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Abstract. A wide number of practical applications would benefit from automat-
ically generated graphical representations of relational schemas, in which tables
are represented by boxes, and table attributes correspond to distinct stripes inside
each table. Links, connecting two attributes of two different tables, represent re-
lational constraits or join paths, and may attach arbitrarily to the left or to the right
side of the stripes representing the attributes. To our knowledge no drawing tech-
nique is available to automatically produce diagrams in such strongly constrained
drawing convention. In this paper we provide a polynomial time algorithm solv-
ing this problem and test its efficiency and effectiveness against a large test suite.

1 Introduction

The tasks of designing, maintaining, updating, and querying databases require users
and administrators to cope with the complexity of the relational schemas describing
the structure of the data. A graphical representation of such schemas greatly improves
the friendliness of database applications and it is essential for producing high-quality
understandable documentation. For this reason many commercial tools have some dia-
gramming facilities (see Figure 1 for an example) that rely on the user to nicely place
tables and their relationships on the screen. However, drawing diagrams manually is
time consuming and the aesthetic results are often unsatisfactory.

Unfortunately, to our knowledge, no drawing technique is available to automati-
cally produce high quality diagrams of this kind. In fact, such diagrams are strongly
constrained: each table of the relational schema is usually represented by a box com-
posed by a vertically ordered sequence of attributes, topped by the table name. Edges
represent constraints or join paths between tables. An edge linking an attribute of one
table to an attribute of a different table may attach arbitrarily to the left side or to the
right side of the boxes, and should incide the box at the level of the attribute name.

Actually, even if the link between the database research area and the graph draw-
ing one is strong, the interest has been so far mainly focused on the visualization of
Entity-Relationship diagrams and Data-Flow diagrams, that are relatively simpler to
draw automatically than the relational schema diagrams (see, e.g. [5, 3, 11]).

The results presented in this paper can be summarized as follows: (i) We formulate
the problem of automatically generating relational schema diagrams as a constrained

? Work partially supported by: “Progetto Algoritmi per Grandi Insiemi di Dati: Scienza e Ingeg-
neria”, MURST Programmi di Ricerca di Rilevante Interesse Nazionale.



Fig. 1. A screen snapshot of Microsoft Accessc
. The example is taken from a real life applica-
tion. Lines represent referential integrity constraints (see Section 2).

orthogonal graph drawing problem, and we address it within the “classical” topology-
shape-metric approach [17, 18, 11], showing how this approach can be tailored to take
into account the complex constraints originated by this type of diagrams (Section 3). (ii)
We give a polynomial time algorithm for constructing relational schema diagrams. The
algorithm relies on several variations of existing graph drawing techniques, giving new
highlights on their practical applicability (Section 3). (iii) We present an implementation
of the algorithm and show its efficiency and effectiveness performing an experimental
test with a random generated test suite (Section 4). Basic definitions and background
are given in Section 2 and open problems are outlined in Section 5.

2 Background

Since our target is to pictorially show only few, well determined, features of database
schemas, we give a simplified model of them. We calltable an ordered set of named
attributes. We callrelational schemaa set of named tables and a set of pairs of attributes,
called links. In our model tables and attributes are in one-to-one correspondence with
the homonymous concepts of the database research field while the concept of link is
new.

A link is an abstract placeholder. Its purpose it to representjoin pathsand/orref-
erential integrity constraints. A join path is a frequently used join operation between
two tables, based on the equality of the two attributes (represented in our model as the
extremes of the link). A referential integrity constraint states that the legal values for a
given attributea are the values that appear in the keyk of specified table (represented
in our model as a link betweena andk). Further details may be found in [2]. From the
point of view of our algorithm it is not relevant to distinguish the two cases.
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Fig. 2. An example of relational schema with4 tables and6 links. Links represent referential
integrity.

We consider pictorial representations of a relational schema (see Figure 2) with
the following properties: (a) Each table is represented as a box and its attributes are
sequentially listed in the box. Each attribute corresponds to a horizontal stripe of the
box. The top stripe of each table is reserved for its name. All stripes have the same
height. (b) Each link(a; b) is represented as a polygonal line between the boxes of the
two tables containing attributesa andb, respectively. The polygonal line incides the
extremal boxes at the heights of the stripes associated witha andb, and all its segments
are either horizontal or vertical (orthogonal standard).

We callRO-drawing (Relational-schema Orthogonal drawing) a layout of a re-
lational schema that respects the above properties.

We now recall basic graph drawing definitions. We assume some familiarity with
graph theory and connectivity [13].

A plane drawing� of a graphG maps each vertex ofG into a point of the plane,
and each edge ofG into a Jordan curve between the two points associated with the
end-vertices of the edge. A drawing� of G is planar if it does not contain crossings
between edges. A graph isplanar if it admits a planar drawing. A planar drawing� of
G induces for each vertexv of G a circular clockwise ordering of the edges incident
on v. Two planar drawings ofG are said to beequivalentif for each vertexv of G
they induce the same ordering of the edges aroundv. An embedding� of G is a class
of equivalent planar drawings ofG. In other words, we can regard an embedding ofG

as the choice of a clockwise ordering of the edges around every vertex. Anembedded
graphG� is a planar graphG with a given embedding�.

An orthogonal drawingof G is a plane drawing ofG such that all edges are rep-
resented as chains of horizontal and vertical segments. Anorthogonal representation
(or shape) of G is an equivalence class of planar orthogonal drawings such that all the
drawings of the class: (i) have the same sequence of left and right turns (bends) along
the edges, and (ii) two edges incident at a common vertex determine the same angle.
Roughly speaking, an orthogonal representation defines a class of orthogonal drawings
that may differ only for the length of the segments of the edges.



One of the most popular technique for computing orthogonal drawings of a graph
G is the so calledtopology-shape-metricsapproach [4, 17, 11]. It consists of three con-
secutive steps:

Topology: In this step a topology forG is computed. Namely, ifG is planar an
embedding� of G is determined in linear time, by applying a well-known planarity
testing algorithm [14, 10]. IfG is not planar, an embedding can be computed for it
by adding a minimal number of dummy vertices to replace crossings. Such operation
is usually calledplanarization. The number of crossings depends on the planarization
technique, and it may be
(n4). However, in practice this number is usually much
smaller. For a survey on planarization techniques see [11].

Shape:During this step, an orthogonal representationH of G� is computed within
the embedding�. A famous algorithm for constructing an orthogonal representation
of an embedded graph with vertices having at most four incident edges is presented
in a work by Tamassia [17]. Such algorithm computes an orthogonal drawing that has
the minimum number of bends within the given embedding. Extensions of Tamassia’s
algorithm to general embedded graphs are provided in [18, 12].

Metrics: In this step a final geometry forH is determined. Namely, acompaction
algorithm assigns coordinates to vertices and bends ofH with the purpose of reduc-
ing as much as possible the area (or the total edge length) of the final drawing, while
preserving its planarity [11].

The Topology-Shape-Metrics approach allows us to deal with topology, shape, and
geometry of the drawing separately, so simplifying the whole drawing problem. How-
ever, decisions taken in early steps cannot be changed, thus overall optimization is not
achieved in general. For instance, introducing cross vertices forces crossings to appear
on specific edge pairs, thus the total number of bends may be not optimal.

3 RO-Algorithm

In this section we describe a polynomial time algorithm for computing drawings of
relational schemas within theRO-drawing convention described in Section 2. The
algorithm is based on the topology-shape-metrics approach and exploits and modifies
several existing graph drawing techniques. In particular, it makes careful use of a con-
strained planarization technique and of a variation of the algorithm in [6] for computing
an orthogonal drawing of the relational schema.

LetS be a relational schema. Theunderlyinggraph ofS is the graphGS whose ver-
tices are the tables ofS and whose edges are the links ofS. We say thatS is connected
whenGS is connected. We assume thatS is always connected. IfS is not connected
we can apply the algorithm we describe hereunder to every connected component, and
then arrange all obtained drawings on the plane by using any packing heuristics [9, 15].

The RO-Algorithm consists of three main steps:
Constrained PlanarizationA planarization is performed on the underlying graph

GS of S. The purpose of this step is to obtain a planar embedding ofGS such that the
order of the edges around each vertexvT , representing a tableT , is compatible with the
drawing standard described in Section 2 and the specific sequence of attributes ofT .
The output of this step is an embedded graphG0

S where dummy vertices of degree four
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Fig. 3. Four u-turns in a partially computed RO-drawing, the round vertices are u-vertices.

are introduced to replace crossings (cross-vertices). Each link ofS is represented inG0

S

as an alternating chain of edges and cross-vertices.
U-Turns Assignment This step deals with the left-to-right development of the

drawing. From this perspective the edges can be classified into two types: Edges that
monotonically follow the left-to-right direction and edges that have to perform one or
more “u-turn”. In this step a (possibly empty) sequence of u-turns is associated with
each edge trying to minimize their total number. U-turns are represented inG0

S with a
particular kind of dummy vertices (u-vertices) of degree two that split the edges (see
Figure 3).

Orthogonalization For each vertex ofG0

S a pattern, among the ones depicted in
Figure 4, is applied according to the type of the vertex. Once all vertices ofG0

S have
been considered, an appropriate sequence of 90 degrees bends (left or right) is associ-
ated with each edge, so describing an orthogonal representationH . To obtain the final
RO-drawing fromH the length of the edges and the size of the vertices are computed,
heuristically “minimizing” the total edge length, and avoiding overlaps. Finally, cross-
vertices and u-vertices are removed so that each link is again represented by exactly one
edge.

3.1 Constrained Planarization

In the Constrained Planarization step, a planarization is performed on the underlying
graphGS of S. Let vT be a vertex representing tableT in GS and leta1; : : : ; ak be
the attributes ofT . Our algorithm partitions the edges incident onvT into 2k possibly
empty setsl1; : : : ; lk; r1; : : : ; rk, where the edges ofli [ ri represent the links incident

(a) (d)(c)(b)

Fig. 4. Patterns for translating the description of a graph with cross-vertices and u-vertices into
an orthogonal representation. (a) Vertex representing a table; (b) Cross-vertex; (c,d) u-vertices.



on attributeai. Edges ofli (ri) will entervT from the left (right) in the final drawing. An
edge ofli (ri) is aleft edge(right edge) for vT . We aim at computing a planarization of
GS with the following constraints for eachvT : (i) The edges of the same set should ap-
pear contiguously in the circular order aroundvT ; (ii) Setsl1; : : : ; lk; rk; : : : ; r1 should
appear in this counter-clockwise order aroundvT .

We solve the above problem carefully exploiting a constrained planarization tech-
nique that allows to specify a set of uncrossable edges. Primitives of this kind are avail-
able, for instance, within the GDToolkit library [1].

Namely, GraphGS is mapped into a new graphPS in which each vertexvT , associ-
ated with a tableT with k attributes, is represented by a(k+2)-vertex path whose ver-
tices and edges are called� -verticesand� -edges, respectively. The vertices of the path
arefvnorth; v1; : : : ; vk; vsouthg, wherevi is associated with attributeai (i = 1; : : : ; k).
The edges of the path are(vnorth; v1); (v1; v2); : : : ; (vk; vsouth). The edges representing
links incident on attributeai are made incident onvi. Intuitively,� -vertices and� -edges
represent the structure of a table, and verticesvnorth andvsouth represent the upper and
bottom part of the table, respectively.

Now, we run a planarization onPS with the constraint that every� -edge inPS is
uncrossable. Intuitively, this is done to have no edges that intersect tables in the final
drawing. After the planarization, a contraction operation is applied to all the� -vertices
and� -edges associated with the same table. The result of this phase is an embedded
graphG0

S whose vertices may either represent a table or a cross. It is possible to show
that the constraints described at the beginning of the subsection are enforced.

3.2 U-Turns Assignment

This step associates a (possibly empty) sequence of u-vertices with each edge ofG0

S . A
two phases procedure is adopted.

First, we assign an orientation to the edges. Such orientation describes the left-to-
right development of the drawing. Consider edgee = (vT 0 ; vT 00), where none ofvT 0 ,
vT 00 is a cross vertex. Four cases are possible. Ife is a right edge forvT 0 and a left edge
for vT 00 , thene is oriented fromvT 0 to vT 00 . If e is a left edge forvT 0 and a right edge
for vT 00 , thene is oriented fromvT 00 to vT 0 . If e is a right edge forvT 0 and a right edge
for vT 00 , thene is split into two edges both oriented outgoing fromvT 0 andvT 00 . If e is
a left edge forvT 0 and a left edge forvT 00 , thene is split into two edges both oriented
incoming invT 0 andvT 00 .

A special technique is used for orienting the edges around cross-vertices imposing
two of the incident edges to be ingoing and the other two outgoing. Orientation is then
propagated from the vertices representing tables through the cross-vertices (possibly
inserting u-vertices to avoid conflicts) until all edges are oriented.

Second, consider the obtained orientation and the inserted u-vertices. Two cases are
possible. Either the embedded directed graph can be drawn left-to-right within the given
embedding and with edges that monotonically follow the left-to-right orientation or not.
In the first case we just go to the Orthogonalization step. In the second case we insert
into G0

S the minimum number of u-turns that are needed to do that. Such a problem
has been studied in [8] and can be solved in polynomial time using the flow techniques
described in that paper.



3.3 Orthogonalization

The output of the U-Turns Assignment Step is an embedded directed graph with some
dummy vertices called cross-vertices and u-vertices. Further, such a directed graph
is drawable monotonically in the left-to-right direction preserving the embedding. To
compute an orthogonal representation ofG0

S we first draw it monotonically with the
technique shown in [8] and then apply the patterns depicted in Figure 4, obtaining an
orthogonal representation.

Once an orthogonal representation is constructed we shrink it in a limited area by
using a variation of the compaction technique shown in [6]. Such technique allows to
assign to each vertex exactly the required size and to arrange the edges to incide at the
right height.

3.4 Time Complexity

The following result summarizes the analysis of the computational complexity:

Theorem 1 Given a relational schema withn tables,m links, and a bounded number of
attributes per table, RO-Algorithm takesO((n+ c)2 log(n+ c)), wherec is the number
of crossings of the output drawing.

Proof. (sketch) The Constrained Planarization step takesO(m(n+ c)) time, because it
executesO(m) times a breadth first search algorithm for computing shortest paths, as
explained in [11]. After this step, the number of vertices of the graph isN = n + c.
The U-Turn Assignment step takesO(N) time to makeG0

S oriented. The application
of the flow technique described in [8] for inserting the minimum number of u-turns
takesO(N2 logN) time. The Orthogonalization step takesO(N) time to produce the
orthogonal representation of the planarizedG0

S andO(N2 logN) time to compact the
drawing by using flow techniques, as described in [11, 6]. Hence the statement follows.

ut

Note that even ifc may be
(n4), relational schemas observed in practice are quite
sparse (m = O(n)), and “almost planar”, soc is much smaller.

4 Implementation and Experiments

We implemented the algorithm for computingRO-drawings , described in Section 3.
The implementation is written in C++ and uses the GDToolkit graph drawing library
(http://www.dia.uniroma3.it/�gdt) which is based on LEDA [16].

In order to evaluate the effectiveness of the algorithm, we tested it over a set of900
randomly generated relational schemas, with up to90 tables. Namely, for each fixed
numbern of tables in the range10–90, we considered10 different relational schemas;
each one of these schemas has been generated as follows: We denote the tables of the
schema byT1; : : : ; Tn. For each tableTi (i = 1; : : : ; n), we randomly chose the number
ki of attributes ofTi, and sequentially enumerate them. The choice ofki is done with a
uniform probability distribution in the range1�10. We denote byAi = fai1; : : : ; aikig
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Fig. 5. (a) Chart of the area occupied by the drawings of the schemas of the test suite with respect
to the number of tables (x-asis). (b) A drawing of a relational schema of the test suite.

the set of the enumerated attributes ofTi. At the general step of the algorithm we ran-
domly select two distinct tablesTi andTj (i; j 2 f1; ::; ng), and two their attributes
air; ajs, wherer 2 f1; : : : ; kig ands 2 f1; : : : ; kjg. We add the link(air ; ajs) to the
relational schema. We add a total number of links that is randomly chosen in the range
n–2n. When all links have been added, we check if the relational schema is connected.
If it is not connected we discard the schema and restart the generation all over again,
and so until a connected schema is obtained.

From the experiments, the space occupied by the drawings appears to increase
quadratically with the number of tables, which is coherent with the results of other
experiments in previous works [6]. In Figure 5 (a) the chart of the total area occupied
by the drawings of the schemas of the test suite is shown. In Figure 5 (b) a drawing of a
relational schema of the test suite is put in evidence. In Figure 6 it is shown an example
of RO-drawing of a relational schema with18 vertices taken from real life.

5 Conclusions and Open Problems

We have presented an algorithm for automatically drawing diagrams representing rela-
tional database schemas. We have also implemented and experimented such algorithm
on a test suite of randomly generated relational schemas. Several problems remain open:
(a) We are currently integrating the implementation within the Microsoft OLE platform.
We would like to set up a web service that allows any user to exploit ability of our al-
gorithm in drawing relational schemas. The user will be free to adopt several types of
interchange formats. (b) Some more fine tuning could be performed on the algorithm.
We plan to do it by further enriching the test suite. (c) It would be interesting to un-
derstand how to modify the algorithm if the attributes of the tables can be arbitrarily
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Fig. 6. A drawing of a relational schema, from real life, computed by our implementation of
RO-Algorithm .

permuted in such a way to improve the aesthetic quality of the final drawing. (d) We
plan to modify the technique described in this paper in order to obtain drawings of
similar widely employed diagram standards (as, for example, UML diagrams) .
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