accurate workload balancing [ZNO3]. One recent
study has suggested that blocklet-based processing can allow
better parallel performance than other schemes for dividing
the dataset [ZNO4].

In blocklet-based processing, the isosurface can be rep-
resented with moderate compactness by first storing the set
of facet vertex locations followed by storing the set of facet
boundaries. These boundaries can be stored as the IDs of
the vertices of each facet. Such a representation mecha-
nism is effective for blocklets because most facet vertices
are shared among four cubes of the blocklet; storing each
vertex location only once avoids unnecessary duplication.
Moreover, since blocklet sizes are typically no larger than
16° in size [ZNO3], the vertex IDs can usually be represented
in a small number of bits (e.g., at most 16 bits each).

A few other parallel, out-of-core isosurfacing methods
have also been described. Like the methods in [BPTZ99,
ZNO03], those methods have sought to reduce the amount of
data loaded and to organize processing in ways that limit the
need to access data multiple times (e.g., using an on-disk
interval tree of clusters of cells [CFSWO01]).

Multi-threaded span-space approaches have also been
used for in-core isosurfacing (e.g., [ZNO04]), including a
method that avoids distribution of unnecessary data to
threads [NSGO04]. Span-space approaches organize the cubes
based on the range (i.e., the span) of scalar values contained
in them. Isosurfacing using span-spaces considers only the
cubes whose spans include the isovalue.

An IPC bottleneck in facet assembly is inherent in vir-
tually all of the parallel approaches. (Approaches in which
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Figure 1: The 23 Topologies in Marching Cubes

each CPU independently drives one display on a display
wall sometimes do not experience this bottleneck.) Essen-
tially, the problem is that the triangles must be “funneled”
single-file to the CPU connected to the graphics head. As
problem size scales up, not only does the communication
network become clogged with facet broadcasts, but the com-
positing CPU is reduced to mostly performing the composit-
ing activity; the master CPU becomes unable to meaning-
fully participate in the isosurface extraction computations. In
fact, nearly all load-balanced isosurfacing approaches have
sought to have all slave CPUs complete their work at the
same moment—the blocklet-based approaches, for example,
have achieved outstanding success in synchronizing work
completion among the CPUs. As a result, there is under-
utilization of the communication channel during computa-
tion as well as serialization during facet assembly. Thus, a
key to further improvement of isosurfacing’s performance in
parallel environments is to reduce the amount of time spent
in the serialized funneling stage. Although approaches to
balance network transmission activities have been a focus
in the grid communities (e.g., [YSF05]), we are unaware of
of such approaches being used in parallel out-of-core isosur-
facing.

2.1.3. Reducing Size of Output

Three types of methods for producing a smaller isosur-
face mesh have been presented. The first class of methods
yields simplified meshes (e.g., [MSS94]). We do not con-
sider simplification-based approaches further since we de-
sire isosurfaces that are qualitatively equivalent to standard
MC meshes. Another class of methods produces only the
isosurface facets that are visible (e.g., [GSO1]). Such ap-
proaches have some limitations, including not allowing ex-
ploration of all of the isosurface at one time and exhibit-
ing poor performance if the viewpoint is changing since
each change requires recomputation of visibility and re-
isosurfacing. A third class of methods yields compressed
meshes (e.g., [LNWO04]). Such approaches have been pop-
ular in distributed isosurfacing applications. Since most of
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the compression methods impose a substantial computa-
tional overhead, they are generally not suitable for multi-
processor environments, however. Specifically, they are ill-
suited because (1) the compression computations constitute
extra computational overhead and (2) the computation to
decompress the isosurface for display can be a substantial
non-parallelized activity. In parallel isosurfacing, requiring
the CPU connected to the graphics head to perform the de-
compression increases the degree of serialization, leading to
rapid performance degradation as work scales up.

The facet compression approach of Lakshmipathy et
al. [LNWO04] follows a strategy that yields a mesh that can be
straightforwardly decompressed if necessary. The approach
involves merging connected facets in adjacent cubes into tri-
angle strips. Its use of triangle strips yields a more compact
isosurface representation since some vertex connection in-
formation need not be stored. One cost of the representa-
tion is that the isosurface extraction process cannot proceed
independently in each cube. In addition, it must maintain
supporting data structures to allow merger of triangle facets
during isosurface extraction, for example to allow merging
of triangles in adjacent cube layers. These supporting data
structures increase memory pressure, making the approach
ill-suited for out-of-core applications. Use of them also re-
quires additional computation to check for and then achieve
joins between initially disconnected strips. The Lakshmipa-
thy et al. approach uses a different LUT strategy than the
standard MC; the approach uses an edge LUT to allow facet
vertices to be stored in a regular manner that nicely supports
creation of triangle strips. The scheme that we introduce here
is motivated by the Lakshmipathy et al. approach.

3. Description of Approach

Our scheme uses span space-based processing and an accu-
rate static load-balancing mechanism to achieve efficiency in
parallel computation. The scheme is also able to achieve im-
proved overall performance via communication piggyback-
ing and interleaving that effectively reduce the degree of se-



148 T. Newman & W. Ma / Piggybacking for Efficient Isosurfacing

rialization in parallel isosurfacing. The details of the scheme
are described next.

The scheme employs static load-balancing similar to the
efficient blocklet-based parallel out-of-core approach de-
scribed by Zhang and Newman [ZNO03], which builds on the
earlier Bajaj et al. [BPTZ99] work. Like these other static
load-balancing approaches, in our scheme the dataset is first
processed off-line to create a set of partitions of the data.
These partitions are organized on-disk in a manner that al-
lows them to be quickly retrieved when needed. Each par-
tition is associated with a range of isovalues. All chunks (a
chunk is a set of adjacent blocklets) with a span that over-
laps a particular partition’s range are stored in the partition.
Whenever an isosurface extraction is needed, only the parti-
tions that contain the active chunks for the isovalue of in-
terest are loaded into memory. Organizing data access to
minimize I/O between the CPUs and secondary storage aids
greatly in achieving good performance for out-of-core prob-
lems. The loaded chunks are then divided on a blocklet-
by-blocklet basis among the CPUs of the system. An accu-
rate estimate of isosurfacing workload for each blocklet, de-
scribed later in Section 3.2, is used to assign approximately
equal amounts of work to each CPU. Each CPU buffers
its results and each buffer is periodically emptied and sent
across the IPC network to a master CPU that composites the
results for display on its graphics head.

The scheme is aimed at out-of-core isosurfacing on clus-
ter computers composed of general-purpose CPUs intercon-
nected by a fast but off-the-shelf interconnection network
(i.e., rather than a custom inter-processor switching network
such as is used in some supercomputers). The scheme is also
suitable for high-end multiprocessing environments, includ-
ing supercomputer environments, however.

Next we describe the new aspects of the scheme, namely
its means to reduce the serialization imposed by the commu-
nication channel.

3.1. Reducing IPC: Piggybacking

The scheme’s primary means to reduce the serializing effect
of limited IPC bandwidth is to form triangle strips on pairs of
adjacent cubes. In parallel isosurfacing, this practice leads to
communication piggybacking as the description of the iso-
surface in the second cube of a pair is piggybacked to the de-
scription of the first cube; the piggybacked facets are trans-
mitted as a unit. The use of piggybacking essentially reduces
inherent redundancy in the isosurface mesh by not generat-
ing and transmitting unneeded vertex connectivity informa-
tion. Since most parallel MC isosurfacing approaches have
followed data-parallel approaches and since the MC itself is
organized to operate on each cube independently, it has been
natural for parallel isosurfacing approaches to compartmen-
talize each cube’s processing. Piggybacking partially breaks
the compartmentalization paradigm. Thus, it must be used in
a way that does not negatively impact the data parallelism.

Our piggybacking is restricted to pairs of cubes. This re-
striction allows formation of a compressed isosurface rep-
resentation without much additional computational over-
head since the strips are formed between successive cubes
encountered during the MC’s sequential forward march
through each blocklet. In addition, the restriction eliminates
the need to maintain data structures that allow for initially
disparate triangle strips to be merged, especially between
dataset layers. Avoiding such data structures results in our
scheme imposing negligible memory pressure, making it
well-suited for out-of-core application. Moreover, restrict-
ing the strips to adjacent cubes allows processing without
backtracking to a cube that was processed previously. (3-
cube strips can require the vertex order from the first cube
to be reordered, especially when the sheet of facets “folds”
back into the first cube and merges with a previously discon-
nected sheet there.) Without reordering, the strips vertices
could be ordered in a way that prevents proper rendering. In
addition, in our approach the strips sent to the master CPU
are ready to be rendered immediately, resulting in negligible
additional computational pressure on the master.

The piggybacking proceeds as follows. As blocklet-based
isosurfacing is carried out, whenever a cube is detected to
have an isosurface intersection on the face it shares with the
next cube to be visited in the march, information for triangle
strip merger is saved. This information includes the number
of facets that intersect the face and the edges on that face that
contain the facet vertices. When the next cube is visited, one
of its triangle strips is merged with one of the strips in the
preceding cube. Whenever such a pair of cubes is found, the
triangle strip can be formed directly from the cubes’ look-
up table information and the retained information about their
shared face. Since we restrict the triangle strips to two cubes,
each time the second cube of the pair is encountered, a new
search begins for the next first cube of a new pair. To keep
the amount of data transmitted to a minimum, we store each
vertex coordinate as an 8B tuple—because each vertex is on
a cube edge, its 3D coordinate must include 2 integer com-
ponents and one floating point value. The integers can be
stored in 2B and the floating points can be stored in 4B. The
vertex ID information can be stored using a 4B value for the
first vertex’s actual ID. IDs of subsequent vertices in the strip
can be stored as 2B offsets from the first ID. Since the piggy-
backing links adjacent cubes, the vertices forming the strip
tend to be confined to a small region of the file as they were
encountered either in processing the preceding cube, the ad-
jacent cube in the preceding row, or the adjacent cube in the
preceding layer.

Each piggybacking reduces the amount of information
transmitted to the master CPU due to removal of unneces-
sary connectivity information. The savings come from the
redundancy involved in storing each vertex that lies on the
cube face shared by the adjacent cubes. Such vertices are
stored with the facet information for each of the adjacent
cubes. For example, consider a strip that can be formed on
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two adjacent Case 8 cubes. Standard blocklet-based opera-
tion would require storing 4 facet vertices from the first cube
and 2 more facet vertices from the second cube. The facets
for each cube would be represented as 4 vertex IDs, with
each set of IDs defining a triangle strip in one cube; 8 IDs
would be stored. Piggybacking the connectivity information
across both cubes allows the two-cube strip’s connectivity to
be encoded using a total of 6 vertex IDs. Each time piggy-
backing can be used, 2 less IDs need to be stored.

From empirial study on many datasets, we have found that
it is typically the case that half of the information transmit-
ted to the master CPU is vertex connectivity information.
We have observed that using piggybacking reduces the trans-
mitted connectivity information by 15 to 30%, leading to an
overall IPC savings of about 10 to 15%.

Our formation of piggybacked triangles employs a cube-
based topology look-up table, like the MC’s standard 23-
case look-up table shown previously in Figure 1. Use of such
a table allows quick and consistent strip formation based di-
rectly on the look-up table entries. However, our approach
does slightly modify the standard table’s facetization pattern
for two of the cases, Cases 16 and 19. The modification in-
volves treating these cases, each of which has multiple facets
connected in a single sheet (i.e., neither has disconnected
groups of facets), as if they were two disconnected sheets.
These cases have two facet edges on one cube face, cre-
ating the potential for an adjacent cube with disconnected
facet sheets (such as cubes of the Case 3, 6, 7, 10, 12, 13, or
15 types) to use the cube as a “bridge” between its discon-
nected facet sheets. Forming such a bridge would call for
detecting this special situation and rearranging the vertices
to allow for it. Such complex processing overhead is not
worthwhile since Cases 16 and 19 rarely occur (one study
suggests that they comprise much less than 1% of the active
cubes [NH91]); allowing a bridge to be formed will result
in negligible further reduction in communication while in-
creasing computation. In fact, we have found that allowing
any of the cubes with disconnected facet sheets to be mem-
bers of two different triangle strips results in just a 3% ad-
ditional savings in IPC from the extra piggybacking. This
small savings is accompanied by extra computational com-
plexity that yields slower overall parallel isosurfacing time
despite the reduction in IPC serialization.

3.2. Work Estimation and IPC Interleaving

Prior blocklet-based parallel out-of-core methods can enable
good (e.g., [BPTZ99]) or excellent (e.g., [ZN03]) balancing
of isosurfacing computational work among the slave CPUs.
In the Zhang and Newman [ZNO3] work, it was shown that
the isosurface extraction effort C for a blocklet can be well-
estimated by fitting a linear function of the number of cubes
(N) and the number of active cells (A) in the blocklet. Thus,
workload, C, (where C has units of seconds and expresses
the time for isosurface extraction’s computations) can be es-
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timated as C = oN + BA. Blocklets can then be assigned to
the CPUs such that each CPU is assigned approximately the
same amount of work. However, as mentioned above, if all
CPUs complete their work at the same time, the communi-
cation channel will be under-utilized.

Next, we describe a new workload estimation mechanism
that considers isosurfacing computational workload as well
as communication effort to produce a more optimal sys-
tem utilization which allows better overall performance than
the best prior estimation method ( [ZN03]). The mecha-
nism better-utilizes the communication channel throughout
the isosurface extraction process by scheduling one slave
CPU at a time for transmission of its intermediate results
to the master CPU.

The new mechanism uses a model that includes the N and
A factors (to estimate the amount of isosurfacing computa-
tion to be performed) and new factors ¢y and c;. The new
factors model transmission overhead. The cluster computer
used in this work has a network in which transmission time is
directly proportional to the size of the triangle strip payload
to be transmitted. The triangle strip payload size is approx-
imately a multiple of the isosurface extraction effort, so we
model the transmission effort, 7;, for the i-th blocklet, as a
function of its isosurface extraction work C;: 7; =y C; + ¢,
where c; is the overhead for building a message tunnel be-
tween the slave and master node. Our cluster computer also
has two CPUs per node, so one slave node is on the same
node as the master CPU. For that slave node, the transmis-
sion overhead, ¢, will be different than the overhead for the
other nodes. Hence, for one slave node, the transmission ef-
fort, T}, for the j-th blockletis 7; =y C; +c;.

In our model, we allow computation to be interleaved m
times with transmission. The master CPU is assigned a small
workload of size w. After the master computes the isosur-
face in the blocklets assigned in its workload, it becomes
dedicated to receiving results from the slave CPUs. Thus,
for a system with n total processors with the master denoted
as processor 1, the computational workload C; ; for the i-th
CPU in the j-th interleaving stage will be:

Cii=w;C;j=0, j={2,3,...m}
G =w;
Cii=Ci—11+Ti-11, i=1{3,4,...,n}; and
n—i i—1
Cij= (Z Ti+k,_/_1> + Y Ty i=12.3,..,n},j>1,
k=1 k=2
where
h,;=0, j= {1,2,...,m};
T ;=7Cyj+cy;and
T,j=vCij+cy, i>2,j={1,2,....m}.

For example, on CPU 2 at the second interleaving stage,
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Figure 2: Isosurface extracted using piggybacking scheme
Jfrom MRA-Brain dataset at isovalue 100

Caa = (P +37 +29)w+ (Y +2y)e1 + (Y+2)c2 and
Lyo=vCp+cr.

For the cluster computer available to us, a battery of
isosurface extraction benchmarking experiments was per-
formed to collect isosurface times and counts of the active
cells and total cells. The battery utilized a large number of
isoqueries on several datasets. We used least-squares fitting
on the test data to determine that o = 7E — 7, B = 8.5E — 8
for the blocklet based isosurface extraction of [ZNO03]. For
the new mechanism, we similarly determined that oo = 7E —
7,B=142E—7,¢c; = —2.8E —8, and ¢c; = 3.0E — 9. We
found it best to model the 7y factor differently for the slave
CPU that was in the same node as the master. We denote 7y;
as that CPU’s yand 7, as the y value for the other CPUs. We
also determined that yy = 1.7E — 7 and y, = 2.4E — 7, again
using least-squares on the test data. The parameter values are
machine-specific; application to other clusters will require
fitting to data collected for the cluster.

4. Experimental Results and Analysis

Next, the out-of-core scheme’s performance is considered.
Performance testing was performed using the National Cen-
ter for Supercomputing Applications (NCSA) linux cluster,
which has over 1000 3.2 GHz Intel Xeon dual-processor
nodes. The tests reported here use a maximum of 64 of the
CPUs at a time. Each node has 3GB RAM and is intercon-
nected to the other nodes via a Myrinet 2000 network.

All experiments reported here used the [ZNO3] code as
a baseline on which no changes were made save the ad-
dition of triangle-stripping, communication piggybacking,
and IPC-cognizant work estimation coupled with IPC in-
terleaving. That code is a quite suitable baseline, given the
demonstration in [ZN0O3] and comparison tests based on it
in [ZN04].

4.1. Extraction Performance

Two sample isosurface renderings for a 256 X256 x 72 mag-
netic resonance dataset of the brain (called MRA-Brain) and

Figure 3: Isosurface extracted using piggybacking scheme

from Lobster dataset at isovalue 100

for a 358x239x232 computerized tomography dataset of a
lobster (called Lobster) using our piggybacking scheme are
shown in Figures 2 and 3. These renderings are identical to
the renderings produced by non-piggybacked isosurfacing
since the triangle meshes are the same.

In Figure 4(b), the scaled-up speedup in the isosurface
computation is shown for our load-balanced piggybacked
scheme versus the load-balanced out-of-core isosurfacing
without piggybacking. The figure shows the results for an
extraction on the Lobster dataset for isovalue 62. In scaled-
up speedup [Gus88], the amount of work increases exactly in
step with the increase in the number of processors. Scaled-
up speedup measures the degree of additional work that can
be performed as computational resources increase. One dis-
advantage of conventional speedup is that as processor re-
sources increase, the total amount of cache typically also
increases, causing more and more of a problem of a given
size to be able to be cached. Scaled-up speedup enables
a speedup measurement that is less affected by increasing
cacheability. To measure scaled-up speedup accurately, we
generated larger versions of the MRA-Brain and Lobster
datasets by repeatedly duplicating the layers of the dataset.
For example, a single duplication results in a dataset that
has exactly twice the isosurfacing computational burden as
the original dataset. Here, the speedups of the piggybacked
and non-piggybacked approaches are essentially identical
and linear; the largest divergence is the 32-CPU case where
the piggybacking has a speedup of 31.0 and the standard
approach has a speedup of 31.3. The largest divergence in
scaled-up speedups that we have observed is a 4% relative
difference.

For comparison, the conventional speedup for a second
dataset, Huge-Molecule, which is a dataset of a molecule, is
shown in Figure 4(c). The dataset is of size 190 x 190x6049.
Also for this dataset, the problem faced by out-of-core
isosurfacing on cluster computers is demonstrated in Fig-
ure 4(a). The figure shows the times for the [ZNO3] (i.e.,
non-piggybacked, non-interleaved) out-of-core isosurfac-
ing’s actual isosurfacing computations and the times to com-
municate the isosurface back to the master CPU on the
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NCSA cluster for various numbers of CPUs. As the num-
ber of processors increases, processing quickly becomes
communication-bound. We have rarely observed continued
improvement in overall performance beyond 32 CPUs.

Thus, the impact of piggybacking on isosurface extrac-
tion’s computational behavior is minimal. In particular, very
high efficiencies in slave CPU utilization are maintained by
piggybacked out-of-core isosurfacing.

4.2. IPC Reduction

We have performed several experiments to study the reduc-
tion in IPC resulting from use of the piggybacking. As sug-
gested above, typically we observe approximately a 10% re-
duction in data transfer from the piggybacking. A higher de-
gree of reduction in IPC could be achieved if larger block-
let sizes were used. This occurence is because our scheme
cannot form triangle strips across blocklet boundaries if the
adjacent blocklets are assigned to CPUs on different nodes.
For future work, we hope to more fully explore the interac-
tion between blocklet size and IPC reduction.

Choice of the blocklet size involves optimizing a trade-
off between reduction of IPC and reduction of unnecessary
computation. (As blocklet size grows, the number of inac-
tive cells that need to be processed also grows since each
active blocklet can have inactive cells.) In the case most op-
timal for IPC reduction, a blocklet the size of the volume can
be used. Of course, such a usage produces terrible computa-
tional speedup and high overall isosurfacing time and thus is
not practical. Such a usage does provide an upper bound on
the IPC reduction from our piggybacking, though.

Two experiments in which blocklet size was equal to vol-
ume size were performed to test IPC reduction. The ex-
periments consisted of two isoqueries on the MRA-Brain
dataset. In the first isoquery, 0.2% of the cells were active.
In the second isoquery, 5.2% of the cells were active. Ta-
ble 1 summarizes the amount of transferred facet informa-
tion to the master for cases that use and that don’t use our
piggybacking approach. In each case, the piggybacking re-
duced IPC by about 15%. This reduction is significant con-
sidering that Isoquery 2 completes in a total time of 0.10
seconds on 1 CPU—to achieve an overall speedup of 16 on
16 CPUs would require the isosurfacing to be completed in
0.00625 seconds. Yet, the network bandwidth would have to
be greater than 6.5 Gb/sec to support such an achievement.

4.3. Total Performance

In Table 2, the total execution times, including isosurface
extraction on the slave CPUs, IPC communication, and ren-
dering from the master CPU, are shown for an isosurface
extraction at isovalue 62 for three datasets using 16 CPUs of
the NCSA cluster. One dataset is Huge-Molecule, which was
described earlier. The other two datasets are scaled-up ver-
sions of the brain and lobster datasets described earlier—the

(© The Eurographics Association 2006.

Approach Isoquery 1 Isoquery 2
No Piggyback || 10.85 (220 KB) | 259.8 (5085 KB)
Piggybacked 6.7 (187 KB) 163.6 (4334 KB)

Table 1: IPC transfers in terms of thousands of facets
for piggybacked versus non-piggybacked isosurfacing using
maximal blocklet size for two isoqueries on a small MRA
dataset. Size in bytes of transfers shown in parens.

No Piggyback | Piggybacked
£ No Interleaving 8.05 7.80
£ Interleaving 7.88 7.61
*  No Interleaving 1.13 1.07
*  Interleaving 1.03 0.96
T No Interleaving 1.53 1.44
1 Interleaving 1.39 1.32

Table 2: Total execution time (sec.) with and without com-
munication improvements, 16 CPUs, for Huge-Lobster (de-
noted by £), Huge-Brain (denoted by x), and Huge-Molecule
(denoted by t) datasets

MRA dataset of the brain here (Huge-Brain) has 2273 slices
and the dataset of the lobster (Huge-Lobster) has 7393 slices.
The Huge-Lobster dataset is quite large, encompassing over
600 million data points. The isosurface extracted from Huge-
Lobster has over 130 million facets. The parameter values
described above were used for workload scheduling. Thus,
the non-interleaved run results used the parameters for the
model in [ZNO3] and the interleaved run results used the pa-
rameters for the new mechanism reported here. The piggy-
backing and interleaving components of our scheme yield
approximately equal impacts on total execution time. Over-
all, approximately 13% improvement in total execution time
was observed from use of the scheme.

5. Conclusion

In this paper, the use of communication piggybacking and
interleaving has been coupled with an accurate and effi-
cient load-balancing mechanism to allow for fast isosurfac-
ing of large datasets. This coupling allows total system capa-
bility to be well-exercised, thus offering improvement over
current-generation methods that focus primarily on compu-
tational aspects of the system. The scheme can allow about
13% faster isosurfacing than the current fastest approach for
large datasets. Piggybacking and interleaving were found to
be approximately equal contributors to the observed perfor-
mance improvement. The approach is especially well-suited
to cluster computers, including clusters constructed using
off-the-shelf network equipment. In the future, we hope to
explore means to further reduce the IPC requirements in par-
allel out-of-core isosurfacing.
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Figure 4: Isosurfacing statistics: (a) computation versus result communication times for Huge-Molecule Dataset, isovalue 62,
(b) Speedup (scaled-up) for piggybacked and non-piggybacked isosurfacing computations for Lobster dataset at isovalue 62,
(c) Speedup for piggybacked and non-piggybacked isosurfacing computations for Huge-Molecule dataset at isovalue 62
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