

Tutorial

Symmetry in Shapes Theory and Practice

Maksim Ovsjanikov Niloy Mitra

Mark Pauly

Michael Wand Duygu Ceylan

Geometry

γεωμετρία

geo = earth

metria = measure

"The branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space."

συμμετρία

- 1. "similarity, correspondence, or balance among systems or parts of a system
- 2. "an exact correspondence in position or form about a given point, line, or plane"
- 3. "beauty or harmony of form based on a proportionate arrangement of parts"

Collins English Dictionary

Group Theory

• Mathematical language of symmetry

H. Weyl, *Symmetry*. Princeton University Press, 1952

Transformations

Translation

Scale

Rotation

Symmetry as *invariance to transformations*

Rotation by
$$\frac{360^{\circ}}{5} = 72^{\circ}$$

$$2 \cdot \frac{360^{\circ}}{5} = 144^{\circ}$$

$$3 \cdot \frac{360^{\circ}}{5} = 216^{\circ}$$

$$4 \cdot \frac{360^{\circ}}{5} = 288^{\circ}$$

$$5 \cdot \frac{360^{\circ}}{5} = 360^{\circ} = 0^{\circ}$$

Cyclic Group C₅

Symmetry as *invariance to transformations*

Rotation by
$$\frac{360^{\circ}}{5} = 72^{\circ}$$

$$2 \cdot \frac{360^{\circ}}{5} = 144^{\circ}$$

$$3 \cdot \frac{360^{\circ}}{5} = 216^{\circ}$$

$$4 \cdot \frac{360^{\circ}}{5} = 288^{\circ}$$

$$5 \cdot \frac{360^{\circ}}{5} = 360^{\circ} = 0^{\circ}$$

Cyclic Group C₅

Dihedral Group D_5

Group Generators

Dihedral Group D_5

generating transformations

Group Axioms

Dihedral Group D_5

• Closure

$$a,b \in G \to a \cdot b \in G$$

?
$$a \cdot b = Ref. A \cdot Ref. B = Rot. 288^{\circ}$$

Group Axioms

Dihedral Group D_5

- Closure $a, b \in G \rightarrow a \cdot b \in G$
- Associative $a, b, c \in G \rightarrow (a \cdot b) \cdot c = a \cdot (b \cdot c)$

Group Axioms

Dihedral Group D_5

- Closure
- $a, b \in G \rightarrow a \cdot b \in G$

• Associative
$$a,b,c \in G \rightarrow (a \cdot b) \cdot c = a \cdot (b \cdot c)$$

• *Identity*

$$\exists \ 1 \in G \to \forall a \in G : 1 \cdot a = a \cdot 1 = a$$

Group Axioms

Dihedral Group D_5

• Closure

$$a, b \in G \rightarrow a \cdot b \in G$$

• Associative

$$a, b, c \in G \rightarrow (a \cdot b) \cdot c = a \cdot (b \cdot c)$$

Identity

$$\exists \ 1 \in G \to \forall a \in G : 1 \cdot a = a \cdot 1 = a$$

• Inverse

$$\forall a \in G \; \exists b \to a \cdot b = b \cdot a = 1$$

$$Rot. 72^{\circ}$$

dihedral group D_5

cyclic group C_3

infinite group O(2)

Group Generators

Patterns

1D - Frieze Groups

translation (T) $T+ \ vertical \ reflection \ (VR)$ $T+ \ glide \ reflection \ (GR)$ $T+ \ GR + \ horizontal \ reflection \ (HR)$ $T+ \ R+ \ VR + \ GR$

2D - Wallpaper Groups

Metal Foam

Antibody

Roof Construction

Human Brain

Spiral Galaxy

Design by F. Gehry

Classification

Global vs. Partial

(a) complete symmetry group on parts of a shape

(b) partial translational symmetry

(c) partial rotational symmetry

Classification

Global vs. Partial

Exact vs. Approximate

Classification

Global vs. Partial

Exact vs. Approximate

Intrinsic vs. Extrinsic

Understanding Geometry

Understanding Geometry

Symmetry encodes Redundancy

Symmetry & Information

Symmetry is **Absence** of information

"A 10x10 Regular Grid of Points"

Symmetry & Information

Symmetry is **Absence** of information

→ structure discovery by **minimizing** representation cost

Symmetry & Information

Symmetry is **Absence** of information

→ structure discovery by **minimizing** representation cost

