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In the tutorial we show the connection between rendering algorithms and
sorting and searching as classical problems studied in computer science.
We provide both theoretical and empirical evidence that for many
rendering techniques most time is spent by sorting and searching. In
particular we discuss problems and solutions for visibility computation,
density estimation, and importance sampling. For each problem we
mention its specific issues such as dimensionality of the search domain or
online versus offline searching. We will present the underlying data
structures and their enhancements in the context of specific rendering
algorithms such as ray tracing, photon mapping, and hidden surface
removal.
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TUTORIAL OVERVIEW

Introduction (5 min) VH

Sorting and Searching Techniques (30 min) JB

Hierarchical Data Structures (30 min) JB/VH

Ray Tracing (20 min) VH

Q & A (5 min)

Coffee break                                                                    

Rasterization and Culling (25 min) JB

Photon Maps and Ray Maps (20 min) VH

Irradiance Caching (5 min) VH

BRDF and BTF (10 min) VH

Sorting and searching on GPU (20 min) JB

Q & A (10 min)



Introduction

� Recall that we mostly use sorting and searching in 

rendering

� Highlight connections between different problems in 

rendering

� Show standard efficient approaches

� Show non-standard approaches

� New trends, GPUs, mobile devices
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Issues not Covered in our Tutorial

� Collision detection algorithms 

� Volumetric rendering

� Image based rendering

� Non-photo realistic rendering

� General clustering techniques

� Graph theory and other related problems

� Updated tutorial slides available at

h7p://dcgi.felk.cvut.cz/˜havran/eg2014tut/
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Tutorial Organization and Level

� Intermediate level – basic knowledge is required

� Any questions can be asked during the presentation

� The details are not given due to the lack of time

� Detailed bibliography provided in the supplementary 

material
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Introduction to Rendering

� Rendering Equation

� Convolving incoming light with surface reflectance 

properties
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Ray Tracing
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� Ray Tracing [Whitted 1980]



Path Tracing

� Rendering Equation [Kayija 1986]
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Photon Mapping Algorithm

� Photon mapping [Jensen 1993]

� Vertex-connection-merging [Georgiev 2012,Bekaert2003]

Introduction (9)



Ray Tracing
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Photon Density Estimation
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Sorting and Searching in Rendering
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Take Home Message

� 90 percent of the time in most rendering algorithms is 

taken by sorting and searching

� The rest of computation is pure evaluation of math 

formulas, random number generation etc.

� It is therefore necessary to understand well the 

particular instances of sorting and searching for 

rendering

� Tremendous research and development effort was 

spent since 1980 in the algorithms for both software 

and hardware

Introduction (13)



Thank you!
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Introduction (5 min) VH
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Q & A (5 min)

Coffee break                                                                    

Rasterization and Culling (25 min) JB
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Search Problem

Q  x  S → A

Query Domain

Search Space

Domain of Answers
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Geometric Search Problems

Nearest Neighbors Range search

Point location Intersection detection

Q

Q
Q
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Search Problems in Rendering

Problem Q S A

Ray shooting ray {objects} point

Hidden Surface 

Removal

{rays} {objects} {points}

Visibility culling {rays} {objects} {objects}

Photon maps point {points} {points}

Ray maps point {rays} {rays}

Irradiance 

caching

point {spheres} {spheres}

(5)Sorting and Searching Techniques



Searching Algorithms

� Exact vs. Approximate
– Approximate: finds solution close to exact one

– E.g. ε-nearest neighbor

� Online vs. offline
– Offline: applied for entire sequence of queries

– E.g. single ray query vs “all” rays queries

� Static vs. dynamic
– Dynamic: input may change
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Sorting

� Organizing data

� Improve searching performance

� Naïve search: O(n) time

� With sorting: O(log n)

� In special cases even O(1)
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Basic Sorting Algorithms

Algorithm Method Best Average Worst

Heapsort Selection O(n log n) O(n log n) O(n log n)

Selection sort Selection O(n2) O(n2) O(n2)

Quicksort Partitioning O(n log n) O(n log n) O(n2)

Bucket sort Distribution O(n) O(n) O(n2)

Merge sort Merging O(n log n) O(n log n) O(n log n)

Bubble sort Exchanging O(n) O(n2) O(n2)

Insertion sort Insertion O(n) O(n2) O(n2)

Space complexity: O(n)
(8)Sorting and Searching Techniques



Multidimensional Sorting

� We deal with multidimensional data!
– Objects, points, rays, normals, …

� Define relations among elements of S

(9)

Numbers (1D)

5 < 9

10 > 2

Points (3D)

[5,3,2] ? [9,6,7]

[10,1,1] ? [2,8,6]

Lines (4D)

?
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Problem Dimensionality

� Spatial sorting: 3D domain
– Surfaces: 2D, height fields: 2.5D

� Spatio-temporal sorting: 4D domain

� Ray space sorting: 5D domain
– 4D for lines

� Space filling curves: nD → 1D
– Morton codes

� Feature vectors: nD

(10)

[x,y,z,θ,φ]
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Comparison-based Sorting

� Evaluating A < B
– Quicksort

– Selection sort

– Heap sort

– Merge sort

– Shell sort

– Insertion sort

– …

� Ω(n log n)

(11)

Quicksort example

figure courtesy of D. Coetzee
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Bucketing

� Distributing input data into buckets / bins

� Buckets
– Regular grids

– 1D bins

– 2D image (A-buffer)

– 3D voxel grid

� Not a comparison-based sort

� O(n)
– Assuming discretized data

� Radix sort a special case

(12)Sorting and Searching Techniques



Bucketing Example

Data range 0 – 9

(13)

7   8   3   2   3   6   9   5   8

2 3

3

5 6 7 8

8

2 3 3   5   6 7 8 8 9 

9

Input:

Buckets:

Output:
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Hashing

� Sparse data in higher dimensions

� Hashing function

� Resolving collisions

� Chaining
– Linked list, balanced tree

� Open addressing
– Linear/quadratic probing

– Double hashing

� Perfect hashing
– No collisions

– Memory to store hash function

– Useful for static data

(14)Sorting and Searching Techniques



Cuckoo Hashing

� Cuckoo hashing
– Two hash functions

– Inserted entry pushes away the old entry

– Longer build times

– Fast retrieval

(15)

pseudocode and figure courtesy of R. Pagh

A success

H fail
Sorting and Searching Techniques



Sorting in Rendering

� Sort by partitioning (Quicksort like)
– Top-down construction of spatial hierarchies

� Sort by selection (Heapsort like)
– Bottom-up construction of spatial hierarchies

– k-NN search

� Sort by insertion (Insertion sort like)
– Incremental construction of hierarchies

� Sort by distribution (Bucket sort like)
– Rasterization (z-buffer, A-buffer)

– GPU sorting (radix sort)

� Sort by exchanging (Bubble sort like)
– Incremental priority orders

(16)Sorting and Searching Techniques
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Sorting and Searching Techniques (30 min) JB

Hierarchical Data Structures (30 min) JB/VH

Ray Tracing (20 min) VH

Q & A (5 min)

Coffee break                                                                    

Rasterization and Culling (25 min) JB
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Hierarchical Data Structures (HDS)

� Connection to sorting

� Classification

� Bounding volume hierarchies

� Spatial subdivisions

� Hybrid data structures

� Searching using HDS

� Special techniques on hierarchies

Hierarchical Data Structures (3)



Hierarchical Data Structure

root

interior nodes

leaves

Tree or DAG

Hierarchical Data Structures (4)



Connection to Sorting

� Hierarchical Data Structures = 

implementation of (spatial) sorting

� Why ?

� Top-down construction of HDS equivalent to quicksort

� Time complexity O(N log N)

Hierarchical Data Structures (5)



Recall Quicksort

� Pick up a pivot Q

� Organize the data into two subarrays
– Smaller than Q

– Larger or equal Q

� Recurse in both subarrays

� In 3D Pivot = Plane
– Smaller / larger ~ back / front

Hierarchical Data Structures (6)



Examples of HDS in 2D

D

B
A

C

D

B
A

C

D

B
A

C

D

B
A

C

octree kd-tree

bounding

volume

hierarchy

hierarchy

of grids
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HDS Classification

� Data domain organization

� Dimensionality

� Data layout

Hierarchical Data Structures (8)



HDS - Data Domain Organization

� Spatial subdivisions
– Organizing space (non-overlapping regions)

� Object hierarchies
– Organizing objects (possibly overlapping regions)

� Hybrid data structures
– Spatial subdivision mixed with object hierarchies

� Transformations and mappings

Hierarchical Data Structures (9)



HDS - Dimensionality 

� Necessary to represent data entities
– 1D, 2D, 3D, 4D, or 5D

� Data entities
– Points, lines, oriented half-lines, disks, oriented hemispheres, etc.

� Possibility to extend many problems to time domain
– Plus one dimension

Hierarchical Data Structures (10)



HDS – Data Layout

� Internal data structures

� External data structures (out of core)

� Cache-aware data structures

� Cache oblivious data structures

CPU

Cache L1

Cache L2
Main

Memory
Disk

Hierarchical Data Structures (11)



Types of Nodes in HDS

� Interior node
– Eepresents a “pivot”, data entities sorted according to pivot

– E.g. subdivision plane or a set of planes plus references to child nodes

– Efficient representation crucial for searching performance

� Leaf node
– Contains data

– E.g. list of objects, points

– Entities themselves or references

� Implementation concerns
– Discriminating interior/leaf node

– Implicit pointers to child node(s)

Hierarchical Data Structures (12)



Spatial Subdivisions

� Non-overlapping regions of child nodes

� Space is organized by subdivision entities (planes)

� Constructed top-down

� Fully covering original spatial region
– Point location always possible: empty or non-empty leaf

kd-tree

D

B
A

C

Hierarchical Data Structures (13)



Spatial Subdivision Examples

� Kd-trees – axis aligned planes

� BSP-trees – arbitrary planes

� Octrees – three axis aligned planes in a node

� Uniform grids (uniform subdivision)

� Recursive grids

Hierarchical Data Structures (14)



Object Hierarchies

� Possibly overlapping regions of child nodes

� Possibly some spatial regions are not covered 
– Point location impossible

� Construction methods
– Top-down (sorting)

– Bottom-up (clustering)

– Incrementally (by insertion) 

� Bounding Volume Hierarchies (BVH)
– Bounding volume = AABB, sphere, OBB, …

Hierarchical Data Structures (15)



Examples of Object Hierarchies

� Bounding Volume Hierarchies (BVHs)

� R-trees and their many variants

� Box-trees

� Several others 
– Special sort of bounding volumes... sphere trees etc.

Hierarchical Data Structures (16)



Bounding Volume Hierarchies

Constructed Top-Down

Hierarchical Data Structures (17)



Hybrid Data Structures

� Combining various interior nodes

� Combining spatial subdivisions and object hierarchies

� Sharing pros and cons of both types

� Can be tuned to compromise of some properties
– E.g. efficiency and memory

Hierarchical Data Structures (18)



Other HDS

� Content of the node
– Single splitting plane, more splitting planes, box, additional information

� Arity of a node
– Also called branching factor, fanout factor

� Way of constructing a tree
– Height, weight balancing, postprocessing

� Data only in leaves or also in interior nodes

� Augmenting data

Hierarchical Data Structures (19)



Example of Other HDS

� Cell trees (polyhedral shapes for splitting)

� SKD-trees (two splitting planes at once)

� hB-trees (holey brick B-trees)

� LSD-tree (height balanced kd-tree)

� P-trees (polytope trees)

� BBD-trees (bounding box decomposition trees)

� And many others

(see surveys listed in tutorial notes, in particular 

encyclopedia [Samet06])

Hierarchical Data Structures (20)



Transformation Approach

� Transform the problem domain

� Transformation examples
– Box in 3D -> point in 6D

– Sphere in 3D -> point in 4D

� Transformation can completely change searching 

algorithm

Hierarchical Data Structures (21)



HDS Construction Algorithm (Top-Down)

Initial phase 
Create a node with all elements

Put the node in the auxiliary structure AS (stack or priority queue)

Divide & Conquer phase

While AS not empty do {

Get node N from AS

If (should be subdivided(N)) {

decide splitting

create new nodes and put them to AS

}  else 

create leaf

}

Hierarchical Data Structures (22)



Search Algorithms using HDS

� Down traversal phase (location) + some other phase

� Start from the root node

� Visiting an interior node 
– Use stack (LIFO) or priority queue to record nodes to be visited

� Visiting a leaf
– Compute incidence (such as ray-object intersection)

� Note: auxiliary structure implements another sorting 

phase during searching

Hierarchical Data Structures (23)



Search Algorithms using HDS

� Range queries
– Given range X, find all incidences of X with data

� Nearest neighbour
– Find the nearest neighbour

– K-nearest neighbours

� Intersection search
– Given point Q, find all objects that contain Q

� Ranking
– Given query object Q, report on all objects in order of distance from Q 

� Reverse nearest neighbours
– Given point Q, find all points to which Q is the nearest neighbour

Hierarchical Data Structures (24)



Search Performance Model

� Result = the cost of computation ... C

� Performance is inverse proportional to the quality of 

the data structures for given problem

� Two uses of performance model
– A posteriori: documenting and testing performance

– A priori: constructing data structures with higher expected performance

Hierarchical Data Structures (25)



Search Performance Model

� CT … cost of traversing the nodes of HDS

� CL … cost of incidence operation in leaves

� CR … cost of accessing the data from internal or 

external memory

C = CT + CL + CR

C = CTS . NTS + CLO . NLO + CACCESS . NACCESS

Hierarchical Data Structures (26)



Performance Model

� CT … cost of traversing the nodes of HDS
– NTS … number of traversal steps per query

– CTS … average cost of a single traversal step

� CL … cost of incidence operation in leaves
– NLO … number of incidence operation per query

– CLO … average cost of incidence operation

� CR … cost of accessing the data from internal or 
external memory

– NACCESS … number of read operations from internal/external memory per 
query

– CACCESS … average cost of read operation

Hierarchical Data Structures (27)



HDS for Dynamic Data

� Two major options:
– Rebuild HDS after the data changes from scratch

– Update only necessary part of HDS

� Design considerations:
– How much data are changed (M from N entities)

– How efficient would be the updated data structures now and in the 

longer run?

– How much time is required in both methods?

Hierarchical Data Structures (28)



Rebuild from Scratch

� Construction time is typically O(N log N)

� The constants behind big-O notation are important in 

practice !

� Suitable if most objects are moving (M » N)

� Quality of hierarchy is high!

� Hint (top-down HDS):
– Save exchange operations by keeping order given by previous hierarchy

Hierarchical Data Structures (29)



HDS Updates 

� Only update data structures to reflect the changes

� Assumed searching performance remains acceptable
– No guarantees

� Additional bookkeeping data to monitor HDS cost

� Techniques for 1D trees (rotation, balancing) often not 

applicable

� Updating larger amount of data at once (bulk updating)

Hierarchical Data Structures (30)



HDS Updates

� Insertion method – delete and reinsert the data in the 

tree (also deferred insertion)
– Suitable if the number of changed objects is small

– Each insertion/deletion requires O(log N)

– Necessary delete and update some interior nodes

� Postorder processing (only for object hierarchies)
– Suitable if number of changed objects is high

– First update all leaves (data itself)

– Traverse the whole tree in O(N) and reconstruct interior nodes of object 

hierarchy knowing both children

Hierarchical Data Structures (31)
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Ray Tracing

� Ray shooting versus ray tracing

� Connection to sorting and searching

� Performance model/studies

� Uniform Grids

� Hierarchical Data Structures

� Special techniques on hierarchies

(3)Ray Tracing



Ray Tracing

� Task: given a ray, find out the first object            

intersected, if any

� Input: a scene and a ray

� Output: the intersected object

A B

D

C

ray

E

(4)Ray Tracing



Ray Tracing versus Ray Shooting

� Ray shooting 
– Only a single ray

� Ray tracing in computer graphics
– Ray shooting (only a single ray)

– Ray casting – only primary rays from camera

– Recursive ray tracing

– Distribution ray tracing and others

(5)Ray Tracing



Time and Space Complexity

� Computational Geometry
– Aiming at worst-case complexity

– Restriction to certain class of object shape (triangles, spheres)

– Unacceptable memory requirements O(log N) query time  induces Ω(N4) 

space [Szirmay-Kalos and Marton, 1997/8]

� Computer Graphics
– Aiming at average-case time complexity of search O(log N), space 

complexity O(N), time complexity of build O(N.log N)

– Practicality and robustness

– Ease of implementations

– Acceptable performance on particular computer hardware 

(CPU versus GPU)

(6)Ray Tracing



Computer Graphics Ray Tracing Algorithms

� Techniques developed: aimed at practical applications, 

no complexity guarantees, many “tricks”, the analysis 

difficult or infeasible

� Basic techniques
– Bounding volumes, spatial subdivision, ray classification

� Augmented techniques
– Macro regions, pyramid clipping, proximity clouds, directed safe zones

� Special tricks
– Ray boxing, mailbox, handling CSG primitives, other types of coherence

(7)Ray Tracing



Ray Tracing Data Structures Build

Algorithm Classification

� Subdivision techniques (top down)
– Binary space partitioning  (e.g. kd-trees, octrees)

– Uniform and hierarchical grids

– Bounding volume hierarchies

� Clustering (bottom up)
– Bounding volume hierarchies

� Insertion based algorithm
– Bounding volume hierarchies

� Hybrid algorithms – part of tree can be created

differently

(8)Ray Tracing



Example: Kd-tree Construction

(9)

A
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D

1 1

A 2
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B C

4

x

y

Ray Tracing



Kd-tree Visualization

Ray Tracing (10)



Data Structures Comparison, year 2000

� 30 scenes x 12 data structures x 4 ray distributions

� 1440 measurements

� Timings (build time, search time, total time) for ray tracing

Note: BVH tested constructed by insertion [Goldsmith+Salmon 87].

Ray Tracing (11)
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Ray Tracing Data Structures, year 2014

� Three prevailing data structures: 
– BVHs

– Kd-trees

– Hybrid: Spatial BVHs – BVHs and KD-trees

� The implementation often only for triangular scenes

� The other data structures interesting but not widely 

accepted in practice

� BVH with cost model based on SAH favored for 

simplicity and fixed memory footprint

� Kd-trees or Spatial BVHs favored for performance 

guarantees but more complex to build, dynamic 

allocation needed
Ray Tracing (12)



Bounding Volume Hierarchies (BVHs)

� Known since 1980, automatic build since 1984, efficient

and robust implementations however since 2006.

� Easy construction algorithm - subdivision of objects

into the groups in top-down fashion using cost model

� Two other building algorithms possible
– Insertion based algorithm starting from a single leaf

– Merging like algorithms (agglomerative clustering)

� Light-weight versions of BVH possible

� Build algorithm in O(N log N)

� Optimization algorithms of an existing BVH available

Ray Tracing (13)



Kd-trees

� The easy spatial subdivision with non-overlapping 

spatial regions representing leaves

� Empty leaves are needed with zero storage

� One geometric primitive can be referenced in more 

leaves – unknown number of references

� The performance usually higher than for BVHs

� Well known and tested, robust build and traversal 

algorithms

� Build algorithm also in O(N log N)

� No optimization algorithms possible

Ray Tracing (14)



Geometric Probability of Ray Box 

Intersection (Surface Area Heuristic)

Ray Tracing (15)

PLEFT = PLO +  PLR +  PRL

PRIGHT = PRO +  PLR +  PRL

� Probability computed from surface area of the box

� Condition: uniform ray distribution



Kd-tree Building with Greedy Cost Model

� Cost function C = PLEFT . NLEFT + PRIGHT . NRIGHT

� The cost minimization in top-down build for each node

Ray Tracing (16)
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BVH Building with Greedy Cost Model

� Cost function C = PLEFT . NLEFT + PRIGHT . NRIGHT

� The cost minimization in top-down build for each node

� Bounding box is tight over all triangles!

� Only some combinations are explored

� Bounding boxes can overlap

� One bounding box takes more memory

Ray Tracing (17)
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Cost based on SAH Evaluation Modes

� Exact algorithm e.g. using sweeping technique for N 

primitives maximum 2.N evaluations. For kd-trees 

[Havran 2001, Wald and Havran 2006], for BVH [Wald 

2007]

� Approximate algorithm – some prescribed number of 

bins either fixed or using some formula. For kd-trees 

[Hunt et al. 2006, Popov et al. 2006], for BVHs [Havran

et al. 2006]

� It can be combined together 
– Upper tree levels (closer to root node) – approximate algorithm.

– For smaller number of geometric primitives – exact algorithm

(18)Ray Tracing



Exact versus Approximate Cost Evaluation

Ray Tracing (19)
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Top-Down Building Termination Criteria

� Kd-trees local: using a stack
– Simple local: maximum depth (k1+k2.log N) + number of geometric 

primitives is limited (e.g. 2 or 1 primitive)

– More complicated local: a maximum number of cost improvement 

failures + maximum estimated depth + number of objects

� BVH – not needed, but usually more geometric 

primitives in a leaf (2 to 8)

� Kd-trees and BVHs: Global using a priority queue
– Maximum memory used

– Maximum memory used + maximum leaf cost

Ray Tracing (20)



Recursive Ray Traversal Algorithm Cases

� Assuming binary hierarchy (both BVH and kd-tree)

Ray Tracing (21)
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Traversal Algorithm for Hierarchies

� Kd-tree traversal algorithm with a stack

Ray Tracing (22)
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BVH Traversal Algorithm

� Similar, but the ray has to be checked along its traversed 

path until the first intersection found

� The bounding boxes in principle arbitrary, in practice a 

single axis orientation is encoded as for kd-trees in 2 bits

Ray Tracing (23)

- DIRX < 0

DIRY < 0
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Some Notes on the Cost Model with SAH

� The data structures with cost model can be several

times more efficient than a spatial/object median

� The cost model based on SAH is not ideal as underlying 

assumptions are not fulfilled
– Distribution of rays is not uniform

– Rays can intersect objects so they are of finite length

– Rays can also have origin inside the scene

� Some nice tricks are possibly to reduce both expected 

cost and improve the performance

Ray Tracing (24)



Kd-trees Efficiency Improvements

Ray Tracing (25)

Left bounding box

Right bounding box

Cutting off empty space

Ray

Splitting plane

Reducing objects’ axis-

aligned bounding boxes
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Leaf



BVH Efficiency Improvements

� Shallower BVHs for parallel SIMD traversal [Dammertz

2008], four child nodes by tree compaction

� Optimization algorithms for already existing BVHs
– Rotation based [Kensler 2008]

– Rotations with GPUs [Kopta et al. 2012]

– Insertion/removal based algorithm [Bittner et al. 2013]

– Treelet based parallel optimization [Karras and Aila 2013]

� Fast algorithm for building HLBVHs (hierarchical linear 

BVH) in parallel using Morton codes

� Zero storage proposed variant of BVH based on heap 

by [Eiseman et al. 2012], but in general inefficient

Ray Tracing (26)



SBVH – Hybrid between Kd-tree and BVH

� Split BVH proposed originally by [Havran 2007], 

particular algorithms by [Ernst and Greiner 2008], 

[Popov et al. 2009], and [Stitch et al. 2009]

� Idea – base is BVH, but problematic primitives are 

allowed to be referenced several times as in kd-trees

� The idea of more references corresponds to                     

split clipping proposed for kd-trees

� Build algorithms
– [Year 2008] – subdivide in advance, early split clipping

– [Year 2009] – late split clipping - local greedy algorithm decision for top-

down construction

Ray Tracing (27)



SBVH – Solved Geometrical Situation

� The typical situation solved by more references –

elongated triangles not aligned to coordinate axes

Ray Tracing (28)



Construction for Preferred Ray Sets

� Possible for both BVHs and Kd-trees

� Idea: non-uniform distribution of rays, gain 100-200% 

maximum

Ray Tracing (29)

Uniform

Parallel

projection



Ray Tracing with Octrees

� Interior node branching factor is eight

� Up to four child nodes can be traversed in an 
interior node

� Traversal algorithm necessarily more 
complicated than for kd-tree

� Octrees are less adaptive to the scene object 
distributions than kd-trees

� Geometric probability can be used in the 
same way as for kd-trees [Octree-R, 1995]

� Octrees are less efficient than kd-trees due to 
the implementation constants

� Most recently Loose Octrees [Ulrich 1999]

� Most efficient traversal algorithm  [Revelles
et al. 2000]

D

B
A

C

Note: octrees     

can be 

simulated by 

kd-trees

Ray Tracing (30)



Ray Tracing with Uniform Grids

� Arity of a node proportional to the number of objects 

� Traversal method based on 3D differential analyzer (3DDA)

� For skewed distributions of objects in the scene it is inefficient

� For highly and moderately uniform distributions of objects it is 
slightly more efficient than kd-trees

Ray Tracing (31)

tested primitives

traversed voxels

untested primitives



Data Layout in Memory

� Minimizing memory footprint

� Minimizing latency by treelets

Ray Tracing (32)

Depth-first-search (DFS) Van Emde Boas

TreeletsBy standard memory allocator



Performance Model for Ray Tracing

� Cost = cost for intersections +

cost for traversal +

cost for reading data

Ray Tracing (33)

� Faster ray-object intersection tests

� Decreasing number of ray-object intersection tests

� Faster traversal step

� Decreasing number of traversal steps

� Reducing memory throughput and latency



Offline Ray Shooting

� Shooting several rays at once

� Rays are formed by camera, by viewing frustum or by 

point light sources

� Rays are coherent = similar in direction and origin

� Problem can be formulated as offline setting of 

searching

� We can amortize the cost of traversal operations 

though the data structure … the number of traversal 

steps is decreased typically by 60 to 70%

Ray Tracing (34)



Offline Ray Shooting: Coherence

� If boundary rays traverse the same sequence S of 

leaves, then all rays in between also traverse the same 

sequence.

� Proof by convexity (convex leaves, convex shaft)

Ray Tracing (35)



Offline Ray Tracing with Hierarchy

Ray Tracing (36)

R2:

R1:
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A

R1

R2

Ray origin

� Pruning the search in the tree



Offline Ray Tracing for Primary Rays

� Hidden surface removal based on offline algorithm

� Rays have common origin, viewing frustum by image

� Other applications: hierarchical image sampling

Ray Tracing (37)
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Ray Sorting to Improve Coherence

Ray Tracing (38)

� Store the rays into cache according to direction

� When a bucket is filled in, shoot all of them at once

� Improves access pattern for incoherent queries

� Speedup up to 30% (CPU [EG, Havran et al. 2005]) and 

300% (GPU [EG, Garanzha, 2010])

� Other schemes possible

for offline setting

� Not for primary

rays – already

coherent



Shadow Rays Tricks

Ray Tracing (39)

� For shadow rays we can get ANY INTERSECTION  or NO 

intersection, we do not need the first intersection

� Typical task in many light methods (virtual points lights) in 

global illumination algorithms.

� We can relax the traversal order in BVHs and kd-trees

� The good traversal order

– Precomputed and stored in one bit in each interior node 

[Ize+Hansen, EG 2011]

– Taking also ray distribution into account [Feltman et al. 2012]

– Computed on the fly [Nah+Manocha, CGF 2014] from SA

� Time reduction to approximately half in best scenes

� Cannot help if the shadow rays are unoccluded



What Was not Presented

� Ray packets – for coherent (primary) rays, the use of 

SIMD (SSE, AVX etc. instructions)

� Ray tracing on GPUs (2nd part of the tutorial)

� Ray tracing on mobile devices (smartphones) and other 

special architectures as game consoles.

� Hardware for ray tracing

� Ray-geometric primitive intersection algorithms for 

example NURBS

� Application scenarios in computer graphics (rendering, 

collision detection, games) and the other ones

Ray Tracing (40)



PhD Theses on Ray Tracing in Last 20 years

� V. Lu: Multicore Construction of K-D Trees with Applications in Graphics and 

Vision, 2014.

� S. Popov: Algorithm and Data Structures for Interactive Ray Tracing on 

Commodity Hardware, 2012.

� J. Bikker: Ray Tracing in Real-time Games, 2012.

� T. Ize: Efficient Acceleration Structures for Ray Tracing Static and Dynamic 

Scenes, 2009.

� W. Hunt: Data Structures and Algorithms for Real Time Ray Tracing at the

university of Texas at Austin, 2009.

� C. Benthin: Realtime Ray Tracing on Current CPU Architectures, 2006.

� A. Y-H. Chang: Theoretical and Experimental Aspects of  Ray Shooting, 2005.

� I. Wald: Real Time Ray Tracing and Global Illumination, 2004.

� V. Havran: Heuristic Ray Shooting Algorithms, 2001.

� G. Simiakakis: Accelerating Ray Tracing with Directional Subdivision and 

Parallel Processing, 1995.

Ray Tracing (41)



Thank you!

(42)



TUTORIAL OVERVIEW

Introduction (5 min) VH

Sorting and Searching Techniques (30 min) JB

Hierarchical Data Structures (30 min) JB/VH

Ray Tracing (20 min) VH

Q & A (5 min)

Coffee break                                                                    

Rasterization and Culling (25 min) JB

Photon Maps and Ray Maps (20 min) VH

Irradiance Caching (5 min) VH

BRDF and BTF (10 min) VH

Sorting and searching on GPU (20 min) JB

Q & A (10 min)



RASTERIZATION AND CULLING

JIŘÍ BITTNER

Czech Technical University in Prague

EUROGRAPHICS 2014 TUTORIAL



TUTORIAL OVERVIEW

Introduction (5 min) VH

Sorting and Searching Techniques (30 min) JB

Hierarchical Data Structures (30 min) JB/VH

Ray Tracing (20 min) VH

Q & A (5 min)

Coffee break                                                                    

Rasterization and Culling (25 min) JB

Photon Maps and Ray Maps (20 min) VH

Irradiance Caching (5 min) VH

BRDF and BTF (10 min) VH

Sorting and searching on GPU (20 min) JB

Q & A (10 min)



Rasterization - Hidden Surface Removal

Problem Q S A

Ray shooting ray {objects} point

Hidden Surface 

Removal

{rays} {objects} {points}

Visibility culling {rays} {objects} {objects}

Photon maps point {points} {points}

Ray maps point {rays} {rays}

Irradiance 

caching

point {spheres} {spheres}

� Find visible surface for every pixel (ray)

Rasterization and Culling (3)



Hidden Surface Removal

� List priority algorithms

� Area subdivision algorithms

� Scan-line algorithms

� Z-buffer

� Ray casting

Rasterization and Culling (4)



Depth Sort

� Draw faces back to front [Newell72]

� Overwrite the farther ones (painter’s alg.)

� Determine strict depth order
– Resolve cycles of overlaping polygons

� Step 1: depth sort (Z)
– Quick sort, bubble-sort (temporal coherence)

� Step 2: rasterization (YX)
– Bucket sort to pixels

Rasterization and Culling (5)



Depth Sort with BSP Tree

� BSP built in preprocess
– Select a plane

– Partition the polygons in 

front/back fragments

– If >1 polygon → recurse

� Quick-sort like, heuristics for splitting-plane selection

A

viewpoint

A2

A1 B

C

D
E

F

− +

− +

C

D

F

E

B

order: F,E,D,C,A2,B,A1

−

−

A2

A1

Rasterization and Culling (6)



Depth Sort with BSP Tree

� Tree size: O(n2)

� Run-time: simple traversal

� Improvements
– BSP need not be autopartition!

– For manifolds depth order can be predetermined → coarser BSP

– Generalization to all BSP nodes 

‘Feudal priority tree’ [Chen96]

Rasterization and Culling (7)



Area Subdivision

� Subdivide screen space 

[Warnock69]

� Classify polygons with 

respect to the area

� Terminate if trivial solution

� Step 1: octree subdivision (XY)
– Quick sort like

� Step 2: list for octree nodes (Z)
– Insertion sort

I

S

I

I

S

S

DI1

2

3

4

I

4

1

2

3

Rasterization and Culling (8)



Naylor’s BSP projection

� Draw polygons front to back

� Clip polygons by 2D BSP of projected polygons

� Step 1: depth sort (Z)
– 3D BSP built in preprocess

� Step 2: 2D BSP (XY)
– Quick sort like subdivision 

of the projection plane

Rasterization and Culling (9)



Scan-Line

� Sort by scan-lines (Y)

� Sort spans within a scanline (X)

� Search for closest span (Z)

� [Watkins70]
– Bubble sort in X and Y

– O(log n) search in Z

Rasterization and Culling (10)



Z-buffer

� Rasterize polygons in arbitrary order

� Maintain per pixel depths

� Step 1: rasterization (YX)
– Bucket sort like

� Step 2: per pixel depth comparison (Z)
– Min selection

Rasterization and Culling (11)



Ray Casting

� Cast ray for each pixel

� Step 1: spatial data structure (XYZ)
– Preprocess

– Trees ~ quick sort

– Grid ~ distribution sort

� Step 2: search for 

nearest intersection
– Min selection with 

early termination

viewport

Rasterization and Culling (12)



Z-buffer vs. Ray Casting

scan-line

coherence

presorting output 

sensitive

Z-buffer yes  + no    + no   -

Ray casting no    - yes   - yes +

� Z-buffer better in simple sparsely occluded dynamic 

scenes

� Ray casting better in complex densely occluded static 

scenes

Rasterization and Culling (13)



HSR - Summary

� Search for closest object for every pixel (ray)

� HSR algorithms sort in
– Directions (XY)

– Depth (Z)

– Differ in sorting order and methods [Suth74]

� Current winners: z-buffer, ray casting

Rasterization and Culling (14)



Visibility Culling

Find visible objects for a given view point or view cell

Problem Q S A

Ray shooting ray {objects} point

Hidden Surface 

Removal

{rays} {objects} {points}

Visibility culling {rays} {objects} {objects}

Photon maps point {points} {points}

Ray maps point {rays} {rays}

Irradiance 

caching

point {spheres} {spheres}

Rasterization and Culling (15)



Visibility Culling – Motivation

� Q: Why visibility culling?
– Object outside screen culled by HW clipping

– Occluded objects culled by z-buffer in O(n) time

� A: Linear complexity not sufficient!
– Processing too many invisible polygons

� Goal
– Render only what can be seen!

– Make z-buffer output sensitive

Rasterization and Culling (16)



Visibility Culling - Introduction

� Online
– Applied for every view point at runtime

� Offline 
– Partition view space into view cells

– Compute Potentially Visible Sets (PVS)

Rasterization and Culling (17)



Online Visibility Culling

� For every frame cull whole groups of invisible polygons

� Conservative solution
– Determine a superset of visible objects

– Precise visibility solved by z-buffer

� Hierarchical data structures
– kD-tree, octree, BVH

� View-frustum culling

� Occlusion culling
– CPU techniques

– GPU based (HW occlussion queries)

Rasterization and Culling (18)



View Frustum Culling

� Objects intersecting the view frustum

� Hierarchical VFC
– Spatial hierarchy: kD-tree, BSP tree, octree, BVH

– Intersection tests on hierarchy nodes

Visible objectsRasterization and Culling (19)



Occlusion Culling

� VFC disregards occlusion

� 99% of scene can be occluded!

� Solution: Detect and cull also occluded objects

Rasterization and Culling (20)



Shadow Frusta

� Construct shadow frusta for several occluders 

[Hudson97]

� Object is invisible if inside a shadow frustum

� Queries on the spatial hierarchy

Rasterization and Culling (21)



Shadow Frusta - Properties

� Properties
– + Easy implementation

– No occluder sorting

– No occluder fusion!

– O(n) query time

– Small number of occluders

Rasterization and Culling (22)



Occlusion Trees

� Occluders sorted into a 2D BSP tree [Bitt98]

� Occlusion tree represents fused occlusion

� Example: occlusion tree for 3 occluders

Rasterization and Culling (23)



Occlusion Tree - Traversal

� Visibility test of a node
– Depth-first-search

– Found empty leaf → tested object is visible

– Depth test in filled leaves

� Presorting occluders
– Tree size: worst case O(n2), 

– O(log n) visibility test

� Allows to use more occluders 

� Not usable for scenes with 

small polygons

visible

culled by VFC

invisible

viewpoint

view frustum

partially visibleRasterization and Culling



Hierarchical Z-buffer

� Extension of z-buffer to quickly cull larger objects

[Greene 96]

� Ideas
– octree for spatial scene sorting 

– z-pyramid for accelerated depth test

Rasterization and Culling (25)



Hierarchical Z-buffer - Example

Rasterization and Culling (26)



Hierarchical Z-buffer - Usage

� Hierarchical test for octree nodes

� Find smallest node of z-pyramid, which contains the 

tested box

� Box depth > node depth → cull

� Otherwise: recurse to lower z-pyramid level

� Optimization: use temporal coherence
– z-pyramid constructed from polygons visible in the last frame

Rasterization and Culling (27)



HW Occlusion Queries

� Query visibility from view point

� No preprocessing

� Dynamic Scenes

� Hardware occlusion queries → # visible pixels

Query bounding box Render geometry

Visible?

Rasterization and Culling (28)



HW Occlusion Queries

� Issues
– Latency – the result not readily available, the query costs time

� CHC/CHC++ [Bitt04,Matt08]
– Adapting hierarchy levels to be queried

– Interleaving querying and rendering

– Minimizing state changes, Query batching

Rasterization and Culling (29)

CHC: ~100 state changes CHC++: 2 state changes



CHC / CHC++

Heavy use of temporal & spatial coherence`

Rasterization and Culling (30)

1011

76

5

8

1

29

3
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5
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1011

12 13

front-to-back 

order

assume no query 

dependencies

no queries for previously

visible interior nodes

hidden regions: queries

depend on parents



CPU Stalls & GPU Starvation

Rx Render object x

Qx Query object x

Cx Cull object x

CPU

GPU

R1 Q2

R1 Q2

R2 Q3

R2 Q3

C3 Q4

Q4

R4

R4

time

Waiting time



CHC

Rx Render object x

Qx Query object x

Cx Cull object x

CPU R1 Q2

GPU R1 Q2

R2 Q3

R2 Q3

C3 Q4

Q4

R4

R4

time



Cells and Portals

� Partition the scene in cells and portals
– Cells ~rooms

– Portals ~ doors&windows

� Cell adjacency graph

� Constrained search
– Portal visibility test [Luebke 96]

Image courtesy of D. Luebke

Rasterization and Culling (33)



Portal Visibility Test

� Intersection of bounding rectangles of portals

Rasterization and Culling (34)



Cells and Portals Example

� Viewpoint in cell E

A

D

H

FCB

E

G

H

B C D F G

EA

Image courtesy of D. Luebke

Rasterization and Culling (35)



Cells and Portals - Example

� Adjacent cells DFG

A

D

H

FCB

E

G

H

B C D F G

EA

Rasterization and Culling (36)



Cells and Portals - Example

� Cell A visible through portals E/D+D/A

A

D

H

FCB

E

G

H

B C D F G

EA

Rasterization and Culling (37)



Cells and Portals - Example

� Cell H not visible through portals E/D+D/H

A

D

H

FCB

E

G

H

B C D F G

EA

X

X

Rasterization and Culling (38)



Cells and Portals - Example

� C not visible through portals E/D+D/A+A/C

A

D

H

FCB

E

G

H

B C D F G

EA

X

X

Rasterization and Culling (39)



Cells and Portals - Example

� H not visible through portals E/G+G/H

A

D

H

FCB

E

G

H

B C D F G

EA

X

X

Rasterization and Culling (40)



Offline Visibility Culling

Rasterization and Culling (41)

Potentially Visible Set (PVS)View cell



Visibility Preprocessing

� Preprocessing
– Subdivide view space into view cells

– Compute Potentially Visible Sets (PVS)

� Usage
– Find the view cell (point location)

– Render the associated PVS

� Other benefits
– Prefetching for out-of-core/network walkthroughs

– Communication in multi-user environments

� Problems
– Costly computation (treats all view points and view directions)

– PVS storage

Rasterization and Culling (42)



Interiors – Cells and Portals

� Subdivide the scene into cells and portals

� Constrained DFS on the adjacency graph 
– Portal visibility test

� More complex than the online algorithm
– We do not have a view point!

Rasterization and Culling (43)



Interiors – Cells and Portals

� Sampling [Airey90]
– Random rays

– Non-occluded ray → terminate

�

+ Simple implementation

� - Approximate solution

Rasterization and Culling (44)



Interiors – Cells and Portals

� Exact computation [Teller 92]
– Mapping to 5D (Plücker coordinates of lines)

� Portal edges → hyperplanes Hi in 5D

� Halfspace intersection in 5D

Rasterization and Culling (45)



General Scenes - Occlusion Tree

� Extension of the 2D occlusion tree

� 5D BSP tree
– Plücker coordinates of lines

� The tree represents union of occluded rays

Rasterization and CullingRasterization and Culling (46)



Adaptive Global Visibility Sampling

Rasterization and Culling (47)

� Classical from-region visibility 

� Global visibility sampling 

– Uses visibility coherence

– And is progressive

for each view cell

Compute PVS

while !terminate

Compute vis. sample

Add to all PVSs



Adaptive Global Visibility Sampling

� Use ray distributions that 

adapt to visibility changes

Rasterization and Culling (48)



Visibility Culling - Summary

� Find visible objects for a view point or view cell

� Heavy use of spatial sorting 
– Common HDS: kD-tree, octree, BVH

� Occlusion culling differs in occluder sorting
– No sorting, occlussion trees, HOM, cells + portals

� Online vs. offline culling
– Online: dynamic scenes

– Offline: very fast at runtime for static scenes

Rasterization and Culling (49)



Surveys on Visibility

� C. Dachsbacher: Analyzing Visibility Configurations, 

2011.

� J. Bittner and P. Wonka: Visibility in computer graphics, 

2003.

� D. Cohen-Or et al.: A survey of visibility for walkthrough

applications, 2003.

� F. Durand. 3D Visibility: Analytical Study and 

Applications, 1999.

Rasterization and Culling (50)
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Density Estimation

� Photon maps

� Ray maps

� General density estimation

� All of these are applications of 
– Nearest neighbor search  (single neighbor)

– K-nearest neighbor search (K nearest neighbors)

– Range search (given a range as a sphere)

Photon Maps and Ray Maps (3)



Photon Maps [Jensen 1993]

� Simple case of density estimation

Problem Q S A

Ray shooting ray {objects} point

Hidden Surface 

Removal

{rays} {objects} {points}

Visibility culling {rays} {objects} {objects}

Photon maps point {points} {points}

Ray maps point {rays} {rays}

Irradiance 

caching

point {spheres} {spheres}

Photon Maps and Ray Maps (4)



Photon Mapping Algorithm

Photon Maps and Ray Maps (5)



Final Gathering

� Shooting many secondary rays (possibly according to 

BRDF), gathering radiances from the rays

� Integrating the radiances properly to render image

N

Photon Maps and Ray Maps (6)



Direct Visualization of Photon Maps

� Do not shoot final gather rays, use directly visible 

photons from camera

� It is prone to artifacts on object boundaries referred to 

as bias

� Used for indirect 

specular illumination 

(caustics)

N

Photon Maps and Ray Maps (7)



Direct Visualization Example

� Photon Hits Direct Visualization

Photon Maps and Ray Maps (8)



Radiance Estimating along Final Gather Rays

� Using the density estimation, from the photon hits 

estimating PDF

� It requires K nearest neighbor searching for each final 

gather ray

� The number of final gather rays (the number of 

searches) is enormous

� Typically we shoot 200-4000 final gather rays per pixel

� The number of pixels per image 1-6 x 106

Photon Maps and Ray Maps (9)



Density Estimation in One Dimension

� Note: Importance Sampling: from given p(x) to samples

� Density Estimation: from samples reconstruct p(x) 

� Density estimation requires searching, importance 

sampling of a function can also use it for tabulated data

Photon Maps and Ray Maps (10)



Kernels for Density Estimation

� High efficiency

� Simple formula
Presentation and/or conference title, etc. (11)

Uniform
Epanechnikov

Hat

Gaussian
Biweight

(11)



Use of Sorting and Searching

� Range search – given a fixed range query (sphere, 

ellipsoid), find all the photons in the range

� K nearest neighbor search – given a center of the 

expanding shape X (sphere, ellipsoid), find K nearest 

photons
– Without considering the direction of incoming photons

– With considering only valid photons with respect to the normal at point Q

Range Search                               KNN search

Photon Maps and Ray Maps (12)



Search Techniques for Points

� Use any data structures described in the section 

“Hierarchical Data Structures”

� Typically kd-trees or kd-B-trees are used

Kd-tree Kd-B-tree

Photon Maps and Ray Maps (13)



Memory Data Layout

� The same as for ray tracing is possible

Depth-first-search (DFS) Van Emde Boas

TreeletsBy standard memory allocator

Photon Maps and Ray Maps (14)



Kd-tree Memory Layout

(BFS)

(DFS)

Photon Maps and Ray Maps (15)



Practical Yet Efficient Solution

� Use Kd-B-trees

� Construct a tree over an array of photons

� Use 8 Bytes nodes – good packing

� DFS or van Emde Boas Layout

� Sliding mid-point rule = spatial median + shift to 

nearest photon if one side empty

� One leaf contains a range of 30-70 photons (two 

indices to photon array)

� Properties:
– Fast construction time

– Fast search (complexity proved to be optimal)

Photon Maps and Ray Maps (16)



Aggregate Searching (Offline Solution)

Photon Maps and Ray Maps (17)



Searching Tricks for k-NN Search

� Do not use uniform grids, they do not work efficiently 

for skewed distributions

� Try to avoid a priority queue by using a fixed radius 

search, where the radius is estimated for given N (from 

already computed queries or the diagonal of a leaf box)

� Use offline search if possible

� Try to change the role of input data to be queried and 

queries

Photon Maps and Ray Maps (18)



Reverse Photon Mapping

� Normal Photon Mapping Reverse Photon Mapping

(gathering energy) (splatting energy)

� r – ends of final gather rays (in black)

� p – photons (in red)

Photon Maps and Ray Maps (19)



How To Do Searching Faster?

� Assume that the number of interactions among 

photons and final gather rays is the same !

� Traditional Photon Mapping – a single tree
– Many searches (~109) in a small tree over photons (~106)

– kNN search based on the photon density

� Reverse Photon Mapping – more involved (two trees)

– Smaller number of  searches (~106) in a larger tree over the ends of final 

gather rays (~up to 109)

– k-NN search is also based on the photon density

� Properties
– Search in a tree is logarithmic, reverse photon mapping then faster

– Reverse photon mapping takes more memory

Photon Maps and Ray Maps (20)



Time Complexity Formulas

� F … number of final gather rays

� K … number of neighbors for kNN search

� V … number of photons

� F.K … number of interactions photon-final gather ray

Traditional Photon Mapping Time:

CPT = C1 . F . K + C2 . F . log V

Reverse Photon Mapping Time:

CRPT = C1 . F . K + C2 . V . log F

For F >> V it is easy to show that F . log V > V . log F

Photon Maps and Ray Maps (21)



Data Flow and Data Structures View

Photon Maps and Ray Maps (22)



Tree Balancing for Searching

� Balancing Considered Harmful – Faster Photon 

Mapping using the Voxel Volume Heuristic [Wald et al. 

2005]

� The idea to use voxel volume heuristic for building the 

tree similarly to SAH as used in ray tracing

� The build time 5 to 20 times slower than for spatial 

median

� The speedup due to the balancing 30% to 400%  than 

for spatial median

Photon Maps and Ray Maps (23)

PLEFT = VL / V

PRIGHT = VR / V



Ray Maps

� [Havran et al. 2005]

Problem Q S A

Ray shooting ray {objects} point

Hidden Surface 

Removal

{rays} {objects} {points}

Visibility culling {rays} {objects} {objects}

Photon maps point {points} {points}

Ray maps point {rays} {rays}

Irradiance 

caching

point {spheres} {spheres}

Photon Maps and Ray Maps (24)



Ray Maps – Extension of Photon Maps

� Ray map: data structure sorting rays not points

� Allows efficient searching for rays
– Nearest to a point (k-NN)

– Intersecting a disc/sphere/hemisphere

� Main application:

improved density estimation

� Metrics for k-NN search

1. Distance on the tangent plane

2. Distance to the ray segment

3. Distance to the supporting line of the ray

Photon Maps and Ray Maps (25)



Density Estimation

� Problems with photon maps

– Boundary bias 

– Topological bias

– Proximity bias

� Ray maps
– Eliminate boundary bias and topological bias

Photon Maps and Ray Maps (26)



Ray Map Implementations

� Kd-tree

� Leaves store references to the rays

� Lazy construction driven by the queries

� Support efficient searching and updating

Photon Maps and Ray Maps (27)



Ray Map Queries

� Queries types
– Intersection search

– K-NN search

� Query domains
– Disc

– Sphere

– Hemisphere

– Axis-Aligned box

– Possible limitation on ray directions

Photon Maps and Ray Maps (28)



Ray Map Building

� Spatial median split

� Subdivide if #rays > budget

� Classify rays back, front, both

� Termination criteria

– #ray references per leaf (~32)

– Size of the leaf (~0.1% of the scene box)

– Max tree depth (~30)

Photon Maps and Ray Maps (29)



Searching Algorithm for Ray Maps

� Intersection search
– Locate all leaves containing query domain

– Gather rays

– Compute intersections

� k-NN search
– Priority queue 

– Locate the leaf containing the query origin

– If #rays < N get next node from the queue

Photon Maps and Ray Maps (30)



Maintenance of Ray Maps

� Deleting a ray
– Ray cast and remove references

� Adding a ray
– Ray cast and subdivide if required

� Keeping memory budget
– Collapsing of unused subtree nodes

– Least-recently-used strategy

Photon Maps and Ray Maps (31)



Optimization of Ray Map Search

� Coherence of queries – reducing top down traversal

• Directional splits
• Queries are oriented

• Many rays in the opposite direction after reflection

• Optimization: inserting directional nodes

Photon Maps and Ray Maps (32)



k-NN Search with Ray Maps

� 1M – 2.5M rays

� Typical memory usage: 16 – 128MB

� Query time (500-NN): 0.2–1.5ms (3.2GHz PC)

� Approx. 2 - 5 times slower than photon maps

Photon Maps and Ray Maps (33)



Comparison Photon Maps and Ray Maps

Photon maps 

Photon maps 

+ convex hull

Ray maps 

Photon Maps and Ray Maps
(34)



Ray Maps - Summary

� Sorting rays + efficient searching

� Kd-tree implementation
– Simple implementation

– Efficient memory usage control

� Density estimation
– New query domains + new metrics

– Elimination of boundary bias

– Reduction of topological bias

– 2-5x slower than photon maps

Photon Maps and Ray Maps (35)



Similar Data Structures to Ray Maps

� Ray cache [Lastra02] – hierarchy of spheres

� Volumetric ray density estimation [VanHaevre04]
– Octree

– Simulation of plant growth

� Some other concepts do not work
– Ray → 5D point (Plücker coordinates) and 5D kd-tree

– Query → 5D polyhedron

– Really poor performance, culling only at very bottom of the tree

Photon Maps and Ray Maps (36)
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Irradiance Caching [Ward 1988]

� Using interpolation for relatively smooth function of 

indirect illumination

Problem Q S A

Ray shooting ray {objects} point

Hidden Surface 
Removal

{rays} {objects} {points}

Visibility culling {rays} {objects} {objects}

Photon maps point {points} {points}

Ray maps point {rays} {rays}

Irradiance 

caching

point {spheres} {spheres}

Irradiance Caching (3)



Radiance and Irradiance Caching

� [Slide courtesy of Krivanek 2006]

Scene
Radiance
Cache

Radiance 
cache 
lookup

Cache
Miss!

Sample
hemisphere

Project onto 
(hemi)spherical
harmonics

p1

Lo=∫ � BRDF(p1) � cos θ dωLo(p1)

Radiance
cache
lookup

Lo(p2)=∫ � BRDF(p2) � cos θ dωLo(P2)
Irradiance Caching (4)



Irradiance Cache Search

� Records – the irradiance specified by spheres (point 

and radius of influence)

� Query: given a point, find all the sphere in which the 

point is contained

� Problem is intersection search

� Data structures should be dynamic – insertion and 

deletion is required

Irradiance Caching (5)



Irradiance Cache Searching

� Data: spheres C1, C2, C3 …..               Queries: points PQ 

� Ouput of search: set of spheres containing PQ

Irradiance Caching (6)



Irradiance Cache with Octrees

Irradiance Caching (7)

� [Ward et al. 88]



Data Structures for Irradiance Cache

� Intersection search, spheres are sorted. The search for 

spheres containing a query point

� Originally octree [Ward 88]

� Survey  of other possibilities in the thesis: Data 

Structures for Interpolation of Illumination with 

Radiance and Irradiance Caching, Karlik [2011]
– Wards’s octree

– Multiple reference octree

– Kd-tree

– Multiple reference kd-tree

– Bounding volume hierarchies

– Dual space kd-tree in R4 (transformation method)

Irradiance Caching (8)



Comparison of Different Data Structures

for Irradiance Caching

� Experimental comparison: data structure nodes, nodes 

visited per query, records visited per query, data 

structure build time, performance [samples/s]

� Summary:
– The point kd-tree has low build time and very good search time

– From the data structures referencing only once each record, BVH is the 

best (2 to 4 times better than Wards’ octree), perhaps the most practical.

– The fastest search is for multiple reference kd-tree,  but its build time is 

also the highest one

– The solution via transformation method to R4  is slow

� The details in the Master Thesis [Karlik 2011]together 

with data structures for (directional) radiance caching

Irradiance Caching (9)
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BRDF – Bidirectional Reflectance

Distribution Function

� BRDF definition

� Unit: [1/sr]

BRDF and BTF (3)
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BRDF Overview

� Several possibilities to represent BRDF
– Analytical models

– Data tabulated measured models

– Compression algorithms

� For rendering another operation needed:        

importance sampling of BRDF.cos(θ)

BRDF and BTF (4)



BRDF Importance Sampling 

[Lawrence et al. 2005]
� Tabulated data – computing importance sampling from 

BRDF.cos(θ)
– Set of 1D marginal PDFs in form of cumulative distribution functions (CDF)

– Compress 1D CDF functions with Douglas-Peucker curve approximation

– Select first which 1D function using binary search

– Then by binary search over 1D function select direction

BRDF and BTF (5)
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Binary search O(log n)
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Generic BRDF Sampling [Montes et al. 2008]

� Rejection sampling is in general slow
– It pays of to build auxiliary data structures to speed up importance 

sampling

– The rejection sampling is limited to regions using quadtrees working over 

2D slices of BRDF.cos(θ) and the maximum is stored for each cell of 

quadtree.

– Precompute and store for each 2D cell its mean and maximum values, 

subdivide until these two do not differ much!

BRDF and BTF (6)



BTF Datasets [Dana et al. 1999]

� Extension of BRDF concept by two dimensions for 

position in space, so 7D function

BTF captures visual richness, anisotropy, visual masking and self-shadowing

BRDF and BTF (7)



BTF Compression - Data Based Driven Approach 

[Havran et al. 2010]

� BTFBASE - set of codebooks, database like approach, 

motivated by searching of similar texels in BTF datasets

� For importance sampling we need twofold binary 

search, cumulative distribution function is computed 

on the fly for small 1D functions

� For compression the main operation is only search –

for single threaded application the compression time is 

from 8 to 20 hours for year 2009.

� Insertion one by one, implements vector quantization

� The multi-level decomposition gives even higher 

compression ratio

BRDF and BTF (8)



BTF Compression Scheme Overview

BRDF and BTF (9)



BTF Compression Summary

� Algorithm idea motivated by paradigm: rendering is 

sorting and searching

� Compression ratio from 1:233 to 1:2267 , average 

1:764 for most compact representation

� Decompression fast both on CPU and GPU, bottleneck 

is the number of accesses into the memory, but still 1.5 

times faster than [Lafortune 97] model with one lobe

� Fast importance sampling: 310,000 to 1,360,000 

evaluations per second on a single core CPU

� Multi-level quantization improves compression ratio 10 

times, more details in the paper, demo on the web

BRDF and BTF (10)
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CPU versus GPU 

� CPU
– Small number of independent cores per CPU (12 cores Xeon E5-2695 V2)

– Cache based architecture - efficient cache hierarchy (L1, L2, L3)

� GPU
– Thousands of #cores (2880 cores in GeForce GTX Titan Black), SIMT 

computation organization (warps)

– Stream based architecture

– Limited cache / local memory, high dependency on number of registers

– Large number of threads, hiding memory latency, minimizing 

synchronization, on-chip shared buffers

(3)

cores transistors 

[M]

L1

kB

L2

kB

L3

MB

TFLOPS

CPU 2-12 4000 384 3072 30 1

GPU 2880 7080 240-720 1536 - 5

GPU Sorting



NVIDIA GPU Architecture Overview

� Kepler (GK 110)

� 7.1 billion transistors

� Dynamic parallelism

� 3x more efficient than 

Fermi (same power)     

� Hyper-Q sharing one 

GPU among more CPUs

� Maximum 255 registers

per thread, configurable shared memory/cache size etc.

(4)

Image courtesy of NVIDIA

GPU Sorting



NVIDIA Kepler Architecture (GK110)

GPU Sorting (5)



NVIDIA Kepler SMX

GPU Sorting (6)



NVIDIA Kepler / Maxwell Comparison

(7)GPU Sorting



GPU Programming Models

� Fixed OpenGL
– Difficult mapping of algorithms and to data structures to GPU

– [Purcell et al. 2002, Ray Tracing on Programmable Graphics Hardware]

� Programmable OpenGL 
– GLSL, tesseletation, vertex, geometry, fragment shaders

– Compute shaders

� CUDA
– GPU programming language

– Flexible + controllable, performance oriented

� OpenCL
– General parallel oriented programming language (also for CPUs)

(8)GPU Sorting



Sorting & Searching on the GPU

� Searching parallelization only
– Build data structure on the CPU, transfer it to the memory

– GPU is used for searching only by many parallel threads

– Relatively easy implementation

– Used for NVIDIA OptiX and Karras/Aila framework for ray tracing

� Full parallelization (both build and search)
– Papers already from 2006 - still relatively cumbersome to implement 

– Common use  of parallel prefix sum (general reductions), gather, scatter 

– Dynamic allocation needed for some data structures (kd-tree)

– Hot research topic - potential for future applications

(9)GPU Sorting



Searching on the GPU

� Independent queries 
– Large number of threads

– Minimizing synchronization

– On-chip shared buffers

� Using uniform grid 
– Efficient parallelization (regular, predictable)

– Lower algorithmic efficiency for irregular data

(10)GPU Sorting



Searching on the GPU

� Using hierarchies
– Parallel traversal without stack: restart, neighbor links

– Using stack of limited size

– Stack spilling

� Scheduling traversal
– Minimizing memory bandwidth and latency

– Maximizing coherency of traversal (interior nodes vs leaves)

– Postpone leaf processing [Aila&Laine]

(11)GPU Sorting



Sorting on the GPU

� Sorting methods
– Radix sort / distribution sort [Merrill2010]

– Merge sort

� Mapping higher dimensional problems to 1D sort
– Morton codes (LBVH, HLBVH)

� Hashing
– Linear / quadratic probing

– Cuckoo hashing [Alcantara09]

� Spatial hierarchies
– Low amount of “vertical” parallelism near root node [Karras12]

– Horizontal parallelization: parallel node subdivision step

(12)GPU Sorting



General Parallelization Framework

� Task pool using persistent threads [Vinkler2013]
– Organizing unsolved tasks

– Searching for available work

– Seamlessly merging vertical / 

horizontal parallelization

� Dynamic parallelism 

(NVIDIA Kepler)
– Ability to spawn new work 

in the kernel, since year 2013

(13)GPU Sorting



GPU’s Weak Points for Hierarchies

� Difficult horizontal parallelization
– Needed for top-level parts of hierarchical data structures

� Inefficient implementation of dynamic allocation 
– As of 2013/2014

– Difficult to implement kd-trees SBVHs, low performance

� Performance limitations
– Number of registers and small local cache

� Much more difficult to implement than on a CPU

(14)GPU Sorting



New Trends – GPUs for Mobile Devices

Two options for mobile devices

� Light weight programmable GPUs for mobile phones
– Mostly useful for rasterization

� Special hardware proposed for traversal in ray tracing
– SIGGRAPH ASIA 2013 [Real Time Ray Tracing on Future Mobile 

Computing Platform] uses BVHs (SGRT – Samsung Reconfigurable GPU 

based on Ray Tracing)

� Hardware proposal for GPU building
– SIGGRAPH 2013 [Doyle: A Hardware Unit for Fast SAH-optimized BVH  

Construction]

� BVHs most perspective for ray tracing in mobile 

devices?

(15)GPU Sorting



Summary

� Practice – build on a CPU, traverse on a GPU

� Uniform grids 
– Option for some problems with regular distribution of data

� Building data structures on GPUs is still difficult
– General sorting algorithm do not suffice 

� Open research problems
– Efficient parallelization of building hierarchical data structures

– Real time performance needed 

– Advanced global illumination algorithms fully running on GPUs

� With newer GPU architectures things will change
– More flexibility

– Rays/W on mobile devices

(16)GPU Sorting
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What Is Left Unpresented in Our Tutorial

� Beam tracing approaches for photon ray splatting [Herzog et al. 

2007] with kd-trees, stochastic progressive photon mapping 

[2009], progressive photon mapping [2008],

� Vertex connection and merging – [Georgiev et al. 2012], 

[Hachisuka et al. 2012]  and similar [Bekaert et al. 2003]

� Importance sampling of environment maps – various papers 

such as Q2-tree [Wan et al. 2005] and [Havran et al. 2005]

� Light-cuts and light hierarchies [Walter et al. 1998], [Paquette et 

al. 1998] etc.

� Product importance sampling with quadtrees [Clarberg 2006], 

[Rouselle 2008], [Clarberg and Akenine-Moller 2008]

� Numerous uses of simple binary search in rendering algorithms 

and algorithms we have overlooked or not had time for!
Conclusion (2)



Tutorial Conclusion

� Sorting and searching is a must in rendering algorithms 

even of fast advances of hardware

� The selection of right algorithm and data structure is 

hardware dependent, getting the best algorithm is difficult, 

no worst case guarantees

� In general hierarchies work well, for special cases uniform 

grids, hashing etc.

� Implementation on GPUs and other special architectures 

possible but cumbersome

� Future trend might be to put searching and also sorting to 

hardware for fully specified algorithms keeping 

programmability by shaders etc.
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