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Abstract

At the receiving end of visual data are humans; thus it is only natural to take
into account various properties and limitations of the human visual system while
designing new image and video processing methods. In this dissertation we build
multiple models of human vision with different focuses and complexities, and
demonstrate their use in computer graphics context.

The human visual system models we present perform two fundamental tasks:
predicting the visual significance, and the detection of visual features. We start
by showing that a perception based importance measure for edge strength pre-
diction results in qualitatively better outcomes compared to commonly used gra-
dient magnitude measure in multiple computer graphics applications. Another
more comprehensive model including mechanisms to simulate maladaptation is
used to predict the visual significance of images shown on display devices under
dynamically changing lighting conditions.

The detection task is investigated in the context of image and video quality
assessment. We present an extension to commonly used image quality metrics
that enables HDR support while retaining backwards compatibility with LDR
content. We also propose a new “dynamic range independent” image quality
assessment method that can compare HDR-LDR (and vice versa) reference-test
image pairs, in addition to image pairs with the same dynamic range. Further-
more, the design and validation of a dynamic range independent video quality
assessment method, that models various spatiotemporal aspects of human vi-
sion, is presented along with pointers to a wide range of application areas in-
cluding comparison of rendering qualities, HDR compression and temporal tone
mapping operator evaluation.

Kurzfassung

Auf der Empfängerseite visueller Daten steht der Mensch. Beim Entwurf neuer
Bild- und Videoverarbeitungsmethoden ist es daher selbstverständlich die ver-
schiedenen Eigenschaften und Beschränkungen des menschlichen visuellen Sys-
tems zu berücksichtigen. In der vorliegenden Dissertation formulieren wir mehrere
Modelle des menschlichen visuellen Wahrnehmung mit verschiedenen Schwer-
punkten und verschiedenen Komplexitäten und demonstrieren ihre Verwendung
im Zusammenhang mit Computergrafik.

Die Modelle des menschlichen visuellen Systems, die wir präsentieren, erfüllen
zwei grundlegende Aufgaben: die visuelle Signifikanz vorhersagen und visuelle
Merkmale detektieren. Wir beginnen, in dem wir zeigen, dass ein wahrnehmungs-
basiertes Bedeutungsmas̈ für die Vorhersage von Kantenstärken im Vergleich
allgemein gebräuchlichen Mas̈en basierend auf der Gradientenlänge qualitativ
bessere Ergebnisse in Computergrafikanwendungen liefert. Ein weiteres, um-
fassenderes Modell, dass Verfahren beinhaltet, die Fehladaptionen simulieren,
wird verwendet, um die visuelle Signifikanz von Bildern vorherzusagen, die
auf Bildschirmen unter sich dynamisch ändernden Beleuchtungsverhältnissen
gezeigt werden.
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Die Aufgabe des Detektierens wird im Zusammenhang der Datenerhebung von
Bild- und Videoqualität untersucht. Wir präsentieren eine Erweiterung zu all-
gemein verwendeten Bildqualitätsmetriken, die HDR Unterstützung erlaubt,
während Rückwärtskompatibilität zu LDR-Inhalten erhalten bleibt. Wir schla-
gen auch eine neue “dynamischer-Umfang-unabhängige” Methode zur Datener-
hebung der Bildqualität vor, die zusätzlich zu Bildern mit gleichem dynamis-
chen Umfang, auch HDR-LDR-Bildpaare (und umgekehrt) von Referenztests
vergleichen kann. Zusammen mit Vermerken zu einer gros̈en Auswahl von
Anwendungsbereichen, wie zum Beispiel dem Vergleich von Renderqualität,
HDR-Kompression und Operatorevaluation von temporal tone mapping, wird
weiterhin der Entwurf und die Validierung der dynamischer-Umfang-unabhängi-
gen Datenerhebungsmethode für die Videoqualität präsentiert, die verschiedene
raum-zeitliche Aspekte der menschlichen Wahrnehmung modelliert.
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Summary

In this dissertation we explore the use of human visual system models in com-
puter graphics context. We develop vision models of various scopes and com-
plexities. These models are both used as the basis of the novel techniques we
propose, and also to build upon the state-of-the art. The theoretical work in
this dissertation is coupled with multiple psychophysical experiments for cali-
bration and validation of the human visual system models in order to match
the perception of an average observer.

We develop a simplistic human vision model that accounts for luminance adap-
tation and visual masking, and integrate it to a second generation wavelet based
edge preserving image decomposition framework. The visual significance pre-
diction of the perceptual model replaces the gradient magnitude as the edge
strength measure without introducing a significant computational cost. We
show that the extended framework is more intuitive in edge preserving smooth-
ing and contrast enhancement, and results in qualitative improvements in the
outcomes of current HDR image retargeting, tone mapping and HDR panorama
stitching methods.

While there is a significant body of research focused on making images look
more plausible, very little attention has been paid on how those images would
be perceived on actual display devices. Moreover, due to the proliferation of
mobile devices, it is no longer possible to assume that the observer will view an
image on a desktop display in a controlled lighting environment. One should
rather account for the effect of dynamically changing lighting conditions on
the perception of the observer. To that end we propose a model that predicts
the visual significance of the image contrast shown on display devices, that in
addition to the fundamental spatial aspects of human vision, also accounts for
maladaptation over time.

Purely mathematical image quality assessment metrics that are limited to LDR
content can be extended to support HDR images by means of simple human vi-
sual system models. We develop a transfer function to a “perceptually uniform
space”, that transforms image luminance to perceptually linear units along the
entire visible luminance range. The quality metrics are executed on the percep-
tually uniform images, resulting in meaningful predictions for HDR content, as
well as backward compatible quality outcomes for LDR images.

While HDR imaging is gaining momentum, the transition has been not imme-
diate; currently both HDR and LDR content are in use. In terms of image
quality assessment, this raises an important issue: quality metrics are built on
the assumption that the input reference-test image pair has the same dynamic
range. We address this shortcoming by proposing a “dynamic range indepen-
dent” image quality assessment method, that can handle all possible dynamic
range combinations of the reference-test image pair. This has been achieved
using an HDR human visual system model in conjunction with three novel dis-
tortion measures. Our work enables for the first time the objective evaluation
of tone mapping operators, among other novel applications.

The same inhomogeneous dynamic range content problem is also present for
video sequences. Similarly, we propose a dynamic range independent video
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quality assessment method, where we address temporal aspects of visual per-
ception. We show that such a metric is useful in objective evaluation of rendering
methods, the assessment of HDR compression artifacts, as well as comparison
of temporal tone mapping approaches. We also discuss in detail how to validate
such a metric, and show that its predictions are more accurate than other video
quality assessment techniques.

In summary, the proposed methods demonstrate different approaches to design-
ing application-specific human visual system models, and show that one can
extend and improve the state-of-the-art through the use of such models.
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Zusammenfassung

In der vorliegenden Dissertation untersuchen wir die Verwendung von Modellen
des menschlichen visuellen Systems im Bereich der Computergrafik. Wir en-
twickeln Modelle unterschiedlicher Komplexität für verschiedene Anwendungs-
bereiche, die einerseits die Grundlage für die von uns vorgestellten neuen Tech-
niken bilden, und andererseits dazu dienen, auf den momentanen Stand der
Technik aufzubauen. Der theoretische Teil dieser Dissertation umfasst mehrere
psychophysischen Experimente zur Kalibrierung und Validierung dieser Modelle,
um eine Anpassung an die Wahrnehmung eines durchschnittlichen Beobachters
zu erzielen.

Wir entwickeln ein vereinfachtes Modell der menschlichen visuellen Wahrnehmung,
das Helligkeitsanpassung und visuelle Maskierung berücksichtigt, und integri-
eren es in ein waveletbasiertes, kantenerhaltendes Image-Decomposition-Framework
der zweiten Generation. Die Vorhersage der visuellen Signifikanz durch das
Wahrnehmungsmodell ersetzt dabei die Grsse des Gradienten als Mass für die
Kantenstärke, ohne dabei signifikanten Rechenaufwand zu erfordern. Wir zeigen,
dass das erweiterte Framework weitaus intuitiver für kantenerhaltendes Glätten
und Kontrastverbesserung ist, und dass damit qualitative Verbesserungen der
Resultate von HDR-Image-Retargeting, Tonemapping und HDR-Panorama-Stitching
erzielt werden knnen.

Obwohl es viele Forschungsarbeiten mit dem Schwerpunkt auf der Erzeugung
plausibler Bilder gibt, gibt es wenige Untersuchungen darüber, wie diese In-
halte dann, dargestellt auf den Endgeräten, tatsächlich wahrgenommen werden.
Durch die zunehmende Ausbreitung mobiler Geräte ist auch längst nicht mehr
sichergestellt, dass das Bildmaterial auf einem Desktop-Bildschirm unter kon-
trollierten Lichtverhältnissen betrachtet wird. Die Auswirkung sich dynamisch
ändernder Lichtverhältnisse auf die Wahrnehmung des Beobachters sollte deswe-
gen berücksichtigt werden. Wir schlagen daher ein Modell vor, dass die visuelle
Signifikanz des Bildkontrasts auf dem mobilen Gerät vorhersagt, und zusätzlich
zu den fundamentalen Aspekten der menschlichen visuellen Wahrnehmung auch
mangelhafte Anpassung über die Zeit berücksichtigt.

Rein mathematische Metriken zur Bewertung der Bildqualität, deren Anwen-
dungsgebiet auf LDR-Inhalte beschränkt ist, knnen durch einfach Modelle des
menschlichen visuellen Systems auf die Verarbeitung von HDR-Bildern erweit-
ert werden. Wir entwickeln eine Transferfunktion in einen “wahrnehmung-
stechnisch gleichfrmigen Raum”, durch die Helligkeiten zu wahrnehmungstech-
nisch linearen Einheiten entlang des gesamten sichtbaren Helligkeitsbereichs
umgewandelt werden. Da die Qualitätsmetriken dann auf die transformierten
Bilder angewendet werden, ergeben sich einerseits für HDR-Inhalte, und ander-
erseits durch die Rückwärtskompatibilität auch für LDR-Inhalte aussagekräftige
Vorhersagen für die Bildqualität.

Obwohl die HDR-Bildgebung langsam an Popularität gewinnt, hat sich kein
abrupter Übergang von LDR zu HDR ereignet, weshalb Inhalte beider For-
mate genutzt werden. Aus Sicht der Bestimmung der Bildqualität ergibt sich
dadurch ein Problem: Beim Einsatz von Qualitätsmetriken wird üblicherweise
davon ausgegangen, dass Eingabe- und Referenzbild denselben Dynamikumfang
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aufweisen. Wir beheben diesen Mangel durch die Vorstellung einer vom Dy-
namikumfang unabhängigen Methode zur Bewertung der Bildqualität, die alle
mglichen Kombinationen des Dynamikumfangs von Eingabe- und Referenzbild
berücksichtigt. Erreicht wird das durch die Verwendung eines HDR-Modells des
menschlichen visuellen Systems in Verbindung mit drei neuen Massen für die
Bildverzerrung. Durch unsere Arbeit wird es unter anderem zum ersten Mal
mglich, Tonemapping-Operatoren objektiv zu evaluieren.

Dasselbe Problem von Inhalten mit inhomogenen Dynamikumfang tritt auch bei
Videosequenzen auf. Wir stellen daher eine dynamikumfangsunabhängige Meth-
ode zur Bewertung der Videoqualität vor, wobei wir die temporalen Aspekte
der visuellen Wahrnehmung berücksichtigen. Eine solche Metrik ist sowohl
für die objektive Evaluierung von Rendermethoden, die Beurteilung von HDR-
Kompressionsartefakten, als auch zum Vergleich temporaler Tonemapping-Ansätze
sinnvoll. Ferner zeigen wir auch, wie bei der Bewertung solcher Metriken zu ver-
fahren ist, und dass die aus ihnen resultierenden Vorhersagen genauer als andere
Methoden zur Qualitätsbeurteilung von Videos sind.

Zusammenfassend kann man sagen, dass die vorgestellten Methoden dazu ver-
wendet werden knnen, anwendungsspezifische Modelle des menschlichen visuellen
Systems zu erzeugen, und dass durch die Verwendung dieser Modelle wesentliche
Verbesserungen und Erweiterungen gegenüber dem momentanen Stand der Tech-
nik erzielt werden knnen.
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Chapter 1

Introduction

“Never start with a clear idea of a storyline. Instead, commence blindly, with
a vague notion of trying to include a reference to your favourite band, gift

shop, or chocolate bar”
Alan C. Martin

Figure 1.1: Lossless versus lossy compression. Images can be significantly
compressed without visible artifacts by exploiting limitations of the human visual
system.

Can you spot the differences between the two images in Figure 1.1? One of these
images is subjected to the lossy JPEG compression, whereas the other one is
stored in the lossless TIFF format. The JPEG image contains merely 1/12th of
the information stored in the TIFF image, yet to a human observer they look
very similar, if not the same. How can we remove so much information from the
image without producing visible artifacts?
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JPEG format achieves such a high compression rate by incorporating a simple
model of the human visual system. The term human visual system denotes
the cascade of components starting with the eye that captures reflected light
from objects in a scene. The consecutive neural machinery converts light into
electrical signals and relays these signals to the brain (we briefly investigate
these mechanisms in Chapter 2). The initial visual data, that is the incoming
light, is filtered, and in some cases distorted by multiple mechanisms that make
up the human visual system. The JPEG compression takes advantage of this
by removing image details that are not visible due to the structure of the visual
system. Therefore Figure 1.1-right looks the same as Figure 1.1-left, even though
it contains only a fraction of the data in the left image. In other words, the
compression removes the details C1 from the image I, such that:

hvs(I − C1) ≡ hvs(I), (1.1)

where hvs is a hypothetical function that simulates the human visual system.
This basic principle has been a guideline for efficient acquisition and displaying
of visual data.

Figure 1.2: Comparison between low (left) and high (right) compression rates.

Increasing the compression ratio to 1 : 55 causes artifacts start appearing, as
shown in Figure 1.2-left. Thus for the details C2 removed at this compression
level the relation changes to:

hvs(I − C2) 6≡ hvs(I). (1.2)

In many computer graphics applications such visible artifacts are not acceptable,
thus their detection is an important practical concern. Generally speaking,
the detection problem consists of predicting the probability of an average user
distinguishing a detail from its background, or analogously finding the point
where the perception shifts from Equation 1.1 to Equation 1.2. As for the detail
in focus, one can consider a distortion as in the compression case, or simply a
low contrast scene detail with a magnitude near the threshold of visibility.

Conceptually, a detection framework for compression artifacts would work as
follows: given the reference image I and the distorted test image I − C2, we
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can compute the hypothetical human visual system response to the subtracted
details C2:

hvs(I) − hvs(I − C2) = hvs(I) − [hvs(I) − hvs(C2)] = hvs(C2). (1.3)

In fact, the formulation above is the basis of most sophisticated Image quality
assessment metrics that involve human visual system models. Once hvs(C2)
is computed, one can determine the probability of the compression artifacts
being visible through a psychometric function that relates perceived contrast to
detection probability.

It is important to note that the formulation in Equation 1.3 assumes that the
superposition principle, that is f(x + y) = f(x) + f(y), holds in our system.
Simplifications of this nature are common in human visual system modeling; in
general assuming that the human visual system is a cascade of linear mechanisms
greatly simplifies the models of the otherwise very complex and not entirely
understood system [Wandell, 1995]. From a practical standpoint Equation 1.3
can still be useful if we limit our scope to a very small region near the detection
threshold, where the difference between I and I − C2 is hardly noticeable and
thus the parameters governing the human visual system model are almost the
same. Such near-threshold models provide a nice trade-off between complexity
and scope, since in many applications accurate prediction near the detection
threshold is sufficient.

Continuing with our example, Figure 1.2-right shows an aggressive 1:180 com-
pression. At this rate the file size of the 512 × 512 image is merely 4.5K, but as
a side effect the compression artifacts are highly visible. In this case, predicting
the detection probability of distortions would not make sense, since the com-
pression artifacts are strongly visible everywhere in the image. A more relevant
concern in this case is the visual significance of these visible distortions, as a
measure of their effect on quality. This problem, however, forces our human vi-
sual system model to make predictions well above the visibility threshold, where
the model prediction is not accurate anymore. Thus, for the visual significance
task one should use supra-threshold models which include an additional non-
linearity that approximates the contrast perception above the threshold. This
supra-threshold nonlinearity is often modeled using a transducer function.

The distinction between near– and supra-threshold models are often confus-
ing to the reader, since our visual system is able to seamlessly perform both
tasks. In practice, near-threshold models focus on carefully modelling the hu-
man visual system mechanisms near the threshold, while the supra-threshold
models focus more on predicting the contrast perception non-linearity above
the threshold. While both types of models are based on the same physiological
and psychophysical data, they differ in their focus, and consequently their sim-
plifying assumptions. Both approaches are useful depending on the application
needs.

1.1 Motivation

A wide range of computer graphics and computer vision methods can poten-
tially benefit from human visual system models. We have already mentioned
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the extremely high image compression rates achievable without any visible ar-
tifacts. The same principle also applies to video compression, where one can
additionally exploit the temporal aspects of visual perception. Similarly, for
compression of High Dynamic Range (HDR) images and videos, the limitations
of the human visual system are much more pronounced, and thus can greatly
be taken advantage of.

Supra-threshold models have been used in HDR contrast manipulation appli-
cations such as forward– and inverse tone mapping, color to gray, color recon-
struction, and others. Here, the central idea is to transform physical contrast
to the “perceived” contrast which is linear in terms of perceived strength. The
perceived contrast can then easily be manipulated, for example using a single
multiplier, to achieve a perceptually uniform effect on the entire image or video.
The perceived contrast is also a very convenient measure for visual significance
of image features such as edges. One can achieve better results in applications
that make use of the strength of image features, such as image retargeting and
panorama stitching, by simply replacing the arbitrary feature strength measure
with the perceived contrast computed by a human visual system model.

Human visual system models have found their place also in rendering. The
main principle of perceptually driven rendering methods is rendering only those
details that are visible to the human eye. This way one can render far less scene
details without producing any visible differences. Consequently, provided that
the model that predicts visibility is fast, rendering becomes more efficient.

Perhaps the application area of human visual system modelling with the largest
impact is image and video quality assessment. The contributions of newly pro-
posed computer graphics and computer vision techniques are usually demon-
strated through images and videos, in which the merit of the technique is appar-
ent. The performance of, for example a new rendering method, can be assessed
by comparing sequences rendered on one hand using the proposed method, and
on the other hand a more precise, but slower reference method. The point of
this comparison could be to show that the proposed method produces results
comparable to the reference method, but much more efficiently. Such a compar-
ison should ideally be performed using subjective studies. However subjective
studies are often costly in terms of time and resources, and require expertise
in vision science. On the other hand, objective image and video quality assess-
ment metrics are useful practical tools that could predict the outcome of such a
subjective experiment automatically without the need for additional expertise
or resources.

1.2 Problem Statement

In this dissertation we discuss how to design and implement human visual sys-
tem models with various complexities and how to integrate them into computer
graphics methods to improve their performance or expand their area of appli-
cation.

The major focus of this dissertation is the improvement on multiple state-of-
the-art computer graphics methods through the modeling of visual perception.
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Figure 1.3: Generic data flow of the methods proposed in this thesis.

To that end we propose a multitude of human visual system models geared
towards performance or precision, with near– or supra threshold focus, taking
into account either the spatial or spatiotemporal aspect of visual perception,
and integrate these models to visual significance and detection tasks. Figure 1.3
shows the generic data flow of the proposed methods in this thesis. The visual
data, either image or video, is processed by a human visual system model to
compute perceived contrast, which is used to predict detection probability or
visual significance depending on the application needs.

A quantitative measure for the significance of prominent image features such as
edges is a requirement of great practical importance, since many image editing
methods make use of such a measure. We devote our effort to design an efficient
human visual system model that predicts the perceived visual significance of
image edges. The prediction of visual significance of image contrast shown on a
display brings in further considerations such as the sudden changes adaptation
state of the observer and reflections due to dynamically changing illumination
conditions. These visual significance problems are addressed in the first part of
this thesis. In the second part of the thesis we investigate quality assessment
in the image domain. An interesting problem relevant to computer graphics
applications is automatically predicting the magnitude of visible differences be-
tween images, especially when the visual data have different dynamic ranges.
We also look ways to modify existing simple image quality assessment metrics
to be compatible with HDR content. The third part of the thesis focuses on
quality assessment in video domain where the main challenge is the modeling
of spatiotemporal characteristics of the human visual system. In parallel to the
theoretical work and resulting computational models of human vision, it is also
important to calibrate and validate the models using psychophysical experimen-
tation. Accordingly, the third part also includes an in depth discussion of such
a study on video stimuli.

1.3 Main Contributions

Parts of this dissertation have been published in varius venues [Aydın et al.,
2008b; 2008a; 2009; 2010b; 2010a]. This thesis unites these publications under
the context of human visual system modeling while presenting improvements
and updated results.
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The investigation of the aforementioned problems resulted in the following main
contributions:

• A method for estimating the visual significance of image edges, that con-
veniently replaces the widely used gradient magnitude measure and results
in qualitative improvements in HDR image retargeting, tone mapping and
panorama stitching applications.

• A metric for predicting the effect of the observer’s maladaptation and
reflections due to dynamically changing lighting conditions on the visibility
of display devices.

• A transfer function that transforms image luminance to a “perceptually
uniform space”, enabling simple image quality measures, such as PSNR
and SSIM, to work on HDR images. This method is also backwards com-
patible in the sense that the metric response for LDR images transformed
to the proposed space remains approximately the same.

• An image quality assessment method that can compare LDR images with
respect to an HDR reference, and vice versa, in addition to reference-test
image pairs of the same dynamic range. This method enables, for the
first time, the objective evaluation of forward and inverse tone mapping
operators.

• A dynamic range video quality assessment metric comprising spatiotem-
poral aspects of visual perception. This metric enables objective evalua-
tion of a large number of computer graphics methods such as rendering,
compression and temporal tone mapping.

1.4 Chapter Organization

In the next chapter of this dissertation we present an introduction to human vi-
sual sytem modeling, which is meant to serve as the background for the following
three parts. In the first part of this thesis we investigate two visual significance
problems. In Chapter 3, we show the use of visual significance in image edge
weighting, computed through a simplistic human visual system model geared
towards computational efficiency, improves results of various techniques relying
on edge strength computation. In Chapter 4 we propose a more sophisticated
model including temporal aspect of luminance adaptation for predicting dis-
play visibility under dynamically changing lighting. The second part comprises
two detection problems in the context of image quality assessment. Chapter 5
introduces a practical extension of a pair of simple quality measures, PSNR
and SSIM, to HDR imaging through the use of a simple transfer function that
accounts for the nonlinear photoreceptor response to luminance. A more com-
prehensive human visual system model is coupled with three novel distortion
measures in Chapter 6 enabling image quality assessment where the reference
and test images have different dynamic ranges. In the final part of this the-
sis we investigate temporal aspects of the human visual system in the context
of video quality assessment. Chapter 7 introduces a video fidelity metric and
demonstrates its applications to rendering, HDR compression and temporal tone
mapping. Finally, in Chapter 8 we elaborate on the psychophysical validation
study of the metric from Chapter 7.



Chapter 2

Background on Human

Visual System Models

In this chapter we give a brief overview of the human visual system’s relevant
mechanisms and discuss the approaches on modeling them. The models outlined
here result from decades of psychophysical and physiological studies. Even
though the exact relations between the anatomical structures of the human
visual system and the various aspects of human vision is currently not known,
whenever possible, we make an effort to justify the proposed models with the
corresponding physiological findings.

The aspects of human vision related to color perception are omitted in this
section, since all models in this thesis are luminance based. For such omitted
mechanisms, as well as for a more in-depth treatment of the mechanisms dis-
cussed in this section we refer the reader to the excellent book by Wandell [1995].

In the reminder of this chapter we discuss certain characteristics of the human
visual system that have significant influence on visual perception, such as glare
due to the eye’s optics, luminance adaptation, contrast sensitivity, frequency and
orientation selective visual channels and visual masking. These characteristics
and corresponding models will become relevant in the following three parts of
this thesis where we explore them further in computer graphics context. We also
discuss contrast and its multiple interpretations found in the literature. Finally
we define two fundamental problems, visual significance and detection, that will
serve a basis for more complex methods we present in the following parts of the
thesis.

2.1 Optics of the Eye

Eyes are the entry points of the light that carries the visual information about
the observer’s surroundings into the human visual system. The incoming light is
absorbed by the photoreceptors in the retina and converted to electrochemical
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signals, and these signals are relayed to the consequent mechanisms of the visual
pipeline. The image that falls onto the retina is not an exact copy of the real
world image; as in every optical system, the eye distorts the light while it passes
through. The combined effect of the scattering and diffraction within the optical
component of the human visual system is referred to as glare. The glare effect
is most obvious near bright light sources in otherwise dark scenes, such as the
candle shown in Figure 2.1.

Figure 2.1: A faithfull simulation of the glare effect cite, courtesy of Tobias
Ritschel.

A closer inspection of Figure 2.1 reveals that the glare effect, rather than being
homogeneous, is composed of three main components. The radial streaks em-
anating from the bottom of the candle fire are called the ciliary corona. The
ciliary corona is caused by the semi-random density fluctuation due to the mo-
tion of the particles in the lens and vitreous humor (Illustrated as black dots
in Figure 2.2). The colorful ring around the light source is known as lenticular
halo, caused by the circular grating formed by the radial fibers at the periphery
of the lens (Figure 2.2, see the lens inset). Light only passes through these grat-
ings under darker illumination conditions when the pupil diameter is greater
than 3mm. Thus, during daylight (pupil diameter is ∼ 2mm) no lenticular halo
is observed. The decrease of perceived contrast near the candle light is referred
to as blooming (or disability glare, veiling luminance). This effect is attributed
to light scattering in eyelashes, cornea (25 − 30%), lens (40%), iris (< 1%),
vitreous humor (10%) and retina (20%), where the relative contribution of each
eye component is denoted in paranthesis [Ritschel et al., 2009b]. Additionally,
if the size of the light source is large, the ciliary corona can blur and contribute
to blooming as well [Spencer et al., 1995].

An approach to modelling the glare effect is convolving the scene luminance with
a 2D spatial filter that approximates the light scattering in the eye [Nakamae et
al., 1990; Spencer et al., 1995]. These filters can be thought as the point spread



2.2 Luminance Adaptation 9

Cornea

Lens
 

Lens nucleus

Iris

Retina

Optic Nerve

Fibers

Lens CortexVitreous Humor

Aquous

Humor

Light

Ciliary 

Muscles

Figure 2.2: Components of the eye that are involved in the forming of glare,
courtesy of Tobias Ritschel.

function (PSF) of the eye, that describes the blurring of the retinal image of a
point source in focus, or analogously the probability that a photon will appear
at a given location on retina. Spencer et al. [1995] model the radial streaks
of the ciliary corona by introducing random antialiased lines to the PSF filter.
Ritschel et al. [2009b] on the other hand simulate particles inside the lens and
vitreous humor, along with other dynamically changing properties such as the
blink state, field luminance and observer motion. The Fourier Transform of
the resulting PSF is then multiplied with the Fourier Transform of the scene
luminance, and the result is transformed to the spatial domain. One can also
design the 2D filter directly in the frequency domain in the form of an optical
transfer function (OTF) [Deeley et al., 1991; Marimont and Wandell, 1994].

The glare effects mentioned so far are all functionally undesired in the sense
that they limit visual acuity. However, an interesting side effect of blooming is
the local increase in perceived contrast, that is: while details near a bright light
source are harder to detect, the light source itself appears brighter than it would
without the blurring near its periphery. A recent psychophysical study shows
that by introducing even a very primitive blooming pattern, one can increase
the perceived luminance by 20 − 35% [Yoshida et al., 2008].

2.2 Luminance Adaptation

The scene luminance that falls onto the retina may differ by 14 orders of mag-
nitude from a moonless night to a cloudless sunny day. The magnitude of the
electrical signals produced by the retinal photoreceptors on the other hand only
vary from a millivolt to tens of millivolts. This suggests that either the pho-
toreceptors are sensitive to even the smallest changes in electrical current to the
point that the 14 orders of magnitude range can be encoded within approxi-
mately 2 orders of magnitude, or that the visual information is subject to some
kind of lossy compression in the retina. As often is the case with the the human
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visual system, in this instance precision is traded off for more efficiency. While
we are able to see the full 14 orders of magnitude, at any given time we are
mostly sensitive to ∼3 orders of magnitude near the current adaptation level.
The sensitivity to luminance levels outside this range will be very low. Thus,
we don’t see the stars in daylight, and our eyes need a second or two to adjust
when walking out of a movie theater.

Figure 2.3: Three different modes of vision and corresponding adaptation lev-
els. Adopted from Ferwerda et al. [1996].

The retina is between 0.3 mm and 0.5 mm in thickness and is composed of
about 100 million rods and 5 million cones. Rods are very sensitive to light, but
are achromatic and provide limited pattern sensitivity. There are three types of
cones that are sensitive to short, middle and long wavelengths, and collectively
they cover the range of the spectrum from 400 nm to 700 nm. The two types of
photoreceptors operate in parallel and the luminance ranges to which they are
sensitive complement each other. Figure 2.3 illustrates the luminance ranges
where rods and cones are dominant. Rods dominate the low luminance scotopic
vision, whereas cones are much more sensitive in the photopic range. As a
result, we enjoy high visual acuity and color perception under indoor lighting
or sunlight, whereas during the night we are sensitive to even the slightest
luminance differences. Within the mesopic range that falls between scotopic
and photopic ranges, our vision is a combination of these two mechanisms.

For a given adaptation level the photoreceptor response to luminance is non-
linear roughly in the form of an S-shaped curve. The curve is centered at the
current adaptation level, and moving away from the center it exhibits a compres-
sive behaviour. This means that the sensitivity is highest for scene luminance
same as the current adaptation level, in other words the visual system is adapted
to that scene luminance. On the other hand, the photoreceptor response for all
other luminance levels except the adaptation luminance is compressed, and thus
the observer is maladapted to those luminances. The compression level is still
relatively low within the 2-3 orders of magnitude range around the adaptation
luminance, thus we see this range well. The photoreceptor nonlinearity model
proposed by Naka-Rushton [1966] is as follows:

R

Rmax
=

Ln

Ln + σn
, (2.1)

where R is the photoreceptor response, Rmax is the maximum response, L is the
luminance falling onto the retina, σ is the half-saturation constant depending on
the current adaptation state, and n is a constant that controls sensitivity and
typically varies between 0.7 and 1. Note that the adaptation state is not uniform
across the retina, and thus the half-saturation constant has to be computed
locally.
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Figure 2.4: The effect of luminance adaptation over time, a simulation of
the fast adaptation from a dark environment (10−4cd/m2) to the stained glass
(17cd/m2). Columns from left to right: t = 0.01s, t = 0.02s, t = 0.05s, t = 0.1s,
t = 60s (fully adapted state).

Adaptation is a dynamic mechanism; if the illumination conditions change, so
does the adaptation state as a result of mechanical, photochemical and neu-
ral processes. The most obvious adaptation mechanism is the change of the
pupil size: under bright illumination the amount of incoming light is reduced by
decreasing the pupil diameter (down to ∼2 mm), and vice versa under dark illu-
mination (up to 7-8 mm). The maximum regulatory effect of this mechanism is
a little more than an order of magnitude. More significant are the relatively slow
photochemical processes: bleaching and regeneration and the fast neural pro-
cesses. Bleaching occurs when exposed to a bright intensity, the photosensitive
pigments in the photoreceptors are depleted faster than they are regenerated,
which decreases the sensitivity at these intensities. These photochemical pro-
cesses are not symmetrical, which is the primary reason for the difference of
the time course between dark and bright adaptation. The neural processes are
on the other hand symmetrical, and are due to the saturation of the photopig-
ments subjected to excess light intensities. Figure 2.4 shows a simulation of
dark adaptation over time.

Due to the multitude of mechanisms governing the current adaptation level,
practical models of adaptation mechanisms are relatively complex [Ferwerda et
al., 1996; Pattanaik et al., 2000; Irawan et al., 2005]. An alternative practical
approach is assuming that the eye is capable of adapting to a small area (such as
a pixel). In terms of the model, it is like for each pixel of an image, the observer’s
adapted to exactly the luminance of that pixel, thus disregards maladaptation.
With this assumption and taking n = 1, Daly [1998] proposes a simplification
of Equation 2.1:

R

Rmax
=

L

L + cσb
, (2.2)

where c and b are constants.

Using the same assumption one can also derive a threshold versus intensity (tvi)
function, which gives the minimum luminance difference that can be noticed on
a background luminance, assuming that the eye is adapted to the background
luminance (Figure 2.5). This simple function behaves as a power function in
low luminance levels and as logarithmic function in high luminance levels. The
tvi function is highly useful in practice; the nonlinearity of color spaces such
as sRGB and CIE L∗u∗v∗ mimic the tvi function for encoding efficiency. An-
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ear on a log-log plot.

other practically useful tool is a mapping from the luminance to the number
of thresholds corresponding to that luminance [Mantiuk et al., 2005] (Equa-
tion 10.1). Irawan et al. [2005] proposed the generalized threshold versus in-
tensity and adaptation (tvia) function, where they also take maladaptation into
account. However the domain of this function is two-dimensional (retinal lu-
minance and adaptation luminance) and thus is more complex. In Chapter 4
of this thesis we propose a display visibility metric that makes use of the tvia
function.

2.3 Contrast Sensitivity

The signals produced by the photoreceptors leave the retina through the axons
of the retinal ganglion cells. These axons comprise the optic nerve, and exit from
the retina at a single location called the optic disk. Through the optic nerve,
the visual data is relayed to the neurons in lateral geniculate nucleus (LGN) and
primary visual cortex. Each of these neurons along the visual pathway have a
receptive field : an area in the retina which influences the neuron’s response. A
crucial property of the receptive fields is that the influence of the receptive field’s
center is the exact opposite of the influence of the receptive field’s surround.
About half of the retinal ganglion cells are inhibited at the center, and excited
at the surround (off-center, on-surround), and the remaining half behaves vice
versa (on-center, off-surround).

As a consequence of the center-surround structure of the receptive fields, the
neurons in the LGN are “tuned” for the range of spatial frequencies that matches
the size of their receptive fields. Figure 2.6 illustrates the neuronal response to
cosinusoidal stimuli with various spatial frequencies. In the first case, the spatial
frequency is low, and the light falling on the entire receptive field is nearly
constant. As a result the neuron’s response will be low. In the second case, the
spatial frequency is high, and as a result both positive and negative parts of
the cosinusoidal stimulus fall onto both the excitatory and inhibitory regions,
effectively cancelling each other out. The third case shows that the highest
response is generated when the size of the grating matches a single region of
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Figure 2.6: The parts of the cosine stimuli at various frequencies that fall onto
a receptive field in LGN (right) . Even though the amplitude of all three stimuli
are the same, due to the center-surround structure of the receptive field the
neuron’s response varies. The neuronal response can be plotted as the contrast
sensitivity function (left).

the receptive field. The overall change in sensitivity with respect to spatial
frequency is plotted in Figure 2.6-left, and is known as the contrast sensitivity
function (CSF).

From a computational point of view the CSF describes the sensitivity to har-
monic stimuli as a function of spatial and temporal frequencies, where the sen-
sitivity is defined as the inverse of the threshold Michelson contrast (Equa-
tion 2.4). The threshold contrast depends on many factors such as the back-
ground (adaptation) luminance, the grating’s spatial frequency, orientation, spa-
tial extent, and eccentricity with respect to the fovea. Consequently, popular
CSF models [Daly, 1993; Barten, 1999] have multitude of input parameters. For
HDR imaging, Daly’s CSF [1993] as a part of the Visible Differences Predictor
(VDP) is found to produce better predictions, especially in scotopic range and
for adaptation levels greater than 1000 cd/m2 (Equation 10.3). Kelly [1983]

proposed a chromatic and achromatic spatiotemporal CSF, which has been im-
proved later by accounting for the movements of the eye [Daly, 1998] (Equa-
tion 10.5). A disadvantage of spatiotemporal CSFs is the lack of a luminance
adaptation model. In Chapter 7 we discuss the temporal aspects of contrast
sensitivity in more detail, and show how one can incorporate luminance adapta-
tion to a spatiotemporal CSF. In Figure 2.7 we show the effect of maladaptation
to the shape of the CSF.

An important point to note is that the psychophysical studies to determine
the CSF are performed on near-threshold stimuli. In supra-threshold contrast
region, the CSF tends to become flatter, meaning that the human visual system
becomes equally sensitive to all visible frequencies. This property is known as
contrast constancy [Georgeson and Sullivan, 1975].

There are two approaches to implementing the CSF, as a weighting function
for each visual channel [Lubin, 1993; Winkler, 2005] which offers less precision,
or as a filter in frequency domain [Daly, 1993] which offers better precision but
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is computationally less efficient and assumes that the filter is shift invariant.
Local adaptation can efficiently be approximated by interpolating between a
limited number of CSF functions with logarithmically spaced adaptation lumi-
nances [Mantiuk et al., 2005].

(1) (2) (3) (4)

Figure 2.7: Classical Campbell-Robson contrast sensitivity chart for dark adap-
tation. From left to right: (1) fully adapted state in a relatively bright environ-
ment (adaptation luminance 112 cd/m2), (2) background luminance was de-
creased to 3 cd/m2, the contrast sensitivity moves to lower frequencies, but due
to maladaptation, it is basically very low, (3) sensitivity regenerates according to
dark adaptation time-course, (4) final fully adapted state (adaptation luminance
3 cd/m2). The curves show the author’s thresholds observed from approximately
30 centimeters at original paper size.

2.4 Channel Decomposition

The receptive fields of the simple neurons in the primary visual cortex differ from
the receptive fields of the LGN neurons, in that they are selective to certain
spatial frequencies and orientations. Figure 2.8 shows hypothetical receptive
fields of the cortical neurons. As the right figure shows, the elliptical receptive
fields generate a stronger response if the stimulus has exactly their preferred
orientation.

+
-

-

-

-
+

Figure 2.8: Receptive fields in the primary visual cortex. The neighboring
circular receptive fields (left, center) together form elliptical shapes with a certain
orientation preference (right).

The main difference between various approaches to modelling this mechanism
is the tradeoff between, on one hand physiological plausibility, and on the other
hand theoretical simplicity and computational efficiency. At the former end
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Figure 2.9: The spatial frequency separation of the Cortex Transform (top),
and Laplacian Pyramid (bottom). Note that every cortex band only contains
a minor amount of contrast at the immediate neighboring bands. Laplacian
Pyramid levels on the other hand have a much larger support in the frequency
axis.

of the spectrum are the Gabor filter banks that faithfully model the on/off
structure of the receptive fields, however they are non-invertible and costly to
compute. On the efficiency and simplicity end of the spectrum is the Laplacian
Pyramid [Burt and Adelson, 1983]. It is also relatively simple to implement
orientations by “steering” the pyramid [Freeman and Adelson, 1991]. However,
the spatial frequency separation of the Laplacian Pyramid is low: each pyra-
mid level receives a notable contribution from spatial frequencies other that the
frequency corresponding to that pyramid level. Similarly, wavelet based decom-
positions are extremely fast, and recently Fattal [2009] demonstrated their use
in computer graphics applications. Like the Laplacian Pyramid, wavelet based
decompositions are multi-purpose tools not necessarily geared towards mod-
elling the primary visual cortex. To that end, the Cortex Transform [Watson,
1987] offers a nice trade-off between physiological plausibility and practicality,
in that it is invertible, has orientations and the frequency separation is high
(refer to Section 10.4 for the derivation). Figure 2.9 shows a comparison of the
frequency selectivity of the Laplacian Pyramid and Cortex Transform. Parts of
the Cortex Transform of an example image is shown in Figure 2.10. A closer
inspection of the Figure 2.8 left and center shows that the receptive fields of
the cortical neurons can correspond to either even or odd functions. This indi-
cates to a shortcoming of both the Cortex Transform and Laplacian Pyramid,
whose responses closely resemble that of the even filters. In practice, this means
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Figure 2.10: Cortex Transform decomposes an image (right) into multiple
frequency and orientation channels with boundaries shown in the frequency do-
main diagram (center). The four images on the left show the inverse Fourier
Transform of representative channels.

that these decompositions will produce a zero crossing at step edges. This is
exactly the opposite of our visual experience, where we tend to be sensitive
to edges, perhaps also due to some higher level visual mechanisms. Therefore,
instead of only an even response, using a quadrature pair of filters for mod-
elling the receptive fields of the neurons produces results that correlate better
with the actual perception (Figure 2.11). The Steerable Pyramid [Freeman and
Adelson, 1991] framework uses the Hilbert Transform of the second derivative
Gaussian filters in addition to the second derivative Gaussian Filters. Similarly,
the Cortex Transform can be extended by combining it with the corresponding
quadrature filters [Lukin, 2009]. This effectively removes the phase dependency
of the signal, which correlates with the insensitivity of the visual system to
phase. In Chapter 7 we propose an extension of the spatial Cortex Transform
to the temporal domain, as well a method to remove the phase dependency in
the temporal domain.

Figure 2.11: The illustration of phase uncertainty on a complex image (top
row) and a simple stimulus (bottom row). The even responses to both stimuli
create zero-crossings near step edges, whereas the odd responses are centered at
edge locations. Often the combination of both type of responses (quadrature pair)
gives a plausible result.
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2.5 Visual Masking

The loss of sensitivity to a contrast patch due to the presence of other “similar”
patches nearby is referred to as visual masking, as demonstrated in Figure 2.12.
However this definition is simplistic, it is well known that if the masking signal’s
contrast is low, than it facilitates the target rather than masking it. The phys-
iological foundations of this complex mechanism of the human visual system
is not well understood, and there are a multitude of models in the literature
that differ in their definition of “similarity” of the masker and target signal.
Some models only take into account masking from a masker at the same spatial
location and spatial frequency and orientation (self masking), while other con-
sider also masking from neighboring spatial locations frequencies, orientations
(neighborhood masking). There is however no consensus on the extent of the
considered neighborhood for the latter approach. On the other hand a common
point of most models is the omission of facilitation for simplicity on the basis
that it is not as significant as masking especially in complex images.

Figure 2.12: Illustration of visual masking. Even though the distortions im-
posed on the reference image (left) are uniform in magnitude, they are hardly
visible near the zebra’s vertical stripes, whereas one can clearly see them on the
grass background (right). An interesting point is that distortions are also visi-
ble near the zebra’s diagonal stripes, illustrating the orientation dependency of
visual masking.

There are two main approaches to implementing visual masking. The first ap-
proach involves the use of a threshold elevation function, that is a nonlinearity
depending on the masker signal’s contrast, spatial frequency and orientation. If
the frequency and orientation of signal and the masker signal are similar, the
original signal is suppressed by applying the appropriate compressive nonlin-
earity, in effect elevating the visibility threshold of the signal. An advantage
of this approach is that if the contrast is already normalized by a human vi-
sual system model, a single nonlinearity can be used for all spatial frequency
and orientation bands [Daly, 1993]. The second approach involves the use of
a transducer function that maps physical contrast to a hypothetical percep-
tual response that also accounts for visual masking [Legge and Foley, 1980;
Wilson, 1980; Mantiuk et al., 2006b; Watson and Solomon, 1997]. The trans-
ducer function is often preferred in supra-threshold models, whereas the near-
threshold models make use of the threshold elevation function. In computer
graphics, visual masking has been used in textured mesh simplification [Ferw-
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erda et al., 1997], rendering [Ramasubramanian et al., 1999], tone mapping and
color appearance [Pattanaik et al., 1998], among others.

Psychophysical data on temporal stimuli [Boynton G M, 1999] reveals that vi-
sual masking also depends on the similarity of the temporal frequency of the
masker and target signal. Several models that fit these measurements have
been proposed. While models with many narrow band mechanisms, as well as
three channels have been proposed in the past, it is now believed that there is
just one low-pass, and one band-pass mechanism [Winkler, 2005]. This theory
is consistent with the biological structure of the LGN where one can identify
parvocellular and magnocellular pathways encoding low and high temporal fre-
quencies, respectively. Moreover Friedericksen and Hess [1998] obtained a very
good fit to large psychophysical data using only a transient and a sustatined
mechanism. We investigate the temporal aspect of visual masking in more de-
tail in Chapter 7.

2.6 Contrast

The human visual system does not have a mechanism dedicated to contrast
computation in the sense of the mathematical formulations often used in the
literature. The close relation between perception and contrast is due to the
center-surround structures that in effect compute luminance differences at mul-
tiple frequencies. Computing physical contrast from the scene luminance is a
common first step in especially supra-threshold human visual system models.
These models then predict the perceived contrast from the physical contrast
using a transducer function.

Contrast is the change in the image intensity relative to the local average. It
can be used as a degree of distinguishability from the background. Perhaps
as a consequence of these vague description there are multiple mathematical
definitions of contrast that can be confusing at times. Considering a simple
stimulus of a box-like luminance profile, Weber contrast is defined as:

W =
L − Lbg

Lbg
. (2.3)

However, if the stimulus has a sinusoidal luminance profile, and thus is spatially
variant, than the selection of L is ambiguous. Using the luminance separately at
each location could be misleading, because the resulting contrast shape would
be sinusoidal as well. However, we tend to perceive the grating as a whole.
Michelson’s contrast is a better measure for sinusoidal gratings, as it represents
the contrast of the entire grating as a unit:

M =
Lmax − Lmin

Lmax + Lmin
. (2.4)

The definition of contrast becomes more complicated once we consider complex
images instead of simle stimuli. In this case, Michelson contrast is obviously
not usable, and as for Weber the background luminance is not well defined.
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To remedy this, a possible simplification is to ignore the spatial distribution of
contrast alltogether and produce a single contrast number from the image, such
as the root mean square (RMS) contrast:

RMS =

√

√

√

√

1

MN

N−1
∑

i=0

M−1
∑

j=0

(Lij − Lmean)2. (2.5)

This measure however is often too simplistic and often a single number does not
provide enough information about the image.

Local band limited contrast proposed by Peli [1990] overcomes this problem
by computing the local contrast at multiple scales. This contrast measure is
formulated as follows:

P =
L − Llp

Llp
, (2.6)

where Llp is the low pass filtered version of the original image. Often the contrast
is computed as multiple scales, where L and Llp are the neighboring scales of
a lowpass pyramid. This measure can be seen as a generalization of the Weber
contrast to multiple scales.

Mantiuk [2006b] proposed a lowpass contrast measure defined as

G =

(

L

Lmean

)

, (2.7)

which avoids the halo artifacts that appear with Peli’s definition.

Among the aforementioned contrast measures, there is no obvious choice that
would suppress the others in all cases. In practice the choice of the contrast
measure is dictated by application needs and the design choices made in the
rest of the human visual system model.

2.7 Visual Significance and Detection

The aforementioned models of the human visual system mechanisms offer merely
an interpretation of the retinal image, not a description [Wandell, 1995]. Not
much is known about how the human brain uses the HVS-processed visual data
to perform the wide range of complex tasks such as face recognition and object
tracking. For the purposes of this work, we define two simple, but fundamental
tasks that we can perform using the outcome of the human visual system, namely
visual significance prediction and detection. We will show that a multitude of
useful methods can be built using these tasks as a basis. In fact, the applications
throughout this dissertation make use of human visual systems designed to
predict visual significance (Part I) and detection (Parts II and III).

The bare outcome of a human visual system model, that is a prediction of per-
ceived contrast, is a guideline for visual significance. The details of the scene,
that produce a stronger perceptual response are likely to be more “significant”.
Compared to commonly used importance measures such as the gradient mag-
nitude, visual significance has the advantage of being scaled perceptually by
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taking into account mechanisms of the human visual system. In Chapter 3 we
show that one can achieve qualitative improvements over non-perceptual impor-
tance measures by integrating visual significance into various computer graphics
methods.

An important task for human vision is the detection of a barely visible signal
with a certain degree of reliability. Whether a certain pattern is detectable
can be determined experimentally, often using a two alternative forced choice
(2AFC) experimental procedure. The magnitude of the experimental stimuli
can be modulated according to the PEST procedure for more efficient use of
time.

The outcome of the 2AFC experiment can be computationally predicted by
using a psychometic function that maps the perceived contrast C ′ computed by
a human visual system model to detection probability:

P (C ′) = 1 − exp(−|C ′|3). (2.8)

Often the contrast is computed at multiple scales k, and the psychometric func-
tion is applied to each of those scales separately. Finally, the detection prob-
abilities P from multiple bands are combined using a probability summation
formula:

P̂ = 1 −
K
∏

k=1

(

1 − P k
)

. (2.9)

In the first part of the reminder of this thesis, we investigate two visual signif-
icance tasks: predicting the visual significance of image edges, and predicting
the visibility of images shown on a display under dynamically varying lighting
conditions. In the second and third parts we discuss image and video quality
assessment methods that are based on the detection task. From this point on,
we will assume that the reader is familiar with the aforementioned basics of
human visual system modeling. Also, for brevity the term human visual system
will be abbreviated as HVS in the rest of the thesis.



Part I

Visual Significance



.



Chapter 3

Visual Significance of Image

Edges

In the first part of this thesis we investigate two visual significance problems.
In this chapter we present an edge aware image decomposition framework based
on second generation wavelets [Fattal, 2009] that uses visual significance as its
edge strength metric. The contribution of this work is the use of an HVS model
to estimate visual significance as a measure of edge strength, instead of gradi-
ent magnitude that is commonly used in computer graphics applications. The
HVS model computes physical contrast at edge locations, and scales it through
a cascade of simple and well known models of luminance adaptation, spatial
frequency perception and visual masking. The computed visual significance
is approximately scaled in perceptually linear units, which implies that simi-
lar edge strength values across multiple images correspond to similar perceived
strengths.

Localizing significant variations in image luminance and chrominance, i.e. edge
detection, has been a classical problem in image processing. Similarly, edge
aware image decompositions have been used in numerous computer graphics
applications such as image abstraction, detail enhancement and HDR tone map-
ping. In both contexts, the essential component is an edge model, which in the
former case is used to produce a map of image edges, and in the latter case is inte-
grated into the image decomposition algorithm that purposely avoids smoothing
near strong edges.

The edge model serves two purposes: determining the location and strength
of edges. The majority of the methods proposed for edge detection involve
smoothing and differentiation to locate edges. A measure of edge strength is
essential, since typically the result of these methods is “too many” edges, and
the output is only comprehensible after the removal “less important” edges
thorough thresholding. Incidentally, gradient magnitude based edge models are
conveniently used in all but the most specialized edge detectors, because one
can locate edges by computing local maxima of the gradient magnitude, as well
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as simply use the magnitude value at the edge location as a rough estimate of
edge strength.

While existing methods are capable of localizing edges in a semantically mean-
ingful way, their performance is directly influenced by the edge strength model
they employ. The focus of this work is the computation of edge strength rather
than edge localization and semantics. Our central idea is that the magnitude of
image edges as perceived by the human eye, or the “visual significance” of an
edge, should be the guideline for edge strength computation. In that respect,
gradient magnitude as an edge strength measure encapsulates the well known
property of the human visual system being sensitive to luminance differences,
but ignores other aspects such as visual masking and luminance adaptation.
Earlier research [Ferwerda et al., 1997] has demonstrated how image contrast
is masked by other contrast patches that are of similar spatial frequencies (re-
fer to Chapter 2.5). Except perhaps simple stimuli designed for experimental
purposes, visual masking is expected to occur in virtually any complex image
and often to has a strong influence on perception. Disregarding the nonlinear
perception of luminance, especially in HDR images, often leads to overesti-
mating bright image regions. As a simple counter-measure, one can operate
in log-luminance space [Fattal et al., 2002] that better approximates perceived
intensity in bright image regions, but fails to model the perception of lower lu-
minance values that is not linear in log-space (see Chapter 2.2 for a discussion
on luminance adaptation).

In the rest of this chapter, we first summarize related work (Section 3.1), then
discuss the edge avoiding decomposition framework (Section 3.2) and the HVS
model (Section 3.3), than we validate the model (Section 3.4) and show that
the use of visually significant edges results in qualitatively better outcomes in
image retargeting, panorama stitching and HDR tone mapping over gradient
magnitude based approaches (Section 6.6).

3.1 Background

Edge Detection has been one of the fundamental problems in computer vision.
In an early approach, Marr and Hildreth used the zero crossings of the Laplacian
operator motivated by its rotational symmetry [Marr and Hildreth, 1980]. Later
Canny focused on finding an optimal differential operator that localizes sharp
intensity edges (which he approximated with the first derivative of a Gaussian),
and introduced the use of non-maxima suppression and hysteresis threshold-
ing [Canny, 1986]. Canny’s method proved to be very reliable over the years
and is still widely used. A notable improvement over earlier edge detectors is
the use of multi-scale analysis to detect smooth edges as well as sharper edges
(see [Pellegrino et al., 2004] for an overview). The steerable pyramid decompo-
sition, while designed for general purpose feature detection, is shown to perform
better at small peaks of intensity by combining even and odd filter responses
[Freeman and Adelson, 1991]. Lindeberg proposed an automatic scale selection
method where the scale of edges is determined by finding the maximum of a
strength measure over scales [Lindeberg, 1996]. This method is later employed
in Georgeson’s third derivative operator [Georgeson et al., 2007], which provides
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a more compact response than the first derivative. Some effort has also been
made to detect color edges [Ruzon and Tomasi, 1999]. For a detailed summary
of edge detection techniques we refer the reader to [Ziou and Tabbone, 1997].

Edge detection has found various applications in computer graphics such as
guidance over image editing operations [Elder and Goldberg, 2001], styliza-
tion and abstraction of photographs [DeCarlo and Santella, 2002] and texture
flattening [Perez et al., 2003]. The notion of edge importance understood as
its “lifetime” (essentially its presence) over increasing scales in the scale-space
framework similar to [Lindeberg, 1996] has been used for stylized line drawings
and structure-aware image abstraction [Orzan et al., 2007]. Edge-preserving
techniques such as the bilateral filter have been used to decompose an image
into a base and detail layers and applied to HDR tone mapping [Durand and
Dorsey, 2002]. Recently, Farbman et al. [2008] proposed another decomposition
with multiple detail layers and presented applications to scale selective feature
enhancement and image abstraction. Fattal [2009] later showed that comparable
results can be achieved much faster using a second generation wavelet decompo-
sition with a specialized weighting function that avoids edges. Another approach
to edge preserving filtering is detecting the edge strength by computing the gra-
dient of the input image, and reconstructing the image through anisotropic
diffusion [Perona and Malik, 1990]. This method decouples edge detection and
smoothing, but it is inefficient due to the iterative processing. This method has
later been modified by an edge strength measure based on curvature change
[Tumblin et al., 1999]. Gradient domain operators such as [Fattal et al., 2002;
Mantiuk et al., 2006b], while not explicitly stated, also utilize edges since gradi-
ent magnitude operator is essentially an edge detector. Mantiuk et al.’s [2006b]

method has additionally a perceptual component in the form of a simple contrast
transducer.

3.2 Edge Avoiding Framework

Objects appear differently depending on the scale of observation, and thus visual
significance of image features depends on the image scale. Consequently, many
image processing tools including edge detection algorithms adopted multi-scale
approaches. This has been physiologically justified by the finding that each sim-
ple retinal cell responds to a certain bandwidth of spatial frequencies [Wandell,
1995, Chapter 6].

Recent work [Fattal, 2009] demonstrates use of second generation wavelets com-
puted through the lifting scheme [Sweldens, 1997] in the context of edge avoiding
multi-scale image decomposition. In this section we give an overview of these
concepts, for a detailed discussion refer to [Jansen and Oonincx, 2005]. Con-
trary to regular wavelets, second generation wavelet bases do not have to be
merely translates and dilates of a single pair of scaling and wavelet functions.
This generalization enables data dependent filtering through the use of a weight-
ing function that utilizes the information obtained from the local neighborhood
changes the shape of wavelet bases accordingly. In the context of edge avoiding
wavelets (EAW) the weighting function assigns lower weights to locations con-
taining strong edges, thus the wavelet bases effectively “avoid” those locations.
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Figure 3.1: An illustration of the lifting scheme on a 1D signal. The signal
is decomposed into fine and coarse parts by arbitrarily designating odd pixels as
fine, and even pixels as coarse components. The fine component is predicted
from the coarse component using weights computed by the edge aware function
ω, or simply by linear interpolation. The difference between the original fine
component and the predicted fine component gives the details. The details are
then used to update the coarse component. The same process is then iterated on
the updated coarse signal.

The data dependent filtering achieved by wavelet bases not relying on transla-
tion and dilation comes at the cost of prohibiting the use of Fourier analysis
for wavelet calculation. This issue has been addressed by a discrete wavelet
transform named the lifting scheme [Sweldens, 1997]. The basic idea behind
the lifting scheme is to split a signal arbitrarily into fine and coarse samples,
predict fine samples from coarse samples and compute the details by subtract-
ing fine samples from their prediction, and update coarse samples using the
details. Figure 3.1 illustrates the computation in 1D (using Uytterhoeven’s col-
oring scheme [Uytterhoeven et al., 1997]). Advantages of the lifting scheme are
fast, in place computation and easily invertible decomposition.

One can achieve edge aware behavior by simply executing a weighting function
at each location that assigns weights according to the edge strength at the local
neighborhood. If the goal is to avoid edges, i.e. obtaining detail components
free of strong edges, this can be achieved by the function ω in Equation 3.1,
where m and n are intensities at the current location and some neighboring
pixel, respectively:

ω(m,n) =
1

(|ν(m,n)|α + ǫ)
. (3.1)

The control parameter α is set to 0.8 as suggested in [Fattal, 2009]. Divisions
by zero are prevented by setting ǫ to 10−5. We will use the function ν later for
the estimation of visual significance; in the original implementation it simply
returns the difference of n and m. Such a decomposition is useful in contrast
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editing applications such as detail enhancement and image abstraction, since
halo artifacts are prevented due to the absence of strong edges in detail compo-
nents. The opposite goal of extracting solely strong edges can be achieved by
simply using the inverse of ω. The detail components of the resulting decom-
position closely resemble the outcome of multi-scale edge detectors, which we
utilize in context aware image retargeting and panorama stitching applications
(Section 6.6).

The straightforward extension to the second dimension is to repeat the 1D
computation at both dimensions (Figure 3.2a). If an edge preserving weighting
function is used, the results of this 2D decomposition are analogous to X and
Y gradients, and thus fit naturally into the edge detection pipeline. Another
splitting method by [Uytterhoeven et al., 1997] with lower anisotropy produces
better results coupled with an edge avoiding weighting function (Figure 3.2b).
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Figure 3.2: The lifting scheme can be extended by repeating the 1D computa-
tion in X and Y directions (a), or using a lower anisotropy red-black quincunx
lattice (b). Only the prediction step is illustrated for brevity.

3.3 Human Visual System Model

We extend the EAW framework (Section 3.2) with an HVS model, where we
modify the weighting function (Equation 3.1) that penalizes strong differences of
image pixel values by computing visual significance of the luminance differences.
The HVS model takes physical image luminance as input, therefore 8-bit images
should be mapped to display luminance and HDR images should be calibrated
to scene luminance before processing. The luminance contrast C (Chapter 2.6)
is approximated in the EAW framework by dividing the fine samples by the
local mean of the K immediate coarse neighbors (K equals 2 and 4 for X-Y
splitting and red-black splitting, respectively):

C =
Fine

( 1
K )

∑

K Coarsek

− 1. (3.2)

Repeated at each scale, this formulation is similar to the low-pass contrast
in [Mantiuk et al., 2006b]. The advantage of a contrast based edge strength
measure over a gradient based measure is illustrated in Figure 3.3
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Figure 3.3: Edge strength predictions utilizing physical contrast account for the
effect of background luminance level. The perceived strength of step edges 200-
201 cd/m2 and 50-51 cd/m2 (left) are predicted to be the same by the gradient
based method, whereas a contrast based method correctly predicts the weaker
perceived strength of the first profile.

Note that the contrast C is computed solely using physical luminance. As
the next step we scale C by computing the sensitivity of the visual system
to obtain contrast in perceptually linear units. Two prominent factors that
affect contrast sensitivity (Chapter 2.3) are its spatial frequency (ρ), and
the adaptation luminance (La). These effects can easily be observed in the
Campbell-Robson chart.

Figure 3.4: An illustration of the effect of luminance adaptation (the practical
utility of our model is shown in Section 6.6). The original HDR image (left),
smoothing with EAW method (center), and smoothing with EAW method using
visually significant edges (right). The strength of edges of the bright window are
overestimated by EAW method in the absence of a model of luminance adapta-
tion. All images are tone mapped [Reinhard et al., 2002] for display purposes.

We use the CSF from the Visible Differences Predictor [Daly, 1993] with correc-
tions as indicated in [Aydın et al., 2008a, Equations (10, 11)] (also in Appendix
Section 10.2) to obtain the perceptually linearized contrast C ′ = C ·CSF (ρ, La).
Figure 3.4 shows an example where the difference in edge preserving smoothing
is mainly due to the scaling of contrast by the CSF. This behavior is typical
in HDR images, where the contrast magnitudes at very bright and very dark
image regions are overestimated by the frameworks without perceptual compo-
nents. As a result, the edges of the bright window are avoided unlike the edges
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at the window’s frame (Figure 3.4 center). The CSF’s scaling results in a more
uniform smoothing over edges with similar magnitude of visibility (Figure 3.4
right).

Masked coefficient

Intra-channel neighborhood

Inter-channel neighborhood

Figure 3.5: An illustration of neighborhood masking on detail layers of a multi-
scale decomposed image. At each image location, visual masking is computed as
a function of the immediate 8 neighboring pixels. The same neighborhood spans
a larger area in coarser scales (visualized by yellow boxes).

Visual masking (Chapter 2.5) is the decrease in visibility of a contrast patch
in the presence of other contrast patches of similar spatial frequencies. One
way of modeling this effect is by computing a threshold elevation map for each
visual channel, which when divided by the contrast at that channel accounts for
the increase in detection thresholds (thus, decrease in sensitivity). This method
trades off accuracy at supra-threshold contrast levels for better prediction near
the threshold, and has been used in image quality assessment metrics for distor-
tion detection. On the other hand, the transducer model is focused on percep-
tion of supra-threshold contrasts and thus preferred in discrimination tasks. The
model relies on a transducer function that is constructed by iteratively summing
up contrast detection thresholds. The use of a transducer function in computer
graphics context is demonstrated in [Ferwerda et al., 1997]. A more comprehen-
sive transducer model [Watson and Solomon, 1997] also comprises masking from
adjacent frequency channels (inter-channel masking). In this model, since the
lower frequency channels contain information from the spatial neighborhood, a
contrast patch at a certain location is effectively masked by neighboring contrast
patches (See Figure 3.5 for an illustration of neighborhood masking.)
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Figure 3.6: The visual masking due to the random noise modulated by image
luminance in the test stimulus (left), results in lower perceived edge strength
then the gradient magnitude (center), as predicted by our method (right).

While the visual masking due to the local neighborhood is often not significant
for isolated test stimuli, natural images tend to have “busy”, textured regions
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Figure 3.7: The effect of contrast masking in a complex image. The original
image (left), smoothing with EAW method (center), and smoothing with EAW
method using visually significant edges (right). The masking model reduces the
strength of the facial hair edges due to the presence of hair in the local neigh-
borhood.

where the visibility of edges are notably lesser than non-textured regions. To
account for that, our ν function (Equation 3.1) comprises the point-wise ex-
tended masking model [Zeng et al., 2000] which, in addition to a compressive
nonlinearity, also accounts for visual masking from the local neighborhood K:

R =
sign(C ′)|C ′|0.5

(1 +
∑

K |C ′
k|0.2)

. (3.3)

The effect of visual masking on a simple stimulus is illustrated in Figure 3.6.
Figure 3.7 shows that the involvement of the point-wise extended masking model
results in a perceptually uniform smoothing near high-masking regions. Com-
putation of the hypothetical HVS response R is the final step in function ν in
EAW the framework.

3.4 Model Calibration – Perceptual Experiment

To validate and calibrate the proposed edge perception model, we conducted a
simple threshold-level perceptual experiment. The motivation for this is twofold:
first, we aim to calibrate the implemented supra-threshold transducer model de-
scribed above (Equation 3.3) for threshold stimuli; second, as noted by [Whittle,
1986], discrimination thresholds for spatially separated patches should not be
generalized for perceiving edges, thus there is a lack of usable experimental
data. Furthermore, the CSF curves [Daly, 1993] reflect measurements using the
Michelson’s definition of contrast, which is slightly different from the imple-
mented definition contrast (Equation 3.2).

In our experiment, two adjacent grayscale patches were presented on a calibrated
display device. The luminance of the left patch is kept constant during each
trial, whereas the luminance of the right patch was modulated according to the
responses of the subject. Each subject was asked whether there is a visible edge
between the two patches or not. The luminance of the right patch was decreased
if the response was positive, and increased if the response was negative. The step
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sizes were determined by following the PEST procedure [Taylor and Creelman,
1967]. A random noise pattern was presented for 1s between stimuli to avoid
afterimages, memory effects, etc. Each trial ended once the standard deviation
of the subject’s last 6 responses were below the minimum step size (0.01cd/m2)
or if there were more than 30 responses collected. The experiment comprised 10
trials for each subject, where the initial luminance of the left patch at each trial
is selected by randomized sampling from the luminance range 1.5 − 400cd/m2.
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Figure 3.8: Experimental results. Left: measured edge detection luminance
thresholds as a function of adaptation luminance La, right: model predictions
before (red dots) and after the calibration (green dots). An ideal model response
is constantly 1 JND for the threshold data (dashed line).

The stimuli were displayed on a calibrated Barco Coronis MDCC 3120 DL,
a 10-bit 21-inch hi-precision LCD display, in its native resolution 2048×1536
pixels, the maximal display luminance was 440cd/m2. The display response was
measured by the Minolta LS-100 luminance meter. The experimentation room
was darkened (measured light level: 1 lux), and observers sat approximately 70
cm from the display. The total of 22 observers took part in our experiment.
There were both male and female observers, and all of them reported to have
normal, or corrected-to-normal vision. Each subject was verbally introduced to
the problem before the experiment.

The measured edge perception thresholds, see Figure 3.8 (left), were approxi-
mated by the second order polynomial function (blue curve). Using the poly-
nomial function, we generated 100 threshold stimuli as the inputs for model
calibration procedure. We assume that the model output for each stimulus at
the threshold level should be R=1 JND. Therefore, we run the model for each
of 100 input stimuli to obtain the error function, see Figure 3.8 (right). The
threshold prediction of the uncalibrated model (red dots) was quite solid, so
that we decided to perform the calibration by means of a simple linear func-
tion which should not affect the performance of the model for supra-threshold
stimuli. The calibration was achieved by dividing the masking model by the
calibration function (blue curve in Figure 3.8 (right)):

R′ =
R

0.0002 La + 0.2822
, (3.4)
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where La is the adaptation luminance in cd/m2.

As the masking model (Equation 3.3) was verified in JPEG 2000 applications,
we did not calibrate it for supra-threshold data. However, we believe that the
supra-threshold performance is also improved as a consequence of the threshold
calibration, and the precision of the model is more than sufficient for various
applications as illustrated in the next section.

3.5 Applications

In the previous sections we showed that the use of visual significance results in
smoothing that better correlates perceived strength of edges. However, appli-
cations like image abstraction through edge preserving smoothing or detail en-
hancement produce images whose quality is judged aesthetically. Thus, despite
the obvious differences between the perceptual and non-perceptual methods,
one can not objectively prove that a visually significant edge model produces
better results. In this section we present three applications that rely on im-
portance of image features, and thus the improvement through a perceptual
model can be demonstrated through examples. All results are generated us-
ing the extended EAW framework. The edge maps used in image retargeting
and panorama stitching are generated by using the inverse of Equation 3.1 as
discussed in Section 3.2.

3.5.1 Image Retargeting

Several techniques were recently proposed to allow content-aware image and
video retargeting [Avidan and Shamir, 2007; Wang et al., 2008; Rubinstein et
al., 2009]. The central part of those approaches is usually an importance map
(energy function) that describes the importance of areas in the image. Using the
map, the retargeting operator then preserves the important areas at the expense
of less-important ones. Several possibilities of the importance map construction
were proposed [Avidan and Shamir, 2007], however a simple Sobel operator was
utilized in many cases.

The visually significant edges are a natural candidate to construct such impor-
tance map in a perceptually more convincing way. We show the results of seam
carving image resizing operator [Avidan and Shamir, 2007] using traditional
importance map and the new map calculated by our technique in Figures 3.9
and 3.10. The traditional technique removes more visually significant areas than
when we build importance map using our method. Our results indicate that the
difference between both methods is especially significant if the visually signifi-
cant details are located in dark image regions. While the perception of brighter
details (> 100 cd/m2) can be approximated by a simple compressive logarithmic
function, our method has the advantage of faithfully modeling perception in all
luminance levels and taking masking into account, and thus overall produces
more reliable results (Figure 3.10 (c) and (d)). In fact, the success of particular
importance map construction varies with the input images and the absence of a
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universal retargeting operator led to the proposal of a hybrid approach combin-
ing several techniques [Rubinstein et al., 2009]. Our results suggest that visual
significance can be guideline in importance map computation and can provide
a basis for more sophisticated retargeting operators. An advantage of our ap-
proach is that it allows perceptually based retargeting on not just ordinary, but
also high dynamic range images. That said, we found that first producing a
tone mapped “dual” image, and then performing the retargeting on the original
HDR image using the edge strengths computed on the dual image to work well
in some cases. However, the type of tone mapping operator and suitable param-
eter setting is an open question, and requires manual interaction in comparison
to our fully automated method.
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Figure 3.9: HDR image shrinking by seam carving (150 pixels horizontally).
First column left: original HDR image. Middle: result when the Sobel operator is
used for importance map construction. Right: result using the proposed visually
significant edges. Images are tone mapped [Drago et al., 2003b] for the display
purposes. Second column: edge strength maps. Left: edges detected by Sobel
operator in the input HDR image. Right: visually significant edges – note the
differences in absolute values and in the ratios of edge strengths (due to the JND
scaling), and the structural differences in the edge map (due to the masking).

3.5.2 HDR Tone Mapping

As mentioned in experimental evaluations [Kuang et al., 2007b; Čad́ık et al.,
2008], the goal of tone mapping is manifold: some tone mapping operators are
focused on compressing the image luminance while preserving the overall scene
appearance. For example, the outcome of such an operator applied to a dark
scene would not reproduce the details that are not visible by the human eye
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Figure 3.10: HDR image shrinking (400 pixels horizontally) by seam carv-
ing. First row: (a) original HDR image, (b) Sobel operator overestimates the
strength of edges in the sky, which results in carving of the visually important
palm tree, (c) results are similar if the Sobel operator results are compressed by
the logarithm function, (d) the proposed method results in less distorted image
appearance, especially evident at the tree’s body. Images are tone mapped [Drago
et al., 2003b] for the display purposes. Second row: (e,f,g) Edge strength maps
for (b),(c),(d).

due to insufficient lighting. The other group of tone mapping operators on the
other hand focuses on preserving as many scene details as possible irrespective
of their visibility magnitude.

The tone mapping from the original edge avoiding framework [Fattal, 2009] can
be classified as strictly detail preserving. In the spirit of previous decomposition-
based approaches [Tumblin et al., 1999; Fattal et al., 2002; Durand and Dorsey,
2002; Farbman et al., 2008], the technique flattens the coarsest scale of the
EAW image decomposition by factor β and the other scales are progressively
compressed so that the wavelet coefficients in a coarser scale are decreased more
than in a finer scale (by factor γk, where k is the scale). This corresponds to an
observation that the coarser scales often contain very high magnitude differences
and should be therefore compressed much more than the finer scales (details)
that we usually aim to preserve. The technique operates on logarithm of the
input luminance that can be thought of as a simple approximation of human
luminance perception, but having not accounted for other prominent perceptual
phenomena (e.g. the perception of contrast), the results look unnatural, see
Figure 3.11 (left).

The results produced by the technique mentioned above may be suitable for
certain scenarios (e.g. the best reproduction of details), but not for reproducing
the appearance of a scene. However, we can achieve much better results (in
this sense) by replacing the logarithm function with the perceptual framework
proposed in this chapter. We thus obtain image decomposition coefficients that
are closer to the human visual system response (accounting for phenomena de-
scribed in Section 3.3) and those are then compressed in a same way as above for
the display purpose. As expected, the results are then more natural renditions
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of the original HDR images and preserve the scene appearance, see Figure 3.11
(right).

Original with HVS Model Original with HVS Model

Figure 3.11: HDR image tone mapping without (left columns) and with our
HVS model (right columns). The original method [Fattal, 2009] preserves as
many image details as possible at the cost of overall scene appearance. Our
method is more balanced in terms of reproduction of scene appearance and detail
preservation.

3.5.3 Panorama Stitching

An HDR panorama generation approach proposed by Ward [2006] makes use
of edge maps to stitch adjacent images of a scene. In this method images are
decomposed into two layers: a low pass layer that corresponds to 1/16th of the
image’s original resolution and a high frequency layer. The low frequency layers
of adjacent images are blended together using a sinusoidal weighting function,
whereas the high frequencies are spliced at locations containing strong edges.
The method is guided by a compound edge map E obtained as a combination
of edge maps of pairs of overlapping images (Eleft, Eright). We adopted the
following technique to construct the compound edge map:

E = max(Eleft · Eright, 0). (3.5)

In other words: if there is a strong edge in the left image, but not in the right
image, then this is possibly due to a misalignment and should not be preferred
for splicing. On the other hand, locations containing strong edges with the same
sign in both images are strong candidates for splicing.

For panorama stitching application, we inverted the neighborhood masking in
our model, so that it amplified the masked edges. This is motivated by ob-
servation that the masked edges also mask the seams so that they are less
disturbing in the final panorama. We empirically found that multiplying R
with (2 · Neighborhood masking)2 to work well in practice. We compare the
results obtained using our technique and the traditional Sobel operator in Fig-
ure 3.12. The source images were inverse tone mapped prior to processing by
simple contrast stretching.
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Figure 3.12: An HDR panorama stitched from three different, not precisely
aligned pictures using Ward’s technique [Ward, 2006]. Top: the result obtained
using Sobel operator, Bottom: the result using the proposed visually significant
edges. The images are tone mapped [Reinhard et al., 2002] for display purposes.

3.6 Conclusion

We presented a method that localizes image edges and scales their strength
proportionally to their visual significance. We discussed a simple and efficient
HVS model that accounts for prominent features of the visual system such as
luminance adaptation, spatial frequency sensitivity and visual masking. In our
experience the visual significance computation in EAW framework increases the
edge-map computation time by 30 − 50%.

The HVS model is integrated into the edge avoiding wavelet framework which
provides a convenient basis for edge preserving image decomposition, and also
extraction of edges by inverting the edge-stopping criterion. The choice of the
framework is not crucial for specialized applications that rely either solely on
image decomposition or edge extraction. For example, the HVS model can be
applied to multi-scale image gradients for the former type of applications, or
to an image pyramid obtained through bilateral filtering for the latter type of
applications. The wavelet framework is convenient in the sense that it can serve
both purposes in one framework, and is faster than others in decomposition.

The main limitation of this chapter is the absence of models for higher level
mechanisms of the visual system such as gestalt properties and prior knowl-
edge. Unfortunately modeling those mechanisms is not trivial because of their
complexity and consequently the hardness of designing reproducible experimen-
tal setups to determine their effects. Moreover, it has been shown that the shape
of the CSF becomes flatter at supra-threshold contrast levels [Georgeson and
Sullivan, 1975]. A more precise treatment of supra-threshold contrast sensitivity
could involve implementing the transducer given in Watson and Solomon [1997],
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but it is not clear how to perform the inhibitory pooling involved in this model
within the second generation wavelet framework without notably increasing the
computation time. The presented model, along with similar supra-threshold
models used in computer graphics context, does not account for this behaviour
for efficiency reasons.

In the light of recent work [Cole et al., 2008] that shows luminance edges are
in fact prominent image features, we believe that the visually significant edges
are good candidates for determining the richness of detail in images. Such a
measure, combined with others such as image brightness, overall contrast and
colorfulness can provide a good estimate of image quality in the absence of a
reference image (no-reference image quality assessment). As a future direction
we would like to investigate the possibility of designing such a metric that utilizes
visually significant edges.
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Chapter 4

Display Visibility under

Dynamically Changing

Illumination

In this chapter we investigate another visual significance problem, namely the
visibility of image features when viewed on a display under dynamically changing
lighting conditions. The simplistic HVS we employed in the previous chapter
does not take into account external factors such as the ambient illumination and
reflections on the display surface, which are crucial for this application. Thus, in
effect the visual significance computation from the previous chapter is adjusted
to the sensitivity of an observer sitting in front of a monitor, in a room with
controlled illumination that does not interfere with the observer’s adaptation
state. On the other hand, the display technology progresses not only towards
increasing brightness, contrast and color reproduction quality, but also making
display devices lighter and thinner. As a result, the use of display devices is
no longer limited to indoors where the illumination shows lesser variation. How
is the visibility of details on, for example, a cell phone display affected when
exposed to direct sunlight? In this chapter, we investigate how dynamic changes
in illumination affects the visual significance of the displayed content.

The method presented in this chapter accounts for the decrease in sensitivity
due to maladaptation (adaptation to a different luminance level than the back-
ground luminance) that may be caused by abrupt changes in lighting as well
as the observer directing her gaze to a brighter or darker object (see Chap-
ter 2.2 for the basics of luminance adaptation). Since we do not assume static
illumination, the sensitivity of the HVS changes over time due to the chang-
ing adaptation state (Section 4.2.1). Our metric, on the one hand predicts the
spatially varying magnitude of visibility of the reference and associates pix-
els with easily interpretable visibility classes like informative, warning&caution,
etc. (Section 4.2.2), and on the other hand detects the loss of details due to
the reflections with respect to the reference (Section 4.2.3). The final visual
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significance of the displayed content is the combination of the visibility classes
with the effect of reflections. We present results for various lighting conditions
and visual system states in Section 8.2, and apply our method to a car interior
display, where the lighting of both the car interior and the display is computed
by a global illumination simulator (Section 4.4).

4.1 Background

The visibility of the displayed content is expecially crucial in automotive and
aerospace applications, where the pilot or the driver often needs to react quickly
to changing conditions. Dreyer [2007] proposes determining the visibility level
of a displayed contrast patch as the ratio between the luminance difference be-
tween a symbol and its background, and Adrian’s threshold luminance [Adrian,
1989] which is a function of the symbol size and exposure time. The temporal
aspect of adaptation is modeled in the time-to-visibility metric [Krantz and Sil-
verstein, 1992], which takes into account display contrast, ambient illumination
and the adaptation luminance to determine the time when a given spatial fre-
quency pattern becomes visible. Mantiuk et al. [Mantiuk et al., 2008] proposed
a quality metric which takes into account ambient illumination conditions to op-
timize perceived detail reproduction in a tone mapping algorithm. Other work
focused on the discriminability of symbols shown on the displays in airplane
cockpits [Ahumada et al., 2006].

Figure 4.1: Images of a car display with and without reflections. Note that
gamma corrected images should be converted to physical luminance before being
processed by our method.

4.2 Visibility Analysis

Our method requires a reference display emission image along with the image of
the display subjected to reflections, both scaled in cd/m2 units. An example in-
put image pair is shown in Figure 4.1. We use a combination of two measures in
our display analysis: for each pixel, first we determine the visibility classes of the
display emission image as a function of the perceived contrast magnitude, and
second, we detect the loss of details due to the reflections. The former measure
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is computed at contrast levels well above the threshold (supra-threshold), while
the latter happens at the vicinity of the visibility threshold (near-threshold).
We employ separate methods to model both tasks, each specialized in model-
ing the corresponding contrast range. The predicted visual significance of the
displayed content is a combination of the predictions of the outcome of both
models. In the rest of this section we elaborate on modelling temporal adap-
tation, and discuss how we incorporate temporal adaptation to the near– and
supra-threshold components of our metric.

4.2.1 Temporal Adaptation

The sensitivity variation at a certain adaptation state is commonly modeled as
a sigmoid response profile centered at the corresponding luminance level [Naka
and Rushton, 1966]. To cope with temporally and spatially changing real world
luminance, the adaptation state is continuously readjusted. In scenarios with
dynamically changing lighting conditions, the relatively slow pace of temporal
adaptation plays a significant role in visual perception. The threshold luminance
when the HVS is maladapted to the adaptation luminance La, while the actual
(background) luminance is L, is typically given as a threshold versus intensity
and adaptation function (∆L = tvia(L,La)).

Almost all known adaptation mechanisms operate within retina, each of which
having their own time course suggesting that they should be tracked sepa-
rately [Pattanaik et al., 2000]. The fast but less effective neural mechanisms
and slower but more effective photochemical mechanisms are responsible for
shifting the response profile across the visible luminance range for both cone
and rod systems. We adopt Irawan’s [2005] approach, where adaptation due to
pigment bleaching (σb), slow neural adaptation (σc) and fast neural adaptation
(σn) are modeled separately, and Equation 4.1 gives the adaptation state as a
function of adaptation luminance La:

σ(La) = σb(La) σc(La) σn(La). (4.1)

The sigmoid shaped retinal response function R for this adaptation state as a
function of background luminance L and a sensitivity control parameter n is
given in Equation 4.2:

R(L, σ(La)) =
Ln

Ln + σ(La)n
. (4.2)

To obtain the threshold luminance ∆L at an adaptation level given by the tvia
function, first the differential retinal response ∆R = R(L+ tvi(L), L)−R(L,L),
that produces a unit JND, is computed assuming perfect adaptation (La = L).
The tvi (threshold versus intensity) function returns the visibility threshold of
the fully adapted visual system given the background luminance. We derive
the tvi function from VDP’s contrast sensitivity function by iteratively com-
puting the maximum sensitivity for each adaptation luminance along all spatial
frequencies. Finally, the difference between the luminance value that generates
the response R + ∆R and L gives the threshold luminance of the maladapted
visual system.
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Figure 4.2: Threshold contrasts (calculated by normalizing tvia by background
luminance L) for perfect adaptation (red curve) and for adaptation luminances
(La) of 1, 100 and 10, 000 cd/m2 (blue curves). At L = 100 cd/m2, threshold
contrast (∆C) is lowest for adaptation luminance 100 cd/m2, whereas for mal-
adapted states with La equals 1 cd/m2 and 10, 000 cd/m2 the threshold increases
notably.

In Figure 4.2, we plot the threshold contrasts (1/sensitivity) for three adapta-
tion states at La equals 1, 100 and 10, 000 cd/m2 (blue curves) along with the
threshold contrasts for perfect adaptation (red curve). The perfect adaptation
curve is approximately the envelope of all adaptation states. We can think of
the blue curves shifting horizontally as the visual system adjust to a new adap-
tation state. The time course of neural adaptation in the case of an abrupt
change in lighting from luminance L0 at time t = 0, to La is modeled as the
exponential decay function (Equation 4.3) for neural adaptation of both rods
and cones:

La−current = La + (L0 − La) e
−t
t0 . (4.3)

Temporal change in adaptation is modeled by updating the tvia at each time
step with the current adaptation level La−current. We set t0 to 0.08 seconds
for cones, and 0.15 seconds for the rods as given in [Irawan et al., 2005]. We
consider only the steady-state behavior of relatively slow pigment bleaching,
since we observed that detail visibility is almost entirely recovered within the
first few seconds.

Next, we discuss the supra– and near threshold measures we employ in our
analysis and introduce new building blocks based on the tvia function, that
extend those measures by modeling adaptation over a time course.

4.2.2 Visibility Classes

Visibility classes relate the contrast of the reference display emission to mag-
nitude of contrast visibility scaled in JND units. Contrast of typical displayed
content is well over the visibility threshold. Thus we use a transducer based
supra-threshold HVS model, that accurately predicts the magnitude of HVS
response by taking into account visual masking. A numerical response value
computed by the model alone is not descriptive (e.g. how much visible are 50
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Visibility Class PJND Description

6 Attention Getter 120 Attention getting quality must be maintained
beyond the para-foveal limit and into the pe-
ripheral vision areas

5 Warning & Caution 90 Warning or cautionary information requiring
predominate attention

4 Dynamic Complex 70 Complex formats with small alphanumeric
characters and/or fine line analogue or
graphic presentations. This data is not fixed
in location

3 Static Complex 60 Same as Dynamic complex, but data is fixed
in location

2 Status 50 Dual State (On-Off) information. Location
is fixed

1 Informative 40 Fixed format single state information. Pro-
vides background information supporting
controls or more complex presentations

Table 4.1: The visibility classes and associated PJND values.

JNDs?). Instead, a classification of HVS response intervals into visibility classes
(VC) is easier to interpret by humans. The perceptible just noticeable difference
(PJND) model introduces 6 classes of visibility (Table 4.1) and has been applied
to airplane cockpits [Sharpe et al., 2003]. The method has been calibrated by
subjective experiments on airplane-pilots and civilians in separate studies, and
similar values are obtained for both. The PJND value is defined as the geomet-
ric mean of luminance and chrominance JNDs. According to [Dreyer, 2007], the
effect of chrominance is relatively small, therefore we consider only luminance
contrast.

In the original PJND method, luminance to JND conversion is done be normal-
izing the logarithmic contrast by an experimentally found constant assuming
that the observer is adapted to 10, 000 cd/m2. In environments subject to
strong sunlight (such as airplane cockpits), it is reasonable to assume logarith-
mic HVS response and high adaptation luminance. But under dimmer lighting
this model will severely underestimate observer sensitivity. Additionally, the
significant effect of visual masking on supra-threshold contrast perception is
neglected. In our work, we employ a multiscale luminance contrast perception

Figure 4.3: Building blocks of the visibility class (VC) analysis. See text for
details.

model [Mantiuk et al., 2008] to compute the hypothetical supra-threshold HVS
response (Figure 4.3). First, we calculate the logarithmic contrast G across
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scales given the image luminance, by computing the logarithm of image lumi-
nance and building a Gaussian pyramid. The logarithmic contrast at level l is
then given by the difference between levels l and l + 1 of the pyramid, where
larger numbers indicate coarser scale. Considering the high frequency nature
of the information conveyed through display devices (text, symbols, etc.), we
focus on the loss of local details rather than distortions in the global contrast.
Thus, consistent with the original method, we only consider frequencies higher
than 3cy/deg. Next, Wilson’s transducer [Wilson, 1980] is used to compute the
HVS response given contrast W = ∆L/L and sensitivity S as input (Equa-
tion 4.4). Note that logarithmic contrast can then easily be converted to Weber
contrast (W = 10|G| − 1) (see Chapter 2.6 for a discussion on various contrast
definitions).

T (W,S) =
3.291 [(1 + (SW )3)1/3 − 1]

0.2599 (3.433 + SW )0.8
. (4.4)

Figure 4.4: Visibility classes of the emission of a car display. Refer to Fig-
ure 4.1-right to see the original image.

The contrast sensitivity function [Daly, 1993] used in the original method to
compute S in Equation 4.4 is designed for steady-state adaptation. Using the
tvia function from Section 4.2.1, we derive Equation 4.5 that also accounts for
temporal adaptation:

S = OTF (ρ, p)
nCSF (ρ, La, d)

tvia(L,La)/L
. (4.5)

The normalized contrast sensitivity nCSF (Chapter 10.2) is modeled as a func-
tion of spatial frequency ρ, adaptation level La and viewing distance d. The
(OTF ) models the disability glare due to the reflections in optics of the human
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eye, where p denotes observer’s pupil diameter. Although not commonly ob-
served in low dynamic range imaging, disability glare has a significant effect on
our perception of HDR images. The effect of changing adaptation conditions to
the HVS response is shown in Figure 4.5.
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Figure 4.5: Supra-threshold HVS response for background luminance L = 100
cd/m2, at adaptation levels La: 100 (red), 10 (blue) and 1000 (green) cd/m2 at
4 cy/deg.

The HVS responses to luminance contrast across all scales are summed up using
a Minkowski summation with exponent 2. In our visualization, the test image
is shown in gray-scale while corresponding visibility classes are color-coded ac-
cording to the scale at the bottom (Figure 4.4).

4.2.3 Loss of Details

Note that the visibility classess computed entirely from the reference display
emission, and do not account for the loss of details due to reflections. Spatially
varying illumination may produce specular reflections that locally reduces the
display contrast. The consequent decrease in the visibility of the displayed
content is modeled in a separate near-threshold method [Aydın et al., 2008a],
that will be discussed in detail in Chapter 6.

Figure 4.6: Main processing steps of the detail loss analysis. The luminance
masking step is modified as in Equation 4.6. See the Chapter 6 for further
discussion of the pipeline.

The input to the metric are the luminance values of the test image (display
emission and reflections) and the reference image (display emission only), both
given in cd/m2 units (Figure 4.1). The main processing steps of the method are
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depicted in Figure 4.6, where both input images undergo the same processing
separately, until the final distortion detection step.

To model temporal adaptation we introduce a mapping from luminance to a
perceptually uniform space scaled in JND units of a maladapted visual sys-
tem. Unlike the original method that assumes perfect adaptation, we derive the
mapping for a given adaptation luminance La by iteratively adding threshold
values at the maladapted state, starting from the minimum luminance L1 (10−3

cd/m2) until the maximum luminance LN (1010 cd/m2):

Li = Li−1 + tvia(Li−1, La) i ∈ {2, 3, . . . , N}. (4.6)

The index i of luminance Li gives the corresponding JND value for the mal-
adapted visual system. The JND values at arbitrary luminance levels are inter-
polated from the two closest neighbors. The resulting mapping from luminance
to JNDs is shown for perfect adaptation and three adaptation levels at 1, 100
and 10, 000 cd/m2 in Figure 4.7. We calibrate both components using the cal-
ibration values from [Aydın et al., 2008a] for the case when La = L, that are
obtained through psychophysical experiments on the modelfest dataset [Wat-
son, 2000].

Figure 4.7: JND values for perfect adaptation (red curve), and La equals 1,
100 and 10, 000 cd/m2 (blue curves from left to right). Note the large differences
between JND values for the same background luminance in different adaptation
states.

We use the same optical transfer function (OTF ) and normalized contrast sen-
sitivity function (nCSF ) as discussed in Section 4.2.2. The orientation and spa-
tial frequency selectivity of the neurons in the visual cortex are modeled at the
channel decomposition step through the cortex transform [Watson, 1987] with
modifications as in [Daly, 1993] (Chapter 10.4). Consistent with Section 4.2.2,
we use the cortex bands down to mean frequency 3 cy/deg, while additionally
performing processing for 6 orientations.

In order to predict only the detail loss due to the reflections, we calculate the
detection probability of the case where visible contrast in the reference becomes
invisible in the test image, separately at each frequency and orientation. The
detail loss map is generated by combining distortions across frequencies and
orientations (through regular probability summation [Aydın et al., 2008a]). We
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Figure 4.8: Detail loss due to the reflections on the car display. Refer to
Figure 4.1-left to see the original image. The loss of visibility of the symbols
and characters on the right display side are detected by the metric. On the
other hand the increase of luminance on the display background in this region
due to the reflections is ignored by our metric because it does not lead to any
structural changes in the image.

take a similar in-context map approach to visualization of detail loss as in visibil-
ity classes (refer to Figure 4.8). The visual significance of the displayed content
is computed by assigning the locations with > 50% detail loss probility to 0 in
the visibility class map.

4.3 Results

In this section we test our method on a Barco Coronis 3MP LCD display (max.
luminance 400 cd/m2) under multiple levels of reflections. Firstly, for each image
in our test set we generate a scene referred HDR image of the corresponding
display emission. HDR images are generated by combining multiple shots from a
Canon 5D camera with different exposures using the open source pfsCalibration
package. Next, in the same way we capture a reflection component generated by
the camera flash. A test set is created by amplifying the reflection components
to three separate levels and combining them with captured emissions for three
test images. Resulting visibility class and detail loss maps, and the combined
visual significance maps for an adapted observer are shown in Figure 4.9.

Our method associates high contrast regions such as icons and text to the high-
est visibility classes, whereas background regions are predicted to have lower
importance. The detail loss analysis detects more structural distortions with
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Figure 4.9: 1st and 4th rows, from left to right: the reference display emission,
and three levels of reflections in increasing order (100, 500, 2500 cd/m2). The
2nd and 5th rows: detail loss maps due for three levels of reflections. The 3rd and
6th rows: resulting visual significance maps. The visibility maps are computed
for a perfectly adapted observer.

each increase in reflections. Note that we correctly differentiate between the
contrast introduced by the reflection component and the image contrast oc-
cluded by the reflection component, and detect only the latter. In Figure 4.10,
we show how our measures respond to temporal recovery of sensitivity. In this
scenario, the observer first adapts to an image with reflections (Figure 4.9: 4rd

row, 3rd column). The adaptation luminance at time t = 0 is calculated as 5664
cd/m2 by averaging over a 1 visual degree area near the brightest center part
of the reflection. Next, the reflections are removed, leaving the display emission
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Figure 4.10: Visibility class (first row) and detail loss (second row) maps for
L0 = 5664 cd/m2, after time steps indicated at the top.

fully visible (Figure 4.9: 4rd row, 1st column) while the observer is still adapted
to the luminance of the highlight. Our analysis shows that after 0.8 seconds
nearly all details become visible, and visibility classes are improved.

4.4 Automotive Application

To demonstrate a possible application, we integrate our method to a global
illumination simulator that models a car interior containing a navigation panel
display [Dmitriev et al., 2004]. HDR environment maps captured using an HDR
camera with a fisheye lens mounted on the roof of driving car have been used
to illuminate the virtual car model. Since the car geometry is static in our
application, the precomputed radiance transfer (PRT) technique has been used
to efficiently compute global illumination in the car interior for each environment
map frame.

Figure 4.11: Rendering of the car cockpit. Original HDR image is tone-
mapped for displaying purposes.

The reflectance from the display has been computed off-line using precise fi-
nal gathering with importance sampling driven by the bi-directional reflectance
distribution function (BRDF), which was measured for the actual car display
covered with antiglare/antireflection layer. Figure shows an example view of a
car interior produced by our renderer. The simulation environment allows us to
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conveniently test the effect of various levels of reflections reflections using our
metric 4.12.

Figure 4.12: Visibility analysis of the displayed content subject ot increasing
level of reflections (250, 1250, 6250 cd/m2).

4.5 Conclusions

We introduced a method for display visibility analysis that works under spatially
and temporally varying illumination conditions and accounts for the temporal
adaptation of the observer’s visual system. Our method consists of two parts:
A supra-threshold metric that associates visible contrast of the display emission
with visibility classes, and a near threshold metric that detects the visible detail
loss due to reflections. We extend current methods, that assume the eye is per-
fectly adapted at single pixel resolution, by deriving the components necessary
to model the temporal change in sensitivity. The performance of our method is
demonstrated on an LCD display illuminated by spatially varying ambient light
of different intensity. We also integrated our method to a global illumination
simulator and present visibility analysis of a car cockpit display under various
lighting and adaptation conditions.

One limitation of our work is that we use a single adaptation luminance for
the entire image when modeling maladaptation. A better approximation to
real adaptation luminance would be found by averaging over a region at each
location. However, the exact support size and type of such an averaging kernel
is unknown to us. We also assume that the displayed content to be static. A
higher perceived contrast can be achieved by introducing temporal variations to
displayed content (e.g blinking lights). Our model can be improved by taking
into account the change in contrast sensitivity due to temporal variance. It
would also be interesting to compare our method to reaction time based visual
performance studies such as [Rea and Ouellette, 1991] [Ueno et al., 1985].
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Image Quality Assessment
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Chapter 5

HDR Extension for Simple

Image Quality Metrics

In the second part of this dissertation we present two image quality assessment
techniques. In this chapter we discuss an extension to a pair of common LDR
quality metrics, whereas in Chapter 6 we present a full dynamic range indepen-
dent quality assessment pipeline.

Most of the commonly used quality metrics do not take into account the bright-
ness of display devices. Such metrics take as input 8-bit code values (luma or
gamma corrected pixel values) and assume that they are perceptually uniform,
regardless of how bright or dark the display is. However, the visibility of distor-
tion can increase significantly as the display gets brighter. Taking into account
the effect of display brightness is especially important for the new LCD TVs,
whose peak brightness (over 500 cd/m2) exceeds five or more times the typical
peak brightness of a CRT display.

Accounting for luminance effects is also important for HDR images. They store
linear radiance or luminance maps, instead of 8-bit gamma-corrected code val-
ues. The difference between luminance or radiance values has little correspon-
dence with the actual visible difference, since the eye is sensitive to luminance
ratios rather than absolute luminance values, the property sometimes referred as
the luminance adaptation (Chapter 2.2). Therefore, simple measures computed
on luminance or radiance maps have little correspondence with the actual image
quality. In this chapter we explain how absolute luminance values can be con-
verted to an approximately perceptually uniform encoding, which in turn can
give meaningful quality predictions when used with the image quality metrics
that operate on pixel values.

In this chapter we discuss how the perceived image quality is affected by the
actual luminance levels. We propose an extension to a pair of well-known quality
metrics in the form of a transfer function, referred as perceptually uniform (PU)
encoding. The PU encoding transforms luminance values in the range from
10−5 to 108 cd/m2 into approximately perceptually uniform code values. The
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resulting code values are passed to the quality metric instead of gamma corrected
RGB or luma values. The proposed PU encoding is derived from the contrast
sensitivity function (CSF) that predicts detection thresholds of the HVS for a
broad range of luminance adaptation conditions.

The PU encoding is designed so that it is backward-compatible with the sRGB
nonlinearity within the dynamic range of a CRT display. Consequently, the
quality metrics using PU encoding show similar behaviour as the original metrics
for CRT displays. We test the proposed PU encoding with two widely used
visual quality measures: the Peak Signal to Noise Ratio (PSNR) [Wang and
Bovik, 2006] and the more sophisticated Structured Similarity Index Metric
(SSIM) [Wang and Bovik, 2006].

5.1 Background

Objective visual quality metrics either model luminance adaptation (effect of
luminance of the detection threshold) explicitly and include it in their process-
ing, or implicitly, assuming that input code-values are “gamma-corrected” and
thus perceptually linearized. The former group includes Sarnoff VDM [Lubin,
1995b], PDM [Winkler, 2005], DVQ [Watson et al., 2001], VDP [Daly, 1993],
HDR-VDP [Mantiuk et al., 2005] and many other metrics that model the HVS.
These metrics, however, due to their complexity, difficult calibration, on-going
standardization effort or lack of freely available implementation, are not as pop-
ular as the latter group of metrics, which includes arithmetical and structural
metrics. Two such popular metrics are peak signal-to-noise ratio (PSNR):

PSNR(x, y) = 20 log10
D

MSE(x,y) MSE(x, y) = 1
N

∑N
i=1(xi − yi)

2, (5.1)

and structural similarity index metric (SSIM) [Wang and Bovik, 2006]:

SSIM(x, y) = l(µx, µy)
α

c(σx, σy)β s(σx, σy)γ , (5.2)

where x and y are pixel values in reference and distorted images, D is the dy-
namic range, µ and σ are the mean and standard deviations of the corresponding
input images. The final quality measure SSIM is a weighted combination of the
luminance comparison function l, contrast comparison function c and structure
comparison function s. These metrics rely on the perceptual linearity of input
pixel values xi and yi, which should account for luminance adaptation. In the
following sections we show that this is reasonable assumption for CRT displays,
but it is less accurate for much brighter LCD displays. This is especially the
case when the same “gamma” function is used for both a bright and a regular
display. Finally, such metrics cannot be applied directly to HDR images.

The proposed PU encoding in conceptually similar to the DICOM Grayscale
Standard Display Function [DICOM, 2001], but is intended to handle a larger
dynamic range. The proposed encoding is an adaptation of the color space used
for HDR image and video encoding [Mantiuk et al., 2006a] for quality metrics
that ensures backward-compatibility with the sRGB color space.
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Figure 5.1: Contrast sensitivity function (CSF) of the human eye in dark
(left) and bright (right) viewing conditions. Arrows labelled as ∆Sens. and
∆Freq. denote the amount of difference in magnitude and frequency of the peak
sensitivity between the dark and bright cases.

5.2 Distortion Visibility on Regular and Bright Dis-

plays

The effect of luminance level on the sensitivity of the human visual system is
often referred as luminance adaptation. Figure 5.1 shows the Campbell-Robson
contrast sensitivity chart for two different background luminance levels. For
the best viewing, the figure should be viewed on an LCD display of about
200 cd/m2 and the display function close to the sRGB nonlinearity. The solid
lines denote the contrast sensitivity of the HVS, which is the contrast level
at which the sinusoidal contrast patterns become invisible. Even though the
same scales were used for both left and right plots, the CSF is shifted upwards
(higher sensitivity) and right (towards higher spatial frequencies) for the brighter
pattern. This shows that we are more likely to notice contrast changes, if the
stimuli is brighter, as is the case of a brighter display.

But it is not clear if this observation for simple sinusoidal pattern can be assumed
valid for complex images. Consequently, we cannot assume that a difference in
sensitivity due to image brightness results in a difference in quality assessment.
To verify this, we performed a subjective quality evaluation of distorted images
shown on the displays of different brightness.

Our 16 test subjects were within the ages 23–48, all with near perfect or cor-
rected vision. Each subject was presented a reference and distorted image side
by side for 10 seconds. After that interval, a blank screen was displayed and
the subjects were asked to assess the quality of the distorted image with respect
to the reference on a 5 point scale, where higher values indicate better quality.
Subjects were given the opportunity to view the image pair again for additional
10 second intervals until deciding on the image quality. A set of distorted test
images was generated by applying 3 types of distortions (random pixel noise,
gaussian blur and JPEG compression) at 2 levels (high and low) to 3 images.
Each image pair was shown on a Brightside DR-37P HDR display, which simu-
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Figure 5.2: Quantization errors of sRGB encoding for maximum luminance
80cd/m2 (left) and 1000cd/m2 (right), in comparison to contrast versus in-
tensity (cvi) function of the HVS. The discrepancy between the slopes of both
functions is large, especially for the bright case.

lated either a regular (1–100 cd/m2) or a bright display (10–1000 cd/m2). The
simulated displays had the same response as an actual LCD display (measured
with a Minolta LS-100 luminance meter), only the absolute luminance levels
were shifted for the bright display. The order of trials were entirely randomized
and each image was shown 2 times to ensure subject reliability

Our experimental setup and grading scale is adopted from ITU-T Rec. P.910
standard [ITU-T, 1999]. We determined the mean quality value for the regular
display as 3.15, and for the bright display as 2.85, indicating that subjects tend
to perceive the quality of distorted images to be lower on the bright display.
In other words, distortions of the same type and with the same magnitude are
more annoying when the overall brightness of the image is higher. An evaluation
of the data with the ANalysis Of VAriance (ANOVA) method resulted in an F-
value of 20.57 and the corresponding p-value ≪ 0.05 for the display brightness
parameter, showing that the effect of display brightness to perceived quality is
statistically significant.

5.3 Weber-Fechner Law and Luminance Adapta-

tion

Figure 5.1 reveals that the threshold contrast ∆L/L is different for dark and
bright stimuli (refer to Chapter 2.3 for a discussion on contrast sensitivity, as well
as Equation 10.3 for the formula of the function used to generate the plots). This
is contrary to the commonly assumed Weber-Fechner law, which would require
that the ratio ∆L/L stays constant. This observation is better illustrated on
the contrast versus intensity (cvi) plot shown in Figure 5.2. The cvi function
indicates the threshold contrast (y-axis) at particular luminance adaptation level
(x-axis). The region where such contrast is constant, and the Weber-Fechner
law holds (∆L/L = const.), can be found for luminance values greater than
approximately 500 cd/m2. For lower luminance levels the detection threshold
rises significantly. This indicates that the Weber-Fechner law is in fact very
inaccurate model of luminance adaptation for the range of luminance shown on
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typical displays (from about 0.1 cd/m2 to 100-1000 cd/m2).

5.4 sRGB Nonlinearity and Detection Thresholds

The compressive nonlinearity (transfer function) used in the sRGB color space
accounts not only for the response of a typical CRT, but also partly for the drop
of the HVS sensitivity for dark luminance levels. The sRGB nonlinearity has
the form:

l(L′) =







(

L′+0.055
1.055

)2.4

if L′ > 0.04045
L′

12.92 otherwise,
(5.3)

where L is the trichromatic value (for simplicity we assume luminance) normal-
ized by the peak display luminance and L′ is the “gamma-corrected” luma value.
In Figure 5.2 we plot the peak quantization errors due to 8-bit coding of L′,
assuming the peak display luminance of 80 cd/m2 on the left (CRT) and 1000
cd/m2 on the right (bright LCD or Plasma). We compute the peak quantization
errors as

e(L′) =
1

2

max |l(L′±1) − l(L′)|
l(L′)

, (5.4)

but plot them in the luminance domain (L), instead of luma domain (L′), to
compare different displays. The slopes of the error quantization functions give
closer match to the cvi function for the darker display (80 cd/m2), suggesting
that the sRGB has better perceptual uniformity for CRT displays. The slopes
start to deviate much stronger for brighter displays, making perceptual unifor-
mity of the sRGB nonlinearity for LCD and Plasma displays questionable.

Another observation that we can make in Figure 5.2 is that the quantization
errors of 8-bit code value encoding are actually larger than the detection thresh-
old of the human eye. This means that when we display a smooth gradient on
a display driven by 8-bit input, we can see contouring artifacts. This is true
even for darker displays, but is more noticeable for bright displays, where the
discrepancy between encoding quantization errors and the cvi gets larger. Such
contouring artifacts could be easily hidden by adding random noise to the gra-
dient (spatial or temporal dithering). For the same reason, medical displays are
usually driven by signals of 10- or more bits to reduce the quantization errors
to an undetectable level.

5.5 Detection Thresholds in Complex Images

Before we can derive a perceptually uniform encoding, we need to estimate
contrast detection thresholds as a function of pixel luminance. Many aspects
of complex images, such as spatial frequency, orientation and masking pattern,
can significantly rise the detection threshold. Figure 5.3 illustrates how the
sensitivity (inverse of the contrast detection thresholds) changes with spatial
frequency and adapting luminance. Since the perceptually uniform encoding is
a function of pixel value, we need to reduce all these factors except adapting



58 Chapter 5: HDR Extension for Simple Image Quality Metrics

5 10 15 20 25 30
0

20

40

60

80

100

120

140

160

180

200

L
a
=0.1 cd/m

2

L
a
=1 cd/m

2

L
a
=10 cd/m

2

Spatial frequency [cyc/deg]

S
e
n
s
it
iv

it
y
 L

/∆
L

L
a
=100 cd/m

2

L
a
=1000 cd/m

2

Figure 5.3: Contrast sensitivity function variation with adaptation luminance.

10
3

10
 2

10
 1

10
0

10
1

10
2

10
3

10
4

10
 3

10
 2

10
 1

10
0

L
a
=0.1

Background / adaptation luminance [cd/m2]

D
e

te
c
ti
o

n
 c

o
n

tr
a

s
t 

∆
L

/L

L
a
=1

L
a
=10

L
a
=100 L

a
=1000

t()

cvi

Figure 5.4: Continous line - cvi function for different adaptation levels;
Dashed lines - contrast detection thresholds for fixed adaptation and varying
background luminance. Refer to the text for the description of function t.



5.5 Detection Thresholds in Complex Images 59

Figure 5.5: A specular highlight on a piece of metal captured using multi-
exposure technique. The exposure time decreases from left to right. The right-
most image reveals the reflection of a lamp, which is not visible to the human
eye in the actual setup.

luminance La, and assume that they will be taken into account by the actual
quality metric. To ensure that the estimated detection threshold is always
conservative, we choose the value that corresponds to the maximum sensitivity
for each factor we want to reduce. Therefore, we define our cvi function as:

cvi(L,La) =
(

max
x

[CSF (La,x) MA(|L − La|)]
)−1

, (5.5)

where the CSF is the contrast sensitivity function and x corresponds to all the
parameters (spatial frequency, orientation, stimuli size, etc.) except adapting
luminance La and the background luminance L. The MA() function estimates
the loss of sensitivity due to maladaptation, as explained below. We use the
CSF function from Daly’s VDP [Daly, 1993], as it is valid for a large range of
luminance values (both photopic and scotopic viewing).

To properly utilize the cvi function, it is important to distinguish between the
adapting luminance, La, and the background luminance, L. When viewing a
complex scene the human eye can adapt locally to small regions. For example
our eyes are in one state of luminance adaptation when looking outside a window
on a sunny day, and in a different state when looking at the interior of a room.
However, the eye is hardly ever perfectly adapted for each tiny luminance patch
in a scene. For example, when looking at bright specular reflections, we usually
cannot see the reflected features of a light bulb or the sun, since we are adapted
to the diffuse light reflected from an object, rather than the tiny specular spot.
Figure 5.5 shows that such tiny features are in fact reflected, but we usually don’t
see them. The situation when the eye is maladapted has been studied in so-called
probe-on-flash experiments [Walraven et al., 1990], in which a threshold stimuli
on a background was briefly flashed, thus bypassing the adaptation process. The
typical characteristics measured in such experiments are shown in Figure 5.4.
The plots were derived by combining the typical cvi function with an S-shaped
photoreceptor response curve, as done by Irawan, et al [Irawan et al., 2005].

To make our extension spatially independent and possibly compatible with the
sRGB nonlinearity, we make two simplifying assumptions about the luminance
adaptation process. Firstly, we assume that there is a minimum luminance level
to which the eye can adapt, La−min. When viewing complex images, the darkest
areas are usually affected by the glare (light scattering in the eye’s optics),
therefore the minimum luminance level that reaches the retina and to which
the eye can adapt is elevated. Secondly, we assume that the eye is perfectly
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adapted for all luminance levels above La−min, that is the adapting luminance
is equal the luminance of the pixel (La = L). The second assumption results
in the most conservative estimates of the contrast detection thresholds (refer to
Figure 5.4). Our final estimates of the detection thresholds are:

t(L) = cvi(L,max(L,La−min)). (5.6)

5.6 Perceptually Uniform Encoding

The goal of perceptually uniform encoding is to ensure that the distortion visi-
bility is approximately uniform along all encoded values. This is achieved when
the differentials of such encoding are proportional to the detection thresholds.
The easiest way to find such mapping from the detection threshold estimates t
(Equation 5.6) is to use the following recursive formula:

fi = fi−1 (1 + t(fi−1)) where f : L′ −→ L, i ∈ [2 · · ·N ], (5.7)

where f1 is the minimum luminance we want to encode (10−5 cd/m2 in our
case) and N is selected so that fN is larger than the maximum luminance to be
encoded (1010 cd/m2). Note that cvi(L)·L gives an absolute detection threshold
in cd/m2. The values of fi give the luminance value associated with particular
luma value i, that is the inverse mapping from luma to luminance. To find a
forward mapping function, which we denote with PU : L −→ L′ , we use the
values of f as a lookup table and find the nearest (or interpolated) index i for
a given luminance value L. For a more information on the formulation of this
problem, refer to [Mantiuk et al., 2006a] and Section 10.1.

Ideally, we would like our PU encoding to be backward-compatible with the
sRGB nonlinearity (Equation 5.3), meaning that it should result in similar luma
values within the dynamic range of a CRT display, while still retaining percep-
tual uniformity. We achieve this by minimizing the squared difference between
both encodings within the range 0.1−80 cd/m2 with respect to three parameters
m, s and La−min:

80
∑

L=0.1

(

(s PU(L,La−min) + m) − l−1(L)
)2

, (5.8)

where the summation is performed for 256 logarithmically distributed luminance
values L, l−1(L) is the inverse of Equation 5.3, and PU(L) is the inverse of
Equation 5.7. The result of such fitting together with the sRGB nonlinearity is
shown in Figure 5.7. The fit is not perfect, as the sRGB nonlinearity does not
fully agree with the cvi function. Note that neither of the parameters m and s
affect our initial assumption since the differentials of the PU encoding are still
proportional to the detection thresholds. The parameter s can be understood
as the absolute sensitivity factor, which in fact varies among observers. By
performing the optimization we implicitly assume the same sensitivity as the
sRGB encoding. The other parameter m adjusts the absolute encoding response
to fit to sRGB.
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Figure 5.6: Data flow diagram of the extended metrics for typical 8-bit images.
Pixel values are converted to luminance and re-encoded with PU encoding before
quality assessment.

0.0001 0.01  1     100   10000 1e+06 

0

500

1000

1500

Luminance (cd/m2)

L
u
m

a

 

 

PU Encoding

sRGB

0.1 1  10 80 
50

0

50

100

150

200

250

Luminance (cd/m2)

L
u
m

a

 

 

PU Encoding

sRGB

Figure 5.7: The best fit of PU encoding to sRGB within the range 0.1 − 80
cd/m2 in a least squares sense. Resulting curve is shown along the entire dy-
namic range (left), and only within the range that is considered for optimization
(right).

We store the resulting PU encoding as a look-up table, rather than trying to fit
an analytic function. A look-up table offers better accuracy and is usually faster
to compute than power or logarithmic functions approximating such encodings.

The data flow diagram of the extended metrics is given in Figure 5.6. Similar
to non-extended metrics, the input is a pair of reference and distorted images.
Both images are converted to display luminance values using the response func-
tion of the display on which the images are viewed. Next, the PU encoding
transforms the luminance values into perceptually uniform pixel values. At the
final quality assessment step, no modification on the metric part is necessary
since the PU encoding merely provides perceptually uniform pixel values, which
was the metric’s assumption in the first place (Section 5.1).
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Figure 5.8: Sample images from our validation test set. We consider ran-
dom pixel noise (left), gaussian blur (center) and JPEG compression (right) as
distortion types.

Figure 5.9: Backward-compatibility with sRGB encoding. The average PSNR
(left) and SSIM (right) responses of PU encoded images for different distortion
types provides a good match to corresponding sRGB encoded images.

5.7 Validation of Backwards Compatibility

We validate the compatibility of the PU encoding with the sRGB nonlinearity
by comparing the extended and non-extended metric responses for a set of
images viewed on a CRT display (0.1 − 80cd/m2). The test set of distorted
images is generated by converting the reference images to display luminance
values and applying a distortion which can be either of the following types:
random pixel noise, gaussian blur or JPEG compression (Figure 8.1). Each
type of distortion is applied to 3 reference images at 2 different levels. The
image luminance is converted to pixel values using sRGB and PU encodings,
and the quality of the distorted images in both cases are assessed by PSNR
and SSIM. Figure 5.9 shows the average responses for both extended and non-
extended metrics separately for each type of distortion. We observe that the
match between the responses is not exact, since our optimization procedure does
not result in a perfect fit of PU encoding to sRGB nonlinearity (Figure 5.7).
Still, the difference between extended and non-extended metric responses are
quite low (< 1 dB for PSNR and < 0.01 for SSIM), indicating that they can
be used interchangeably for typical CRT dynamic range if small deviations in
metric responses are acceptable.
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Figure 5.10: Image quality on bright display. The pixel values of sRGB
encoded images are the same for both regular (1 − 100cd/m2) and bright (10 −
1000cd/m2) displays. PU encoding successfully accounts for the effect of display
brightness.

5.8 Quality Assessment for Bright Displays

The subjective experiment in Section 5.2 revealed that distortions of the same
type and magnitude appear more annoying on a bright display than a regular
one. In this section we show that the extended metrics can correctly predict this
effect, while non-extended metrics fail to do so. In parallel with the subjective
study, we simulate the brightness of an LDR image on two hypothetical displays:
a regular (1 − 100 cd/m2) and a bright display (10 − 1000 cd/m2), both with
the same dynamic range (1 : 100). The resulting luminance values from both
display models are transformed to perceptually uniform pixel values with the
proposed encoding.

In Figure 5.10, we compare the metric predictions for sRGB encoded images
side by side with the extended metric responses for both display models. Note
that the pixel values generated by sRGB nonlinearity are exactly the same for
both displays, and consequently the quality estimates are also the same. On
the other hand, quality of the PU encoded images viewed on the bright display
are noticeably lower than the quality of the same images viewed on the regular
display, in agreement with the outcome of our subjective experiment.

5.9 Quality assessment of HDR Images

Unlike 8-bit images that store gamma corrected code values tailored towards
particular display devices, the content of an HDR image is related to the ac-
tual photometric characteristics of the scene it depicts, which in turn directly
correspond to physical luminance. In order to get meaningful responses from
PSNR and SSIM when comparing a pair of HDR images, physical luminance of
both images need to be converted to perceptually uniform pixel values. The use
of sRGB encoding for HDR images brings in an ambiguity in the choice of the
white point value. The straightforward approach of setting the white point to
the maximum luminance of the image generally results in suppression of details
in dark image regions. Instead, the logarithmic function is a simple and of-
ten used approximation of the HVS response along the entire visible luminance
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Figure 5.11: Data flow diagram of the extended metrics for HDR images.
HDR images are scene referred and store luminance, which is directly converted
to percepually uniform pixel values by the PU encoding

range. Although logarithmic encoding adheres to the Weber-Fechner law (Sec-
tion 5.3), it provides a very coarse approximation and does not predict the loss
of sensitivity for the low light conditions. These shortcomings can be avoided
by employing the PU encoding to generate perceptually uniform pixel values
for HDR images. The data flow of the extended “HDR metrics” is shown in
Figure 5.11. Since HDR images already contain physical luminance information,
the use of a diplay model is not necessary.

5.10 Conclusion

We proposed an extension to two popular image quality metrics, namely PSNR
and SSIM, that makes them capable of handling all luminance levels visible
to the human eye, without altering their response at the dynamic range of a
typical CRT display. Our extension consists of transforming image luminance
to perceptually uniform pixel values, that are optimized to fit gamma correction
nonlinearity within the range from 0.1 to 80 cd/m2 in a least squares sense. The
proposed extension does not impose any changes on the quality metric part.
Another consequence of this modularity is that it can potentially be applied to
any quality metric that takes gamma corrected pixel values as input.

In the future, we would like to validate the metric responses for HDR images
through subjective experiments. We are also interested in exploring the appli-
cation of our extension to other quality metrics.



Chapter 6

Dynamic Range Independent

Image Quality Assessment

In this section we present a second image quality assessment technique, focusing
on comparing image pairs with different dynamic ranges motivated by the recent
trends towards HDR imaging. In recent years we have witnessed a significant
increase in the variation of display technology, ranging from sophisticated HDR
displays [Seetzen et al., 2004] and digital cinema projectors to small displays
on mobile devices. In parallel to the developments in display technologies, the
quality of electronic content quickly improves. For example luminance and
contrast values, which are encoded in the so-called HDR images [Reinhard et
al., 2005], correspond well with real world scenes. HDR images are already
being utilized in numerous applications because of their extra precision, but
reproduction of these images is only possible by adjusting their dynamic range
to the capabilities of the display device using tone mapping operators (TMO)
[Reinhard et al., 2002; Durand and Dorsey, 2002; Fattal et al., 2002; Pattanaik
et al., 2000]. With the proliferation of new generation display devices featuring
higher dynamic range the problem of enhancing legacy 8-bit images arises, which
requires the so-called inverse tone mapping operators (iTMO) [Rempel et al.,
2007; Meylan et al., 2007]. An essential, but yet unaddressed problem is how
to measure the effect of a dynamic range modification on the perceived image
quality.

Typical image quality metrics commonly assume that the dynamic range of
compared images is similar [Daly, 1993; Lubin, 1995a; Wang and Bovik, 2002].
They predict visible distortion using the measures based on the magnitude of
pixel intensity or normalized contrast differences between both input images,
which become meaningless when input images have significantly different con-
trast or luminance ranges. However, when we look at images on a computer
screen or even on traditional photographs we often have an impression of plau-
sible real world depiction, although luminance and contrast ranges are far lower
than in reality. So, the key issue in image reproduction is not obtaining an opti-
cal match, but rather plausible reproduction of all important image features and
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preserving overall image structure. Such features improve the discrimination
and identification of objects depicted in the image, which are important factors
in image quality judgment [Janssen, 2001]. The processed image structure can
be affected by introducing visible artifacts such as blur, ringing, ghosting, halo,
noise, contouring and blocking, which distort structure of the original image
and may degrade the overall impression of image quality.

In this chapter we present a novel image quality metric that can compare a
pair of images with significantly different dynamic ranges. We call this met-
ric as dynamic range independent visible differences predictor, or DRIVDP for
short. Our metric employs a model of the HVS, and its main contribution is a
new concept of visible distortions based on the visibility of image features and
the integrity of image structure (Section 6.2). DRIVDP generates a distortion
map, which signalizes the loss of visible features, the amplification of invisible
features, and reversal of contrast polarity (Section 6.3). All these distortions
are considered at various scales and orientations, which correspond to the vi-
sual channels in the HVS (Chapter 2.4). Novel features of DRIVDP are tested
(Section 8.2), and the overall metric performance confirmed in a psychophysi-
cal study (Section 6.5). We demonstrate application examples of our metric to
predict distortions in feature visibility introduced by the state-of-the-art TMOs
(Section 6.6.1) and inverse-TMOs (Section 6.6.2). Also, we analyze the influence
of display dynamic range on the visibility of such distortions for three different
displays (Section 6.6.3).

6.1 Background

Image quality evaluation is important in many applications such as image ac-
quisition, synthesis, compression, restoration, enhancement, reproduction, and
is relatively well covered in a number of textbooks [Winkler, 2005; Wang and
Bovik, 2006; Wu and Rao, 2005]. Three important metric categories can be
distinguished: metrics measuring contrast distortions, changes in the image
structure, and judging visual equivalence between images. In this section we
discuss all these metric categories from the standpoint of their ability to handle
image pairs of significantly different dynamic ranges.

The most prominent contrast distortion metrics such as the visible difference pre-
dictor (VDP) [Daly, 1993] and the Sarnoff visual discrimination model (VDM)
[Lubin, 1995a] are based on advanced models of the HVS and are capable of
capturing just visible (near threshold) differences or even measuring the mag-
nitude of such differences and scale them in JND (just noticeable difference)
units. While these metrics are designed for LDR images, Mantiuk et al. [2005]

proposed an HDR extension of VDP, that can handle the full luminance range
visible to the human eye. Similar capabilities demonstrates also iCAM06 [Kuang
et al., 2007a], which additionally models important aspects of color appearance.
While, the iCAM06 framework has been mostly applied in tone mapping appli-
cations, it has clear potential to compute HDR image difference statistics and
to derive from them image quality metrics. Recently, Smith et al. [2006] pro-
posed an objective tone mapping evaluation tool, which is focused on measuring
suprathreshold contrast distortions between the source HDR image and its tone
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mapped LDR version. The problem with this metric is that it is based on the
contrast measure for neighboring pixels only, which effectively means that its
sensitivity is limited to high frequency details. Also, the metric calibration pro-
cedure has not been reported, while it may be expected that the metric may be
excessively sensitive for small near-threshold distortions because the peak sen-
sitivity is assumed for each luminance adaptation level instead of using contrast
sensitivity function.

With the development of structural similarity index metric (SSIM) by Wang and
Bovik [2002], an important trend in quality metrics has been established. Since
the HVS is strongly specialized in learning about the scenes through extracting
structural information, it can be expected that by measuring structural similar-
ity between images, the perceived image quality can be well approximated. The
SSIM proved to be extremely successful in many image processing applications,
it is easy to implement, and very fast to compute. As the authors admit [Wang
et al., 2003], a challenging problem is to calibrate the SSIM parameters, which
are quite “abstract” and thus difficult to derive from simple-stimulus subjective
experiments as it is typically performed for contrast-based metrics. For this
reason it is difficult to tell apart visible and non-visible (just below threshold)
structure changes, even for multi-scale SSIM incarnations [Wang et al., 2003].
The SSIM is sensitive for local average luminance and contrast values, which
makes it inadequate for comparing LDR and HDR images. Recently, Wang
and Simoncelli [2005] proposed the CW-SSIM metric, which in its formulation
uses complex wavelet coefficients instead of pixel intensities employed in the
SSIM. Since in CW-SSIM bandpass wavelet filters are applied, the mean of the
wavelet coefficients is equal to zero in each band, which significantly simplifies
the metric formulation with respect to the SSIM and makes it less sensitive
for uniform contrast and luminance changes. However, this reduced sensitivity
concerns rather small changes of the order 10–20%, which are not adequate for
comparing HDR and LDR images.

An interesting concept of the visual equivalence predictor (VEP) has been re-
cently presented by Ramanarayanan et al. [2007]. The VEP is intended to judge
whether two images convey the same impression of scene appearance, which is
possible even if clearly visible differences in contrast and structure are apparent
in a side-by-side comparison of the images. The authors stress the role of higher
order aspects in visual coding, but developing general computational model
for the VEP is a very difficult task. The authors show successful cases of the
VEP models for different illumination map distortions, which also requires some
knowledge about the scene geometry and materials. While the goals of VEP
and our metric are different, both approaches tend to ignore certain types of
visual differences, which seem to be unimportant both for the scene appearance
and image structure similarity judgements.

DRIVDP can be considered as a hybrid of contrast detection and structural
similarity metrics. Careful HVS modeling enables precise detection of only
visible contrast changes, but instead of reporting such changes immediately
as VDM, HDRVDP, and VDM metrics, we use the visibility information to
analyze only visible structure changes. We distinguish three classes of structure
changes, which provides with additional insight into the nature of structural
changes compared to SSIM. Finally, what makes our approach clearly different
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from existing solutions is the ability to compare images of drastically different
dynamic ranges, which broadens the range of possible applications.

6.2 Image Distortion Assessment

Instead of detecting contrast changes, our metric is sensitive to three types of
structural changes:

Loss of visible contrast is signalized when a contrast that was visible in a
reference image becomes invisible in a test image. This typically happens when
a TMO compresses details to the level that they become invisible.

Amplification of invisible contrast is signalized when a contrast that was
invisible in a reference image becomes visible in a test image. For instance, it
can happen when contouring artifacts starts to appear due contrast stretching
in the inverse TMO application.

Reversal of visible contrast is signalized when a contrast is visible in both a
reference and a test images, but it has different polarity. This can be observed
for strong image distortions, such as clipping or salient compression artifacts.
An intuitive illustration of the three types of distortions is shown in Figure 6.1
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Figure 6.1: Several cases of contrast modification, that DRIVDP classifies as
a structural change (left) or a lack of structural change (right). Blue continuous
line – reference signal; magenta dashed line – test signal. For the explanation
of visibility and invisibility threshold (50% probability) refer to the text and Fig-
ure 6.4.
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Note that this formulation makes DRIVDP invariant to differences in dynamic
range or to small changes in the tone-curve.

Figure 6.2: The data flow diagram of our metric.

Before we can detect any of the three types of distortions, we need to predict
whether a contrast is visible or not. This is achieved with the metric that is
outlined in Figure 6.2. The input to DRIVDP are two luminance maps, one for
a reference image (usually an HDR image), and one for a test image (usually
an image shown on the display). 8-bit images must be transformed using the
display luminance response function to give actual luminance values shown on a
screen. In the first step we predict detection thresholds and produce a percep-
tually normalized response map, in which the amplitudes equal to 1 correspond
to the detection threshold at Pdet = 75% (1 JND). Although several such pre-
dictors has been proposed in the literature, we found the HDRVDP detection
model [Mantiuk et al., 2005], designed especially for HDR images, the most
appropriate. The predictor takes into account light scattering in the eye’s op-
tics (Chapter 2.1), nonlinear response of the photoreceptors (Chapter 10.1)and
spatial-sensitivity changes due to local adaptation (Chapter 2.2).

To ensure accurate predictions, we calibrated the HDRVDP detection model
with the ModelFest [Watson, 2000] measurements. The ModelFest data set was
collected in a number of different laboratories to enhance both the generality and
accuracy, and was especially designed to calibrate and validate vision models.
Figure 6.3 shows a few examples of the detection probability maps for stimuli
below, at and above the detection threshold. All results were generated by
setting the pixels per visual degree to 120, and observer distance to 2m. The
model fitting error for 0.25% peak sensitivity was below 2dB contrast units.
The errors were the largest for the stimuli “GaborPatch14” and “Dipole32”, for
which our predictor was too sensitive.
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Figure 6.3: The output of the detection predictor for the selected ModelFest
stimuli at 0.25, 0.5, 1, 2 and 4 times the detection threshold, CT . The first col-
umn shows the original stimuli at high contrast. The predictor is well calibrated
if the visible contrast starts to be signalized in the CT column.

In the second step, we split the perceptually normalized response into sev-
eral bands of different orientation and spatial bandwidth. We employ the cor-
tex transform [Watson, 1987] with the modifications from [Daly, 1993] (Chap-
ter 10.4). Then, to predict three types of distortions separately for each band,
we compute conditional probabilities of

loss of visible contrast: P k,l
loss = P k,l

r/v · P k,l
t/i ,

amplification of invisible contrast: P k,l
ampl = P k,l

r/i · P
k,l
t/v,

and reversal of visible contrast: P k,l
rev = P k,l

r/v · P k,l
t/v · Rk,l,

(6.1)

where k and l are the spatial band and orientation indices, the subscript r/·
denotes reference and t/· test image, the subscript ·/v visible and ·/i invisible
contrast. R equals 1 if the polarity of contrast in the reference and test images
differ:

Rk,l =
[

Ck,l
r · Ck,l

t < 0
]

. (6.2)

For simplicity we omit the pixel indices (x, y). The above formulation assumes
that that contrast detection process is performed in the visual system separately
for each visual channel.

The probabilities P·/v and P·/i are found from the detection probabilities, as
shown in Figure 6.4. The visual models commonly assume that a contrast is
visible when it is detectable (Pdet≥75%), as in the two alternative forced choice
(2AFC) experiments. We found this assumption to be too conservative, since
complex images are never as scrutinously observed as stimuli in such experi-
ments. Therefore, we require a contrast to be detected with a higher probabil-
ity, to be regarded as visible. From our empirical study on a series of simplified
stimuli, we found that a reliable predictor of visible contrast is given by shifting
the psychophysical function, so that a contrast magnitude is visible with 50%
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probability, if it can be detected by our predictor with 95% probability (about
2 JND), as shown in Figure 6.4. The probability of invisible contrast is given
by the negation of the probability of detection.
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Figure 6.4: Probability functions for a normalized contrast magnitude being
visible (green) and invisible (red).
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Figure 6.5: The probability rules may produce response that do not belong to
a particular frequency band. Top pane: although a contrast magnitudes are well
above visibility threshold, there is a small part in which contrast is visible in the
reference image (Cr) but not visible in a test image (Ct). Center pane: this
triggers higher values of the Ploss in these regions. Bottom pane: the spurious
responses can be eliminated with a band-pass filter.

The rules from Equation 6.1 contain the nonlinear operators, therefore the re-
sulting probability map P k,l

· can contain features of spatial frequency that do
not belong to a particular subband. This leads to spurious distortions, as shown
in Figure 6.5. To avoid this problem, each probability map is once more filtered
using the corresponding cortex filter Bk,l:

P̂ k,l
loss = F

−1
{

F{P k,l
loss} · Bk,l

}

, (6.3)
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Figure 6.6: Three distortion maps shown partially (left). We arbitrarily chose
green for loss of invisible contrast, blue for amplification of invisible contrast,
and red for reversal of visible contrast. The saturation of each color indicates
the magnitude of detection probability, as shown in the respective scales.

where F and F−1 are the 2D Fourier and inverse Fourier transforms, and the
formulas for Bk,l can be found in the Appendix.

Assuming that detection of each distortion in each band is an independent
process, the probability that a distortion will be detected in any band is given
by:

Ploss = 1 −
N
∏

k=1

M
∏

l=1

(

1 − P̂ k,l
loss

)

. (6.4)

The probability maps Pampl and Prev are computed in a similar way.

Unlike typical HVS-based contrast difference predictors, DRIVDP does not
model visual masking (decrease in sensitivity with increase of contrast ampli-
tude). Since our metric is invariant to suprathreshold contrast modifications,
visual masking does not affect its result. If we compare two visible contrast
stimuli, as the ones shown in top-right pane of Figure 6.1), the visual masking
can predict by how many JNDs their amplitudes differ. The contrast differ-
ence is not relevant for our metric, therefore there is no need to estimate the
magnitude of suprathreshold contrast in JND units.

6.3 Visualization of Distortions

The multitude of distortion types detected by DRIVDP makes visualization
of the outcome on a single image a challenging task. We employ an in-context
distortion map [Daly, 1993] approach to provide with an overview of distortions,
but also introduce a custom viewer application for more detailed inspections.

To generate the in-context map, luminance of the distorted image is copied to all
three RGB channels, and each channel is scaled by the detection probabilities of
corresponding distortion type. We observed that using multiple colors for each
type of distortion makes it is hard to memorize the association of each color
to the correct distortion type. We also found that in regions where multiple
distortions overlap, the simple approach of blending the colors makes the final
map less intuitive by increasing the number of colors. We therefore show only
the distortion with the highest detection probability at each pixel location. We
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Figure 6.7: Our distortion viewer. Users can adjust opacities of distortion
maps and background image. The respective scales (top right) are adjusted ac-
cordingly by the tool. In this example setting, the user emphasizes contrast
reversal, while keeping the other distortions barely visible.

arbitrarily chose green for loss of invisible contrast, blue for amplification of
invisible contrast, and red for reversal of visible contrast (Figure 6.6).

In cases where the test image is heavily distorted the in-context map represen-
tation may become too cluttered, and there may be significant overlaps within
different distortion types. On the other hand, one may simply be interested in
a closer examination of each distortion type present in the image. Using the
viewer application one can dynamically set the opacity values of distortion types
and the background image to a legible configuration, that allows to investigate
distortions separately (Figure 6.7). In the rest of this chapter, all metric re-
sponses are presented as in-context maps. The viewer application can be used
for any further investigation of the results.

6.4 Evaluation and Results

In the following sections, we present results that demonstrate advantages of our
metric to previous work

6.4.1 Dynamic Range Independence

We claim that DRIVDP generates meaningful results even if the input images
have different dynamic ranges, in addition to the case where both have the same
dynamic range. In Figure 6.8, we show the distortion maps resulting from the
comparison of all variations of an HDR and LDR image. The LDR image is
generated by applying a compressive power function to the HDR reference (more
sophisticated tone-mapping operators are discussed in Section 6.6.1). We always
distort the test image by locally adding random pixel noise, whose magnitude
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Figure 6.8: Comparing images with different dynamic ranges. While distor-
tions caused by the local distortion are visible in all results, in the LDR-HDR and
HDR-LDR cases, additional visible contrast loss and invisible contrast amplifica-
tion can be observed due to the contrast lost through dynamic range compression.
HDR images are tone-mapped using Reinhard’s photographic tone reproduction
for printing purposes.

is modulated with a gaussian that has its peak at the center of the distorted
region.

Randomly distributed pixels in the distorted region both introduce previously
non-existent contrast and invert the polarity of the contrast proportional to the
magnitude of the distortion. Consequently, for both HDR-HDR and LDR-LDR
cases (first two rows) our metric reports visible contrast reversal and amplifica-
tion of invisible contrast confined in the distorted region. Similar responses are
also observed in LDR-HDR and HDR-LDR cases. Additionally, a comparison
of the distorted LDR image with an HDR reference yields to an overall loss of
visible contrast spread across the entire image, indicating the effect of contrast
compression applied to the test image (third row). When we compare the HDR
test image with the LDR reference, visible contrast of the reference lost during
compression manifests itself this time as amplification of invisible contrast in
the distortion map (last row).
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Figure 6.9: The reference, blurred and sharpened test images (top row), and
metric responses to blurring (middle row) and sharpening (bottom row). Color
coding for SSIM and HDRVDP are given in the scale. Our metric is visualized
as discussed in Section 6.3

6.4.2 Comparison with Other Metrics

DRIVDP has two major advantages to the previous work: classification of dis-
tortion types, and dynamic range independence. In this section, we compare re-
sponses of our metric with a pair of state-of-the-art metrics, namely SSIM [Wang
and Bovik, 2002] that predicts changes in the image structure, and HDRVDP
[Mantiuk et al., 2005] that is explicitly designed for HDR images. Figure 6.9
shows a side-by-side comparison of the three metrics where a blurred and a
sharpened version of the reference was used as test image. The reference is an
8-bit image, which is linearized and converted to luminance for HDRVDP and
our metric. The outcome of SSIM is a simple matrix of probability values with
the same size as the input images, to which we applied HDRVDP’s visualization
algorithm to make it legible. The spatial distribution of the responses from all
three metrics to blurring and sharpening is similar, with the overall tendency of
HDRVDP’s response being stronger (due to reporting all visible differences) and
SSIM’s response being weaker (due to the difficulty of calibration) than that of
our metric.

The important difference between the proposed metric and others is the classi-
fication of distortion types. That is, in case of blurring DRIVDP classifies all
distortions as a loss of visible contrast, confirming the fact that high frequency
details are lost. On the other hand, in the sharpening case we observe contrast
reversal and amplification of invisible contrast, both of which are expected ef-
fects of unsharp masking. Such a classification gives insight about the nature
of the image processing algorithm and enables distortion-type-specific further
processing.
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The second major advantage of our metric is that it enables a meaningful com-
parison of images with different dynamic ranges (Section 6.4.1). We ran all
three metrics on a test set, that is generated using a similar procedure as used
for Figure 6.8, with the only difference being the use of gaussian blur as the dis-
tortion type. HDR images in the test set were calibrated to absolute luminance
values of the scene, and were directly passed to both our metric and HDRVDP.
For SSIM, we took the 10-base logarithm of the HDR images to compensate for
the Weber law, and mapped them to pixel values within 0-255 to prevent an
ambiguity in the dynamic range parameter of the metric.

Figure 6.10 shows a comparison of images with same dynamic range results in all
three metrics reporting distortions in the blurred region with slightly different
magnitudes (first two rows). One important difference between our metric’s and
HDRVDP’s responses is, that the distorted area reported by HDRVDP is larger
than that of our metric’s. HDRVDP simply reports all visible differences of the
blurred test images with respect to their references, while DRIVDP ignores the
differences in the periphery of the gaussian, where the magnitude of the blur is
weaker and details in the distorted image are still visible. This example shows a
case where our metric provides complementary information to well established
metrics. In the different dynamic range case, the distortion maps of SSIM
and HDRVDP are entirely dominated by contrast change due to the dynamic
range compression (last two rows). Similar to the results for different dynamic
range case in Figure 6.8, DRIVDP reports an overall loss of visible contrast
in the LDR-HDR case, and an overall amplification of invisible contrast in the
HDR-LDR case, both due to the dynamic range compression. These responses,
however, do not mask the response at the blurred region, as they do with the
other metrics.

6.5 Validation

Validation of the metric is performed by comparing the metric responses to sub-
jective distortion assessments. We generated a test set containing permutations
of 3 images of natural scenes, 3 types of distortions and 3 levels of distortions.
Each subject evaluated the entire test set twice to ensure reliability, leading to
54 images per subject. Gaussian blur that produces visible contrast loss, and un-
sharp masking that mostly produces invisible contrast amplification were chosen
as distortions. Another type of distortion was considered to specifically produce
contrast reversal, where we calculate a bandpass image pyramid, invert the signs
of a number of layers proportional to desired distortion level, and recombine the
pyramid to get the distorted image. All distorted images were generated to
dominantly produce a metric response of the desired type.

We asked 14 subjects within the ages 23−48, with all nearly perfect or corrected
vision, to identify the type of distortion they see on a number of test images.
Possible answers were blur, sharpening, contrast reversal or no distortion. We
assumed no prior knowledge of the subjects about the distortion types. There-
fore, a short training section preceded the actual experiment, where subjects
were shown a series of images that contain strong distortions of all three types,
together with the correct distortion labels.
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Figure 6.10: A comparison of SSIM, HDRVDP and DRIVDP on all dynamic
range combinations. Results for the same dynamic range case are compara-
ble (first two rows), whereas in the different dynamic range case SSIM and
HDRVDP responses are dominated by the dynamic range difference (last two
rows).
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Level 1 Level 2 Level 3

Figure 6.11: A sample image from the validation set, showing three levels
of sharpening (top row), and the corresponding metric responses (bottom row)
increasing from left to right.

In order to account for the variation of subject responses to different distortion
magnitudes, we applied all distortions at three different levels, from which the
first is selected to generate no metric response at all. The second level was chosen
to generate a weak metric response of the desired type, where the detection
probability at most of the distorted pixels is less than one. Similarly, the third
level was chosen to generate a certain metric response in a noticeably large
region. In our statistical analysis, we considered the first level as invisible, and
the other two as equally visible. Since our metric is not intended to produce
a single number, we restrained ourself from using an average of the detection
probabilities within the distorted region.

First, we examined subject reliability by testing the stochastic independence of
the consecutive iterations for each subject. Using the χ2 test we obtained a χ2(9)
value of 739.105, where the value in parenthesis denotes the number of degrees of
freedom. The corresponding p− value was found to be ≪ 0.05, indicating that
the null-hypothesis can safely be rejected. The Cramer’s V [Cramér, 1999], that
measures the association between two categorical variables, is found to be 0.807
which is considered a large effect size. Next, we investigated the main effect
of factors using the ANalysis Of VAriance (ANOVA) method (See [D’Agostino,
1972] for the use of ANOVA on nominal data). We found that distortion type
and level to have a significant effect on the subject response (F (2) = 179.96
and F (2) = 456.20 respectively, and p≪0.01 for both). We also found that the
test image factor (F (2) = 4.97 and p = 0.02) to have an effect on the final
outcome, which is hard to avoid when experimenting with complex stimuli.
Finally, we analyzed the statistical dependency between the subject and metric
responses. For the null-hypothesis that these responses are independent, we
found χ2(9) = 1511.306 and p ≪ 0.05, showing that it is unlikely that the
initial assumption holds. The corresponding Cramer’s V of 0.816 signals a
strong dependency between the metric and subject responses.
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Figure 6.12: Comparison of Tone-Mapping Operators
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6.6 Applications

In this section, we present several application areas of DRIVDP, where a com-
parison of images with different dynamic ranges is required.

6.6.1 Tone Mapping Operator Comparison

Tone mapping operators (TMO) are commonly used for contrast compression of
HDR images to reproduce them properly on conventional media. This is a lossy
process by definition. From a functional point of view, information reproduction
capability of a TMO is a suitable measure of its performance. Figure 6.12 shows
the comparison result of an HDR image with the corresponding tone mapped
images. The luminance ranges of 0.24–89,300 and 0.1–80 cd/m2 have been
assumed for the original scene and displayed tone mapped image, respectively.
Five TMOs (2 global and 3 local operators) have been considered: Drago’s adap-
tive logarithmic mapping [2003a], Pattanaik’s visual adaptation model [2000],
Fattal’s gradient domain compression [2002], Durand’s bilateral filtering [2002],
and Reinhard’s photographic tone reproduction [2002].

For all studied TMOs certain detail loss can be observed in the brightest lamp
region due to strong contrast compression. Pixel intensity clipping also causes
visible contrast reversal in the lamp region, which is reported for some pixels as
the strongest distortion. Drago’s operator relatively well reproduces contrast in
dark image regions and tends to wash out image details in bright regions due
to logarithmic shape of the tone mapping curve. Pattanaik’s operator, which
is based on the sigmoid photoreceptor response (mostly adapted to the lumi-
nance levels at the illuminated table regions), tends to suppress strongly image
details in dark regions, but also in very bright highlights. The detail amplifica-
tion inherent for Fattal’s operator can be seen in non-illuminated scene regions,
which in real-world observation conditions are not visible due to insufficient
HVS sensitivity. Our metric takes into account such sensitivity by modeling the
dependence of contrast sensitivity function (refer to Equation 10.3) on lumi-
nance values in the HDR image. Durand’s operator uniformly compresses lower
spatial frequencies across the whole image, which means that resulting contrast
loss will be more likely visible in dark display regions in which the HVS sensitiv-
ity is lower. The compression of low frequency features leads also to the reversal
of visible contrast. The default parameters used for Reinhard’s operator tend
to excessively saturate bright image regions for this particular scene. Also, in
the full size image it can be seen that contrast of certain pixels representing
the table and paper page textures has been magnified due to local dodging and
burning mechanism. Our results are consistent with the expected outcomes of
the TMOs, indicating to the potential use of DRIVDP as a diagnostic tool for
such algorithms.

6.6.2 Inverse Tone Mapping Evaluation

Recently, [Meylan et al., 2007] and [Rempel et al., 2007] attacked the problem of
recovering the contrast in LDR images that has been clipped and/or compressed
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Contrast →

Figure 6.13: Response of the metric to simple contrast stretching with clip-
ping. Contrast is increased from left to right, which results in more clipping and
generates stronger visible contrast loss and reversal responses.

due to the limited dynamic range. These algorithms should be validated by
costly subjective user studies to assess the plausibility of the results and the
amount of visible artifacts [Akyüz et al., 2007]. The latter task can be fulfilled
much more efficiently by our metric.

The response of DRIVDP to simple contrast stretching with clipping is shown
in Figure 6.13. To exaggerate the contouring artifacts, we use a 4-bit quantized
version of the 8-bit reference as our test image. We observe that the more we
increase image contrast, the more visible contrast in the bright sky region is
lost, and invisible contrast in the darker horizon line is amplified, both due to
clipping on both sides of the expanded image histogram. Our metric also reports
contrast reversal on the boundaries within the visible and clipped contrast re-
gions. In Figure 6.14, we show the comparison of an HDR image reconstructed
by Ldr2Hdr [Rempel et al., 2007] algorithm, with the reference LDR image im-
age. The smooth contrast enhancement may result in loss of visible contrast
around bright regions. However, the bright sun region of the reference image
does not contain any high frequency details. Moreover, the visual glare caused
by the sun effectively results in further smoothing of the region. Consequently,
our metric does not report any loss of visible contrast. Finally, the increase in
contrast due to stretching reveals some previously invisible details around the
trees in the foreground, which is correctly reported by our metric. Contrast
content amplified in bright regions, however, was already visible, and therefore
is not interpreted as a structural change.
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HDR image Distortion map

Figure 6.14: HDR image generated by Ldr2Hdr algorithm (left), and the
distortion map obtained by comparing the HDR image with the LDR reference
(right). Both images are taken from the original author’s website.

6.6.3 Simulation of Displays

The highly diverse characteristics of today’s display devices make an objective
analysis of their reproduction capability an interesting problem. DRIVDP can
be used as a measure on how well the structural information of the image is
preserved, when it is viewed on different displays to ensure that important
features of the image are preserved regardless to the display type.

In Figure 6.15 we show the distortion maps for an HDR reference image that
is viewed on an BrightSide DR37-P HDR display (2, 005cd/m2), Barco Coronis
3MP LCD display (400cd/m2), and a Samsung SGH-D500 cell phone display
(30cd/m2). To simulate the HDR and LCD displays, we apply the respective
display response functions to image luminance values using a Minolta LS-100
luminance meter.

The results show that the HDR display faithfully reproduces most of the visible
and invisible contrast. The small amount of distortion is expected, as even the
dynamic range of the HDR display does not span the whole visible luminance
range. The distortion map for the LCD display shows visible contrast loss in the
outside region directly illuminated by sunlight. This luminance level exceeds the
capabilities of the display device and therefore details are clipped. On the other
hand, we observe invisible contrast amplification in parts of the darker interior
region. This is because these regions in the reference image are so dark that the
fine details at the chairs and floor are not visible. But since the LCD display is
not capable of displaying such low luminance, those details are amplified above
the visibility threshold. Finally, the cell phone display fails to reproduce most
of the visible contrast, and hence we observe strong visible contrast loss in both
the interior and exterior regions, as well as contrast reversal around the borders
of the clipped regions.

6.7 Conclusion

We presented a quality assessment metric capable of handling image pairs with
arbitrarily different dynamic ranges. The unique feature of DRIVDP is that it
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HDR Display LCD Display Cell phone Display

Figure 6.15: Display Comparison. The brightness of the LCD (first row
center) and Cell phone (first row right) display images are artificially enhanced
for maximum detail visibility.

detects distortions in the image structure and evaluates their visibility on any
display device. This is achieved by applying models of the HVS that can handle
the full visible range of luminance and their careful calibration. The metric
gives also an insight into the nature of reported structural distortions by classi-
fying them into three different categories, which can be conveniently visualized
including image regions that are simultaneously affected by multiple distortion
types. The metric predictions compare favorably with distortions perceivability
by the human observers, and introduced distortion categorization has an intu-
itive meaning in terms of typical distortions introduced by image processing.
In this work we have specifically chosen application examples that involve the
structural difference evaluation between HDR and LDR images which has not
been possible so far. However, due to guaranteed visibility of detected structural
distortions and their unique categorization our metric may have many potential
applications in evaluating image pairs of similar dynamic range as well.

As future work, we intend to test DRIVDP in medical applications which re-
quire faithful reproduction of details captured by HDR sensors in the displayed
images. It would be also interesting to try our metric in watermarking applica-
tions, which require reproducing images on various media.
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Chapter 7

Dynamic Range Independent

Video Quality Assessment

In the final part of this dissertation we focus on video quality assessment. The
treatment of video brings additional concerns from the HVS modeling perspec-
tive compared to image data, mainly because the spatiotemporal mechanisms
are far more complicated than mere spatial mechanisms. In this chapter we
present a video quality metric, based on our work presented in Chapter 6, that
addresses these issues. We also show that the metric is useful in a number of
computer graphics applications. We also present a comprehensive subjective
validation study in Chapter 8.

The contributions of newly proposed Computer Graphics techniques are usually
demonstrated through images, and more often through videos, in which the
merit of the technique is apparent. The performance of, for example a new
rendering method, can be assessed by comparing sequences rendered on one
hand using the proposed method, and on the other hand a more precise, but
slower reference method. The point of this comparison could be to show that
the proposed method produces results comparable to the reference method, but
much more efficiently. A similar evaluation process is also common in other
subfields such as High Dynamic Range (HDR) Imaging. Evaluation of tone
mapping operators, as well as compression methods for HDR video both involve
a comparison of, respectively the tone mapped and compressed video, with the
HDR reference sequence. In fact, assessment of the fidelity of a video sequence
to a reference is a task common to numerous Computer Graphics techniques.

Formal subjective methods of video quality evaluation such as [ITU-T, 1999],
where a Mean Opinion Score is computed by obtaining responses from multi-
ple test subjects are often too laborious to be used on large sets of data. For
the same reason the use of such methods in a feedback loop during develop-
ment is not feasible; in fact most authors perform subjective evaluation only
after the development of their algorithm is completed. Video Quality Met-
rics provide an objective means of comparing video sequences much faster than
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subjective methods by trading off accuracy of the prediction due to simpli-
fied modeling of visual perception. Simple metrics like PSNR, that rely solely
on image pixel statistics fail to predict significant HVS properties like visual
masking and contrast sensitivity. More sophisticated metrics [Winkler, 2005;
Seshadrinathan and Bovik, 2010] on the other hand are not designed for HDR
content. In the light of the recent trends towards HDR Imaging, the absence of
HDR capable HVS models severely limits the use of these metrics in Computer
Graphics context. Recently however, several image quality assessment metrics
have been proposed, either designed specifically for HDR images [Mantiuk et al.,
2005], or that can compare image pairs with arbitrary dynamic range [Aydın et
al., 2008a]. However, simply using image quality metrics to evaluate each frame
of a video sequence fails to reflect the temporal aspects of HVS mechanisms,
typically resulting in underestimating the visibility of temporal artifacts such
as flickering (Section 7.3, and Chapter 8).

A video quality metric specifically designed for Computer Graphics applications
by addressing the aforementioned issues, could be used as a practical diagnostic
tool and a quick alternative to subjective evaluation. We propose a dynamic
range independent video quality metric that can compare a video pair of arbi-
trarily different dynamic ranges. The metric comprises a temporal HVS model,
that accounts for major effects like luminance adaptation, contrast sensitivity
dependency to both spatial and temporal frequencies, and similarly visual mask-
ing computed in spatiotemporal visual channels (Section 7.2). The results in
Section 7.3 show that our metric predicts distortion visibility more accurately
than previous video quality metrics and state-of-the-art image quality assess-
ment methods applied to each video frame separately. The predictions of the
proposed metric are also validated through a subjective study (Chapter 8). We
show that our metric enables new applications of evaluating HDR video tone
mapping and compression methods. We also demonstrate the comparison of
videos rendered with different methods and quality settings, and assessment of
the impact of dropped frames to perceived quality (Section 7.4).

7.1 Background

In this section we summarize previous work on objective video quality assess-
ment and the use of video quality measures in Computer Graphics applications,
and give some background on the temporal HVS mechanisms related to our
metric.

7.1.1 Video Quality Assessment

The focus of the early work has been quality assessment of digitally coded
video, mainly resulting from the observation that simple statistics like signal-to-
noise ratio are not necessarily correlated with human vision. Van den Branden
Lambrecht’s Moving Picture Quality Metric (MPQM) [1996] utilizes a spatial
decomposition in frequency domain using a filter bank of oriented Gabor fil-
ters, each with one octave bandwidth. Additionally two temporal channels, one
low-pass (sustained) and another band-pass (transient) are computed to model
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visual masking. The output of their metric is a numerical quality index between
1 − 5, similar to the Mean Opinion Score obtained through subjective studies.
In a more efficient version of MPQM, the Gabor filter bank is replaced by the
Steerable Pyramid [Lindh and van den Branden Lambrecht, 1996]. In later work
targeted specifically to assess the quality of MPEG-2 compressed videos [van den
Branden Lambrecht et al., 1999], they address the space-time nonseparability of
contrast sensitivity through the use of a spatiotemporal model. Another metric
based on Steerable Pyramid decomposition aimed towards low bit-rate videos
with severe artifacts is proposed by Masry and Hemani [2004], where they use
finite impulse response filters for temporal decomposition.

Similarly, Watson et al. [2001] published an efficient Digital Video Quality metric
(DVQ) based on the Discrete Cosine Transform. The DVQ models early HVS
processing including temporal filtering and simple dynamics of light adaptation
and contrast masking. Later they propose a relatively simple Standard Spatial
Observer (SSO) based method [Watson and Malo, 2002], which, on the Video
Quality Experts Group data set, is shown to make as accurate predictions as
more complex metrics. Winkler [1999; 2005] proposed a perceptual distortion
metric (PDM) where he introduced a custom multiscale isotropic local contrast
measure, that is later normalized by a contrast gain function that accounts for
spatiotemporal contrast sensitivity and visual masking.

Seshadrinathan and Bovik [2007] proposed an extension to the Complex Wavelet
Structural Similarity Index (CW-SSIM [Wang and Simoncelli, 2005; Sampat et
al., 2009]) for images to account for motion in video sequences. The technique
(called V-SSIM) incorporates motion modeling using optical flow and relies on
a decomposition through 3D Gabor filter banks in frequency domain. V-SSIM
is therefore able to account for motion artifacts due to quantization of motion
vectors and motion compensation mismatches. Recently, the authors published
the MOVIE index in a follow-up work [Seshadrinathan and Bovik, 2010], which
outputs two separate video quality streams for every 16th frame of the assessed
video: spatial (closely related to the structure term of SSIM) and temporal (as-
sessment of the motion quality based on optical flow fields). In Section 7.3 we
compare our work with the MOVIE index and Winkler’s PDM, along with a
frame-by-frame evaluation by image quality metrics HDRVDP [Mantiuk et al.,
2005] and the dynamic range independent metric [Aydın et al., 2008a] (hence-
forth referred as DRIVDP, refer to Chapter 6).
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7.1.2 Applications in Computer Graphics

The image quality evaluation with the use of HVS models has been an impor-
tant topic in realistic image synthesis, particularly for static images [Rushmeier
et al., 1995; Bolin and Meyer, 1998]. More recently spatiotemporal models of
visual perception have been considered for reducing the rendering time of ani-
mation sequences by exploiting limitations of the HVS. Myszkowski et al. [2000]

proposed the use of an Animation Quality Metric (AQM), which utilizes im-
age flow between a pair of subsequent frames to derive the retinal velocity,
which is an input parameter for the spatiovelocity contrast sensitivity function
(SVCSF) [Daly, 1998]. Yee et al. [2001] further extended this work by using
a computational model of visual attention to predict which image regions are
more likely to be consciously attended by the observer, resulting in even more
precise retinal velocity estimation. Both those techniques lack explicit process-
ing of intensities between subsequent images, which makes detection of temporal
artifacts such as flickering impossible. Such temporal information has been im-
plicitly accumulated by averaging photon density across frame sequences and
then applying the AQM metric to the resulting animation frames [Myszkowski
et al., 2001]. However, in this case only temporal noise due to the photon density
can be estimated, while other temporal artifacts such as flickering of improperly
sampled textures or edge aliasing cannot be detected.

Schwarz and Stamminger [2009] propose a quality metric, which is targeted
specifically for detection of popping artifacts due to level-of-detail (LOD) changes
between frames. They assume the knowledge of the point in time when the LOD
is changed and compare whether for that frame the differences for current and
previous LOD (the latter image must be specifically re-rendered) are visible
taking into account the SVCSF [Daly, 1998]. Since temporal processing over
frames is ignored, the influence of the dynamically changing scene and cam-
era on the LOD change cannot be modeled properly. Clearly, an explicit 3D
space-time contrast sensitivity function (CSF) processing over a number of sub-
sequent frames is required to account for all possible temporal artifacts in a
general setup, which is one of the main goals of our work.

7.1.3 Temporal Aspects of Human Visual System

A significant area of interest of vision research is the Lateral Geniculate Nucleus
(LGN), which is a portion of the brain inside the thalamus. It is estimated that
90% of monkey retinal ganglion cells send their axons to LGN layers, thus LGN
is known as the primary processing center of visual information. In general,
retinal ganglion cells can be divided into midget (smaller, majority of ganglion
cells, sensitive to detail) and parasol (larger, faster output signals, sensitive to
movement, only ∼10%) cells. LGN, in turn contains magnocellular (large cell
bodies) and parvocellular (small cell bodies) layers. The axons of midget retinal
ganglion cells terminate in the parvocellular layers, while the parasol cells ter-
minate in magnocellular layers [Wandell, 1995, p.124]. This structure suggests
the existence of separate parvocellular and magnocellular visual streams.

Experiments have shown that the destruction of the cells in the parvocellular
layers of a monkey’s LGN resulted in deteriorated performance for a variety
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of tasks such as pattern detection and color discrimination. Destroying the
cells in the magnocellular layers, however, did not affect the performance in
the same tasks, but it was observed that the animal became less sensitive to
rapidly flickering targets [Wandell, 1995, p.126]. This leads to the conclusion
that the magnocellular pathway is specialized to process high temporal fre-
quency information [Watson, 1986]. Meanwhile, some work has been done to
find models that fit psychophysical measurements of the temporal sensitivity of
human subjects. While models with many narrow band mechanisms, as well as
three channels have been proposed in the past, it is now believed that there is
just one low-pass, and one band-pass mechanism [Winkler, 2005]. This theory
is consistent with the biological structure of the LGN, moreover Friedericksen
and Hess [1998] obtained a very good fit to large psychophysical data using only
a transient and a sustatined mechanism.

Although the parvo– and magnocellular pathways carry different types of infor-
mation to the brain, the receptive fields of neurons in the parvocellular pathway
are not space-time separable [Wandell, 1995, p.143]. No clear anatomical sep-
aration between spatial and temporal frequencies supports the psychophysical
finding that the contrast sensitivity is not separable along time and spatial di-
mensions. That leads to the space-time nonseparability of the Contrast

Sensitivity Function. Thus, spatial CSFs measured for static stimuli cannot
be extended linearly to account for the effect of temporal frequency to sensitiv-
ity. Another direct consequence of separate pathways for high and low temporal
frequency contrast is the spatiotemporal locality of inter-channel visual

masking. This suggests the use of 3D filter banks that span both spatial and
temporal dimensions. Faithful modeling of temporal aspects of the HVS is vital
in Computer Graphics applications, where flickering is an important source of
visual artifacts. In Section 7.2 we describe how the proposed metric addresses
these issues.

7.2 Video Quality Assessment

The recent proliferation of High Dynamic Range Imaging dictates that the HVS
model employed in a video quality metric for Computer Graphics applications
should be designed for all visible luminance levels. This requirement limits
the use of earlier video quality metrics designed towards detecting compression
artifacts in low dynamic range (LDR) videos. Moreover, applications such as
tone mapping and compression of HDR video sequences require detecting struc-
tural distortions where the reference video is HDR and the test video is LDR.
Consequently, in this work we use an HDR capable model that accounts for
both major spatial and temporal aspects of the visual system, and employ the
dynamic range independent distortion measures contrast loss and amplification
introduced in DRIVDP in addition to simply computing the visible differences
between reference and test videos. In Computer Graphics applications the main
concern is often the existence of visible artifacts, rather than the magnitude of
visibility, since methods that produce clearly visible artifacts are often not use-
ful in practice. Consequently the HVS model we use trades off supra-threshold
precision for accuracy near the detection threshold.
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The computational steps of our metric are summarized in Figure 7.1. The input
is a pair of videos Vref and Vtst with arbitrary dynamic ranges, both of which
should contain calibrated luminance values. The luma values of LDR videos
should be inverse gamma corrected and converted to display luminance (In all
examples we assumed a display device with the luminance range 0.1−100 cd/m2

and gamma 2.2). The HVS model is then applied separately to both videos to
obtain the normalized multichannel local contrast at each visual channel, where
the first step is to model the nonlinear response of the photoreceptors to lu-
minance, namely Luminance adaptation (Chapter 2.2). In our metric we
apply the nonlinearity described in Section 10.1, which maps the video lumi-
nance to linear Just Noticeable Differences (JND) values, such that the addition
or subtraction of the unit value results in a just perceivable change of relative
contrast.
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Figure 7.2: Computation of the CSF 3D. The static CSFS(ρ, La) (a) is divided
to CSFS(ρ, La = 100cd/m2) to obtain scaling coefficients (b) that account for
luminance adaptation in CSF 3D. The specific adaptation level is chosen to
reflect the conditions where the spatiotemporal CSFT was measured (c). The
scaling coefficients are computed for the current La (3 cd/m2 in this case), and
multiplied with the normalized CSFT to obtain the CSF 3D that accounts for
spatial and temporal frequencies, as well luminance adaptation (d).

Contrast sensitivity (Chapter 2.3) is a function of spatial frequency ρ and
temporal frequency ω of a contrast patch, as well as the current adaptation lu-
minance of the observer La. The spatiotemporal CSFT plotted in Figure 7.2c
shows the human contrast sensitivity for variations of ρ and ω at a fixed adap-
tation luminance (Equation 10.5). At a retinal velocity v of 0.15 deg/sec, the
CSFT is close to the static CSFS [Daly, 1993] (Figure 7.2a) at the same adapta-
tion level (the relation between spatio-temporal frequency and retinal velocity
is ω = vρ assuming the retina is stable). The formula for CSFS is given in
Equation 10.3. This particular retinal velocity corresponds to the lower limit of
natural drift movements of the eye which are present even if the eye is inten-
tionally fixating in a single position [Daly, 1998]. In the absence of eye tracking
data we assume that the observer’s gaze is fixed, but also the drift movement is
present. Accordingly, a minimum retinal velocity is set as follows:

CSFT (ρ, ω) = CSFT (ρ, max(v, 0.15) · ρ). (7.1)

On the other hand, the shape of the CSF depends strongly on adaptation lu-
minance especially for scotopic and mesopic vision, and remains approximately
constant over 1000 cd/m2. Consequently, using a spatiotemporal CSF at a fixed
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adaptation luminance results in erroneous predictions of sensitivity at the lower
luminance levels that can be encoded in HDR images. Thus, we derive a “3D”
CSF (Figure 7.2d) by first computing a Luminance Modulation Factor (Fig-
ure 7.2b) as the ratio of CSFS at the observer’s current adaptation luminance
(La) with the CSFS at La = 100 cd/m2, which is the adaptation level at which
the CSFT is calibrated to the spatiotemporal sensitivity of the HVS. This fac-
tor is then multiplied with the normalized spatiotemporal CSF (nCSFT ), and
finally the resulting CSF 3D accounts for ρ, ω and La:

CSF 3D(ρ, ω, La) =
CSFS(ρ, La)

CSFS(ρ, 100)
nCSFT (ρ, ω). (7.2)

Ideally the CSF 3D should be derived from psychophysical measurements in all
three dimensions, since current findings suggest that the actual contrast sen-
sitivity of the HVS is linearly separable in neither of its dimensions. In the
absence of such measurements, we found that estimating luminance adaptation
using a scaling factor is better than the alternatives that involve an approxi-
mation by linear separation of spatial and temporal frequencies (as discussed
earlier in Section 7.1.3). The effect of luminance adaptation to spatiotempo-
ral contrast sensitivity is approximately linear except for very low temporal
frequencies [Wandell, 1995, p.233].

The perceptually scaled luminance contrast is then decomposed into visual chan-
nels, each sensitive to different temporal and spatial frequencies and orientations
(Chapter 2.4). For this purpose we extend the Cortex Transform [Watson,
1987] (Section 10.4 that comprises 6 spatial frequency channels each further
divided into 6 orientations (except the base band), by adding a sustained (low
temporal frequency) and a transient (high temporal frequency) channel in the
temporal dimension (total 62 channels). The time (t given in seconds) dependent
impulse responses of the sustained and transient channels, plotted in Figure 7.3-
left, are given as Equation 7.3 and its second derivative, respectively [Winkler,
2005]:

f(t) = e−
ln(t/0.160)

0.2 . (7.3)

The corresponding frequency domain filters are computed by applying the Fourier
transform to both impulse responses and are shown in Figure 7.3-right.
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Figure 7.3: Impulse (left) and frequency (right) responses of the transient (red)
and sustained (blue) temporal channels. The frequency responses comprise the
extended 3D Cortex Transform’s channels in temporal dimension.
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Combining all models discussed so far, the computation of visual channels from
the calibrated input video V is performed as follows:

Ck,l,m = F
−1

{

Vcsf cortexk,l × temporalm
}

and

Vcsf = F{jnd(V )} CSF 3D,

where the 3D Cortex Filter for channel Ck,l,m is computed from the correspond-
ing 2D cortex filter cortexk,l at spatial frequency level k and orientation l, and
the sustained and transient channel filters temporalm. The function jnd de-
notes the light adaptation nonlinearity, and F is the Fourier Transform. The
threshold elevation due to visual masking (Chapter 2.5) is computed using
the following nonlinearity [Daly, 1993]:

Tek,l,m =

[

1 +
(

0.0153
(

392.498|Ck,l,m
pu |

)slope
)4

]
1
4

, (7.4)

where Ck,l,m
pu indicates the channel with phase uncertainty and the slope is

linearly interpolated between 0.7−1 for visual channels from low to high spatial
frequencies.

45°

Σ

Figure 7.4: Practical illustration of achieving phase uncertainty in 2D. The
Hilbert transform should be applied in multiple orientations to obtain a phase
independent signal.

The dependency of the visual channels to signal phase contradicts with the ob-
servation that the phase sensitivity of the HVS is very limited. A common way
of removing phase dependency of a 1D signal is to use a quadrature pair of
filters where one filter is obtained by shifting the other’s phase by 90 degrees.
Although the phase shift can be computed in 1D by means of Hilbert trans-
form, the extension of the Hilbert transform to higher dimensions is not trivial
(Figure 7.4). Our implementation of phase uncertainty is an extension of the
quadrature cortex filters [Lukin, 2009] to the temporal domain. The spatial
phase-shift is computed using an oriented 2D Hilbert Transform:

hS(ρx, ρy) = i sgn(p ρx + q ρy), (7.5)
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where i is the imaginary unit, and the line given by the equation p ρx +q ρy = 0
specifies the “direction” of the transform. Parameters p and q are selected such
that the direction of the Hilbert Transform coincides with the spatial orientation
of the cortex channel. In the temporal dimension the phase shift can be achieved
using a 1D Hilbert Transform:

hT (ω) = i sgn(ω). (7.6)

The quadrature responses of spatiotemporal visual channels are then computed
as follows:

HS|T {Ck,l,m} = F
−1{hS|T

F{Ck,l,m}}. (7.7)

The phase independent channel Ck,l,m
pu used in the threshold elevation formula

is computed by summing up the original signal with all phase shifted responses
in spatial and temporal dimensions as illustrated in Figure 7.5.

Spatio-temporal 

Channel C
HS{C}

HT{C} HT{HS{C}}

Resulting

phase-independent 

channel 
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Σ

Figure 7.5: 3D phase uncertainty on a frequency plate image modulated in tem-
poral domain using a sinusoid function. The spatiotemporal channel C obtained
by 3D Cortex Transform is used to compute HS{C}, HT {C} and HT {HS{C}},
the phase shifted response in spatial, temporal and both dimensions, respectively.
The combination of all four responses yields a spatiotemporaly phase indepen-
dent response constant along the entire sequence.

The detection probability of the normalized contrast response C at each vi-
sual channel is computed using the following psychometric function (Chap-
ter 2.7), separately for the reference and test images:

P (C) = 1 − exp(−|C|3). (7.8)

The psychometric function relates the normalized contrast to detection probabil-
ity. Using this function, we compute the detection probabilities of the following
three types of distortions:
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• Visible Difference

(

P k,l,m
∆ = P (

Ck,l,m
tst

Tek,l,m
tst

− Ck,l,m
ref

Tek,l,m
ref

)

)

• Contrast Loss
(

P k,l,m
ց = P (Ck,l,m

ref )(1 − P (Ck,l,m
tst )

)

• Contrast Amplification
(

P k,l,m
ր = P (Ck,l,m

tst )(1 − P (Ck,l,m
ref )

)

The visible differences between video sequences convey more information than
the other two types of distortions, but especially if the input video pair has dif-
ferent dynamic ranges, the probability map is quickly saturated by the contrast
difference that is not necessarily perceived as a distortion. In this case contrast
loss and amplification are useful which predict the probability of a detail visible
in the reference becoming invisible in the test video, and vice versa. While addi-
tionally contrast reversal proposed in DRIVDP can be easily computed within
this framework, we found that this type of distortion did not convey further
information in the examples we considered, and thus excluded from the metric
output. Detection probabilities of each type of distortions are then combined
using a standard probability summation function:

P̂∆|ց|ր = 1 −
K
∏

k=1

L
∏

l=1

M
∏

m=1

(

1 − P k,l,m
∆|ց|ր

)

. (7.9)

The resulting three distortion maps P̂ are visualized separately using an in-
context distortion map approach where detection probabilities are shown in
color over a low contrast grayscale version of the test video. We also found
that an overall summary of the distortion information conveyed through a 3D
visualization is useful in certain applications (Section 7.4.4).

7.3 Results

In this section we compare the predictions of our metric with the outcomes
of the recent video quality metrics PDM [Winkler, 2005] and the MOVIE in-
dex [Seshadrinathan and Bovik, 2010]. Although not intended for videos, we
also considered two recent HDR capable image quality metrics HDRVDP [Man-
tiuk et al., 2005] and DRIVDP [Aydın et al., 2008a] (discussed in Chapter 6),
with which we evaluated each video frame separately. To ensure that our metric
is calibrated to psychophysically measured detection thresholds, we computed
the visible differences of the Modelfest data set at five different contrast lev-
els with the background luminance. The video for a stimulus is generated by
repeating it in all frames. As expected, the majority of the stimuli produced
no response below the threshold, and a response with increasing magnitude for
near– and above threshold. Figure 7.6 shows the outcome for selected stimuli
relevant to our applications: a low and a high frequency noise, and a complex
image. The worst results were obtained for “GaborPatch9” and “Gaussian26”
for which our metric was too insensitive

The test video for this section is generated using an HDR image, to which we
added spatiotemporal random noise filtered with a Gaussian to roughly mimic
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Figure 7.6: Predicted visible differences between selected stimuli from the Mod-
elfest data set and the background luminance, where the stimuli is scaled at
1
4 , 1

2 , 1, 2 and 4 times the threshold contrast (The same color coding is used
throughout this chapter for visualizing distortion detection probabilities, unless
noted otherwise).

Figure 7.7: Approximate perception of the reference and test scenes

the artifacts that appear in rendered videos in the absence of temporal co-
herency. The magnitude of the noise has been modulated with the luminance
levels of the relatively dark image that depicts a sunset. The reference video
is generated similarly by repeating the same HDR image in all frames. The
frames in Figure 7.7, tone mapped using Pattanaik’s operator [2000], depict the
approximate appearance of the scene.

First, we compare the distortion visibility prediction of our metric with PDM
and MOVIE index on this tone mapped LDR image pair. Due to the random
nature of the distortion, the frames of the distortion maps in this section are
very similar, and thus we arbitrarily choose a single representative frame. In
this case the outcome of our metric and the PDM are similar (Figure 7.8).

The output of the MOVIE index on the other hand are a series of spatial and a
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Figure 7.8: Metric comparison for LDR test and reference videos

Figure 7.9: MOVIE index for LDR videos. Note the different color coding

temporal distortion maps that are computed at every 16th frame. In Figure 7.9
we show the spatial distortion map at the 3rd scale along with the temporal
distortion map. While the output format of the MOVIE index is not directly
comparable with other metrics discussed in this section, one can see that the
spatial map of structural distortions (Figure 7.9-left) closely correlates to the
distortions in the video sequence. However, due to the lack of a mechanism to
estimate threshold contrast, distortions are detected even at the darker bottom
half of the video.

Next, we test the metrics on the HDR test and reference videos. Note that the
HDR format is capable of encoding the actual scene luminance unlike display-
referred LDR videos in the previous case. The MOVIE index is excluded from
the remaining comparisons since its extention to HDR is not trivial. The dif-
ference in predictions of our metric and PDM in this case is because the lat-
ter does not model luminance adaptation. Consequently distortion visibility is
underestimated due to artificially high thresholds in this low luminance scene
(Figure 7.10). The visible difference and contrast amplification predicted by
frame-by-frame evaluation of HDRVDP and DRIVDP are also noticeably lower
than ours due to the absence of a temporal model that accounts for the higher
sensitivity to flickering distortions compared to static distortions.

An even more striking difference can be observed in the final setup where the dis-
torted video tone mapped with Pattanaik’s operator is compared with the refer-
ence HDR video (Figure 7.11). Here, both PDM and and HDRVDP’s distortion
maps are dominated by the contrast difference due to the different dynamic
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Figure 7.10: Metric comparison for HDR test and reference videos. The con-
trast amplification in DRIVDP is color coded with blue.

Figure 7.11: Metric comparison for HDR reference and LDR test videos

ranges of the input video pair. This is especially evident in HDRVDP’s pre-
diction where the spatiotemporal distortion appears to be completely ignored.
Moreover, DRIVDP predicts no visible detail amplification at all, since it does
not detect the distortion and is also not affected by the different dynamic ranges
of the input videos. The contrast amplification predicted by our metric on the
other hand correctly identifies distortions where they are visible, and similar to



100 Chapter 7: Dynamic Range Independent Video Quality Assessment

DRIVDP also ignores the changes due to dynamic range difference. Note also
that the predictions of our metric in all three scenarios are fairly consistent.

7.4 Applications

The proposed method for objective quality assessment of a test video with re-
spect to a reference without any constraints on the dynamic range provides a
faster alternative to subjective evaluation of rendering methods, and also en-
ables a computational comparison of HDR video compression and tone mapping
techniques. We also show that our metric gives insight on the effect of dropped
frames to overall quality.

7.4.1 HDR Video Compression

While HDR content is becoming more commonplace, since it offers higher fi-
delity compared to traditional media, it does so at the cost of significantly in-
creased file sizes. This is often not a problem for images due to cheaply available
storage. However, working with long, high resolution videos quickly becomes
prohibitively expensive. Incidentally HDR video compression has become an
active topic of research. Figure 7.12 shows that our metric can be used to de-
tect compression artifacts in a video sequence compressed [Mantiuk et al., 2004]

at various quality settings.

Figure 7.12: Visible differences between frames from the HDR video and the
corresponding compressed frames shown in three compression settings (Low –
q=1, Medium – q=5, Very High – q=31). The banding artifacts become clearly
visible under extreme compression. Near the foliage at the bottom, banding
artifacts are present but not visible due to the low luminance

7.4.2 Temporal Tone Mapping

HDR display technology is still early in its development, thus it is often necessary
to reduce the dynamic range of the HDR content such that it can be viewed on
current display hardware. While the goal of tone mapping is considered to be
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subjective, the fidelity of the tone mapped video to the reference HDR is often
a good indicator of quality. In Figure 7.13 we show the results from selected
frames of a tone mapped HDR sequence computed with global [Drago et al.,
2003b] and gradient based [Fattal et al., 2002] tone mapping methods.

Figure 7.13: Selected frames from the tone mapped HDR sequences and cor-
responding contrast amplification and loss maps. Each frame of the reference
HDR video is tone mapped separately. Fattal’s gradient based operator enhances
perceived contrast notably, thus leading to highly detectable contrast amplifica-
tion but little contrast loss. Drago’s global operator on the other hand produces a
more “flat” image by amplifying contrast near the dark foliage in the foreground
and clipping brighter details near the horizon line.

Another interesting practical problem involves both temporal tone mapping and
compression. Consider a scenario where visual content is stored in a centralized
media server in compressed HDR format. One may require to perform on-the-fly
tone mapping to reduce the video’s dynamic range to be suitable for the client
machine’s display device, which may range from an high-end LCD panel to a
limited CRT monitor. An obvious consideration in this case is to make sure
that tone mapping does not amplify previously invisible compression artifacts.
In Figure 7.14 we show such an example where tone mapping adversely affects
perceived quality of the compressed HDR video, which is correctly detected by
our metric.

7.4.3 Rendering

Our metric can be used to compare different rendering approaches. Figure 7.15
shows the visible differences of a dynamic scene walkthrough rendered with
indirect lighting using reflective shadow maps [Dachsbacher and Stamminger,
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Figure 7.14: Contrast amplification and loss predicted with respect to the ref-
erence HDR sequence for the compressed (at medium quality) and then tone
mapped sequence using Drago’s operator. Note the slightly increased contrast
amplification and loss in the tone mapped version of the compressed HDR video.
As shown in Figure 7.12, the artifacts generated in medium compression setting
for this scene are mostly not detectable in the HDR video, but they become visible
due to tone mapping applied later.

2005] with 1000 virtual point light (VPL) sources, with respect to the reference
sequence obtained with the same amount of VPLs, however using a recent tech-
nique [Herzog et al., 2010] that utilizes spatio-temporal filtering. Due to this
filtering, there are virtually no visible artifacts in the reference sequence, while
the test technique produces visible flickering during the entire sequence.

To complement the previous scene with mostly temporal distortions, we show
another example with artifacts of spatiotemporal nature (Figure 7.16). Here,
the squences are rendered using an image-space horizon based ambient occlu-
sion technique [Bavoil et al., 2008] augmented with the screen space directional
occlusion (SSDO) [Ritschel et al., 2009a] (48 × 32 and 12 × 10 polar samples
on the hemisphere for the reference and test sequences, respectively) with di-
rectional light source sampled from an environment map (128 and 96 samples,
respectively) and percentage closer filtering (PCF) shadow maps [Reeves et al.,
1987] (64 and 16 samples, respectively). Visible differences are predicted mostly
near the boundaries of the elephant’s shadow.

7.4.4 Variable Frame Rate

Maintaining a high enough frame rate is desirable in applications like render-
ing and video streaming, but at the same time is not always possible due to
hardware or bandwidth limitations. In this case, the visible differences between
the low FPS video and the full FPS reference is a good measure for the loss
in perceived quality due to low frame rate. Figure 7.17 shows that our metric
can be used to predict the perceived distortions caused by dropped frames in a
rendered walkthrough scene. The reference sequence was generated by Coherent
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Figure 7.15: Visible differences between rendering techniques. Even though the
rendered frames are visually indistinguishable when viewed side-by-side, the test
method produces significantly visible flickering artifacts, which is not the case for
the reference method with temporal coherency filtering. Our metric also detects
the non-uniform perception of these flickering artifacts, such as the perception
of the artifacts on the ground masked by the moving checkerboard pattern

Hierarchical Culling technique [Bittner et al., 2004] which never falls below 60
FPS for this scene. On the other hand, the performance of the traditional view
frustum culling drops below 1 FPS at times. We also show an alternative 3D
visualization of this scene utilizing volume rendering that gives an overview of
the distortion data (Figure 7.18).

7.5 Discussion

The running time of the proposed metric depends highly on the resolution and
length of the input videos, however in its current state is intended to work offline
(∼ 5 minutes for 512×512×64 sequence). In our experience, the main bottleneck
in performance is computing the 3D Fourier Transform of an 64 frames portion
of the video, where that specific number is chosen because the sensitivity to
temporal frequencies higher than 32 cy/sec is significantly low. This approach
also requires that the portions of the video being processed should be kept in
memory.

While our implementation runs in a standard workstation hardware without
problems, another approach that trades off efficiency for prediction accuracy
is to approximate the frequency domain Cortex Transform with the Steerable
Pyramid decomposition performed in the spatial domain through polynomial
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Figure 7.16: Visible differences (bottom row) between the high (top row) and
low quality (middle row) renderings are focused mostly near shadow boundaries.

approximations of the second derivative Gaussian filters [Freeman and Adelson,
1991]. The filters that compute transient and sustained temporal channels can
also be approximated by 9-tap filters corresponding to the impulse responses
given in Figure 7.3 as described in Winkler’s book [2005]. As a result, the
memory requirement can be reduced by a factor of nearly 7, and the overall
computation can be accelerated by efficiently computing convolution operations
in graphics hardware. The downside is the metric’s reduced prediction perfor-
mance since second derivative Gaussian filters are not perceptually justified and
our pilot implementation also indicated difficulties in calibration.

A limitation of our metric is the lack of a mechanism to model visual attention.
In the absence of either a computational model, or eye tracking data to predict
the observer’s gaze direction, our metric’s predictions are conservative in the
sense that the possibility of the observer focusing her attention to some other
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Figure 7.17: The effect of dropped frames to perceived quality. One should
note, however, that our method does not compensate for camera movements
and assumes frames are perfectly aligned with each other.

Figure 7.18: An alternative 3D visualization. The left slice shows a volume
rendering of the entire visible differences data. The right slice shows only the dif-
ferences with detection probability above 75% where the locations of the missing
frames along the time axis are better visible.
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region than where the sought artifact appears is not considered. Another limita-
tion of our metric is the requirement of a reference video for quality evaluation,
which may not be available in some applications. No reference metrics, however,
have limited utility since they are often geared toward detecting a single type
of distortion, and are generally not as accurate as full reference metrics.

7.6 Conclusion

We presented a video quality metric specifically designed for Computer Graphics
applications. Our method comprises an HVS model built with spatiotemporal
components that are designed for HDR luminance levels. The capability of
comparing video pairs with different dynamic ranges enables applications such
as objective evaluation of HDR video compression and tone mapping, as well as
comparison of different rendering methods and predicting the effect of dropped
frames to perceived quality.

The validation of video quality metrics is often performed by comparing the
metric responses to standard image quality databases. In the absence of such a
collection of video pairs and corresponding spatial distortion maps comprising
stimuli with different dynamic ranges and multitude of artifact types relevant
to Computer Graphics, we created a modest data set for validation purposes.
A future direction is to extend our initial effort to a standardized data set.
Another possible extention to our work is the inclusion of color channels utilizing
a color appearance model designed for HDR luminance levels. Temporal inverse
tone mapping evaluation is a natural application area of our metric, but it was
not included in this work since from the metric’s point of view, the difference
between forward and inverse tone mapping is merely swapping reference (HDR)
and test (LDR) videos. Nevertheless, the metric’s detection performance of
application specific banding artifacts deserves further investigation.



Chapter 8

Video Quality Metric

Validation

In this chapter we discuss the subjective validation study performed for the video
quality metric presented in Chapter 7. The goal of the study was to examine the
correlation between the objective quality predictions computed by the proposed
video quality metric, and the subjective responses obtained by the experimental
procedure described below in Section 8.1. The calibration procedure (described
in Section 7.3) and the validation study are complementary, in the sense that the
former involves simple stimuli at near threshold visibility to match the sensitivity
of the metric to that of an average observer, and the latter involves complex,
application oriented stimuli for validating that the individual components of the
metric work well in concert.

Two important properties of the proposed metric were influential while designing
the validation study: (i) the capability of assessing the quality of HDR videos,
as well as comparing HDR videos with LDR videos and vice versa, and (ii)
the outcome of the metric in the form of distortion maps that show quality
prediction as a function of spatial position which is especially important for
applications in computer graphics. To that end the subjective study has the
following novelties over previous studies on video quality assessment:

• The test set includes LDR-LDR, HDR-HDR, and HDR-LDR reference-
test video pairs with various types of distortions.

• A BrightSide DR37-P HDR display (max. luminance ≈ 3000 cd/m2) was
used for displaying the videos.

• The subjects are not asked to assess only an overall quality of the video,
but to mark the regions where they see differences between test and ref-
erence videos, resulting in distortion maps similar to the metric outcome.

In the remainder of this document we will describe our experimental setup
and procedure (Section 8.1), present (Section 8.2) and discuss (Section 8.3) the
results based on the correlation between the outcome of the subjective study
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and corresponding predictions of our metric, PDM, HDRVDP and DRIVDP,
and conclude with final remarks and future directions (Section 8.4).

8.1 Experimental Methods

The set of 9 reference-test video pairs (1 LDR-LDR, 2 HDR-LDR, and 6 HDR-
HDR) used in the experiment are listed in Table 8.1. The video stimuli were
generated by imposing temporally varying visual artifacts to HDR scenes (Fig-
ure 8.1), such as HDR video compression artifacts and temporal random noise
along with temporal luminance modulation and tone mapping. The magni-
tudes of the visual artifacts were carefully selected so that there were sub-,
near- and supra-threshold distortions present in the experimental videos. The
temporal random noise was generated by filtering a three dimensional array of
random values between −0.5 and 0.5 by a Gaussian with standard deviations
20 (high) and 5 (low) pixels along each dimension. The magnitude of noise was
adjusted by multiplying with two constants separately, such that the artifacts
are barely visible in one setting (low), and clearly visible in the other (high).
HDR compression [Mantiuk et al., 2004] was similarly applied at two levels
to the HDR scenes, where the luminance was globally modulated over time by
0.5% of the maximum scene luminance to vary the visibility of image details over
time. Videos generated by applying tone mapping operators [Fattal et al., 2002;
Pattanaik et al., 2000] to each input HDR video frame were used in the dynamic
range independent comparisons.

# Source Ref. DR Test DR Artifact Type of Test Video

1 Cars HDR HDR Noise - high magnitude, low stddev
2 Lamp HDR HDR Noise - high magnitude, low stddev
3 Desk HDR HDR Noise - low magnitude, low stddev
4 Tree HDR HDR Noise - high magnitude, high stddev
5 Cafe HDR HDR HDR compression - high quality, luminance mod.
6 Tower HDR HDR HDR compression - low quality, luminance mod.
7 Cafe HDR LDR Luminance modulation, Pattanaik’s tone mapping
8 Lamp HDR LDR Luminance modulation, Fattal’s tone mapping
9 Lamp LDR LDR Noise

Table 8.1: List of the experimental stimuli. Refer to text for details.

All test videos consisted of 60 frames, and were presented at 24 fps. In order
to faithfully reproduce the luminance values on the HDR display, the response
function of the display was measured using a Minolta LS-100 luminance meter.
The measurements consisted of 32 samples taken from the displayable luminance
range with equal logarithmic spacing. The sample points were then fitted to
a 3rd degree polynomial function, from which 100 points were resampled and
stored as a lookup table. Finally, the pixel values for the HDR videos were
determined by cubic spline interpolation between nearest two luminance levels.
Furthermore, the displayed luminance of the HDR videos were measured again
at various regions, and whenever necessary, the scenes were slightly recalibrated
to ensure that the displayed luminance values match the actual scene luminance.

The participants of the study were 16 subjects between ages of 23 and 50.



8.2 Results 109

Figure 8.1: The video test set is generated from 6 calibrated HDR scenes (tone
mapped for presentation purpose [Reinhard et al., 2002]). The scene luminance
was clipped where it exceeded the maximum display luminance. The displayed
luminance of the videos resulting from the scenes were between 0.1 and 3000
cd/m2.

They all had near-perfect or corrected to normal vision, and were näıve for the
purposes of the experiment. Each subject evaluated the quality of the whole test
set through a graphical user interface displayed on a BrightSide DR37-P HDR
display (Figure 8.2). In the HDR-HDR, and LDR-LDR comparisons, the task
was to mark the regions in the test video where visible differences were present
with respect to the reference video. In the HDR-LDR comparisons on the other
hand, the subjects were asked to assess the contrast loss and amplification.

In the instruction phase before the experiment, the subjects were asked to mark
a grid tile even if visible differences were present only in a portion of that
grid’s area. They were also encouraged to mark a grid tile in the case they
cannot decide whether it contains a visible difference or not. The subjects were
placed 0.75 meters away from the display so that a 512 × 512 image spanned
16 visual degrees and the grid cell size was approximately 1 visual degree. The
environment illumination was dimmed and controlled, and all subjects were
given time to adapt to the room illumination. There were no time limitations
set for the experiment, but the majority of the subjects took 15 − 30 minutes
for the entire test set.

8.2 Results

The marked regions for each trial were stored as distortion maps with 16 × 16
resolution, which were then averaged over all subjects to find the mean sub-
jective response. Next, the metric prediction for the corresponding stimulus
was computed, averaged over the whole 60 frames, and downsampled to the
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Figure 8.2: The experiment was performed through a graphical user interface
shown on the HDR display. Subjects were shown reference and test videos side
by side in a randomized order (right), and were asked to mark the relevant image
locations on a 16 × 16 grid according to the instructions (left). The interface
and messages were disabled while the videos were being shown. The interface
allowed the subjects to watch the videos for an unlimited amount of iterations.

same resolution as the mean subjective response. For each video pair, we com-
puted the 2D correlation between the mean subjective response and the metric
prediction (Table 8.3) and used the results to evaluate the performance of our
metric.

The resulting correlations for our metric vary from 0.733 to 0.883. The first
two columns of Figure 8.3 show the mean subjective distortion maps along with
the corresponding metric predictions for visual inspection. Furthermore, the
descriptive statistics of these maps are summarized in Table 8.2. While not
optimal, we believe that the presented correlations, along with the fact that
the maps obtained by the metric’s predictions and the subjective experiment
look visually similar, clearly show that our metrics predictions are accurate for
practical purposes. Highest correlations were obtained for the #2 HDR-HDR
Lamp stimulus with high magnitude, low standard deviation noise, and the
#7 HDR-LDR Cafe stimulus with luminance modulation and Pattanaik’s tone
mapping (0.883 and 0.879, respectively). For these two cases, the magnitude
of the probability of detection predicted by the metric, and the average of the
binary maps over subjects obtained experimentally are also very similar. In
other cases, either the magnitudes of the mean subjective maps were lower
than the corresponding detection probability magnitude predictions (such as #4
Tree HDR-HDR stimulus with high magnitude, high standard deviation noise,
and #9 Lamp LDR-LDR stimulus with noise), or a certain region with visible
distortions was missed out (#1 Cars HDR-HDR stimulus with high magnitude,
low standard deviation noise). For the remaining stimuli, a combination of both
deviations can be observed in the metric predictions and subjective responses.
However, even in the worst case (#8, 0.733), the correlation was at an acceptable
level.

Figure 8.4 shows the standard deviation for each stimulus over the test subjects,
separately for each grid tile. Over all images, the minimum and maximum values
are obtained as 0 and 0.51, the former indicating the tiles on which all subjects
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gave the same response, and the latter indicating the tiles where approximately
half of the subjects have marked.

8.3 Discussion

A problem we experienced during the experiment was the extreme brightness of
the sky region of the Tower scene, reaching the maximum displayable luminance
level (≈ 3000cd/m2). We observed that subjects were disturbed by the displayed
luminance level and rushed to the next scene. We also found that the subjects
had difficulties understanding the concept of contrast amplification. We believe
the reason for that might be that contrast amplification often improves quality,
unlike other distortions that were employed in the experiment. As a result, the
correlation results in these two cases are slightly worse compared to the others.

We also computed the predictions of PDM [Winkler, 2005], HDRVDP [Mantiuk
et al., 2005], and DRIVDP [Aydın et al., 2008a]. The latter two metrics are
designed for image quality evaluation, thus, as in Chapter 7, the video stimuli
was evaluated for each frame separately. HDRVDP, while capable of evaluat-
ing the quality of HDR images, lacks any temporal processing and is geared
towards comparing images with the same dynamic range. The DRIVDP ad-
dresses the latter limitation, but still suffers from the former. Consequently,
DRIVDP’s predictions for the HDR-LDR stimuli (numbers 7 and 8) is slightly
better than HDRVDP. PDM, on the other hand, is designed for the video stimuli,
but lacks the HDR and dynamic range independent mechanisms of HDRVDP
and DRIVDP, producing the least average correlation with the subjective re-
sponses. As shown in Table 8.3, our metric significantly outperforms others in
most cases. The significant difference in average correlations over the entire test
set (last row of Table 8.3) shows that overall our metric’s predictions are clearly
more accurate than others. The corresponding distortion maps predicted by
PDM, HDRVDP and DRIVDP are shown in Figure 8.3 columns 3−5 (averaged
and downsampled to 16 × 16 after the computation).

While the relation between the correlation values and distortion maps is obvious
in most cases, the high correlation of PDM for stimulus #3 deserves further
explanation. While PDM correctly detects the distorted regions in that stimulus
in a spatial sense, the magnitude of detection probabilities are very low (refer
to Table 8.2), to the point that they are quantized by the visualization. Thus
the map appears to be blank, but since the relation with the subjective data is
linear, the correlation is high.

For the purposes of generating the maps in Figure 8.3, in cases of PDM and
HDRVDP we simply used the distortion maps produced by those metrics. In
the DRIVDP case however, the output of the metric is three separate maps for
contrast loss, amplification and reversal. Thus, it is not clear how to produce
a single distortion map for HDR-HDR and LDR-LDR stimuli. After experi-
menting with various methods for combining the distortion maps predicted by
DRIVDP, we found that the combined map defined as:

P k,l,m
combined = 1 − (1 − P k,l,m

loss ) · (1 − P k,l,m
ampl ), (8.1)
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gives the best correlation with subjective data. Here, P k,l,m
loss|ampl refer to the

detection probability of contrast loss and amplification at scale k, orientation
l, and temporal channel m. The resulting map P k,l,m

combined corresponds to the
probability of detecting either contrast loss or amplification at a visual channel.
Leaving contrast reversal resulted in slightly improved correlations.

8.4 Conclusion

The high correlations between the metric predictions and subjective responses
over a diverse test set including HDR and LDR stimuli with distortions of various
type and magnitude indicate that the metric proposed in Chapter 7 provides a
reliable estimate of the video quality as a function of spatial location.

We believe the establishment of a public, standardized test set containing video
pairs with diverse dynamic ranges and types of artifacts, coupled with spatially
varying corresponding subjective responses, is essential for this line of research.
As future work, we would like to extend our data set and make it publicly
available as a first step in that direction.
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Figure 8.3: Mean subjective response maps and corresponding metric predic-
tions pairs.
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Stimulus # Our Metric PDM HDRVDP DRIVDP

1 0.765 -0.0147 0.591 0.488
2 0.883 0.686 0.673 0.859
3 0.843 0.886 0.0769 0.865
4 0.815 0.0205 0.211 -0.0654
5 0.844 0.565 0.803 0.689
6 0.761 -0.462 0.709 0.299
7 0.879 0.155 0.882 0.924

8 0.733 0.109 0.339 0.393
9 0.753 0.368 0.473 0.617

Average 0.809 0.257 0.528 0.563

Table 8.3: Correlations of subjective responses with predictions of our metric,
PDM, HDRVDP, and DRIVDP. The last row shows the average correlations
over the test set, the best correlations for each stimulus are printed in bold text.

0.2 0.4 0.6 0.8 1

Figure 8.4: Maps showing the standard deviations over subjects for each stim-
ulus. The numbers refer to the first column of Table 8.1.
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Chapter 9

Conclusions and Future

Work

In this final section of this dissertation we will state our conclusions and give
directions for future research.

9.1 Conclusions

The main motivation of this dissertation was to explore the use of human vi-
sual system models in computer graphics context. We presented human visual
system models with various scopes and complexities designed for specific types
of applications, and demonstrated their merit in terms of extending the func-
tionality of the state of the art, and improving application performance.

We have shown that the strength of image edges can be more accurately pre-
dicted using simple perceptual models compared to purely mathematical mea-
sures such as the gradient magnitude (Chapter 3). We also showed that such
a perceptual edge strength measure can be integrated into a second generation
wavelet-based image decomposition without a prohibitive computational cost.
A more complex human visual system model, also accounting for the maladap-
tation of the observer due to the dynamically changing lighting conditions was
presented in Chapter 4. Using this model we predicted the visibility of images
shown on a desktop computer display, and a simulated car interior display.

We have also investigated the detection problem in the context of image and
video quality assessment. An important limitation of previous quality assess-
ment methods has been the lack of HDR support. We addressed this issue in
Chapter 5, where we introduced an extension to popular simple image quality
measures that enables them to process HDR images. An important property
of this method is the backwards compatibility with LDR content, that is: the
extended metrics would still predict the same quality for LDR images, in ad-
dition to their ability to predict the quality of HDR images. However merely
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supporting HDR content is not enough for tasks such as tone mapping operator
evaluation, where the reference and test images have different dynamic ranges.
To that end, we proposed a dynamic range independent image quality assess-
ment method in Chapter 6, that for the first time enabled objective comparison
of tone mapping operators.

Similarly, we proposed a dynamic range independent video quality assessment
method (Chapter 7), where we extended the steady-state human visual system
model with temporal mechanisms. We have shown that objective quality as-
sessment is possible for comparison of different rendering qualities, HDR video
compression and temporal tone mapping.

In many instances throughout this work we calibrated and validated the human
visual system models we used. While the psychophysical experiments have been
discussed in the corresponding chapters, in Chapter 8 we present a novel method
of spatial evaluation of video sequences, which enables the assessment of local
distortions.

9.2 Future Work

The results of this thesis suggest that exploiting the properties of the human
visual system is beneficial while processing visual data . In hindsight, this may
seem an obvious statement, since the ultimate receiver of the visual data are
humans. That said we have presented solid scientific evidence to back up this
claim, and presented working solutions to computer graphics related problems.

An immediate future direction of our research is to further integrate physiolog-
ical and psychophysical findings on human visual perception into the methods
that have been used in the subfields of computer science dealing with visual
data. This task has two aspects, on one hand it is desirable to make the hu-
man visual system models generally more accurate, but on the other hand one
should identify the specific application needs of the target method and design
more constrained but efficient models of human vision.

A more specific problem we encountered during the course of this work was the
absence of a standardized set of images and videos of various dynamic ranges,
containing a variety of distortion types along with their subjectively determined
quality estimates. Often such data sets have a limited scope, for example the
Video Quality Experts Group’s (VQEG) set of distorted videos is limited com-
pression artifacts in LDR videos. Moreover, most of these sets represent the
quality of an entire image or video sequence with a single number. A spatially
variant quality estimate, similar to the in-context maps produced by the qual-
ity metrics discussed in Chapters 6 and 7, would be far more informative. To
that end we created a small data set of both HDR and LDR videos containing
a multitude of distortions (Chapter 8). The quality values were subjectively
measured on a 16 × 16 grid, adding a certain level of spatial variation. A simi-
lar, but more comprehensive data set would potentially enable standardization
and meaningful comparison between various human visual system models and
quality assessment methods.
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In this dissertation we also presented models that take solely luminance as their
input. Obviously we don’t see the world in grayscale; even though one could
arguably perform most visual tasks even in the absence of chrominance informa-
tion, color perception is still an important and very interesting aspect of human
vision. A future direction of our work is to utilize the recent developments in
HDR color perception [Kim et al., 2009] in the human visual system models.
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Chapter 10

Appendix

In this appendix we present fundamental formulas that were left out from the
dissertation for brevity. Note that all formulas can be found in referenced arti-
cles, we merely recollected them for completeness and ease of implementation.

10.1 JND Space

The JND space nonlinearity accounts for lower sensitivity of the photoreceptors
at low luminance, where the luminance L is transformed using a transfer func-
tion constructed from the peak detection thresholds [Mantiuk et al., 2005]. One
can construct such a transfer function from the following recursive formula:

Tinv[i] = Tinv[i − 1] + cvi(Tinv[i − 1]) Tinv[i − 1] for i = 2..N, (10.1)

where Tinv[1] is the minimum luminance we want to consider (10−5 cd/m2 in
our case). The actual photoreceptor response R is found by linear interpolation
between the pair of i values corresponding to particular luminance L.

The contrast versus intensity function cvi used in the recursive formula above
estimates the lowest detection threshold at a particular adaptation level:

cvi(La) =
(

maxx

[

CSFS(x, La)
])−1

, (10.2)

where CSFS is the static contrast sensitivity function and x are all its param-
eters except adaptation luminance. If perfect local adaptation is assumed, then
La = L.

10.2 Static Contrast Sensitivity Function

The static contrast sensitivity function (CSFS) describes the sensitivity of the
visual system as a function of spatial frequency and adaptation luminance. In



122 Chapter 10: Appendix

our implementation we use the CSF proposed by Daly [1993]:

CSFS(ρ, La, θ, i2, d, c) = P · min

[

S1

(

ρ

ra · rc · rθ

)

, S1(ρ)

]

, (10.3)

where
ra = 0.856 · d0.14

rc = 1
1+0.24c

rθ = 0.11 cos(4θ) + 0.11

S1(ρ) =
[

(

3.23(ρ2i2)−0.3)
)5

+ 1
]− 1

5 ·
Alǫρe−(Blǫρ)

√
1 + 0.06eBlǫρ

Al = 0.801
(

1 + 0.7 L−1
a

)−0.2

Bl = 0.3
(

1 + 100 L−1
a

)−0.15
.

(10.4)

The parameters are:

• ρ – spatial frequency in cycles per visual degree,

• La – light adaptation level in cd/m2,

• θ – orientation,

• i2 – stimulus size in deg2 (i2 = 1),

• d – distance in meters,

• c – eccentricity (c = 0),

• ǫ – constant (ǫ = 0.9),

• P – absolute peak sensitivity (P = 250).

Note that the formulas for Al and Bl contain the corrections found after the
correspondence with the author of the original publication (Scott Daly).

Since the filter function depends on the local luminance of adaptation, the same
kernel cannot be used for the entire image. To speed up computations, the
response map R is filtered six times assuming La = { 0.001, 0.01, 0.1, 1, 10,
100 } cd/m2 and the final value for each pixel is found by the linear interpolation
between the two filtered maps closest to the La for a given pixel.

10.3 Spatiotemporal Contrast Sensitivity Function

The spatiotemporal contrast sensitivity function (CSFT ), on the other hand,
models the variation of contrast sensitivity at a fixed adaptation luminance
(100 cd/m2 in this case) as a function of spatial and temporal frequencies. In
our work we derive spatiotemporal CSF from the following spatiovelocity CSF
formula [Daly, 1998]:

CSFT (ρ, v) =

c0

(

6.1 + 7.3|log
(

c2v
3

)

|3
)

c2v (2πc1ρ)
2
exp

(

− 4πc1ρ(c2v+2)
45.9

)

,
(10.5)

where
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• ρ is the spatial frequency in cycles per visual degree,

• v is the retinal velocity in degrees per second,

• c0 = 1.14,

• c1 = 0.67,

• c2 = 1.7.

The last three coefficients ensure that the CSFT for v = 0.15 is close to the
CSFS for La = 100 cd/m2. The relation between spatiotemporal frequency ω
and retinal velocity is ω = vρ assuming the retina is stable.

10.4 Cortex Transform for Images

The 2D Cortex Transform [Daly, 1993] is a collection of the band-pass and
orientation selective filters. The band-pass filters are computed as:

domk =

{

mesak−1 − mesak for k = 1..K − 2
mesak−1 − base for k = K − 1

(10.6)

where K is the total number of spatial bands and the low-pass filters mesak

and baseband have the form:

mesak =











1 for ρ ≤ r − tw
2

1
2

(

1 + cos
(

π(ρ−r+ tw
2 )

tw

))

for r − tw
2 < ρ ≤ r + tw

2

0 for ρ > r + tw
2

base =

{

e−
ρ2

2σ2 for ρ < rK−1 + tw
2

0 otherwise,

(10.7)

where

r = 2−k, σ =
1

3

(

rK−1 +
tw

2

)

and tw =
2

3
r. (10.8)

The orientation selective filters are defined as:

fanl =

{

1
2

(

1 + cos
(

π|θ−θc(l)|
θtw

))

for |θ − θc(l)| ≤ θtw

0 otherwise,
(10.9)

where θc(l) is the orientation of the center, θc(l) = (l − 1) · θtw − 90, and θtw is
the transitional width, θtw = 180/L. The cortex filter is formed by the product
of the dom and fan filters:

Bk,l =

{

domk · fanl for k = 1..K − 1 and l = 1..L
base for k = K.

(10.10)
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