PARALLEL FIXED POINT DIGITAL DIFFERENTIAL
ANALYZER

Ramoén P. Molla, Ricardo Quirés, Javier Lluch, Roberto Vivo.
Secci6n de Informatica Grafica.
Departamento de Sistemas Informaticos y Computacién.
Universidad Politécnica de Valencia.

Camino de Vera, 14

46071 Valencia SPAIN

e-mail: rmolla@tierra.upv.es, rquiros@dsic.upv.es

Tel.+(34) 6 3877351

FAX: +(34) 6 3877359

ABSTRACT

Two main serial algorithms to scan convert straight lines have been
proposed: Bresenham and Digital Differential Analyzer.The Bresenham
algorithm has became a standard because of integer arithmetic. Many
theoretical solutions have been proposed to parallelize Bresenham algorithm
but its implementation is difficult. So most parallelizations take advantage of
repeated patterns, massive parallel computers and so on. Sequential Digital
Differential Analyzer shows better peformance than Bresenham if fixed point
arithmetic 1s used. This algorithm can be pipelined and parallelized. It is
easily hardware implemented and scalable. Hardware cost 1s linear with speed
up. Utilization is nearly 100% and hardware waste is low.

KEY WORDS : Digital Differential Analyzer, Line drawing, Fixed Point
Arithmetic, parallelization, graphic coprocessors

delivered by

EC

www.eg.org

EUROGRAPHICS

DIGITAL LIBRARY
diglib.eg.org

http://www.eg.org
http://diglib.eg.org

INTRODUCTION.

Scan conversion of straight line segments 1n a frame buffer is an important problem to solve
in any computer graphics system. Although Bresenham'’s algorithm [1] can generate line segments
at rates of more than one million pixels per second on many graphics workstations, many applications
require even higher speeds. Since this algorithm is quite optimized, parallelization becomes the best
solution for perfomance increase. Several methods to speed up Bresenham's algorithm have been tried
using parallelization techniques [2][6], or by trying to take advantage of the repeated patterns that the
algorithm generates [3][4] or by mixing both methods [5].

In the solutions given above, speed up can be constrained to three main problems:

‘the dependencies graph avoids short steps or

-the average number of active steps is reduced.

-when the ratio (amount of operators) / (speed up) is not linear, the hardware costs can be
prohibitive if speed up is high due to the amount of operators needed.

When we try to obtain a parallel version of an incremental algorithm such as Digital
Differential Analyzer (D.D.A.), we can see that the number of operators has a linear dependence
with the speed up but each operator is complex since floating point arithmetic is used. This is the
main reason why this algorithm has been inadequate for hardware implementation. So the key matter
is to diminish the hardware and timing cost of ecach operator. This can be done if calculations use
fixed point (F.P.D.D.A.) instead of floating point arithmetic [7].

ALGORITHM DESCRIPTION

Let's suppose that we have sampled a point P1 (x1, yi) and the next n consecutive line
points are to be drawn. Assuming without loss of generality that line slope m belongs to [-1, 1],
the next » line points can be calculated by

P,,, = (X;+1, Y;#m);
Py = (X2, Y;+2*m);

P, = (X;+n, Y;#n*m);

As in Bresenham's algorithm, an Initialization Phase (I.P.) is neccesary to detect the scan
direction (X swept when the line slope m € [-1,1] or Y swept when m € ([-1,-00] U [1,0c])). After
obtaining the scan direction, this phase uses a divider to calculate the slope m and some registers
to save initial points from where to start line drawing in the next phase. In this parallel version,
an extra array of adders and wired shifters 1s needed to calculate ;j*m for every F.P.D.DA.
operator.

In the Loop Phase n F.P.D.D.A. operators are needed to calculate the next n line points
in paralel. So the operator ;j would have to

Addj to X,
Multiply j by m
Add j*m to Y,.

The last point calculated P,,,, is used as P, in the next loop step. When the last point sent
to video memory is detected, the Loop Phase is finished and another linc drawing can be
achieved.

A block diagram of this algorithm can be analyzed in Fig. 1. A parallel pscudocode
implementation of the described method 1s given below:

16

Procedure PFPDDA (int X0, YO, Xf, Yf, color)

BEGIN
CONST ONEFP 11 //A 1024 frame buffer, need 11 decimal bits to avoid excessive errors.
INTEGER Ax, Xinic, Xfinal,
LONG INTEGER Ay, Yinic, m, slope[n], x[n], y[n];

Ax = Xf - X0,
Ay = (Yf - YO) << ONEFP; //This shift translate from Integer format to Fixed Point Format

IF X0 > Xf
THEN Xinic = Xf; Xfinal = X0,

Yinic = (Yf + 0.5) << ONEFP;
ELSE Xinic = X0; Xfinal = Xf;

Yinic = (YO + 0.5) << ONEFP;
ENDIF

//Slope Calculation.
m = Ay / Ax; /Mnteger division.

/Multiple Slope Calculation.
ParFor i=0 TO n-1 //Paralell FOR of n operators.
BEGIN slope [1] = 1*m; ENDParFor

plot (Xinic, Yinic, color);

//Paralell Loop Phase
WHILE Xinic < Xfinal
BEGIN
PARALELL //FPDDA operators
BLOCK1
ParFor i=0 TO n-1
BEGIN
x[i] = Xinic + 1;
y[i] = Yinic + slope[i];
ENDParFor
Yinic = y[n-1];
Xinic = x[n-1];
ENDBLOCK1

BLOCK2 //Queue Manager. Serializer.
FOR 1=0 TO n-1
IF x[1] <> Xfinal
THEN plot (x[1], y[1], color);
ENDIF
ENDBLOCK?2

ENDPARALELL

END
END

IMPLEMENTATION
Initialization Phase (L.P.)

Let’s do k = log, (max (N,M)), where N and M arc the length and width of a frame
buffer sized in pixels.

When we want to sec a real scene on the screen, a projection of all objects is made

Nidiiple_Sope
Scon Direction Slope Calcutation Calculation FPDD.A. Operators

X0, Xf. YO, Yt Ax. Ay DIVIDER —m {I}—
—{zm - {2

Xinic, Yinic, Xfinal |

Fig. 1. P.F.P.D.D.A. Block Diagram

towards the screen plane. Intersections with the screen plane are floating point numbers. To
represent a line that joints two intersection points, a round operation must be done to translate
line ends to the screen integer coordinates since a raster is a discrete device. This round operation
introduces an error of 0.5 pixels in the worst case. But if k+1 decimal bits are necessary to
perform F.P.D.D.A. [7], this round operation can be shifted to the least significative bit, reducing
the starting error 2¥! times and producing a more accurately line representation. This phase, as
shown in Fig. 1, has three well defined parts:

-Scan Direction.
-Slope Calculation.
‘Multiple Slope Calculation.

Scan Direction.

Both Bresenham and D.D.A. algorithms have a similar I.P. In a first step, width (ax) and
height (ay) arc obtained. The difference between them points to the scan direction. Using this
direction, initial points in the next phase are got easily.

From the beginning of this phase until this point, both Bresenham’'s and D.D.A. have
the same time delays.

Since Bresenham's algorithm need East increment, North-East and error function ny, the
hardware requirements are bigger than D.D.A. at a first glance because more latches and adders
are nceded. Nevertheless Bresenham's time delay is increased only in one addition since many
extra operations can be overlapped.

All adders, buffers and buses used in this part are 2k+1 bits wide. Assuming that a cicle
is one gate delay, the drawing direction can be calculated in less than 30 cycles aproximately
asuming k=12 (2048x2048 frame buffer).

Slope Calculation.

Since D.D.A. needs the line slope to work, an integer division must be performed to

obtain it. This is the main drawback of the D.D.A. algorithm because it increases I.P.

considerably.

The integer division has a dividend of 2k+1 bits and the divisor k bits. The result is k+1
bits wide. Assuming no acceleration, k+1 adders of k bits are needed to perform this operation.

Multiple Slope Calculation

As 1t has been scen before, in cvery step during the Loop Phase, the ; operator must
multiply j by m in order to add it to P; and obtain the y coordinate of P,;. Since both j and m are

18

constant, an improved version could do this product and store it in a register. In this case a
multiplication would be saved in each step during the Loop Phase

For this reason, in this parallel version, an extra array of adders and wired shifters are
used to calculate j*m for every D.D.A. operator.

As it can be seen in [7], these multiplications can be done using only wired shifters and
adders if fixed point arithmetic is used in order to obtain an Accelerated Multiplication Circuit
(AM.C).

If I = log,(n), this multiplier can be accomplished using less than 2*' adders, that is to
say, n/2 adders in the worst case. Temporal cost is /-2 additions 1if /24, /-1 for 32/>2, and O for
I=1.

Loop Phase.

This part 1s called Loop Phase because a paralel loop of n F.P.D.D.A. operators works
to obtain n consecutive line pixels. This phase is composed of two main concurrent blocks that
work in a pipelined fashion:

‘F.P.D.D.A. operators.
‘Queue Manager.

F.P.D.D.A. Operators (F.O.)

Input data for this phase is the line slope array of registers. The i-th element of this array
stores the value i*m and 1s assigned to the i-th Y-operator. These values were calculated during
the MSC phase by the multiplier. Other input data is the first line point to draw. Its coordinates

are stored 1n two registers called X;; and Y,;. The X coordinate of the last point to draw is
stored in a register called X . This register 1s used to detect the end of the Loop Phase Every
F.P.D.D.A. operator 1s compound of two suboperators called X-operator and Y-operator. The
former calculates the pixel X coordinates and the latter the Y ones.

The j-th X-operator uses an adder to increase X, ; 1n j pixels. Once this ncw coordinate
has been obtained, it's inmediately compared to the X, register. If they are equal, a 1 1s stored
in its status bit and vice versa. In any case, X;; + j is stored in a register. So, the X-operator
performs one addition of k bits, one k bits comparison and a register load.

The j-th Y-operator adds the j position of the slope register array to Y, , to obtain
+j*m. This operation cost onc addition of 2k+1 bits.

init

Y

nit

If onc of the status bits 1s set, then the FPDDA Operators phase 1s over and if there is
available data, another linc starts to be drawn while the Qucuc Manager finishes to extract last
line final points to the video memory.

Queue Manager (Q.M.)

The first time the initial point coordinates are stored in X, and Y,
sent to video memory without checking them since the line 1s at least one pixel long.

registers, they are

mut

When the control circuits detect that the new coordinates have been calculated, a register
load signal is activated. A n state machine begins to extract these coordinates to video memory.
The scan bit (calculated in the Initialisation Phase) helps to form the video memory address.

When the status bit of a X-register is set, it means this is the last point to draw. So this
point will be sent to video memory and the queue manager cicle will be finished. The Queue
Manager will remain idle until another line command be ordered and calculated.

The latter sends the pixels calculated by the FPDDA Operators, to the video memory.
Meanwhile the former calculates the new pixels coordinates. When calculations are finished and
pixels have been sent to memory, a load of intermediate registers is ordered and both blocks can
g0 on.

VALIDATION

In order to see the differences between Bresenham's and FPDDA algorithms a
benchmark of 10,000 lines were generated. 100 packets of 100 lines were obtained. Only length
and slope line changed from one packet to other. Line length was incremented every time by 100
pixels. Line slope was incremented by 0.1

Pixel coordinates given by both Bresenham and FPDDA algorithms were compared to
the real ones. For every 100 lines packet, average errors were saved. The number of exactly
cqual lines and the average number of different pixels between Bresenham’'s and FPDDA
algorithm were also saved.

Bresenham vs FPDDA Bresenham vs FPDDA
Errors, differences & coincidences Errors, differences & coincidences
a3 Error (pixele) DIft. & ooln. (pixels & %) o0 on Error (pixels) Diff. & ocoin. (pixels & ‘)ED
P e L e 75 s L) 028
0.26 55 ___\/\/—\ 15
- \ - 0 0.18 10
O O TSRS POV 1 o1 .. 1 Ll s 01
: s i s e OV .
L 3 i) — 0
20 01 02 03 ©€4 06 O6 O7 08 08 10
oo8 e v Line slope
o e — L=y — Bresenham acror —— EPDDA. error I
00 200 300 400 600 600 70O 800 €00 %000 ~=- Differancas (pimsia} —— Colncidences (%)
Line fength (pixels)
Fig. 2a. Normal slope. Results vs length. Fig. 2.b. Normal slope. Results vs slope.

The results can be scen in Fig. 2. While Bresenham's algorithm is much more accurate
than FPDDA, the average differences are only 5% in the worst cases. While FPDDA errors are
lower or equal than Bresenham’s when line length is inferior to 350 pixels, this error starts to
increase slowly. When line length is over 1000 pixels this error is nearly 7%. Errors were
expressed 1n pixels. This can be also proved if we take a glance at the average number of
different pixels per line. It increases when the line length does. The percentage of i1dentical lines
when line length 1s short is quite high (>70%) and it decreases until 2% when line length arrives

Bresenham vs FPDDA Bresenham vs FPDDA
Errors, differences & coincidences Errors, differences & coincidences
@ s[inu (pixate) DY, & coln. (pixels & s)“ Error (pixels) DIff. & coln. (pixeis & %)

TeW 4 0.243 0.247

026

0.3

e 0 77
0z 7
0.18 . % =
0.] P 7/4 20
acs '//.’/’ 1729 [g
‘!’W 200 S00 400 600 €00 700 800 GO0 \oo% o “0 .
Line length (pixels) Line slope
Peciogic siopes Periodic slooas
T Brvseahem wiror == FPDDA error W ncecanham arcer 2 rrooa arrer
[Otttermace (oimsie) — Colncldence (%) £ Ditterencas (pinatel B2 Coimersences (a1
Fig. 2c. Periodic slope. Results vs length. Fig. 2d. Periodic slope. Results vs slope.

20

to 1000 pixels.

If these parameters were compared to the line slope, we could see that they were more
uniformly distributed. These results were better for periodic slopes (0.3 and 0.6).

SIMULATION RESULTS

Since the available circuit design tools didn't allow us to implement the whole
PF.P.D.D.A. in a single circuit,it was split into basic operators and was simulated taking into
account real timing.

The simulations were done assuming no pipelining in the Initialisation Phase, althougth
the Initialisation Phase could be pipelined with the FPDDA Operators and the Queue Manager
Nevertheless, if pipelining would have been used, the Initialisation Phase average time delay
would have been reduced and better results would have been obtained. So these graphics are the
worst case results. They can be seen in Fig. 3.

The Fig. 3a. shows the FPDDA Operators and the Queue Manager phases utilization
when no pipelining is assumed between them and the Initialisation Phase As it could be thought,
the Initialisation Phase overhead is high when line lengths are short. As the line length increased,

F.P.D.D.A. Operators were more time used and

Utilization P.F.P.D.D.A. TIMES & PERFORMANCES

Utitization Time cicles Utilization
1 2600 TS 12

....... 20007 pad= 5E

i 08
06 FAAFPE P s600}:

i 2 os
P S SR R PR 1000} | ;
// i - : -
0.2 S fehe e g T T P T gt L451N
o i ; Tt

o t ‘ESU‘ ‘ ‘M‘Io‘ # ‘A‘IJ‘; woo .I}SO ;5;0‘ 1! ‘IISO. ;0‘00 500 760 1000 1260 2 1600 e :1.‘0 20000
Line length Line length
l ~+= Loop Phese —*— Queue Manager l —+ Time =+ Uinit —©- UPFPDDA - UQM]
Fig 3a. Loop Phase, Queuc Manager Fig 3b. Times and Performances.
Utilization

this constant overhead reduced the proportion. So utilization and performance incresed with line
length.

Fig. 3b. shows the same parameters as Fig. 3a. when Initialisation Phase and F.P.D.D.A.
Operators and Queue Manager pipelining was assumed. Initialisation Phase utilization can also
be scen.

Initialisation . Phase was constant and bigger than the F.P.D.D.A. Operators and Quecuc
Manager phases when line length was relatively short. We assumcéd an Initialisation Phase delay
of 200 gates. We also assumed that the F.P.D.D.A. Operators and Qucue Manager could send a
line point to the vidco memory every gate delay. For these reasons when line length sized in
pixels was lower than Initialisation Phase sized in gate delays, the timing cost was always equal
to the Initialisation Phasc time delay. But when line lengths were longer, the timing cost sized
in gate delays was equal to the line length, since the Initialisation Phasc was completely
embedded in the F.P.D.D.A. Operators and Qucue Manager phase.

CONCLUSIONS AND IMPROVEMENTS

Following a top-down methodology, we can see that pipeline 1s used to overlap both

Initialisation Phase and L.P. Pipeline is also used in the L.P. to overlap F.P.D.D.A. Operators and
Queue Manager An array of operators is used to increase speed up working all together in the
F.P.D.D.A. Operators block. Little more can be done to accelerate these steps.

On the other hand, Initialisation Phase can be accelerated using pipelining. The
Initialisation Phase may be split into three steps:

‘Initial Points and Scan Direction (IPSD).
‘Slope Division (SD).
‘Accelerated Multiplication Circuit (AMC).

IPSD time delay is no more than two or three adders and some glue logic. multiplier
last no more than log,(n)-2 adders delay. Normally » is eight or sixteen, so multiplier spends no
more than two adders delay, what is more or less the same as IPSD phase. Bottleneck is, of
course, the integer division of (2k+1)xk bits. This phase uses no less than k+1 (usually 12 or 13)
adders. But this phase can be pipelined also to reduce the division to steps of three adders time
delay, avoiding the bottleneck and aproximating the initialization phase timing cost to
Bresenham's one (three adders and a few glue logic).

Another way of speeding up the circuit is to use faster operators. As we have seen
before, the adder is the basic unit to implement both Initialisation Phase and Loop Phase Apart
from using pipeline or not, we can use Carry Lookahead Adders to reduce addition time delay,
and for this reason, accelerate the whole circuit.

Since the Loop Phase is scalable, the whole video memory bandwidth can be always
fulfilled. So the use of an accelerated version of adder won't speed up performance, but perhaps
a lower cost Loop Phase could be obtained depending on the implementation (Lower number of
more complex operators).

If the divider have to be split in scveral parts and every part needs at least one register
to store intermediate results, the whole pipeline divider i1s slower and hardware cost is bigger.
Perhaps this solution is worst than using a Carry Lookahead Adder division (timing and hardware
cost).

Looking at the sequential implementation, some points are remarkable comparing with
Bresenham's algorithm

‘There are no floating point operations.

‘There are only integer additions and comparisons in the main loop.

‘Initialization is relatively short. There are only onc integer division and a few integer additions
and shifts.

‘Easier mathematical tools are neceded to understand and demonstrate the algorithm, so
comprenhension and error correction arc eased.

‘Hardware operators are even simpler.

‘An average of 0.25 to 0.5 additions and 1 comparison are saved in each loop step.

When the parallel version is analyzed, some points are remarkable:

‘If the chip technology used allows a gate delay lower than a video memory write cicle, the
PFPDDA can be designed to use the whole video memory bandwidth.

‘The FPDDA algorithm produces an error slightlv higher than Bresenham’s algorithm but this
difference 1s not significative at all.

-Since the PFPDDA circuit is scalable, speed-up can be increased as much as technology can
support. In the theorical limit, asuming no technology limitations, a line could be drawn 1n a
logarithm time with a linear hardware cost. These afirmations are relative to the line length.

‘Operators utilization increases with line length.

‘The use of the simplest operators (integer adders and comparators or registers) makes it suitable
for hardware implementation. This simplicity saves design timc and hardware.

22

‘Pipelining increases productivity, chip utilization and speed up.
‘This PFPDDA has a speed-up/(hardware cost) ratio constant.

REFERENCES

[1] Bresenham, J.E., "Algorithm for Computer Control of a Digital Plotter", IBM Systems
Journal, Vol. 4, No. 1, 25-30. 1965

[2] Wright, W. E., "Paralellization of Bresenham’s Line and Circle Algorithms", IEEE CG&A,
Vol. 10, No. 5, Pag. 60-67. 1990

[3] Eamnshaw, R. A., "Line Tracking for Incremental Plotters", The Computer Journal, Vol. 23,
No. 1, Pag. 46-52. 1980

[4] Castle, C. M. A., Pitteway M. L. V., "An Applications of Euclid’s Algorithm to Drawing
Straight Lines", Fundamentals Algorithm for Computer Graphics, NATO ASI F17, Springer-
Verlag, Pag. 134-139, 1985

[5] Angel, E., Morrison, D. "Speeding up Bresenham’s Algorithm" IEEE CG&A. Vol.11 No. 6,
Pag. 16-17. 1991

[6] Pang Alex T., "Line-Drawing Algorithms for Parallel Machines" IEEE C.G.&A. Pag. 54-59
Sept. 1990.

[7] Molla R., Quirés R., Vivé R. "Fixed Point Digital Differential Analyzer" Proceedings of
Compugraphics'92. Pag. 1-5. 14-17 Dec. 1992

