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Abstract

In the last decades, researchers devoted considerable attention to shape matching. Cor-
relating surfaces unlocks otherwise impossible applications and analysis. However, non-
rigid objects (like humans) have an enormous range of possibilities to deform their sur-
faces, making the correspondence challenging to obtain. Computer Graphics and Vision
has developed many different representations, each with its peculiarities, conveying dif-
ferent properties and easing different tasks. In this thesis, we exploit, extend, and propose
representations to establish correspondences in the non-rigid domain. First, we show
how the latent representation of a morphable model can be combined with the spec-
tral embedding, acting as regularization of registration pipelines. We fill the gap in un-
constrained problems like occlusion in RGB+D single view or partiality and topological
noise for 3D representations. Furthermore, we define a strategy to densify the morphable
model discretization and catch variable quantities of details. We also analyze how dif-
ferent discretizations impact correspondence computation. Therefore, we combine in-
trinsic and extrinsic embeddings, obtaining a robust representation that lets us trans-
fer triangulation among the shapes. Data-driven techniques are particularly relevant
to catch complex priors. Hence, we use deep learning techniques to obtain a new high-
dimensional embedding for point clouds; in this representation, the objects align with a
linear transformation. This approach shows resilience to sparsity and noise. Finally, we
connect super-compact latent representations by linking autoencoder latent codes with
Laplace-Beltrami operator spectra. This strategy lets us solving a complicated historical
problem, enriching the learning framework with geometric properties, and matching ob-
jects regardless of their representations. The main contributions of this thesis are the the-
oretical and practical studies of representations, the advancement in shape matching,
and finally, the data and code produced and publicly available.
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1

Introduction

No subject is terrible if the story is true, if the prose
is clean and honest, and if it affirms courage and
grace under pressure.

Ernest Hemingway

In this chapter, we first introduce the high-level concepts of representation for 3D
objects and the shape matching problem. As conclusion, in Section 1.3 we provide an
outline of the thesis, listing the main contributions.

1.1 3D Object Representations: this is not a pipe

The verb “to represent” comes from Latin re-praesentare. It is composed of two parts:
praesentare, which means ‘to present, to place before’, preceded by the particle re which
means “again”. So: to show something that already exists.

The problem of showing 3D objects is as ancient as humanity: our ancestors de-
picted pictograms in caves for spiritual and religious purposes. The most ancient known
dated cave paint in the World is a red hand stencil from Spain that is considered older
then sixty-four thousand years [138] (left of Figure 1.1).

Egyptians, Greeks, and Romans represented their lives and myths in 2D. While their
scenes were mainly 2D and lack realism, there was a sophisticated symbolism that con-
veys properties to the characters and creates stories from a single frame [159]. Only in
the fifteenth century, the Italian Renaissance artists developed methodological studies
about perspectives, imitating (and fooling) the human view, yielding depth in the im-
ages, and reproducing 3D environments. Few centuries later, between 1820 and 1840
the studies of Joseph Nicéphore Niépce, Louis-Jacques-Mandé Daguerre and William
Henry Fox Talbot brought the photography invention. When this technology had be-
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Fig. 1.1: On the left, the oldest dated cave drawn, datated 64’000 years ago [138]; on the
right, the first rendered movie of a 3D virtual object [67].

come mature, it provided a significant speedup in reality replication. This representa-
tion process is highly independent of the depicted subject, and in some sense, it consti-
tutes an automatic analysis (impressing on a film) and synthesis (developing the film)
of the view process. The Lumière first film (exploiting the forgotten León Bouly’s cine-
matograph) in 1895 was a necessary further step to replicate our 3D world experience,
that is, in general, a continuous process, instead of an instantaneous snapshot. This
continuous representation was also prone to be edited, and the first ‘special effects’
(i.e., manipulations of the representation) was made by cutting and composing the film
frames, art that was pushed to its limits by Georges Mĺiès, the "Cinemagician", direc-
tor of Le voyage dans la Lune [221]. The invention of the Cathode-ray tube and the re-
search in electronics produced an increasing interest in representing objects (like mis-
siles) on monitors, giving us the first two blinks of Computer Generated Images (CGI)
in 1958: Vertigo of Alfred Hitchcock, which is the first film using computer made ef-
fects, and Tennis for Two of William Higinbotham, the first videogame. Both of them
involved analogical technologies. In 1971 at the University of Utah, the two students Ed-
win Catmull (recently awarded with the Turing Prize) and Fred Parke modeled and ren-
dered the animation of Catmull’s hand (Figure 1.1, right). The four minutes short called
Hand, required sixty thousand minutes of work [67]. It is recognized as the first 3D ren-
dered movie, and some years later, it was included in the film Futureworld (1976). This
pipeline for acquiring, synthesizing, and modeling a 3D digital object is a milestone
in CGI history. Before this moment, analytical processes and physical phenomenons
of the acquisition guide the objects’ obtained representation. Moving to the digital do-
main, this is no longer true: between the real object and its 2D image on the monitor,
there are intermediate representations handled by the computer in logical structures.
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They have to encode the geometry, be handier for us, and be computationally tractable
for the computer. Which is the best paradigm to achieve these points? We have several
options: a continuous surface modeled by a mathematical equation, a discrete set of
tiny 2D polygonal patches glued together (as done by Catmull for his hand), a com-
position of actions that univocally build the desired object, a volume and its surface,
possibly specifying also the material qualities like its density or elasticity. The advan-
tages and drawbacks of each one make them suitable for different applications. We will
see in this thesis that the right choice (or craft) has a dramatic impact.

Before introducing a technical discussion on the possible different representation (it
will be presented in Chapter 2.1), we would consider the relationship between the rep-
resentation of an object and the object itself. A philosophical discussion of this comes
from "C’est n’est pas une pipe" (This is not a pipe) [111], the book from Michel Foucault
that comments on the paint The Treachery of Images, of the surrealist René Magritte
(Figure 1.2).

Fig. 1.2: The Treachery of
Images, René Magritte

This paint provokes two divergent reactions: the sen-
tence and the paint are in evident contradiction because
the drawing is trivially the one of a pipe. Nevertheless, the
two are also tautological: it is obvious that it is not a real
pipe, but only an illustration of it. Foucault approaches the
paint with the same naive approach, comparing the two di-
vergent perspectives. He derives the existence of implicit
bias in our language habits: the honest answer to the ques-
tion “What is this?” is: “It is a pipe”. However, this pipe lacks
several crucial elements that push it away from our experience of a real pipe: it is float-
ing without coordinates, it is illuminated but without any shadow, and it is extraordi-
narily smooth and shorts of details. Furthermore, the text itself is a description, and so
represents the object that could refer or not to a pipe. The text and the figure live in the
same non-coordinate space, replicating the interaction between the text and the image,
and we have to believe in their coherence. The representation of an object differs from
the object itself, and even if we can interchange these concepts in our communication,
in our research, we should wonder how e certain representation interacts with its ob-
ject. For us, the representations will be the computational expression of the object’s ge-
ometry, where this term is the most abstract and heterogeneous possible, relying on our
intuition of the 3D World. Digital representations for 3D objects should informatively
convey the geometry and efficiently support computations on them.

The primary discipline that investigates how to handle such objects and their digital
representation is called Geometry Processing. It aims to study (analysis), replicate (vi-
sualization), and deform (modeling) our experience of geometry (shapes) through its



4 1 Introduction

representations. However, such representations are not the geometry itself, and this is
a harrowing problem at the base of this discipline: we would work with geometry, but
we can only do it on its footprints.

1.2 Non-rigid shape Matching

We can see from Figure 1.1 that Catmull carefully marked his hand with dots and
lines, constructing an appropriate triangulation for the applications he has in mind. He
aimed to acquire the geometry and identify some precise locations of interests, design-
ing a proper discretization of the object. However, once Catmull concluded this tremen-
dous effort to model his hand animation, it would be undesirable to redo everything for
each new hand. Furthermore, it would be particularly annoying to spread such an ac-
quisition process among his colleagues: if they annotate their hand in a slightly different
way, the animation system’s effect would be unpredictable. To keep the original proper-
ties, they should annotate all the hands in the same way such that they are in correspon-
dence. The problem of establishing a correspondence given two objects is called shape
matching. Solving this by manual annotation requires time and produces uncertainty,
and nowadays, it is common to separate the process of geometry acquisition from de-
fying dense correspondence between objects. The problem moves from the acquisition
and annotation to the digital representation of the object. In this thesis, we will mainly
consider 2D surfaces embedded in the 3D space and discretized by polygons (while in
some cases, we also target different representations, like depth views and point clouds);
in this case, the shape matching problem requests to pair each point from one surface
to one point of the other.

Fig. 1.3: Hands can be non-rigidly
deformed.

This problem is tough when the shapes to
match exhibit non-rigid deformations. We will call
non-rigid deformations all transformations of a
surface that are more than a composition of ro-
tations, translations, or reflections of the whole
shape. These deformations arise in many interest-
ing domains like humans, animals, and clothing,
to mention a few. An example of non-rigid defor-
mation is the fingers bending in Figure 1.3; also,
the two hands are not from the same source (this
is evident from the border of the wrist), and this
makes the paths on their surfaces (so called met-
ric) different. However, non-rigid deformations
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can be much more complex than this: humans
have several different behaviors depending on muscles tone, skin elasticity, and fat
quantity. Also, surfaces can show missing parts due to partial views, varying resolutions
and details, presenting clutter, and other unrelated objects.

Fig. 1.4: A visualization of a point-
to-point correspondence.

We have a ‘good’ matching when we can use it
to transfer the color defined on the first to the sec-
ond, and the two colorizations look coherent, as
shown in Figure 1.4. This kind of visualization will
be proposed several times during the manuscript.
Considering the hands, we can imagine it as fitting
the same glove on both of them. This action will be
problematic if they have significant differences in
finger lengths, palm width, or, even worse if one of
the two is grabbing an object.

The representations of objects are fundamen-
tal; combining different perspectives and tools is
crucial to ease the matching task. In this thesis, we
mix, extend, and learn representations to tackle
3D non-rigid shape matching, providing theoretical and practical advancements.

1.3 Outline

We organize the rest of the thesis as follows: in Chapter 2 we introduce the main back-
ground and tools used in this thesis, giving a proper contextualization to the different
common representations and the problem of shape matching with a particular focus
on Functional Maps framework. Its purpose is purely introductory to our contribution,
presented in the following chapters divided into three Parts.

Chapter 3 opens the first Part, presenting a pipeline for human body recovery from
RGB+D single view, developing a strategy to deal with occlusions using a data-driven
prior as regularization. Chapter 4 presents FARM, an automatic registration pipeline
to fit a morphable model to a broad set of heterogeneous inputs exploiting the Func-
tional Maps framework. We will also show how, after two years from its first appearance,
FARM is still state of the art in non-rigid matching tasks. Chapter 5 extends this pipeline
by exploiting recent advancements of functional-maps matching methods and propos-
ing a High-Resolution augmentation technique to catch high-frequencies details of the
target mesh.

The second Part of the thesis examines axiomatic matching methods on triangular
meshes. First of all, Chapter 6 proposes a benchmark to match human bodies with dif-
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ferent connectivities, showing that identical triangulations inject biases in the matching
intrinsic pipelines. Chapter 7 extends the standard Laplace-Beltrami Operator eigen-
functions set to include three extrinsic bases (called Coordinate Manifold Harmonics),
enhancing the geometry representation of the points and then the matching provided
by functional maps. We use this new basis to provide a remeshing pipeline between
objects in a similar pose.

Finally, the third Part explores innovative deep learning techniques. Chapter 8 pro-
poses to learn a new basis set dedicated to point clouds. This new representation is en-
tirely extrinsic, showing robustness to noise, outliers, and clutter. The presented frame-
work is also the first entirely differentiable for Functional Maps on point clouds which
also consider the learning of the basis. We conclude the thesis with Chapter 9, where
we learn a linkage between two super-compact representations: an AutoEncoder latent
space and the eigenvalues of Laplace-Beltrami Operator. The latter can be computed
starting from several different representations, and therefore our network can instan-
taneously recover geometries regardless of their implementations, bringing them in a
common discretization.

Summarizing, our contributions are:

1. proposing innovative automatic template-based matching pipelines, exploring the
regularization benefits of the data-driven generative models on several challenging
settings. We combine different representations and we propose a strategy to obtain
an arbitrary level of detail in the final result;

2. providing the first analysis on the impact of tessellations of triangular mesh for non-
rigid 3D shape matching. We highlight the bias induced by matching two shapes
with the same connectivity, realizing a new test benchmark for matching methods;

3. extending the Functional Maps framework in two directions: firstly enriching the
intrinsic information with an extrinsic one, and secondly introducing its first version
designed for point clouds matching. These extensions provide results in challenging
settings and open to new applications;

4. proposing the first framework that joins a super-compact axiomatic representation
with a learned one, instantly recovering a geometry from its spectrum regardless of
its original representation or discretization. We not only propose a practical solution
to a historical problem; we also enrich an autoencoder with geometric tools and let
us directly match shapes.

Finally, we also provide code and data produced by our studies freely available for re-
search purposes.
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2

Background

In this chapter, we revise the common representations for 3D objects and the state of the
art of shape matching, formalizing the contents useful for the rest of the thesis.

2.1 Common representations in Computer Graphics

As we anticipated in the introduction, the “representation” term explodes in many dif-
ferent interpretations. We focus our interest in a computational perspective, as the dig-
ital simulacrum of real world geometry. We represent objects for different purposes:

− Acquisition: different technologies and processes are used to acquire 3D objects.
Representations for different purposes are required depending on applicative re-
quirements regarding geometry reliability, timing, and resource availability.

− Depicting: visualizing objects lies at the heart of Computer Graphics. Representa-
tions that are computationally efficient to render are essential in many scenarios.

− Analyzing and query: analyzing an object and investigating its properties are cru-
cial aspects. Computing geodesic distances, surface area, topological genus, detect
disconnected components are just few of them. In some representations, these com-
putations are immediate, while convoluted in others.

− Manipulating: editing 3D objects in their digital representations is important to ob-
tain new geometries without acquiring them. Modifications can interest its space
occupancy and appearance characteristics (e.g., colors and textures, triangulations,
normals).

These purposes motivated the vast amount of different representations proposed
over the decades. Listing all of the published variants would not be practical for our
discussion. Thus, we offer our categorization, and we link to different sources that give
more in-depth and rigorous taxonomies [50, 55, 133, 328].
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2.1.1 Images

A 2D view (or more than one) is a natural encoding for a 3D object. This kind of repre-
sentation is natural since it is similar to observing the world with our eyes and the stan-
dard output of computer monitors. Images of 3D objects also have several advantages
from an analysis perspective: they are a structured grid of pixels, easy to analyze thanks
to all the techniques developed in signal processing. There are several techniques to
obtain 3D information from the 2D, like use multiple RGB views or acquiring an ex-
tra depth channel (we refer to it as 2.5D). Images are easy to acquire, cheap, and 2.5D
has got much attention thanks to consumer-level depth sensors (Kinect, RealSense).
Several methods use synthetic images renderings to replicate real-life scenarios in a
controlled setup and learn in conditions otherwise impossible [310] [270] [169]. On the
other hand, images present several challenges. They require a careful parameters setup
(camera calibration) to assure the coherence of acquisitions. Camera calibration is a
non-trivial task, especially when it involves multiple cameras and different technolo-
gies. Also, the projection of a 3D object into an image plane causes a loss of informa-
tion. In a scene where only the object appears, it is caused by self-occlusion that some-
times even a multi-view perspective cannot fix. Finally, the resolution of the acquisition
bound the representation of the geometry, which can also include external clutter (e.g.,
floor, additional objects, background)

2.1.2 Implicit representations

An object can be expressed by a function that relates it with its surrounding space by
defining a scalar-valued function F : R3 → R, in which the object’s surface is given by
the zero-level isosurface S = {x ∈ R3|F (x) = 0}. This representation is particularly con-
venient to query points’ locations and decide if they lie inside, outside, or on the object
surface. We can synthetize an explicit surface in a second moment, potentially at an ar-
bitrary resolution, for example by using marching cubes algorithm [196]. Among them,
voxels offer a discretized version, as a 3D grid of volume particles (in general as cubes).
For each grid element, its value is 1 if the object occupies it, and 0 otherwise. In some
applications (e.g., neuro-imaging), it is meaningful to store non-binary values in the
voxels to specify the object’s density at that point. Techniques developed for 2D images
(e.g., convolutions) straightforward extend to voxels thanks to their gird-organized na-
ture. They are also useful to model changes of topology without caring how this reflects
on the underlying surface. However, due to the curse of dimensionality, the exponential
growth of the grid cells limits the representation’s resolution. This issue can be tackled
by using efficient data structures like octrees and promoting sparsity in the occupancy
grid [189] [64].
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While the voxels are discrete, the same paradigm can be extended to work with ana-
lytical functions. For example, the Occupancy Functions express the voxels in a contin-
uous way with a function o:

o : R3 → {0,1}. (2.1)

The continuity of the representation permits to obtain an arbitrary resolution when
it is converted in an explicit surface. It is also convenient to query points to know if
they are inside or outside the shape and catch object collisions. This representation
can be extended to Signed Distance Functions, where the function o does not express
only presence or absence, but also the distance from the surface.

o : R3 →


min

x
||d(x, a)|| if a is outside the shape,

0 if a is on the shape,

min
x

−||d(x, a)|| if a is inside the shape.

(2.2)

While it seems an unpractical representations, recently several works rediscovered
them [27,73,74,125]. They have been used for object acquisition [151], rendering [240],
and recently also for generation [290] and template registration [39].

Finally, implicit representation can be easily merged via set operation, producing
the Constructive Solid Geometry paradigm, representing a 3D object by a set of boolean
operations (like union, intersection, difference) between primitives. This kind of repre-
sentation is useful to model complex analytical objects [169].

2.1.3 Explicit surfaces

Having an explicit definition of the surface is particularly popular in Computer Vision
and Computer Graphics; it provides an intuitive way to work with surfaces and exhausts
the object’s appearance property (i.e., in many applications, we can forget what there is
inside a shape).

We will consider them as two-dimensional Riemannian manifolds S embedded into
R3, and equipped with the standard metric induced by the volume form. The surface
can be then modeled by a parametrization function f that maps Ω ⊂ R2 to the sur-
face S = f (Ω) ⊂ R3. In general, this precise and analytical description of the surface is
not feasible for complex objects if we limit it to a single continuous function. Thus, the
natural idea is to represent a 3D object’s surface as a discrete sampling. In a 1D case,
a function can be approximated by lines connecting the points of the sampling. For a
2D surface case, we can analogously connect little tiles glued continuously together. As
in the 1D dimensional case, we can approximate the surface using linear (i.e., planar)
or more complex (i.e., curved surfaces, like polynomials) piecewise surfaces. We know
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that a g ∈ C∞ function with bounded derivatives can be approximated in a limited in-
terval h by a polynomial of degree p with an approximation error O(hp+1). However,
increasing the polynomial degree produces complex surfaces that are arduous to glue
continuously. For these reasons, the most popular choice is using polygonal surfaces.
The standard is to use the simplest polygon possible, that are triangles, and this repre-
sentation takes the name of triangle meshes. A triangle mesh can be then formalized as
M [50]:

V = {v1, . . . , vn},vi ∈ R3 (2.3)

F = { f1, . . . , fm}, fi ∈ V ×V ×V . (2.4)

Note that this can be seen as a specialization of graphs (called planar graph). The ap-
proximation power for the area is O(h2) with h as the maximum edge length. However, it
worth mentioning that a discretization should also approximate other properties than
space’s occupancy. For example, the Schwarz Lantern [282] shows that we can approx-
imate a cylindrical surface with arbitrary precision (in the sense of Hausdorff distance)
with a triangular mesh, but it can diverge in the surface area and produce incoherent
surface normals. These representations are simple and equipped with several theoreti-
cal results that permit depicting and analyzing them as a proper surface. However, they
necessitate attention in their manipulation to keep the properties of a valid 2D mani-
fold: for example, it is desirable avoiding self-intersections of the polygons, and change
the object topology is far from trivial. If we consider the case in which F =;, then we
obtain point clouds. Point clouds are collections of points that witness an underlying
surface in those locations. We consider them an intermediate representation mainly
derived by acquisition pipelines (e.g., the output of depth sensors). The surface can be
reconstructed by inferring the local surface behavior and properties (e.g., its normals
directions) and using algorithms like the Poisson method. We refer to [36] for a sur-
vey on surface recovery from point clouds. Finally, we would highlight that the geom-
etry expressed by a points collection is invariant to their order; each sorting describes
the same surface (for meshes, we also need to update the triangulation indexing). Un-
ordered point cloud obtained increasing attention in recent years, thanks to modern
deep learning architectures [252] [253] [142].

2.1.4 Pointwise embeddings

All previous representations aim to represent a 3D model in R3 and strictly describe
the space’s object occupancy. However, especially for analysis purposes, there could
be better representations. For example, previously we already introduced the idea of
parametrization of a 3D surface in a 2D plane. This idea is at the base of cartography; in
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fact, we are much better at working on a planar surface where we compute distances as
straight lines, rather than on spheres where distances are paths on a curved surface. The
intrinsic geometry (and in particular the topology) of the object impacts the mapping;
for example, for genus 0 surfaces, it is possible to find a map that preserves the area
(equiareal) or the angles (conformal), but it is not possible to achieve both (isometric).
However, we will discuss the interesting inverse direction, in which we seek to map our
3D object in anRm space (so our 3D object is the preimage of the mapping instead of the
image) with m arbitrarily large. We refer to the realization of our object in the Rm space
as a pointwise embedding. These kinds of representations gained popularity to study the
intrinsic properties of a shape, like its metric. Given a shape M equipped with its metric
dM , an Isometric embedding problem requires to find a map f : (M ,dM ) → (Rm ,dRm )
such that:

dM (x, x ′) = dRm ( f (x), f (x ′)), (2.5)

where dRm is the natural metric induced by the euclidean space [55]. A result in this di-
rection is the Nash embedding theroem, which states that it is possible to embed any R3

surface into an isometric R17 surface [228]. However, the Linial’s example shows that if
we impose that the final surface metric is the restricted metric dRm , this is in general not
possible [182]. Thus, several methods have been proposed to find an approximation in
terms of the minimum-distortion embedding. This approximation leads to non-convex
optimization, historically called multidimensional scaling (MDS). An elegant and effi-
cient way to solve this problem using linear algebra is called classic MDS [304]. If an
isometric embedding into Rm exists, the distances in that space lead to a Gram matrix,
that is positive and semi-definite. Then, it can be shown that the final embedding can
be retrieved using the spectral decomposition of this matrix. This method is particularly
appealing: it bases on some basic linear algebra that we can compute efficiently. These
approaches point to the so called spectral embeddings, in which the coordinates of the
embedded object are the eigenvectors of some matrix. Motivated by these, we could
wonder if there exist other matrices of interest. In particular, looking for a minimum-
distortion embedding for the whole shape enforces a global property on the embedding
of arrival. However, since we know that this problem does not have a solution in gen-
eral, we can look for some local criterion, i.e., for an embedding that achieves this prop-
erty in the neighborhood of each point. With this spirit, a particular relevance has been
devoted to differential representations [292], where each point obtain δ-coordinates;
the difference between a point coordinate and the mass center given by its immediate
neighbors:

δi = vi − 1

di

∑
j∈N (i )

v j . (2.6)
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This can also be expressed as a matrix, that is well known in the graph theory. Lapla-
cian matrix elements are:

li j =


−1 (i , j ) ∈ E

di i = j

0 other wi se,

(2.7)

where di is the degree of the vertex (number of incident edges). Then to the equality
Lx = Dδ show how this matrix is linked with δ-coordinates. The matrix L is also called
topological Laplacian [110]. This operator is only related to the connectivity of the
points without considering the underlying surface. The differential coordinates have
an important role in expressing local relations, and, in particular, can be shown that
their direction approximate surface normals, while the local mean curvature is related
to their magnitude [300]. Also, from δ-coordinates is possible to recover the original
vertices positions if at least one point position is known [292]. To generalize this formu-
lation, we can rephrase our formulation to admit general weights on the edges:

li j =


−wi j i 6= j∑

k 6=i wi k i = j

0 other wi se,

(2.8)

for some proper weights wi j . Their modifications lead to several kinds of Laplacians,
producing different embeddings and enforcing different idea of neighboorod. Lapla-
cian eigendecomposition has shown several utilities in studies of graphs connectivty
[110] [219] [224]. The analogue for surfaces is the Laplace-Beltrami Operator (LBO).
The LBO is discretized as a matrix of dimension nM ×nM . This matrix is defined as
∆M = (AM )−1W M , where AM is the mass matrix and W M is the stiffness matrix. The
mass matrix is a diagonal matrix whose entries are equal to the area element associ-
ated to each vertex. The stiffness matrix represents the local geometry. In the cotangent
scheme the weights are defined as:

wi j =


(cotαi j +cotβi j )/2 i j ∈ Ei ⊂ E ;

(cotαi j )/2 i j ∈ E∂M ⊂ E ;

−∑
k 6=i wi k i = j ;

0 otherwise;

(2.9)

where αi j ,βi j are the angles î v j , ĵ wi of the triangles that have i j as edge, Ei are the
edges connected to the vertex i and E∂M are the edges on the boundary. We will see
that the LBO matrix’s spectral embedding is relevant for solving the surface matching



2.1 Common representations in Computer Graphics 15

problem, but it also has several applications in function analysis, watermarking, mul-
tiresolution, and many others. We refer to [246] for the LBO discretization with cotan-
gent weights and to [292] for a full discussion on classical applications of this.

2.1.5 Latent embeddings

Police departments have drawers that sketch the suspects following the witness indica-
tions. This process is lead by several questions that are progressively tuned by witness
feedback. A union of directives models each characteristic of the face. Ideally, a set of
instructions should produce a univocal result. In the same spirit, we can assume that
a set of hidden (i.e., latent) decisions generate a certain geometry. Hence, We assume
that there exists a function f ,Rd → Rn×3 that associate each point of a d-dimensional
vector space to a specific 3D model. Each dimension of our vector represents one of
these decisions as a continuous variable. This representation is a model-wise encod-
ing, or more popularly called, a latent embedding of our shape. This representation is
super-compact (it is a single n-dimensional point), and the function has to “un-zip”
it to a complete geometry in one of the previous representations. One possibility is to
use axiomatic super-compact representations like the Laplacian Spectrum, which has
an intimate relationship with the object’s geometry (in this case, we can imagine the
latent directives purely geometrical ones). While we know that it is not theoretical pos-
sible recovering the shape from its spectrum [124], Chapter 8 will discuss its feasibil-
ity in practice [85] [255] [206]. Learning the latent representation and the function f
from data is another option that gets increasing popularity in the last decades, thanks
to the availability of datasets, computational power, and advancement in the machine
learning field. In 3D geometry we identify two different branches for this representa-
tion: Morphable Models and Deep Generative Models.

Morphable Models Modeling techniques need to be powerful enough to represent a
large variety of deformations. However, they should permit only valid deformations,
which is even more difficult if for “valid” we imply a semantical coherence that belongs
to a particular object’s population. In general, the properties of a surface that are subject
to modifications are:

− Identity: that concerns all the attributes that identify and object from similar ones.
For example, in human body models different people present different body struc-
tures, proportions, and traits.

− Pose: that is the location in the space of the whole shape and displacement of its
articulated parts. In the human body case, this corresponds to the subject’s global
rotation, posture, and limb positioning.
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− Appearance: that is related to color and albedo of the surface. For a human, this cor-
responds to skin tone, clothes material, but also ambient light impact.

These properties touch different aspects of an object, but they are also strictly corre-
lated, and they interact in the resulting depiction. From our human body example, arms
width depends on the subject’s physicality and by muscle contraction of the specific
pose; a tone of skin depends on the identity, environment illumination, and light occlu-
sion induced by deformations. This task is far from trivial, and it is the main motivation
of more than thirty years of research in the field. The idea that a template modifica-
tion can belong to a certain distribution of possible deformations gained popularity at
the end of the ’80s in the 2D domain. The pioneering Active Contour Model [163] was
presented at the first ICCV conference and was then extended by [283], where some
2D contour families have been deformed using axiomatic rules. From these, [82] pro-
posed Active Shape Models where the deformation has been trained from examples.
This data-driven approach was crucial to overcoming the limits of axiomatic methods
to handle such complex deformation rules. While this work mainly focuses on the iden-
tity of simple objects (i.e., transistors), [81] extends it with Active Appearance Models to
model the gray-scale of a 2D image. In this work, the modeling relies on Principal Com-
ponent Analysis (PCA), a technique extensively used by many other works thanks to its
optimality among the linear possibilities. As one of the first works in the field, the joint
modeling of shape and appearance is remarkable. [316] introduced also pose deforma-
tions, and finally [156] used a dense correspondence on pixels instead to use sparse
points of facial features. The same work mentioned the Morphable Model term in the
2D domain for the first time. All the previous works act in modeling 2D images, proba-
bly due to the availability of data and computational power of that time. The first work
that translates the idea in 3D was [40] that also addresses faces as the main applicative
domain; faces are simple objects with a high interest in several fields (e.g., medical, se-
curity, entertainment). After that one, many other faces and heads datasets appeared,
jointly with learned models [61] [179]. For an exhaustive history of 3D Morphable Mod-
els for faces, we refer to [96].

Moving to human bodies, they are a more complex domain than faces; their acqui-
sition is difficult, and harvesting information from images is difficult. Also, their vari-
abilities in terms of shape, pose, and colors are wider than faces. Thus, we had to wait
more than a decade from [40] to see the first attempts in this direction. [20] was the
first to use PCA to learn a deformation space for humans identities. Two years later, the
SCAPE model [24] handles both the identity and the pose of the subject. The SCAPE’s
primary purpose was to solve computer vision problems (e.g., real-scan registrations),
and the triangles of the template deform through a complex optimization problem. By
itself, this model does not provide a straightforward way to synthetize shapes. Several
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following up works tried to simplify the animation modeling of SCAPE, proposing other
versions like BlendScape [135], and S-SCAPE [152] [107] where the pose deformation
framework is coherent with modern animation pipelines. In particular, they use the Lin-
ear Blend Skinning (LBS) paradigm: given a skeleton (as a collection of joints and their
hierarchy) and the skinning weights for each vertex (that weight the impact of the joints
rotations), three scalars control the deformations for each body part. These scalars en-
code rotations and provide an interpretable way to deform the shape. Finally, it has
been proposed the groundbreaking SMPL [195]. SMPL is a parametric model learned
on a large dataset of real human body scans [262]. Two sets of parameters control its
template Tsmpl : the one of 10 values β to modify the identity using PCA, and one of 72
values θ to control the pose. The latter set encodes the rotations of the 24 joints J , which
deform the initial T-Pose. The initial positions for joints of different subjects are ob-
tained by applying a linear regressor J to the vertices of the subject’s T-pose. SMPL can
exploit different animation frameworks, but LBS (with a corrective factor) is a common
choice; all the SMPL properties (the template, the PCA, the skinning weights W , the
joints regressor J , the corrective factor for LBS) are all learned jointly from data. SMPL
is interesting from a representation perspective: it generates a distribution of plausible
human bodies as triangular meshes, and this is done through the space of its param-
eters (that act as a latent set of decision, discussed above); it also has a hierarchical
structure of its part thanks to the skeleton, that is obtained by applying a function to
the vertices. The steps from parameters to obtain the triangular output mesh are differ-
entiable, making the model particularly suitable for solving computer vision problems.
SMPL was then extended also to model hands [269], expressions [241] and (using deep
learning) also clothes [198]. Similar models have been proposed to model soft tissue
dynamic [250] and different parts compositions [157].

To conclude, we would mention that several works extended the Morphable Model
approach to other domains, like dorsal spine [218], animals [348], ears [88], dolphins
[65], kids [134] and flowers [344] among the others.

2.1.6 Deep generative Models

The breakthrough of deep learning affected several Computer Science domains, thanks
to IA researchers’ determination in pushing the neural networks studies. This advance-
ment was also possible thanks to the increasing computational power availability,
particularly regarding the single-instruction-multiple-data paradigm efficiently imple-
mented by GPUs. From its dawn to 2013, [281] provide a complete story of the field. We
will quickly revise few milestones, with particular attention to deep learning interaction
with Computer Graphics and Computer Vision. The first trace of effort to inject vision
into multilayer perceptrons was made in 1982 by [112], while backpropagation was not



18 2 Background

already involved. In 1989 [318] and [172] contemporary proposed to introduce convolu-
tions to learn from images, while the standard reference for convolution is usually con-
sidered [173] due to its maturity. For these works, the researches Yan LeCunn, Geoffrey
Hinton, and Yoshua Bengio was credited with a Turing Award in 2018 for their contribu-
tion to the development of the field. Convolutional layers gained particular popularity
for their effectiveness in learning multi-scaling features, possible because all images
share a standard structure: they are a grid of pixels where querying a neighborhood
is natural, the operations are efficiently computed, and the convolution operation has
several theoretical properties (e.g., shift-invariance) in planar domains. However, 3D
surfaces representations are mostly far from this trivial setup, and the only natural ex-
tension for applying it to learn from objects is using a voxels representation [325] [210],
or images from multiple views [294] [143]. In the non-euclidean domain, [280] intro-
duced the Graph Neural Networks, and [57] bring convolution paradigms on them, ex-
ploiting clustering and Laplacian Spectrum. From these works, a large amount of sub-
sequent extensions has been proposed opening the field of Geometric Deep Learning;
we point to [56] for an excellent theoretical overview, and also [62] as the most recent
survey on the topic. Another approach to learn from 3D data is to treat them as points,
accepting a faint underlying structure. Recently, extensive attention has been devoted
to point cloud representation, where the underlying structure is faint. However, the
groundbreaking [252] introduced the first generalistic network directly applicable to
point cloud, that is flexible concerning numerosity and order of the input points. Some
subsequent works extend this approach by inferring local structures in neighborhoods
of the points [253]. A complete survey on classification, detection, and segmentation
for point clouds in deep learning can be found here [129]. Finally, another way to learn
from non-euclidean domains is to represent the input as descriptors and feed them into
the network [105] [128].

While these deep learning works are mainly devoted to analyzing existing objects,
several architectures were also proposed to generate new ones: Autoencoders, Gen-
erative Adversarial Networks, and Regularizing Flows are some of the most popular
choices. They mainly aim to infer an underlying (implicit or explicit) data-distribution
and then sample the latent space to generate realistic models. The data-driven ap-
proach provides knowledge that helps to solve also unconstrained problems, like 3D
objects generation from a single image [77] [103]. Contemporary, [323] proposed to
solve the problem with voxels representation. On point cloud data, several alterna-
tives have been investigated by [14] exploiting PointNet architecture [252]. All previous
methods act in rigid domains (e.g., chairs, tables, sofas). The use of deep learning for
non-rigid objects is investigated only recently, like in [179], that also exploit convolution
to learn from surfaces of triangular meshes. Some works addressed body registration of
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point clouds starting from deformation of parametric models [154] [175] or also from
images [42]. Only recently a complete end-to-end learning model for the entire human
body has been proposed [329].

2.2 Non-rigid correspondence

Establishing a correspondence between two Non-Rigid objects is a broad topic, and a
full discussion would take (at least) an entire thesis by itself. For an extensive overview,
we suggest [307] and the recent [274] that covers research advancements year by year
from 2011 to 2019. Here we are going to discuss only the principles that will be useful
for the thesis.

For us, correspondence will be a map TMN : M →N ; an association for each point
that belongs to the M shape, one point of the N . In triangle mesh and point clouds
cases, this association is generally between their sets of vertices V . Looking for pairs (or
matching) for non-rigid objects requires to face a broad set of deformations. In real case
scenarios, this kind of correspondence is an ill-posed problem: usually, a perfect match-
ing between two different discretizations is impossible, especially at a vertex level. How-
ever, there is also a semantic problem; for example, let us say that we would retrieve a
correspondence between two human bodies. While there are points with a precise so-
lution (e.g., face features, prominent bones, endpoints of the fingers), other places lack
sharp-features to solve it (e.g., stomach, chest, and different musculature on arms or
legs). Furthermore, there could be holes and noise due to corrupted data and clutter
due to differences in their origins (e.g., the differences between a synthetic body with-
out clothes and a real scan with garments). For this reason, this field received much
attention in the last decades, and several challenging cases are far from being solved.
In general, there some properties underlying a good correspondence: intuitively, we
desire that nearby point on M arrives on nearby points on N , and so the metric is
not distorted by the correspondence; we desire that for each point on M as a distinct
image on N , and so that each point of N as distinct counter-image on M (i.e., the
correspondence should be bijective); in the presence of symmetries (e.g., humans are
left-right symmetric) we want to disambiguate them. Given an object and its rigid mod-
ified version, there exists an optimal solution that satisfies all these properties. Also,
in the presence of a global scale factor, perfect matching still exists. A more challeng-
ing case occurs when deformations happen locally, like bending and stretching. These
deformations are typical of soft-tissues and organic objects, like faces, humans, ani-
mals, to mention a few. As we saw in the previous section, an exciting embedding to
deal with locality is the LBO operator, and we anticipated how its eigendecomposition
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could serve to efficiently solve for the matching, shifting the point-to-point problem to
a function-to-function one.

2.2.1 Laplace-Beltrami Operator Spectrum

We would recall that LBO directly comes from the necessity to have a local representa-
tion of our mesh. LBO on the discrete meshes has a linkage with the Laplacian in the
continuous case, up to the theoretical limitations involved in the chosen implementa-
tion (it is well known that it cannot be equivalent to the continuous case, and there is no
free lunch [320]). Another interesting way to re-discover it is from a physical perspec-
tive [56]. In particular, given the Dirichlet energy:

EDi r =
∫

M
f (x)∆ f (x)d x, (2.10)

that measures the smoothness of a function, we look for a set of orthonormal basis that
minimizes it:

min
φ0

EDi r (φ0) s.t. ‖φ0‖ = 1 (2.11)

min
φi

EDi r (φi ) s.t. ‖φi‖ = 1, i = 1,2, . . . k −1 (2.12)

⊥ span{φ0, . . . ,φi−1}. (2.13)

That solution is the smoothest orthonormal basis for functional space, that in the dis-
crete setting leads to:

min
Φ∈Rn×k

tr ace(ΦT
k ∆Φk )s.t. ΦT

k Φk = I (2.14)

∆Φk =ΦkΛk , (2.15)

where Φk are the set {φ0,φ1, . . . ,φk−1}. Equation (2.15) says that Laplacian eigenfunc-
tion are exactly the solution of our request, that can be ordered by the eigenvalues λk

(that represent the frequencies, so by the lowest and smoothest one, to the highest).
Since the LBO is a positive semidefinite operator ∆M : L2(M ) → L2(M ), it always ad-
mits an eigendecomposition ∆Mφl = λlφl . The set of LBO eigenfunctions Φ defines
an orthonormal basis for L2(M ), the space of square-integrable functions on M . Func-
tions in Φ are usually referred to as Manifold Harmonics (MH) [306] and correspond to
the Fourier basis on M .

The analysis and the synthesis of a given function f are respectively defined as f̂l =
〈 f ,φl 〉M and f = ∑

l f̂lφl , were f̂l is the l-th Fourier coefficient of f . We refer to [174,
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301, 306] for more details. This Fourier basis on M is composed of smooth functions,
and it is optimal for the representation of functions with bounded variation defined on
M as shown in [16]. Commonly, an efficient approximation of L2(M ) is given by the
k eigenfunctions corresponding to the k smallest eigenvalues of the LBO. This set of
functions is usually referred to as a truncated basis for L2(M ) or a basis for L2(M ).

2.2.2 Functional Maps

As previously highlighted, computing a correspondence TMN : M → N between two
surfaces could be complex and ill-posed problem. Also, it is hard to impose constraints
or semantic principles to it. To simplify the problem, it is possible to change the per-
spective (or the representation of the correspondence) to a functional domain [234]
[235]. A function over a mesh is defined as f : M → R, that for every point of the sur-
face assign a scalar value. Functions can model physical processes, colors, segmenta-
tions and even locations of specific points; their semanticity has no limit. Assuming
we have TMN , it can be used to transfer a function from M to N via composition
g (p) = f (T −1

MN
(p)). This implies that a correspondence TMN induces a map for func-

tions (so called functional map) in the opposite direction T F
N M

: (F (N )) → (F (M )) (via
pull-back). Given a map that perfectly transfer functions between two surfaces , we are
also able to solve for the correspondence by transferring delta functions.

These two objects (the correspondence and the induced functional map) are inti-
mately related, and retrieving one of the two permits to recover also the second one
(while not any functional map is associated with a point-to-point bijective map). At
first sight, the reader could wonder why add such a structure to solve for the corre-
spondence. However, from this new functional perspective, we can assume that our
functional spaces F (M ) and F (N ) are equipped with some basis set of functions ΦM

and ΦN respectively. A function can then be expressed by a linear combination of such
basis: f =∑

i
aiφ

M
i . This let us to rewrite T F

MN
as:

T F
MN ( f ) = T F

MN (
∑

i
aiφ

M
i ) =∑

i
ai T F

MN (φM
i ) =∑

i
ai

∑
j

c j iφ
N
j =∑

j

∑
i

ai c j iφ
N
j (2.16)

for some {c j i }. This equation tell us that a function can be transferred by its coefficents,
and reconstructed in the functional space of N . {c j i } act as a transfer over the coef-
ficents ai and they are indipendent from function f ; given the basis and the map T
they are determinated. We can then say that T F

MN
can be represented as a matrix CMN

(when possible, we will do abuse of notation by omitting the pedix), and it is applied to
transfer the coefficients:

b = CMN a, (2.17)
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where a are the coefficient in the basis ΦM and b the proper coefficient to reconstruct
the function with basis ΦN . Note that in presence of an orthonormal basis, the matrix
CMN has a specific expression:

CMN = 〈T F
MN (φN

j ),φM
i 〉 =ΦN AN TMN ΦM (2.18)

where 〈,〉 denotes the functional inner product. Equation (2.18) give us a closed form
computation if the correspondence is known. In general this is exactly what we would
retrieve from this process, so instead we can exploit Equation (2.17):

b = CMN a (2.19)

bT = aTCT
MN (2.20)

CT
MN = (aT)†bT, (2.21)

Where the † symbol denotes the Moore Penrose pseudo-inverse. Given the two sets of
coefficients, we can efficiently retrieve a matrix just with matricial computations. We
would remark the generality of the framework: we have just assumed two sets of or-
thonormal basis and two sets of related functions, without giving any specific require-
ments to what these two object encodes. For basis the most common choice is the LBO
eigenfunctions, that we have already introduced before. The most common probe func-
tions are geometrical descriptors, landmarks or segment correspondences.

Conversion to pointwise map. Before to dive into more details of FMAPS, we would
state the common pipeline to convert a C into a point-to-point correspondence. In
fact, the indicator function method while it is really intuitive, it requires a complexity of
O(VM VN ) where VM and VN are the number of vertices of the two meshes. We can ob-
tain a more efficient method if we notice that a delta function δx around a point x ∈M

has the coefficients ai =φM (x). Then, CΦM returns all the delta functions of M . Given
the Plancherel’s Theorem, difference between coefficient vector is equal to L2 distance
of functions:

∑
i (b1i −b2i )2 = ∫

N (g1(y)− g2(y))2µ(y) where µ(y) are volume elements
of N . Given a functional map matrix C, the underlying pointwise map Π ∈ {0,1}nN ×nM

is recovered by solving the projection problem [235]

min
Π

‖CΦ>−Ψ>Π‖2
F s.t. Π>1 = 1 . (2.22)

If the underlying map is bijective, we would expect the matrix Π to be a permutation;
however, in order to allow addressing partiality, we relax bijectivity to left-stochasticity.
We then solve the problem above globally by a nearest-neighbor approach akin to [234].
Note that while more sophisticated approaches exist for this step, they either tend to
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be very slow [267, 314] or do not demonstrate any result with partial shapes [100, 263].
Conversely, problem (2.22) is both scalable and works under missing geometry. There-
fore an efficient way to find a correspondence is considering for each point CΦM its
nearest-neighbor ΦN . It is fascinating from a representation perspective: considering
the nearest neighbor in such space establishes a linkage between functions and high-
dimensional spectral embeddings. Matrices C are not other than a transformation for
point clouds that aims to align them in a convenient space. It is not surprising that a
given C could be further refined in postprocessing applying standard registration algo-
rithm in that space, like ICP.

Optimization problem

If the rare case that probe functions are enough and reliable, Equation 2.21 can be di-
rectly solved in a closed-form. Otherwise, we can cast it as an optimization problem:

CMN = argmin
C

‖CA−B‖2. (2.23)

This optimization admits more than one solution, and some of them act poorly on un-
seen descriptors. We would choose one that guarantees some properties among all the
possible C that minimize the map for the given probe functions. To this purpose, the
optimization can be extended, including several regularization energies. For example,
we could enforce commutativity with operators:

Ecomm(C ) = ‖SN
F C −C SM

F ‖2, (2.24)

where SN
F and SM

F are arbitrary linear operators. The LBO operator can be plugged in
this equation exploiting its spectral representation (i.e., its eigenvalues’ diagonal ma-
trix). Another constraint is obtained by observing that if the underlying point-to-point
map is locally volume-preserving, then the C is orthonormal: CTC = I, that can also be
included in the optimization.

Among many possible regularizations [99,117,266,337], a particular effective formu-
lation is [233]:

min
C

‖CF−GC‖2
F +λ1‖CF−G‖2

F +λ2‖CΛM −ΛN C‖2
F (2.25)

where C ∈ RkN ×kM is the functional map expressed in the Laplacian eigenbases Φ ∈
RnM×kM ,Ψ ∈ RnN ×kN , and ΛM ∈ RkM×kM ,ΛN ∈ RkN ×kN are diagonal matrices of the
Laplacian eigenvalues. Matrices F ∈ RkM×q ,G ∈ RkN ×q contain the Fourier expansion
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coefficients of q probe functions fi : M → R, gi : N → R, i = 1, . . . , q , i.e., (ai j ) =
〈φi , f j 〉M , (bi j ) = 〈ψi , g j 〉N .

Problem (2.25) allows to estimate functional maps in a considerably more accurate
way than the baseline approach of [234]. The main rationale being that the commu-
tativity penalty ‖CF − GC‖ promotes solutions that more closely resemble pointwise
maps.

The functional map representation has been successfully used in recent years to es-
timate dense correspondence between deformable 3D shapes [234, 249], in the pres-
ence of missing parts or clutter [86, 187, 188, 264], as well as in machine learning
pipelines [83, 186]. The research evolved trying different descriptors [116, 209, 213, 297]
and regularizations [233, 258], and extending the framework to look for a correspon-
dence also inside the triangles [100], addressing partial data [265], hierarchical struc-
tures of subdivision surfaces [285], and efficiently compute large functional maps [214].
Despite this, applying the framework of Functional Map to point clouds is still problem-
atic due to the lack of reliable basis for functions on this representation [35, 79].

2.2.3 Deep Learning

While early works on the Functional Maps framework were purely axiomatic [168, 232,
249, 265], this framework has also recently been adapted to the learning setting. Specif-
ically, starting with the seminal work of Deep Functional Maps [186], several methods
have been proposed to learn convenient descriptors for the Functional Maps frame-
work [131, 271]. More recently, it was demonstrated in [91] that useful probe functions
could be learned directly from the shape geometry (i.e., from the 3D coordinates of
the points). This work has also shown that a functional map layer helps to regularize
shape correspondence learning, achieving better results with less training data than
state-of-the-art purely point-based methods [127]. Nevertheless, the approach of [91]
is still tied to the choice of the Laplace-Beltrami eigenbasis and therefore lacks ro-
bustness and cannot be applied to point clouds. Apart from Functional Maps frame-
work extensions, other methods learn correspondences directly from 3D coordinates
of point clouds via a template shape [127] or using convolution operations on the sur-
face [89,120,207,321]. Other methods look for a canonical embedding of the input; they
involve 2D images [76, 302] or 3D data [343].



In this Part, we exploit data-driven latent representations as strong regularization
to solve the matching in two different scenarios. In the first Chapter, we consider
the unconstrained problem of retrieving human bodies from a single-view RGB+D.
In this setting, we propose a pipeline to recover body geometry and plausible limbs
positioning by matching a Morphable Model to the depth information [202]. In
the second Chapter, we combine the same Morphable Model with the Functional
Maps matching framework, facing human body surfaces registration. The proposed
pipeline [203] is entirely automatic, regardless subject’s identity or pose, and working
in many
challenging scenarios (e.g., point clouds, partiality, noise, topological changes). Fi-
nally, in the third Chapter, we enhance the latter method with a high-resolution
augmentation strategy [204], including recent high-frequencies refinements of Func-
tional Maps and subdivision surfaces, improving the details caught by the registra-
tion pipeline, and thus the matching quality.

Part I

Morphable Models as regularizations

25





3

POP: Full Parametric model Estimation for
Occluded People

We propose POP, a novel and efficient paradigm for estimation and completion of hu-
man shape to produce a full parametric 3D model directly from single RGBD images, even
under severe occlusion. Our method’s heart is a novel human body pose retrieval formu-
lation that explicitly models and handles occlusion. A robust optimization then refines
the retrieved result to yield a full representation of the human shape. We demonstrate our
method on a range of challenging real world scenarios and produce high-quality results
not possible by competing alternatives. The method opens up exciting AR/VR application
possibilities by working on ‘in-the-wild’ human motion measurements.

3.1 Introduction

Analysis and modeling of human shape from images and video is an widely topic across
several research domains including robotics for human-robot interaction [123, 279], in
pattern recognition for video surveillance and action recognition [166], in biometry for
person (re-)identification and gait recognition [52, 342], and in computer graphics for
authoring digital content creation [195, 305, 309].

In early efforts of human motion analysis, the overall aim was to accurately estimate
2D and, to a limited extent, 3D skeleton joint-locations as a proxy for recovering human
pose (i.e., human skeleton) [278].

A particularly challenging scenario consists of estimating both human pose and
shape ‘in-the-wild,’ i.e. when one or more people move in a very generic environment
and are oblivious of the acquisition goals [278]. In this scenario, since the subjects move
uninhibited, occlusions are commonly arising due to the presence of other objects or
from self-occlusion (see Figure 3.1).

We investigate the above problem relying on RGBD sensors for input snapshots. The
available depth information, albeit noisy, effectively avoids the scale-ambiguity prob-
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depth map
3D point cloud
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pose

segmented
depth

optimized
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final placement in the 3D scene

Fig. 3.1: Our estimation pipeline tested on a challenging example from the MVOR
dataset [293]. From left to right: RGBD input, 2D image (top) and depth map (bottom);
point cloud generated from the input and the camera parameters (top) and 3D joints of
the estimated skeleton are depicted as yellow disks on the point cloud (bottom); data-
driven pose initialization (top), and estimated segmentation of the depth map (bot-
tom); model optimized on the input data; and the final model placed in the 3D space.
The result is compelling for the quality of the estimation and the placement of the 3D
shape, even in the presence of several challenging properties of the input.

lem encountered using single RGB images instead [345]. Further, depth helps deter-
mine the relative position between the human body and occluding objects (e.g., furni-
ture). With this motivation, we investigate the following problem: Given a single RGBD
image of human(s) in a natural environment, obtain a full parametric 3D estimation of
human shape(s), even under occlusion.

The above problem is challenging due to three main reasons: (i) the raw input does
not come with any object/human segmentation; (ii) information about which parts of
human subjects are occluded and what objects cause the occlusion is unknown; and
(iii) the raw RGBD scans are noisy and suffer from heterogeneous point cloud density
based on camera location. We propose POP, a fully automatic pipeline that produces
accurate human pose, shape and placement in the 3D space from single RGBD images,
even in the presence of very significant occlusion.

Our main contributions are:

− proposing a first method explicitly designed for the analysis and modeling of human
occlusion and self occlusion in single RGBD images;

− introducing a complete and fully automatic pipeline for 3D human pose and accu-
rate full shape estimation that can deal with occlusions;
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− developing an occlusion-aware shape retrieval strategy that recovers plausible infor-
mation on the missing body parts provides a reliable model parameter initialization
for joints location and shape, and imposes a new constraint that avoids degenerate
shape on the unseen part; (iv) segmenting the human subject(s) from the rest of the
scene without requiring an explicit learning procedure or involving green screens;

− hallucinating the shape of the occluded part by exploiting the data-driven prior via a
novel idea akin to null-space that constraints the optimization procedure to reliably
estimations.

We will show that the availability of parametric statistical representation is useful
to formalize a prior knowledge for the domain. The geometric constraint given by this
representation will overcome the under-constrained formulation of a single RGBD view.
Also, the modeling of a null-space can be seen as a representation of the absence of
geometry.

3.2 Related Works

Human body modeling is a widely studied issue over the last two decades [66,149,278].
In most of the proposed methods, the main objective is 3D pose estimation, i.e., loca-
tion of 3D joints of the body according to a given skeleton [278]. Usually, a two-steps
procedure is employed: first, joints locations are estimated on the 2D image domain,
and then, 3D joints are computed using a regression approach or a model-based re-
projection strategy [42, 171]. Recently, instead of relying on 2D joints estimation, direct
methods have been proposed to esteem 3D pose directly from the entire image by ex-
ploiting additional information enclosed in the pixels [161].

An emerging trend is to estimate the 3D pose and the full body shape within the
same framework, namely, end-to-end modeling methods [161, 223, 305]. The main idea
consists of adopting a template-based approach estimating the shape and pose pa-
rameters of a given morphable model properly designed for human-shapes [158, 195].
Methods differ between those that use only 2D image and those that employ RGBD
data [41, 66, 149, 345]. In the RGBD domain, the main effort is devoted to 3D pose es-
timation in real-time [345], by heavily harnessing the temporal constraint that can be
introduced for video sequences [41,44]. Other methods use multiple devices to enlarge
the acquisition view and reduce the effect of occlusions (see survey [345]). In contrast,
we focus on the case of recovering full human body shape from a single RGBD scan
with background clutter (i.e., without the human body being pre-segmented) and in
the presence of medium-strong occlusion.
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Methodologically, the estimation of shape and pose is usually obtained by formu-
lating an optimization model [42, 192]. Recently, deep neural network methods are the
widest used technique [92, 161, 278, 305, 309]. This has led to very impressive results
even from single 2D image at the cost of a very accurate manual annotation of 2D
and 3D joint positions, foreground-background segmentation, 2D silhouettes and so
on [149, 305, 310].

However, modeling occlusion directly from RGBD inputs remains a significant open
challenge in this domain.

Dealing with occlusions. Although widely appreciated that human modeling can be
drastically affected in the presence of occlusions and missing parts, very few works
have treated this topic [279]. Some methods address this issue implicitly by imposing a
pose-prior [19], by allowing only plausible poses. Similarly, learning-based approaches
regularize the pose and shapes according to the examples observed during the train-
ing phase [118, 144]. These strategies can reduce the conditioning of occlusions, but
they are not designed for this purpose. In [254], a method for explicitly estimating the
3D pose of occluded parts from RGBD data was introduced. The invisible joint posi-
tion is predicted through a classification of the semantic label of the occluded object.
An alternative for human pose estimation from partially occluded RGBD data was pro-
posed in [13], which relies on a probabilistic occupancy grid that is exploited to identify
hidden body parts. Recently, the first systematic study [279] of various types of occlu-
sions in 3D human pose estimation has also shown that employing data augmentation
with new occluded scenes improves the overall pose estimation. Finally, last year two
works [132, 341] aim to analyze the human interactions with the environment, intro-
ducing spatial and semantical constraints of the given scene, that while do not explicitly
address occlusions, show promising results in limiting unrealistic intersections.

Our method. To the best of our knowledge, POP is the first method that proposes an
explicit strategy to estimate the full body-shape, 3D pose, and the 3D placement of the
human body in the presence of strong occlusions and missing parts. These three es-
timations are provided consistently and at the same time. These are complete novels
in literature. Our method is focused on RGBD data trying to achieve the best results
from both appearance (2D) and geometric (3D) data. We propose a two-step procedure
where 2D pose is estimated from RGB image while 3D pose and the full body shape
are estimated from the depth map. Our 2D pose estimation is used for the initializa-
tion procedure, and in the following optimization the estimated model is free to move
avoiding the conditioning of a bad starting pose. Moreover, since we evaluate the con-
fidence of the 2D estimate, only the most reliable joints are considered. Our method
fosters an optimization approach using a Convolutional Neural Network for only the
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2D pose phase. We adopt a model based approach using the very popular SMPL mor-
phable model [195]. Our strategy is data-driven since we rely on the assumption that
alike occluded shape has been already observed on a dataset that is recovered through
a 3D shape retrieval procedure. Similar idea was exploited in [31,150,220] for pose esti-
mation only.

3.3 Method

We first provide an overview of the tools and steps of our strategy. Then, we present our
data-driven initialization and how the optimization is formulated.

3.3.1 Overview

Tools. OpenPose is a fully automatic method for detecting the 2D pose of multiple peo-
ple in an RGB image [63, 288, 322] wherein a non parametric pose representation, re-
ferred as Part Affinity Fields [63], has been proposed. This representation consists of
a set of 2D vector fields, each of which encodes the orientation and the location of a
limb’s image. A learning strategy is adopted on the whole image with high accuracy and
real-time performance. For each of these joints, a confidence value is also provided. The
final full body pose corresponds to a set of labeled 2D key points as ordered joints of a
human skeleton.

The SMPL model [195], already presented in Chapter 2, is a skinned vertex-based
parametric model for the full human body. We recall that two different sets of param-
eters control pose and shape: θ ∈ R72 are the pose ones defined as the relative rotation
of each of 24 joints with respect to its parent in a hierarchical kinematic tree; β ∈ R10

are the shape parameters. SMPL provides a skeleton composed of 24 joints. Of these, 15
joints can be matched with 15 joints in the OpenPose skeleton. Figure 3.2 shows the 24
joints from SMPL, the 25 joints from OpenPose, and the shared 15 joints directly used
in our optimization.

The SURREAL dataset [310] is a large-scale synthetically-generated dataset of more
than 6 million frames. This dataset contains realistic scenes of people that are rendered
using the SMPL model with real motion capture information. For each frame, a ground
truth pose, a depth map, and a segmentation mask are provided.

OpenDR [193] is an approximate and differentiable renderer (DR) that explicitly con-
nects the relationship between the SMPL parameters and the projection of the corre-
sponding 3D shape to a 2D image. OpenDR is publicly-available and well suited to work
with SMPL model and SURREAL dataset. Starting from a shape generated by SMPL in
the 3D space, with OpenDR, we associate to the shape a 2D image and a 2D depth
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SMPL shared joints OpenPose

Fig. 3.2: On the left the SMPL skeleton, in the middle the shared joints and the Open-
Pose skeleton on the right.
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Fig. 3.3: POP pipeline. From left to right: Input (red), 3D point cloud construction (dark
red), Coarse joints location and occlusion detection (light blue), Retrieval-based model
initialization(purple), Model optimization (yellow) and the Output (green).

map representation of the scene. As already highlighted, the relation between the SMPL
shape (i.e. its parameters) and this 2D representation is differentiable, and so can be
used in an optimization pipeline.

Pipeline in brief. The entire pipeline, depicted in Figure 3.3, can be outlined as follows:

INPUT: Single RGBD image with internal camera parameters.
STEP 1: From the input depth map Di n and camera parameters, we estimate the point

cloud PC of the scene.
STEP 2: J2D a standard skeleton on the 2D image is obtained using OpenPose [63].
STEP 3: A subset of the 2D OpenPose joints are then lifted on the 3D space obtaining

J3D .
STEP 4: We retrieve the most similar 3D skeleton with respect to J3D in a subset of the

SURREAL dataset and select the correspondent SMPL pose parameters θ̃.
STEP 5: The joints of SMPL are aligned to the J3D optimizing for the scale of SMPL.
STEP 6: Based on the retrieval, we segment the human body input depth D̃i n and the

human body point cloud H ⊂ PC .
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STEP 7: We iteratively optimize the SMPL parameters in order to fit the J3D and the
nearest neighbor energy EN N between the points in H and the SMPL surface.

STEP 8: We deform the SMPL minimizing the Edepth .
OUTPUT: The optimized 3D model placed in the 3D scene.

We now describe each step of our method. For each choice, we explicitly clarify the
respective strategy for handling occlusions.

3.3.2 Initialization

Our input is a single RGBD image with the internal camera parameters of the acquisi-
tion sensor. We use both the image representation and the 3D information in term of
3D cloud of points. We refer to Di n for the input depth map and PC for the point cloud.
Although we now describe a single human’s handling, the method can be easily iterated
to deal with multi-person scenarios (see Section 3.4).

Coarse joints location and occlusion detection. We apply the OpenPose framework to
the input RGB image to obtain the 2D joints of the skeleton of a human body. We use
version 1.4, relying on the BODY_25 skeleton model. An example of the skeleton pro-
vided by OpenPose is shown in Figure 3.2. OpenPose returns only visible joints, which
in our case are at most 25. After a re-targeting procedure between the OpenPose and
the SMPL skeletons we define J2D as the subset of the 15 joints of SMPL that are shared
with OpenPose and visible (see Figure 3.2 where overlapping joints are marked in red).
The remaining joints are classified as occluded.

Using the camera parameters we can project J2D to the 3D space on the point cloud
PC . However, these 3D points can be wrongly estimated due to noise and located in
some inconsistent region far in the background. We compute basic statistics to detect
and remove such unreliable points as outliers automatically. Indeed we obtain the set
of 3D joints J3D after a position refinement to accommodate a consistent skeleton.

Retrieval-based model initialization. From the SURREAL dataset, we select 1.6 mil-
lions frames from all the run1 training set folder. We apply the same steps explained
above on the input RGBD data for each of such frames, providing a coherent represen-
tation for the input data and the frames from SURREAL. We explore all these frames
to find the best match for which exist a transformation in the 3D space that minimize
the average of the distance between all the joints J3D of the input and the 3D joints
estimated on the SURREAL frame. We consider only frames that have the same visible
part and therefore the same occlusion. For each considered instance i in the retrieval
dataset we look for a global homogeneous transformation T composed by scale, rota-
tion, reflection and translation given by the solution of:
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argmin
i

(
argmin

T
(‖T (Ji )− J3D‖F )

)
, (3.1)

where ‖ · ‖F is the Frobenius norm and Ji is the set of joints of the frame i . Note that
restricting this search to the frames that share the same visible part Ji ) and J3D are
composed by the same joints thus Equation (3.1) is well defined. The solution is the
index i of a frame that best matches the J3D skeleton. Every frame in the SURREAL
dataset is associated with a SMPL set of parameters to generate the corresponding body
instance. We take those related to the solution frame retrieved by Equation (3.1) and use
them to set SMPL pose parameters θ̃.

Initialization of the SMPL parameters. From the Equation (3.1) we obtain the transfor-
mation T . Applying the translation and scale components to the SMPL model, we have
a good initialization in the 3D space placement. Note that the initialization J̃ obtained
from the retrieval step also provides a good initialization for the occluded part. Thanks
to this data-driven prior, we both avoid an implausible initialization of SMPL (that di-
rect parameters optimization can provide) and we improve efficiency starting closer to
the correct pose.

3.3.3 Model Optimization

We optimize the SMPL model in order to fit the input data. We refer to SMPL shape as
M and to its vertices VM ∈ R6890×3 represented as the collection of the 3D coordinates
of its embedding.

Joints and scale optimization. Our SMPL model is initialized with the retrieved pose θ

and is placed coherently in the 3D space with respect to the J3D . The J3D can also be
involved in the optimization as a stability penalty; we force the joints of the SMPL that
correspond to the joints in J3D (denoted as âJSMP L ⊆ JSMP L) to remain near to J3D . This
is expressed by the penalty term:

E J3D = ‖J3D −âJSMP L‖F . (3.2)

A first optimization is thus performed on the SMPL joints placement and on the scale
of SMPL with respect to the energy E J3D .

Constraints on the parameters. We start the optimization with strong constraints over
θ parameters because we would avoid extremely unreliable rotations. Subsequently we
weaken them, increasing adherence with the seen joints.

Scene segmentation. Applying the OpenDR we obtain a synthetic depth map Dβ,θ,
which directly depends on the SMPL parameters. Dβ,θ and Di n differ for the presence
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in the Di n of all object outside our target; while in Dβ,θ all the points that do not belong
to SMPL are on the far plane, in Di n other objects participate. Dβ,θ can be considered as
a mask of the subject, and we can apply it to Di n , cutting out an approximated segment
for the human. To improve the approximation of this segment we analyze the neighbor
of the points that belong to the human segment. Let p be one such point. We consider
a 2D neighbor defined on the 2D image Bp . For all points q ∈ Bp we have two possibili-
ties: q belongs to the human body segments or q belongs to the background. In the first
case, we assign to q its value in Di n . In the second case, we classify q with respect to
the inequality |Di n(p)−Di n(q)| < γ for a fixed threshold γ > 0. If this inequality holds,
we assign to q the value Di n(q), otherwise we set its value to the background. Through
this procedure, we define a clean input depth map D̃i n that contains the values of the
original Di n for all the points that are expected to belong to the human body, and the
background value for the others. D̃i n is comparable to the artificial depth map Dβ,θ as
they only describe the depth of the human body points in the scene. We refer to the
human body segment in the point cloud as H ⊂ PC .

Fitting to the visible part. We compute πNN(VM ), the list of the vertices VM obtained
as the ordered euclidean nearest neighbor with respect to the points in H . Relying on
πNN(VM ), we optimize first for the pose parameters θ, and then jointly for the pose and
the shape (θ and β) minimizing ENN = ‖H −πNN(VM (θ,β))‖F .

Consistency with the depth map. To optimize the occluded body part directly in the
closest plausible place, we define a null-space, where human body parts are not al-
lowed. To do this we rely over the information from the depth map of Di n that is not
represented in D̃i n . It includes all objects in the environment that are possible causes
of occlusions, thus it specifies all the places where the human body should not appear.

We want to exploit these elements to hide parts if this is a reliable solution. We gener-
ate the depth map D̂i n as: D̂i n = far, if Di n(u, v) ∈ D̃i n otherwise D̂i n = Di n(u, v), where
u and v are the image plane coordinates and far is the value of the far plane. Then, we
minimize Edepth = ‖mi n(Dβ,θ,D̂i n)−Di n‖F to have Dβ,θ approximating Di n by hiding
part behind objects present in the scene that are nearer to the camera or exploiting the
body itself. Figure 3.9 shows an example where the left arm is moved to be self-occluded
by the body, and the right one is hidden behind the other person in foreground.

3.4 Results

We provide evaluations on different datasets and challenging cases highlighting the ro-
bustness to the occlusions. We omit comparison with other methods; it would be am-
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biguous because POP is the first method that provides at the same time an estimation of
the shape, the pose and the 3D placement of the human body shape, it relies on depth
information and also aims to solve occlusions.

Datasets. We evaluate our method on different datasets, that differ for conditions and
challenges. F-BODY [286], designed for human body occlusion (self-imposed or gen-
erated by people interactions). BIWI RGB-ID dataset [225] offers a variety of human
shapes in similar pose and camera view. MVOR [293], a recent dataset with RGBD im-
ages in operating room. These scenes are heavily occluded and human elements are
hidden from a variety of exacting factors. We select frames from other datasets to ana-
lyze different challenges: distant views [60], various occlusions and poses [13] and body
shapes [291]. Finally, we test our method on frames from SURREAL providing quantita-
tive measures that permit future comparisons.

Quantitative evaluation on SURREAL. To provide a quantitative evaluation of our
method we perform an analysis on the SURREAL dataset. We select 18 frames with self
occlusions from 18 different videos not used in the retrieval. We evaluate the shape and
pose parameters for each frame and surface difference between the ground truth pro-
vided by SURREAL and the estimated one. The errors are computed as follows.

Shape error (w.r.t. β ) = errβ = ‖βg t −β‖F

‖βg t‖F
. (3.3)

errJSMPL =
23∑

j=1

‖J SMPL
g t ( j )− J SMPL

β,θ ( j )‖F

23
. (3.4)

errpose =
14∑

j=1

‖J 3D
g t ( j )− J 3D

β,θ( j )‖F

14
. (3.5)

errvi si bl e
pose = ∑

j∈vi si bl e

‖J vi si bl e
g t ( j )− J vi si bl e

β,θ ( j )‖F

](vi si bl e)
. (3.6)

erroccl uded
pose = ∑

j∈occl uded

‖J occl uded
g t ( j )− J occl uded

β,θ ( j )‖F

](occl uded)
. (3.7)

errJSMPL evaluates the difference between the 24 ground truth SMPL joints and the one
obtained from our optimization. errpose is the same restricted to the 15 joints shared
by SMPL and OpenPose. errvi si bl e

pose is limited to the joints (≤ 15) that are considered as

visible by our pipeline. erroccl uded
pose consider the joints (≤ 15) that were not found by our
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pipeline. All these errors are computes excluding the root joint that only represents the
placement in the 3D space. Together with these shape and pose measures we compute
the normalized registration error:

errp2p = ∑
p∈H

‖H(p)−πNN(VM (θ,β))(p)‖F

](H)
. (3.8)

defined through the point-to-point distances between H and registered SMPL surface.
The mean and the standard deviation of these errors are reported in the Table of Fig-
ure 3.4. Except for the er rβ all the others errors are reported in meters. On the right of
Figure 3.4, a quantitative evaluation of the point-to-point distance between our output
and H is depicted. These curves represent cumulative frequencies of the above error
for each of the considered frames. For most subjects, our method stays for 90% under
the threshold of 6cm of error. Although a fair comparison with other methods is not
possible, we can note that our error is coherent with the declared surface error for the
state-of-the-art method in [309] on the entire T1 Surreal middle frame, i.e., a less chal-
lenging scenario. In Figure 3.4, we visualize the error encoded by the heatmap; white is
0 while black represents a large error saturated to 3cm.
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Fig. 3.4: Evaluation of our method on a set of SURREAL shapes; mean and standard
deviations on the left, cumulative frequencies in the middle, a qualitative example on
the right.

Qualitative pose estimation on the other Datasets. The retrieval step already provides
good approximations of the 3D human pose, as shown in Figure 3.5, highlight the power
of the data driven approach. For all the examples in Figure 3.5 we provide the final reg-
istration in Figures 3.6,3.7,3.8, showing how much the rest of the pipeline improves the
results. Figure 3.9 shows the contribution of the consistency in the depth map.

Full pipeline results. We show results in a large variety of cluttering, occlusions and
noisy conditions. Results in Figure 3.7 are obtained on dataset [286]. We would like to
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Fig. 3.5: Some 3D pose approximations obtained from the only retrieval step. These
are the SMPL initializations in our pipeline.

Fig. 3.6: An example from SBM dataset [60]. Our method offers a good solution for
reconstruct group of people without ambiguity.

underline that the child in Figure 3.8 is an extreme case for the shape estimation. Fi-
nally, in Figure 3.6 we show that our method is robust also to the presence of many
people and on the right of Figure 3.8 a case of a far and occluded subject.

Implementation and Timing. Both the SMPL model and the OpenDR tool are built
upon a Python based autodifferentiation framework. For OpenPose, we use the free on-
line version with the suggested parameter setting. The solution of (3.1) is solved using
the procustes MATLAB function. Our pipeline needs around 5 minutes to produces the
final 3D pose and shape estimation for a human body. We perform our experiments on
an Intel 3.6 GHz Core i7-7700 cpu with 16GB RAM.

3.5 Conclusion and future work

We presented POP, a fully automatic pipeline for end-to-end modeling of human shape
where RGBD data are exploited to estimate the pose and the accurate shape of a real
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Fig. 3.7: Experiments from [286] dataset show different occlusions caused by external
agents. Multi-person does not introduce confusion. In the middle, the arm has been
placed to a different solution for the occluded part, but consistent with acquired view.

Fig. 3.8: Two results from [291] and [13] respectively. A child is an extreme case of hu-
man body shape due to his proportions. Despite this, we have a good approximation.
On the right, a challenging case of a man sat far from cam and occluded by a table.

person observed on very generic scenarios (i.e., in the wild). We propose for the first
time a modeling from reality method that is properly designed for handling occlusions.
We have shown that ingredients and suggestions for modeling occlusions can be effec-
tively employed in the proposed pipeline, from 2D joint estimation to model initial-
ization and missing parts completion. Although the proposed method is based on the
SMPL template, our approach can be naturally extended to other parametric models.
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FARM: Functional Automatic Registration Method
for 3D Human Bodies

We introduce a new method for non-rigid registration of 3D human shapes. Our pro-
posed pipeline builds upon a given parametric model of the human, and makes use of
the functional map representation for encoding and inferring shape maps throughout
the registration process. This combination endows our method with robustness to a large
variety of nuisances observed in practical settings, including non-isometric transforma-
tions, downsampling, topological noise, and occlusions; further, the pipeline can be ap-
plied invariably across different shape representations (e.g. meshes and point clouds),
and in the presence of (even dramatic) missing parts such as those arising in real-world
depth sensing applications. We showcase our method on a selection of challenging tasks,
demonstrating results in line with, or even surpassing, state-of-the-art methods in the
respective areas.

4.1 Introduction

Non-rigid 3D shape registration is a crucial problem in computer vision and geome-
try processing, meeting with increasing attention due to the ever growing amounts of
3D data at our disposal. It is often the case that such data derive from a sensing pro-
cess, requiring an alignment step to exploit their informativeness fully. The main goal
of non-rigid registration is therefore to determine the correct non-rigid alignment be-
tween two or more data observations. Despite much research being devoted to this is-
sue, this problem is far from being solved.

We remark here that the problem of registering two shapes is slightly different than
estimating a point-to-point correspondence between them (which can be seen, in fact,
as a side-product of registration). Specifically, registration methods attempt to explicitly
deform the source shape to align well with the target. Perhaps the most prominent set-
ting in which non-rigid registration plays a key role is 3D reconstruction of deformable
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objects. In this context, several partial scans must be aligned non-rigidly to obtain a sin-
gle object in some canonical pose. This apparently simple task is frustratingly complex
due to several reasons; first and foremost, the partial overlap among the scans as well
as the wide variety of noise factors make this problem particularly challenging. Typical
applications include semantic segmentation, motion tracking, recognition, and anima-
tion among several others [121, 229, 308].

The main focus of this Chapter is non-rigid registration of human shapes. Despite
the less generic setting, we are here confronted with several issues: Human bodies can
take countless different poses, there exists a large variety of inter-subject variations (dif-
ferent individuals), and humans interact with the environment giving rise to occlusions,
missing parts, and topological artifacts. In order to address these issues, in this work we
make use of a parametric model to which we register the observed data. Our registra-
tion method is realized as a full pipeline whose individual steps are carefully designed
to maximize accuracy, consistency and robustness, and to avoid any user input. A cru-
cial step of our pipeline relies on functional correspondence, which enables addressing
several challenging forms of artifacts in a unified and consistent language. Importantly,
our proposed pipeline is completely automatic, and performs reliably well on a range of
challenging cases where other state-of-the-art approaches typically fail. We make use
of a large set of different representations: spectral embedding to solve the correspon-
dence, triangular meshes to describe the surfaces we would align, a morphable model
parameters space to modify our template, and skeletons as a hierarchical hint to solve
symmetries by constructing a common reference frame.

We summarize our main contributions as follows:

− Our key contribution is a novel fully automatic pipeline for non-rigid registration of
human shapes. To our knowledge, previous approaches either require user input, or
impose strong assumptions on the data initialization (e.g., prior alignment);

− we propose for the first time a unified solution to address missing parts, topology
artifacts, different sampling, occlusions, surface noise, non-isometric transforma-
tions, which can be applied invariably to different shape representations including
meshes and point clouds;

− we define a way to identify a set of consistently labeled body landmarks, which is
demonstrably robust to the aforementioned types of noise. Additionally, the left/right
ambiguity typically found in intrinsically symmetric shapes is completely resolved in
the process.

Finally, we showcase our method on a number of emerging applications in com-
puter vision and geometry processing, demonstrating results that outweigh the state of
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Fig. 4.1: Our registration pipeline. We refer to the main text for details on the individual
steps. To get a sense of the results, compare the Target shape with the shapes in boxes
R1 and R2. See also Figure 4.2.
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Fig. 4.2: Registration results after Round 1, Round 2 and local refinement. The heatmap
encodes point-to-surface registration error (expressed in cm, saturated at a maximum
value of 1).

the art in several challenging settings. This Chapter is closed by novel experiments, not
presented in the original paper.

In this Chapter, we leverage such flexibility to address several challenging registra-
tion scenarios in a unified manner.

We present the steps of our method as separate modules, which are then composed
in a full registration pipeline. We emphasize here that our approach is completely auto-
matic as it requires no human supervision; this is in contrast with many existing state-
of-the-art approaches, whose initialization either relies on a set of sparse hand-picked
matches, or on the assumption that the given human shapes are placed in approximate
rigid alignment. A direct comparison with such approaches, with and without human
supervision, will be provided in Section 4.4. The overall pipeline is illustrated in Fig-
ure 4.1.

The complete code for our method is publicly available [3].

Remark. By embracing the functional map representation, we shift the difficulty of
accounting for geometry and partiality artifacts from the embedding to the functional
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space, which has a vector space structure, thus allowing us to operate completely within
the realm of linear algebra.

4.2 Related work

Non-rigid surface registration has attracted the attention of several researchers in the
last few decades. To remain within the scope of our work, we provide here an overview
of the methods that are more closely related to our approach.

Non-rigid correspondence. As already introduced in Section 2.2, the literature abounds
with fully automatic or semi-automatic methods dealing with sparse or dense cor-
respondence estimation. In [137] the authors proposed a method for registering hu-
man bodies under the assumption that the given subjects start with a similar pose; the
method exploits face and ankle detection to drive the correspondence process.

In [339,347], a registration method is applied that requires a manual alignment of the
human torso; similarly, [71] proposed an optimization procedure based on Markov ran-
dom fields that assumes the given shapes to be pre-aligned. The method demonstrated
high accuracy on a correspondence benchmark of real human shapes (comparisons
with this method will be shown in the experimental section).

A data-driven approach for anthropometric landmarking was proposed in [327] by
learning over a large dataset of human shapes in the same pose. Differently, in our work
we extract stable landmarks over human bodies without the need for data collection,
training, or human interaction, since we rely exclusively upon geometric properties in
the spectral domain. Other purely geometric methods [340] that work well for human
shapes assume the complete absence of topological or geometric errors, limiting their
applicability to real-world data.

Body landmark detection was explored in the SHREC’14 challenge [119], showing
unreliable results under strong changes in pose.

Human body registration. Various model-based techniques have been proposed in the
literature. Usually high resolution templates [20] or morphable models [24,135,195] are
used to register the target shape. These methods usually start by defining a pose prior
under some regularization constraint and sparse correspondence; model and template
are then aligned, and shape details are estimated by local non-rigid methods [148].

Such approaches, however, usually employ accurate hand-placed landmarks.
Wührer et al. [326] do template fitting based on a dataset of similar shapes; Anguelov

et al. [25] enforce the preservation of a constraint over geodesic distances that fails in
the presence of topological error and strong isometric distortion. A stochastic approach
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Fig. 4.3: Landmarks stability under mesh perturbation. We compare our approach with
heat diffusion [296], a geodesics-based approach [275], and different kernel choices for
the score function (4.3). Our solution (biharmonic DEP) returns stable head/hands/feet
landmarks under topological gluing, missing parts, surface noise, point cloud represen-
tation, and clean meshes (left-to-right within each mesh sequence).

is given in [347], which is based on a random particle system over a segmented tem-
plate. This method represents the state of the art in the FAUST challenge [43], but it
requires an initialization of the torso to fix the correct body orientation. Finally, auto-
matic rigging methods like [33, 107, 108] are also related to our approach in that they
can be seen as an application of the registration pipeline. As we will show in the exper-
imental evaluation, automatic rigging for animation is but one of the many tasks that
one can address with an automatic registration method at hand.

4.3 Method

4.3.1 Parametric model

Our registration pipeline employs a parametric model for the human body [20, 24],
which is to be fitted to a given, possibly very noisy and deformed input observation.
In this pipeline we adopt SMPL [195], already presented in Section 2.1.5. Our choice
is mainly motivated by its relatively small number of parameters; together with the
functional map representation, this choice endows our approach with desirable effi-
ciency and representation compactness. To demonstrate the flexibility of our pipeline,
in the experimental section we additionally show results with an alternative parametric
model [247].

4.3.2 Landmarks

This module consists in identifying and labeling a sparse set of body landmarks for a
given input 3D model. These landmarks are used to drive the matching process in the
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subsequent steps; importantly, since our landmark extraction procedure is resilient to
noise, partiality, and topological artifacts, it allows addressing several challenging cases
that may arise in a practical setting.

Score function. Landmark placement is based upon the construction of a discrete-time
evolution process (DEP) [213] on the mesh surface, realized by defining the recursive
relations:

f(t+1) = A f(t ) (4.1)

for scalar functions f(t ) : S →R and an integral operator defined by the action

A f(t ) =
∫

S
d(·, y) f(t )(y)d y , (4.2)

where d : S×S → R+ is a pairwise potential that depends on the underlying geometry
of the surface; if available, one may consider a color-based potential d : C (S)×C (S) →
R+, where C (S) is a texture map for surface S. Intuitively, the function d encodes the
degree of influence that surface points exert on each other, and its selection is crucial
for achieving robustness to different types of artifacts.

For a fixed number T of time steps, we consider the score:

s(x) = f0(x)+
T∑

t=1
At f0(x) , (4.3)

summing up the contributions of the evolution process (4.1) across all discrete times
t = 1, . . . ,T . Here At denotes repeated application A(A(· · · (A))) of the operator t times. A
DEP descriptor is obtained by letting T →∞ and using a multiscale approach to choose
the pairwise potential, as shown below.

Pairwise potential. In this Chapter, we advocate the adoption of biharmonic distances
[183], due to their efficiency and robustness to missing parts and resampling. When
used in the definition of the score, they lead to observed resilience to inter- and intra-
subject variation, partiality, surface noise and topological gluing. Our complete pair-
wise potential is defined as:

[0,1] 3 d(x, y) = 1− dτ
B (x, y)

diamB (S)
, (4.4)

where dτ
B (x, y) =

{
dB (x, y) dB (x, y) ≤ τ

1 otherwise

and diamB (S) ≡ maxx,y∈S dB (x, y) is the biharmonic diameter of surface S. The thresh-
olding operation makes dτ

B more local, thus bringing increased resilience to partiality
and topological noise.
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Landmark extraction. We use a constant initial state f(0)(x) = 1 ∀x ∈ S and distance
thresholds τ1 = 0.05,τ2 = 1, resulting in two score functions sτ1 , sτ2 (depicted in the
inset).

sτ1

sτ2

0

1

We mark the tip of the head by seeking for a local (within the
region identified by sτ1 ) extremum of the first five non-constant
Laplacian eigenfunctions; sτ1 is observed to reliably correspond
to the head region, while the eigenfunction extrema tend to con-
centrate around shape protrusions. The remaining landmarks are
identified by considering the 4 clusters of points having a value of
sτ2 below 0.9. For each cluster, we keep the point that is farther from
the head, resulting in 4 unlabeled landmarks. The hand/foot labels
are assigned according to the distance to the head landmark.

We remark that at this point, although we are able to determine
the correct hand/foot pairings according to the side of the body
they reside in, we are not yet able to attach a semantic left/right
labeling to them. Instead, we tentatively assign the left/right labels
to the two hand/foot pairs, and we fix or invert these labels in a successive step as de-
scribed in the following. See Figure 4.3 for an evaluation of landmark placement.

4.3.3 Map inference

Registering deformable surfaces entails the computation of dense maps as an inter-
mediate step in the alignment process. We adopt the functional map representation in
the Laplacian eigenbasis (Section 2.2.2), due to the guaranteed invariance to isometric
transformations (changes in pose), resilience to mesh downsampling, applicability to
different representations (e.g., meshes vs. point clouds), surface noise, and compact-
ness of the resulting map representation. Further, functional maps can be robustly es-
timated in the presence of missing parts, clutter, and alterations of the mesh topology
(e.g., “gluing” of the discrete surface around areas of self-contact). To our knowledge,
there are no other methods allowing to address this variety of issues in a unified lan-
guage.

Estimating a functional map. Let M be a fixed template (with nM vertices) in a canon-
ical pose, and let N be the observed, possibly noisy and incomplete data (with nN

vertices). We estimate a functional map C between L2(M ) and L2(N ) as the solution
to non-convex problem proposed in Equation (2.25) of Section 2.2.2. A local optimum
to it is obtained via conjugate gradient, and further refined with the spectral ICP-like
method of [234]. In all our tests we used kM = 50,kN = 30, and λ1 = 0.1,λ2 = 0.001
(default values used in [233]). As probe functions fi , gi , for the first step we use 20-
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dimensional WKS descriptors [209] concatenated with 20-dimensional wave kernel
maps [234] around each body landmark.

The conversion of the map to a point-to-point correspondence will be performed as
described in the Equation (2.25) of Section 2.2.2.

Refinement. The goal of this module is to improve the quality of an input map by filter-
ing out gross mismatches. We do so by considering a sequence of convex problems:

C(t+1) = argmin
C

‖C(t )F(t ) −G(t )‖2,1 +µ‖C(t ) ◦W‖2
F , (4.5)

with t = 0, . . . ,T and C(0) being the input map to refine. If the input map has a pointwise
representation Π(0), it is first converted to a spectral representation by the change of
basis C(0) =Ψ>AΠ(0)Φ.

target noisy refined

The µ-term enforces a diagonal structure on matrix C,
where the shape of the diagonal is encoded in the “mask”
matrix W; this allows to address partiality by simply set-
ting the diagonal angle of W according to the area ratio
area(N )
area(M ) [264]. An example of map refinement is shown in
the inset (corresponding points between target and model
have the same color).

Remark. Map refinement works as-is under missing geometry and topological noise, as
we will demonstrate in the experiments.

Here, as probe functions ( fi , gi )q
i=1 we use pairs of deltas (δM

xi
(x),δN

π(0)(xi )
(y))q

i=1 sup-

ported at corresponding points (xi ,π(0)(xi ))q
i=1 where the map π(0) is the one given as

input. Input functional maps C(0) are converted to Π(0) by solving (2.22).
A crucial element of this refinement step is the adoption of the `2,1 norm in the data

term of (4.5). The norm ‖A‖2,1 promotes column-wise sparsity for matrix A; in our set-
ting, it is exactly this type of sparsity that allows to filter out mismatches in the input
(recall that our probe functions, which are organized as columns of F,G, are deltas sup-
ported at the input matches).

In all our tests, we used µ= 0.01, T = 5 iterations, and q = 1000 delta functions sup-
ported at uniformly distributed points over M .

4.3.4 Left/Right labeling

Resolving the left/right ambiguity typical of intrinsic methods is crucial for a successful
registration pipeline.

To this end, the body landmarks are first used to solve for a low-rank functional
map C between the parametric template M and the input shape N ; this is done
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by solving problem (2.24). The coordinate functions of N (i.e., three scalar functions
fx , fy , fz : N → R encoding the x, y, z vertex coordinates of N ) are then mapped onto
M via C. Note that for the transport of functions a full point-to-point map is not neces-
sary, and indeed a low-rank functional map suffices. A joint regressor is finally used on
the mapped coordinates over M , obtaining the skeleton for N (see Figure 4.4).

Note that, since the body landmarks do not at this point contain the correct left/right
information, the estimated map might be either the correct one or its symmetrically
flipped counterpart. In order to determine which is the case, we detect the front/back
symmetry by declaring the tip of the feet (whose landmarks are at our disposal) to
be front-facing, and propagate the associated versor up to the rest of the body under
torque-penalizing constraints (Figure 4.4 rightmost column; for a detailed algorithm,
we refer to Appendix B). The front-facing direction, together with the semantic infor-
mation attached to the parametric skeleton, can then be used to attribute the correct
left/right labels to the landmarks.

The labeled landmarks provide us with the necessary information to disambiguate
symmetric flips (which is an extrinsic notion) in the estimation of the functional map.
In this sense, our map inference step exploits the complementarity of the functional
maps framework, which encodes intrinsic information when expressed in the Laplacian
eigenbasis, and the SMPL model, which encodes extrinsic pose.

(a)

→

fx fy fz

(b) (c) (d)

Fig. 4.4: (a) The vertex coordinate functions are mapped from shape to template via
an estimated functional map; (b) a joint regressor is defined on the template, and (c) it
is applied to the mapped coordinates to obtain a skeleton for the shape; (d) the front-
facing direction is given by transporting the foot versor up to the rest of the body. This
entire sequence is completely automatic.
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sub-sampled topological error point cloud partial frontal view missing parts

1 (cm)

0

Fig. 4.5: Registration results in different settings. We plot the target surface on the left
and the registered parametric model on the right. Here and for the rest of the Chapter,
the heatmap encodes point-to-surface registration error (expressed in cm, saturated at
1).

4.3.5 Model fitting

Initialization. As a side-product of skeleton extraction, we have a functional map T :
L2(M ) → L2(N ) at our disposal. This is converted into a pointwise map π : N → M ,
and the resulting point-to-point matches are used, in turn, to estimate a rigid alignment
among the two shapes.

Shape and pose regression. We now aim to bring the template closer to the model by
seeking optimal shape and pose parameters. We do not seek yet a perfect alignment
at this stage since this will be refined in follow-up steps. We minimize the following
composite energy:

E = wSES +wLEL +wV EV +wβEβ+wθEθ (4.6)

with respect to shape β and pose θ (see Sec. 4.3.1). Unless otherwise noted, for the rest
of this Section we will tacitly assume that all quantities involved are functions of β,θ.

The ES , EL and EV terms measure respectively the alignment error (in R3) of the
skeleton joints, body landmarks, and surface vertices of the two shapes:

ES = ‖SM −SN ‖F , (4.7)

EL = ‖LM −LN ‖F , (4.8)

EV = ‖VM −π(VN )‖F (4.9)

where SM ,LM (resp. SN ,LN ) contain the 3D coordinates of skeleton joints and land-
mark positions for template and data shapes. Matrices VM ,VN contain the vertex co-
ordinates for the two surfaces, and π(VN ) denotes the image of points in N under the
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map π. The terms

Eβ = ‖β‖2 , Eθ = 1> α

(πcθ)12
(4.10)

are regularizers for shape and pose (we only care about the rotation angles α ∈ R24

rather than the full transformations θ), to avoid the occurrence of very large values, and
thus unrealistic body shapes and poses. Note that these regularization terms help to al-
leviate gross registration errors caused by a possibly noisy initial map. Here, division is
meant element-wise and cθ ∈R24 is a constant vector specifying motion constraints for
each of the 24 joints. We use the following values: 2 for joint 0 (max freedom of move-
ment), 2

18 for hands and feet, 5
18 for body joints, 1

36 for head and neck.
In our tests, we set the weights wS = 10, wL = 1, wV = 0.1, wβ = 0.5. Minimization was

performed using the dogleg method [231] as implemented in the Chumpy automatic
differentiation library [192].

Head and hands. At the end of the previous stage, the human template M is deformed
in approximate alignment with the data N . We now solve again problem (2.24) to ob-
tain an improved functional map (note that the descriptors fi : M → R are now com-
puted on the deformed M ). This new map is used to obtain an improved skeleton for
N , and re-initialize the pose/shape regression step to estimate new model parameters
for M .

Differently from the previous stage, however, the energy (4.6) is modified with two
additional terms that better constrain the alignment of head and hands (detected by
growing geodesic balls around the corresponding landmarks). The energy update is
simply:

E +‖Vhead
M −Vhead

N ‖F +‖Vhands
M −Vhands

N ‖F . (4.11)

Non-rigid ICP. Since at this stage the deformed template is expected to align well with
the data, we improve the registration further by alternating between the estimation of
a point-to-point map πNN via nearest-neighbor search in R3, and minimization of the
bidirectional mean square error:

‖VM −πNN(VN )‖F +‖π−1
NN(VM )−VN ‖F . (4.12)

In the estimation of the map πNN, we filter out point-to-point pairings that have a large
discrepancy (larger than 3π

2 ) in the normal directions. Note, once again, that minimiza-
tion of (4.12) is done over shape and pose parameters β,θ.

Local refinement. Since the parametric model can only capture shape and pose within
the span of its training set, an additional refinement step is required to reach a final,
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Target Our wβ = 0 wS = 0 no normals
constraints

without
head/hands

wθ = 0 single
round

only
landmarks

Fig. 4.6: Ablation study. See main text for details.

accurate registration. For example, the SMPL model (which we use in our experiments)
does not capture head and hand articulations, while a model incorporating such details
may not require refinement at this level. It is also important to note that, while artifacts
are present when the hands are far from the default SMPL pose, they do not have a
detrimental effect on the rest of the registration.

For the local refinement step, we employ an as-rigid-as-possible [148] in conjunction
with the nearest-neighbor energy (4.12).

However, differently from all previous steps, the vertex coordinates appearing in
(4.11) are now optimized directly (i.e., they are not functions of β,θ).

4.4 Results

Data. In our experiments we use a wide selection of data collected from nine datasets
exhibiting a variety of resolutions, sampling, surface artifacts and partiality. Specifically,
we used: FAUST [43], Princeton Segmentation Benchmark [72], TOSCA [55], CAESAR
[262], KIDS [268], SHREC’11 [53], SHREC’14 [244], SPRING [334] and K3D-hub [330].
All shapes were rescaled and downsampled to a similar density as the parametric model
via edge collapse [115], and small artifacts were fixed using MeshFix [26].

Robustness. We first evaluate the robustness of our pipeline under challenging per-
turbations. In Figure 4.5 we show registration results under low resolution, topological
error, point cloud representation, simulated range map, and missing parts respectively.
Our pipeline achieves accurate results in all these cases; the registration error is close
to zero almost everywhere, and otherwise smaller than 1cm. We refer to Figure 4.14 for
additional results, including extreme settings such as clothed people.
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Fig. 4.7: Registrations obtained by running our pipeline on top of the S-SCAPE para-
metric model. The other results in these pages employ the SMPL model.

Ablation study. We conduct an ablation study in which the main terms of our com-
posite energy (4.6) are disabled in turn, thus allowing us to evaluate the effect of each
within the registration process. Figure 4.6 shows the results on a challenging case.

Further, we show results as we change the underlying parametric model, namely by
substituting SMPL with S-SCAPE [247] without posture normalization.

Within this model, pose is parametrized by 15 joints with the associated linear blend
skinning weights. Since no joint regressor is provided, we define one by seeking for the
minimizer:

R∗ = arg min
R∈R15×nM

‖(W¯R)VM −SM‖2
F , (4.13)

where SM contains the 3D joint coordinates of the S-SCAPE template. The joint regres-
sor is then defined by the element-wise product W¯R∗, mapping surface vertices to
skeleton joints.

The rest of the pipeline is applied as-is, yielding the results shown in Figure 4.7.
Finally, our pipeline involves a map inference step that can be substituted with other

matching approaches. We therefore adopt the matching pipelines [71] and [18] as a
plug-in replacement for our correspondence estimation step (the blue “FM+refine”
block in Figure 4.1), removing Round 2 while keeping the other steps of the pipeline
unchanged, and performing the complete optimization in a single round. In particu-
lar, [71] is among the state of the art for shape matching as evaluated on the FAUST
challenge [43]; [18] is the only method giving guaranteed continuous bijections, but
requires a sparse input correspondence (we use the five landmarks) and does not min-
imize metric distortion. The results are shown in Figure 4.8, highlighting the effective-
ness of our entire pipeline.
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target Our [71] [18] target Our [71]

Our [71] Our [71]

1cm

0cm

Fig. 4.8: Registration performance when our correspondence step is replaced with the
matching pipelines of [71] and [18]. Note that [18] can not be applied on shapes with
different genus. The black regions on the legs of the right example are due to the part
being missing, as it can be seen from the target (i.e., it is not due to registration error).

SMPL Our [71] [18] Our [71]

challenging cases

Our Our

Fig. 4.9: Texture mapping visualization. Each shape is matched to the SMPL template
on the left. We compare with the matching pipelines of [71] and [18], showing that our
method is suitable for texture transfer. On the right we show results on two challenging
cases, where we still observe coherence in the semantics of the estimated mapping.

Texture mapping. In Figure 4.9 we visualize via texture mapping the registrations com-
pared in Figure 4.8, demonstrating comparable if not better results with respect to the
competitors. This visualization includes two challenging cases, namely gorilla and kid,
where we obtain reasonable results preserving mapping semantics.

4.5 Applications

We finally showcase our registration method in three different applications.
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Inter
AE/WE

Intra
AE/WE

Zuffi et al. [347] 3.13/6.68 1.57/5.58

Chen et al. [71] 8.30/26.80 4.86/26.57

Litany et al. [186] 4.83/9.56 2.44/26.16

Fan et al. [104] n.a./n.a. 15.16/57.14

FARM (Ours) 4.12/9.98 2.81/19.42

Fig. 4.10: On the left, comparison on the FAUST challenge (real scans with ∼350K tri-
angular faces). AE and WE denote average and worst error respectively. On the right,
qualitative results on three pairs. These cases include: pose changes, different subjects,
missing geometry, and mesh gluing. Corresponding points are visualized with the same
color.

Shape correspondence. Shape registration provides point-to-point correspondences
among the involved shapes as a side product. We therefore evaluate our pipeline for this
task on the FAUST benchmark [43], consisting of real scans of human subjects acquired
using a full-body 3D stereo capture system. These scans exhibit geometric noise, topo-
logical errors, and missing parts. The ground-truth correspondences for the challenge
are not provided, rather an accuracy evaluation is obtained by submitting correspon-
dence results online.

Given a challenge pair, we apply our registration pipeline to each of the two shapes
individually. Once the parametric model is registered to the two shapes, we are able to
establish point-to-point correspondences via this common domain and then pull them
back to the original meshes. Correspondences obtained this way are used to initialize a
matching step according to (4.5).
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FMAP (AUC:52.4/AGE:0.16)
BIM (AUC:78.7/AGE:0.04)
Ours (AUC:92.3/AGE:0.02)

Examples of matching results and a quantitative
comparison with the official ranking are shown in
Figure 4.10.

Finally, in the inset Figure on the right we quan-
titatively compare with standard point-to-point
matching pipelines between the SMPL template and
five different shapes from FAUST. Since these share
the same connectivity as SMPL, this provides us with
ground truth for the evaluation. We compare our
method with WKS [209], FMAP [233], and BIM [165]
using the cumulative error protocol of [165]. The leg-
end also reports the area under the curve (AUC) and
the average geodesic error (AGE).



56 4 FARM: Functional Automatic Registration Method for 3D Human Bodies

Shape completion. As another application, we consider the completion of partial de-
formable 3D shapes. To illustrate the flexibility of the registration pipeline, we look at
both synthetic (artificial cropping of clean meshes) and real-world (incomplete Kinect
and D-FAUST [44] scans) data; we stress that the pipeline is applied as-is in all cases,
with no further adjustments or tuning to account for the challenging setting.

Results on synthetic data are reported in Figure 4.11, while in Figure 4.12 we compare
with the state-of-the-art deformable shape completion method of Litany et al. [184].
Note that the latter method adopts a fully supervised deep learning model (graph con-
volutional autoencoders), and is limited in mesh resolution. In all these experiments,
we let our parametric model assume default parameter values at the joints for the shape
parts that do not have a corresponding region in the input data (these are detected au-
tomatically during the matching step).

Fig. 4.11: Deformable shape completion results. For each pair, we show the incomplete
input (left) and the completed mesh (right).

Shape modeling and animation. Finally, we showcase the application of our registra-
tion method in a character animation pipeline. Once the parametric model is registered
to the data, the skinning information is transferred to the latter and one can “undo” the
data shape to a T-pose. From here, motion parameters can be applied to animate the
character or transfer animations across multiple shapes. See Figure 4.13 for examples
on full and partial data.

Beyond Humans. Recently, we have submitted the method to the 2020 SHREC chal-
lenge on shape correspondence of Physically Based Deformations [95]. The dataset
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(b)

(a)

Kinect scan (a) Kinect scan (b) DFAUST scan DFAUST scan

Our [184] Our [184] Our [184] Our [184]

Fig. 4.12: Deformable shape completion with real scans. We compare with the deep
learning method of Litany et al. [184], currently the state of the art method for this task.

N1 T-pose pose
from N2

pose
from N1

T-pose N2

Fig. 4.13: On the left, transferring pose between two full shapes. On the right, transfer-
ring skinning information across partial shapes.

consists of a stuffed soft toy rabbit made out of stretchy jersey material with no type
of internal skeleton that could otherwise restrict its movement. The purpose was to in-
vestigate how different types of physically-based deformations affect non-rigid shape
correspondence, so a carefully chosen object with different material fillings is sufficient
and makes data capture and analysis more manageable. We adapted FARM pipeline
to work in this scenario. Since the provided template is not capable of deformation,
it is animated using Mixamo [10], and some deformation basis is defined to inflate or
shrink the template along the direction of the surface normals. We used the minimum
and maximum of the first Laplacian eigenfunctions to classify six landmarks over ears,
arms, and legs. Similarly to [204] we performed a single round and used ZoomOut re-
finement for the functional map (in the next Chapter we will discuss these differences).
We did not include local refinement in this setting since there is no clear need for a
higher detail level. All parameters were left unchanged from the original method, tuned
for the specific domain of human bodies. The challenge has been performed on sev-
eral other state of the art methods: Deblurring and denoising functional maps [100],
Partial functional maps [265], Continuous and orientation-preserving via functional
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Fig. 4.14: Registration results for 8 shapes from different datasets. Note that gorilla,
kid and the two clothed shapes from [317] are particularly challenging cases since they
do not fall within the span of the underlying parametric model; the complete pipeline
allows to obtain reasonable registrations for these cases as well.

maps [258], Dynamic 2D/3D registration for the Kinect [51], Robust non-rigid registra-
tion with reweighted position and transformation sparsity [178], kernel matching [313],
Non-rigid registration under anisotropic deformations [93] and the commercial soft-
ware R3DS Wrap 3. We report the overall results in Figure 4.15. Several methods start
from functional map representation but relying on a template deformation provided
the best overall results, even without tuning from the original FARM pipeline or design
of the template. We report in Figure 4.16 a qualitative examples of FARM results. Target
models present highly non-isometric deformation, poses with occlusions and gluing,
and partial surface (only the front-view is available). Our results show that the pose is
well recovered, while the main limitations are deformations that the template cannot
model (e.g., inflating, twisting, and folds). For more details about the data and a deeper
analysis of the results, we refer to the challenge report [95].

4.6 Conclusion

We presented a novel approach for the fully automatic registration of non-rigid human
shapes. The main limitations of our method are to be found in its direct dependence on
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Method Twist Indent Inflate Stretch Couscous Risotto Chickpea Overall

R3DS 0.9025 0.8129 0.9005 0.9418 0.9265 0.8071 0.9277 0.8837

[100] 0.8730 0.8830 0.8689 0.9195 0.8944 0.8591 0.8979 0.8829

[265] 0.5249 0.6247 0.6136 0.5778 0.5840 0.5570 0.6170 0.5863

[258] 0.8708 0.9004 0.9070 0.9420 0.8956 0.8950 0.9122 0.9015

[51] 0.8620 0.8713 0.8646 0.9087 0.8842 0.8579 0.8813 0.8736

[178] 0.8598 0.8719 0.8651 0.9088 0.8822 0.8581 0.8816 0.8733

[313] 0.6369 0.7610 0.6827 0.5521 0.7660 0.5966 0.6695 0.6692

[93] 0.8616 0.8796 0.8712 0.9058 0.8886 0.8604 0.8850 0.8771

FARM 0.8999 0.9338 0.8780 0.9438 0.9281 0.9111 0.8992 0.9113

Mean 0.7636 0.8023 0.7967 0.7932 0.8126 0.7623 0.8008

Std. 0.1698 0.1318 0.1307 0.2040 0.1484 0.1581 0.1551

Fig. 4.15: The total area under the curve of scans grouped by the type of pose exhibited,
scans grouped by material, and the overall performance of each method is reported.
The method that achieved the best results in each configuration is emphasized in bold.
In the final two rows, the mean and standard deviation of each column is reported. The
curves represent the Overall performance of each method

Fig. 4.16: Qualitative examples of our results on 2020 SHREC challenge on shape cor-
respondence of Physically Based Deformations [95]. On the left, the starting template.
White models are template deformed using FARM to fit the target. Colored models are
the target with colored by the correspondence induced by the registration.
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the underlying parametric model, which ultimately determines the quality of the final
alignment, as demonstrated in dedicated tests. How the template design impacts the
result is a valuable direction for future works. In Figure 4.17 we substitute the original
SMPL template with a coarser version with degraded geometry (e.g., collapsed protru-
sions, change of proportions). The pipeline recovers several details, highlighting the
limits of the template geometry. In this experiment, all other properties of SMPL (e.g.
rigging system, PCA identity basis) has been preserved. Substituting them with a pure
axiomatic framework like proposed in [197] would be a compelling direction, in partic-
ular in domains without enough data to obtain a data-driven morphable model. An
exciting direction for future work is the introduction of localized manifold harmon-
ics [216] in the map inference steps, which would enable the application of our method
in the presence of cluttered scenes [86] without any supervision.

Target SMPL Omunculus FARM
w/SMPL

FARM
w/Omunculus

Fig. 4.17: An example of template substitution with a coarser version of SMPL. The
results differs where geometry was already collapsed. Several identity and pose features
are correctly recovered (e.g. legs inflated).
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High-Resolution Augmentation for Automatic
Template-Based Matching of Human Models

We propose a new approach for 3D shape matching of deformable human shapes. Our
approach is based on the joint adoption of three different tools: an intrinsic spectral
matching pipeline, a morphable model, and an extrinsic details refinement. By operating
in conjunction, these tools allow us to greatly improve the quality of the matching while
at the same time resolving the key issues exhibited by each tool individually. In this pa-
per we present an innovative High-Resolution Augmentation (HRA) strategy that enables
highly accurate correspondence even in the presence of significant mesh resolution mis-
match between the input shapes. This augmentation provides an effective workaround
for the resolution limitations imposed by the adopted morphable model. The HRA in its
global and localized versions represents a novel refinement strategy for surface subdivi-
sion methods. We demonstrate the accuracy of the proposed pipeline on multiple chal-
lenging benchmarks, and showcase its effectiveness in surface registration and texture
transfer.

5.1 Introduction

Accurate shape matching is an essential tool in several applications in 3D vision and
graphics, including shape registration [136], pose transfer [174], shape remeshing [211]
and shape modelling [295] among others. A powerful direction to solve shape match-
ing is provided by spectral geometry processing techniques. In the spectral setting, the
search for correspondences can be formulated as a matching problem in a higher-
dimensional embedding space as mentioned in Section 2.2.2. However, due to their
band-limited representation, such approaches often suffer from poor point-wise reso-
lution, especially in areas of high geometric detail. To face this limitation, in the pre-
vious Chapter we proposed to combine the benefits of a 3D Morphable Model with
those of functional maps, thereby unifying the intrinsic description of a surface with a
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Target HRA

Fig. 5.1: Example of a registration result obtained with our pipeline. We show the orig-
inal (target from [1]) surface on the left, and our registered result on the right. High-
resolution geometric details (such as the wrinkles on the neck) are fully recovered by
our pipeline, as put in evidence by the zoom-ins.

robust extrinsic regularization. By doing so, we showed significant improvement over
prior work in several challenging cases.

Despite these advantages, that approach can not go beyond the resolution of the
underlying parametric model, which can be a significant limiting factor whenever re-
taining the full resolution of the target shape is a strong requirement.

In this Chapter we propose a method to increase the resolution of the registered
template, thus overcoming a key limitation of existing approaches as shown on a real
example in Fig. 5.1. We show how our shape matching method can achieve very high-
resolution correspondence, and we apply it to the tasks of shape registration and texture
transfer. To summarize, the main contributions of our work are the following:

1. We present a novel refinement strategy for shape registration exploiting the advan-
tages in using a surface subdivision scheme. This represents an innovative solution
to face limitations imposed by the parametric model-based matching pipelines;

2. we provide insights about the capabilities of different 3D parametric models for the
task of shape matching under different resolutions, showing also a dependency be-
tween discretization and registration result;

3. we propose a novel, highly accurate matching pipeline for 3D human shapes; our
pipeline is especially robust to dramatic changes in mesh connectivity, allowing to
work with different levels of detail;

4. our pipeline considerably improves performance over the state-of-the-art methods
in shape matching;

The complete code for our method is publicly available [5].
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5.2 Method

In the previous Chapter, we proposed an automatic pipeline for human body shape
registration. Our method is based on three main steps. Given a parametric model for
humans, a target body shape and five landmarks (head, hands and feet), the method
allows finding an accurate functional correspondence between the two shapes. This
is used to deform the template closer to the target surface, and repeat the process to
improve the matching quality. The final registration is obtained after this two-stage
pipeline.

The pipeline above has two major limitations: (1) The poor runtime efficiency due to
the two iterative registration steps; and (2) the reliance of the overall registration quality
upon the connectivity of the adopted parametric model (just about ∼7K vertices in the
case of SMPL). In the sequel we show how to address these limitations, at the same time
yielding a significant improvement in standard applications.

One-step dense correspondence. The problem of estimating a high-quality functional
correspondence was recently addressed by the elegant refinement method proposed
in [214], and named ZoomOut. This method starts from a given initial (functional)
matching between the two shapes N and M , and iteratively performs the following
two steps:

1. convert the kN ×kM functional map to a pointwise map;
2. convert the pointwise map to a kN +1×kM +1 functional map;

The process proceeds while increasing the values of kN and kM at each iteration. The
initial map completely determines the map obtained through this iterative approach;
remarkably, it is a descriptor-free algorithm. It was further observed that, as more and
more high frequencies are included in the functional map representation, the level of
geometric detail accurately mapped by the estimated correspondence also increases.
In our experiments, we show that it is possible to directly optimize the registration of
the parametric model by applying this kind of refinement to the matching obtained in
the first step of FARM. FARM also adopts a refinement strategy in order to filter out
coarse mismatches. We show that, thanks to the matching step described above, this
additional refinement can be avoided.

We refer to Figure 5.2 for a qualitative evaluation of ZoomOut on our data. In the fig-
ure, we compare the matching provided by the initial functional map of size 50× 30,
the two rounds of the refinement proposed in FARM, and the ZoomOut correspon-
dence. The matching quality of ZoomOut can be further appreciated in comparison
with the previous matching pipeline in Figure 5.6. These results confirm that an inter-
mediate registration is not necessary to get more isometric shapes to obtain a good cor-
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Source Init R1 R2 Our

Fig. 5.2: A ruined FMAP correspondence in a non isometric case visualized through
texture transfer. From left to right: the source texture visualized on the SMPL model; the
initialization of the correspondence (Init); the map refined in the first round of FARM
(R1); the map refined in the second round of FARM (R2); Our refinement (Our). R1 and
Our start on the same Init correspondence.

respondence. For this reason we can avoid the two rounds estimation strategy adopted
in FARM. We have empirically seen that this let us to save around 30% of time.

High-Resolution Augmentation. The main novelty of the proposed method is the
High-Resolution Augmentation (HRA). To highlight the contribution of this step, we
first consider standard results with a parametric model. A parametric model is nothing
more than a fixed template, for which a set of parameters govern a group of deforma-
tions. Every deformation of the model is obtained over the same template, providing
the same connectivity for all the generated shapes. As a direct consequence, the model
has a fixed resolution in all its poses.

The recoverable details’ quality is thus limited to the ones that can be represented
by the parametric model connectivity. As can be seen in Figure 5.3, the registration ob-
tained by FARM is drastically inferior to HRA; SMPL has few vertices (6890) to catch all
the details. In contrast, HRA allows us to achieve a very high-quality registration that
can finely reproduce all the details encoded by the scan.

HRA is applied to the template once its registration to the target shape is concluded.
A subdivision method is then applied to the template (3 times recursively), obtaining a
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Original (2.1M) FARM (6.8K) HR (421K)

Fig. 5.3: A comparison on registering a highly detailed real scan from [44] adorned with
artist details and patterns. On the left the target, (2,1 million vertices), in the middle
FARM registration (6,8 thousands vertices) and on the right our result (421 thousands
vertices). Using one-fifth of the target resolution, we are already able to acquire the
finest details.

mesh with a larger number of vertices. We alternate these iterations with a minimiza-
tion of the As-Rigid-As-Possible (ARAP) energy [148] in order to fit the extrinsic details
of the geometry of the target shape.

In our experiments, we compare three different subdivision methods: the Barycen-
tric Subidvision (BCS), Upsample [346], and the popular Loop [191].

Input

Upsample Loop

BCSFor completeness here we briefly describe the three subdivision
methods, highlighting the difference between them. A visualiza-
tion of the three techniques is provided in the inset Figure, where
the initial edges and vertices of the mesh are depicted in black
while the newly added edges and vertices are depicted in red and
blue respectively.

BCS splits each triangle by adding for each face a vertex in the
position of the barycenter. The original triangle is then substi-
tuted by the three smaller triangles where each original vertex is
connected to the barycentric one. We provide our implementation for BCS, which we
consider as a baseline since it is the most straightforward approach among the three.
The main drawback of this method is that the triangle aspect ratio increases at each
iteration (i.e., the ratio between the shortest and longest edge). For this reason, the
ARAP energy becomes quite unstable during our optimization because it relies on a
rigid preservation of the edge lengths. With BCS, in the current formulation we can ap-
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ply the subdivision at most two times. We also noticed that the registration results have
artifacts arising from wild connectivity.

The Upsample method [346] requires to add a vertex for each edge of the mesh. In
this scheme, each triangle is subdivided into four sub-triangles. If we consider the older
vertices as Even and the new ones as Odd, Upsample adds the Odds without modifying
the Evens positions. In this case we have a more regular mesh compared to BCS. As a
drawback, we note that Upsample flattens large areas of the surface. Without smooth-
ing, the triangles become smaller but they get stuck in their rigidity relation. We ob-
served this method is more stable than BCS, and it allows us to perform three iterations
of subdivision without energy collapse.

Finally, we tried Loop [191], the more sophisticated and popular method for surface
subdivision. This approach adopts the same strategy as Upsample by adding a vertex
on each edge and splitting the faces into four triangles. The new vertices are called odd,
while the original vertices are called even. Then, a smoothening step is performed on
all vertices, as the weighted means of their neighborhoods. This method yields stable
results, does not give rise to evident artifacts, and injects non-rigid changes. Loop sub-
division permits the ARAP energy to start over if it gets locked by locally strong defor-
mations.

We select the Loop method mainly due to the latter observation and the quality of
the results it can provide (see Figure 5.4 for comparisons). The final mesh produced
by three iterations of Loop subdivision has a number of faces that is equal to 43 times
the initial number of faces of the template (e.g., SMPL grows from 13,776 to 881,664
triangles).

Our approach is therefore an iterative combination of subdivision and optimization.
Details are captured progressively, and the smoothness induced by Loop subdivision at
each iteration allows to meet the ARAP constraints as the surface gets closer to the target
geometry.

Localized High-Resolution Augmentation. As can be seen in Figures 5.1 and 5.3, most
of the details presented by a shape are localized in small regions such as the face traits,
the sharp abs on the belly or local pattern like cellulite. This suggests to us that a de-
tailed refinement over the whole shape is an overkill, and the problem can be bet-
ter addressed by refining only proper local regions. Local refinement raises two main
problems: firstly, we need to automatically estimate the regions to apply our refine-
ment. Secondly, Loop [191] subdivision method is not naturally applicable locally since
it generates vertices over the edges that require linkage with other triangles. We propose
a strategy that is aimed to solve both these problems. Our experiments found that the
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0mm

5mm
BCS Upsample Loop

Fig. 5.4: Comparison of different subdivision methods. From left: BCS, Upsample,
Loop. Baycentric is strongly penalized by its rigid structure that causes ARAP regular-
ization to become unstable after 2 subdivision. Colors represent distance of template
to target surface, with saturation at 5 millimetres.

mean curvature (H) is a good indicator for high detailed regions. We select over the tar-
get the regions where |H | > 0.03. Then, we project these regions over the template using
nearest neighbor search, and we propagate the selection over a surrounding geodesic
circumference. At this point, we would subdivide only these local patches, and then re-
attach them coherently to the unaffected surface. To do this, we identify the Odd ver-
tices on the border of the subdivided patches. These are the new vertices that belong
both to one subdivided face and to one that is not subdivided. We link these vertices
with the opposite vertex on the face unaffected by subdivision, and consequently we split
the face into two new faces. We need to handle the only special case when an outer tri-
angle is adjacent to more than one subdivided triangles. When it happens, we include
all these outer triangles into the subdivided region. We proceed including outer trian-
gles until this anomaly has been fixed. We want to remark that the new surface is still in
correspondence with the older one, and so with all other meshes locally subdivided in
this way. This local version of the HRA provides a more efficient fitting to a given target
shape’s details. Also, it constitutes a new method for the local surface subdivision.
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205K 6.8K 110K 69K

Target ZOSR HR Local

213K 6.8K 110K 59K

Target ZOSR HR Local

Fig. 5.5: Two examples of localized adaptive refinement. In the first column, the target
and the regions with |H | > 0.03. Then, we show the FARM output, HR and HRA. No-
tice how the majority of the details (e.g. face beard) have been caught with half of the
vertices.

5.3 Results

In this Section, we collect the experiments and applications of the proposed method.
All the experiments are performed on MATLAB 2018, on a machine with 32GB of RAM
and an Intel 3,6 GHz Core i7.

Point-to-point matching. We evaluate our method in point-to-point matching task on
FAUST [43] and TOSCA [55] datasets. We evaluate both with and without the use of
High-Resolution Augmentation strategy (denoted as HR and ZOSR respectively). We
compare our results with 5 different state-of-the-art approaches: RMH [102], PMF [315],
BCICP [258], ZoomOut [214] and FARM [203]. All these methods refine the same initial
matching that is added to the evaluations and denoted by Ini. The ZoomOut matching
is the one exploited by our methods for the parametric model registration. Learning
based-approaches are excluded for a fair comparison. We evaluate the matching qual-
ity through the cumulative error protocol proposed in [165]. In Figure 5.6, on the left we
report the average on ten pairs, each of which is composed of one shape of FAUST and
the SMPL template. The considered FAUST shapes are all different subjects in differ-
ent poses in order to explore the non-isometric cases. SMPL and FAUST shapes share
the same connectivity thus it is possible to evaluate the matching quality. As can be
seen both ZOSR and HR outperform all the competitors and, in particular, FARM. HR
slightly improves ZOSR results, although SMPL owns the same connectivity of FAUST
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Fig. 5.6: Correspondence comparison curves over FAUST and TOSCA datasets.

and thus the HRA is not necessary. This confirms that Loop subdivision allows us to
achieve better minimization of the ARAP energy.

In the same figure, we visualize the average comparison on seven pairs of the David
class of the TOSCA dataset on the right. These shapes have the same connectivity and
subject but broadly differ for the poses. Also in this case, ZOSR and HR outperform all
the competitors. The meshes of David from TOSCA contains around 52K vertices that
are many more than the 6890 of the SMPL mesh. For this reason, the improvement
achieved by HR is more evident in this case. These results confirm that the HRA im-
proves the performance of the proposed method.

Texture transfer. In Figure 5.7, we visualize three qualitative results of the proposed
method in the texture transfer application underlying quantitative results showed in
the previous paragraphs. We Consider three pairs of shapes with non-isometric defor-
mations and connectivities from different datasets [24,43,194,335] . The texture transfer
quality of our method can be appreciated on the fine details that we are able to transfer
as the text “Approved” highlighted in the zoom-in of the shapes in the middle. The high
resolution obtained allows us to transfer a picture of an artist as done for the pair on the
right of Figure 5.7.

Human body registration. We complete the registration of a large number of shapes
from various datasets, and also over some ad-hoc modified ones to test our capability
in catching details. In Figure 5.3 we have a variety of different local patterns: cellulite,
synthetic letters, scars and also dynamic body tissues. All these details are well repre-
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sented by our method. Also, in Figure 5.4 we present a quantitative result on the same
shape: the colors encode the distance between the registered template and target sur-
face. Few points saturate the error at 5 millimeters in all three subdivision strategies;
it is also interesting to notice how BCS and Upsample connectivity affect the geometry
fitting (e.g., on the legs). Finally, in Figure 5.5 we show our adaptive strategy to local op-
timization. Our inference permits us to use just half of the vertices to obtain the same
result quality.

Original Transfer Original Transfer Original Transfer

Fig. 5.7: Our qualitative results in the texture transfer application on 3 different pairs
from the SHREC‘19 Connectivity benchmark [212].

Target FARM HR

Fig. 5.8: Registration of a low-resolution mesh with our HRA method. From left: target
and its wiremesh; FARM result; HR result.

Challenging cases. We also present some experiments on a few challenging cases.
Firstly, we emphasize the positive effect of the HRA also in the case of low resolu-
tion shapes. In Figure 5.8, we consider a FAUST shape with only 6890 vertices, and
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Target FARM ZOSR SMIL5mm

0mm

Target ZOSR

Fig. 5.9: Comparison using the SMIL morphable model. On the left: the target shape,
the FARM registration, our method. Finally, the template of SMIL. Colors represent dis-
tance of template to target surface, with saturation at 5 millimetres. On the right, two
more examples of our method on different poses and identities.

we apply our method together with the proposed HRA. Notice that using the proposed
technique, the result is geometry sharpening and some traits become prominent. The
High-resolution mesh coherently fits the original connectivity despite the large quan-
tity of added vertices. Moreover, the HRA does not cause errors or collapses. Finally,
Figure 5.9 is an original experiment: we test our method not only by changing the mor-
phable model or domain (as shown in FARM with SCAPE and KIDS [268]), but both
together. We substitute the SMPL model with the SMIL morphable model [134], a para-
metric model similar to SMPL where the template respects more the proportions of
infant shapes instead of adult ones. The proportions of the kid shape (on the left of Fig-
ure 5.9) and SMIL template are different, thus also in this setting strong non-isometries
are addressed. We correct the landmark detection heuristic in both FARM and ZOSR
pipelines to perform correctly on different body proportions. All other settings are left
unchanged. As can be seen, FARM fails dramatically on the right leg; it cannot be used
without parameters redefinition. ZOSR performs robustly thanks to ZoomOut refine-
ment. Furthermore, we prove that the proposed method can adopt different morphable
models without additional effort.

5.4 Conclusions

In this Chapter we presented a new approach for 3D shape matching of deformable
human shapes. Our approach jointly exploits a spectral matching method, a paramet-
ric model, and an extrinsic high-resolution refinement strategy. The proposed High-
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Resolution Augmentation, in its global and innovative localized version, can fill the gap
between the parametric model resolution and a general target geometry, also in the
case of large mesh resolution differences. The quantitative evaluation shows that our
approach outperforms the competitors on standard benchmarks. The HRA constitutes
a promising solution to overcome the parametric models resolution limitations, giving
rise to future directions in the high definition modeling.

We would conclude this Chapter by remarking how increasing the triangulation res-
olution is crucial. It not only permits to represent more details but also provide better
matching. For many entertainment applications, it is usual to left high-details to tex-
tures. However, in several pure geometrical studies, this is not enough. For example, in
the idea of object replication, being able to re-print also trademarks on objects is not
negligible. Also, the experiment in Figure 5.4 highlights that not all the triangulations
are equal in describing underlying geometry, and they play a fundamental role. In the
next part of this thesis, we will emphasize the triangulation role, how it affects matching
(particularly in the intrinsic domain), and how we can transfer triangulation to different
geometries. This latter is an essential step in the process of disentangling a geometry
from its representation.



In this Part, we analyze the impact of the discretization in the geometry represen-
tation, particularly dealing with triangular meshes. In the previous Chapter, we al-
ready introduced how different connectivities impacts geometry expression. In the
next one, we present a new benchmark to stress 3D shape matching methods on
different connectivities [212]. Our challenge shows that all the methods are favor-
ably biased if the correspondence is established between objects that share the same
connectivity, while the performance significantly degrades when this does not hold.
Then, we present enrichment of the intrinsic spectral embedding with extrinsic in-
formation [211]. We use this representation enhancement to develop a mesh transfer
algorithm, moving the correspondence from a discretization level to a geometric one.

Part II

Discretizations impact on Geometry

73





6

Matching Humans with Different Connectivity

The research community spent a lot of effort to address object matching problem, and has
we have already review in Section 1.2, increased set of innovative methods has been pro-
posed for its solution. In order to provide a fair comparison among these methods, differ-
ent benchmarks have been proposed. However, all these benchmarks are domain specific,
e.g., real scans coming from the same acquisition pipeline, or synthetic watertight meshes
with the same triangulation. To the best of our knowledge, no cross-dataset comparisons
have been proposed to date. This chapter provides the first matching evaluation in terms
of large connectivity changes between models that come from totally different modeling
methods. We provide a dataset of 44 shapes with dense correspondence as obtained by
an accurate shape registration method (FARM). Our evaluation proves that connectiv-
ity changes lead to Objects Matching difficulties and we hope this will promote further
research in matching shapes with wildly different connectivity.

6.1 Introduction

Recent technological advances provide new modeling techniques, enlarging the set
of applications and involving a broader mass of consumers [242]. Modeling software
enables artists to deform shapes easily, perform surface remeshing and make models
ready for real-time animation [141].

Moreover, off-the-shelf sensing devices put 3D body scanning technology at the dis-
posal of everyone [345]. These facts have led to a wide production of 3D models with
different resolution (as shown in Figure 6.1), sampling density, distribution of details,
noise artifacts, and so forth [43, 55, 72, 194].

This Chapter evaluates different matching pipelines and descriptors over a collec-
tion of shapes originating from a diverse set of datasets. This entails dealing with dif-
ferent surface discretizations, as well as other types of nuisance such as the presence of
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Fig. 6.1: Sample meshes involved in this track. The shapes differ in terms of mesh res-
olution as well as for triangles and vertex distribution. Several additional variations are
also considered.

disconnected components, noisy or weakly cluttered surfaces (e.g., due to clothes and
accessories), and a wide range of topology and geometry dissimilarities. The evaluated
methods are compared in terms of correspondence coherence, runtime, and other im-
plementation details. Furthermore, we test the stability and properties of different point
descriptors in challenging setups, in an attempt to identify the most suitable for real-
world applications. From our results, we observe that shape correspondence remains
an open and challenging problem whenever connectivity changes are present in the
data, and conclude that a concerted effort is required in this direction. This report is
accompanied by dense ground-truth correspondences and evaluation code to foster
further research [9].

6.2 Data

The dataset we provide consists of 430 shape pairs. The shapes themselves come from
different sources, and dense cross-dataset correspondences are obtained with FARM
registration method. We remark that correspondence between human bodies is ill-
posed and a unanimous definition is hard to achieve; indeed, even when experts are
involved, only sparse key points are provided. By using FARM, our dense correspon-
dences adhere to the semantics of the SMPL human template [195]. The source datasets
are:
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SMPL [195] is the vertex-based 3D morphable model already presented in Section 2.1.5.
Learned statistically over a wide population of real scan data, the SMPL model provides
a simple way to generate realistic bodies that share the same connectivity.

FAUST [43] is a benchmark of real scans of different humans, coming with ground-truth
correspondence for a subset. Each shape is obtained by annotating a human subject
by anthropometry experts, using 17 bones as sparse key points. The SMPL template is
aligned to the scans, providing a dense map. Both the aligned template and the real
scans are available. This dataset provides interesting challenges, including acquisition
noise, holes, and self-contact.

SCAPE [24] is a milestone in human body registration. This pipeline fits a template to
real data by solving a complex optimization problem over triangle faces. The method is
able to capture different body shapes, and is capable to work with different data repre-
sentations (e.g., range maps and mocap markers).

TOSCA [55] high-resolution is a synthetic dataset with non-rigid deformations of shapes
from different classes. All shapes have around 50K vertices, and models of the same
class are in correspondence. TOSCA shapes are a good example of handcrafted objects.

SPRING [335] is a dataset generated by modifying a template using parameters carrying
anthropometric semantics (e.g., height, calf circumference, etc.). The body shape space
is learned by registering a template in SCAPE fashion to over 3K body models. Then,
PCA is used to find directions with a clear and useful meaning. The dataset consits of a
high variety of shapes in full correspondence.

MoSh Mocap [194] is a dataset produced from motion capture data acquisition, with
soft tissue information yielding comparable quality with full-fledged 3D body scanners.
The dataset provides clean real data with highly regular tessellation, reflecting nowa-
days’ expectations of real acquisitions.

BadKing [1] is a website collecting contributions from professional artists which are
made freely available. To our knowledge, correspondence methods have never been
compared with this sort of data. The meshes present high levels of detail, disconnected
components, holes, and an enormous amount of different styles.

CAESAR [262] is a rich real body scans set. It has been used widely in data-driven works,
and is nowadays the baseline to learn generative human body models. Unfortunately,
it is not freely available and redistribution is limited. For this reason we rely over [247]
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that provides registrations of this dataset to the research community. All shapes are in
correspondence and in a neutral pose.

Princeton [72] is a segmentation benchmark built on top of the SHREC 2007 Watertight
Models track. Its shapes come from different sources and include synthetic human bod-
ies with robot-like proportions as well as noisy real scans. They span both low (∼ 4.7K
vertices) and moderately high resolutions (15K and more).

SHREC14 [244] Shape Retrieval of Non-Rigid 3D Human Models track has two subsets.
A realistic one, with CAESAR shapes registered using SCAPE and remeshed to ∼15K ver-
tices; and a synthetic one with plastic poses, a smooth surface, many details and hand
articulations (∼60K) vertices.

K3D-Hub [330] provides a method to register a high-quality template to a low-quality
Kinect scan. The low-resolution setup provides some interesting challenges: subjects
may be clothed, with few details but with dense (∼ 10K vertices) and regular connectiv-
ity. Matching these low-res shapes to more detailed ones may have interesting applica-
tions in entertainment.

Every data source comes with unique characteristics: different purposes require dif-
ferent modeling principles, affecting connectivity. With this analysis, we want to en-
courage the community to consider this type of tricky variations:

− Different orientation: the shapes in our composite dataset are not pre-aligned into a
coherent orientation. Thus, it is no possible relying upon apriori knowledge on the
position in ambient space,

− Connectivity artifacts: there are shapes with broken or missing connectivity (e.g.,
outlier points belonging to no triangle). We propose to take into consideration these
scenarios.

− Different density: all these shapes have different discretizations. This is particularly
challenging for methods that rely upon similar discretization. Artists create mod-
els with a clean and optimized meshing, with few degenerate triangles and differ-
ent densities depending on the surface region. On the other hand, real scans may
result from a complex surface reconstruction pipeline giving rise to degenerate tri-
angles and non-manifold artifacts. Fitted templates either assume uniform density
(e.g., SCAPE triangles are equally distributed over the surface), or provide more de-
tail around salient points (e.g., SMPL is denser on the human face).

− Additional variations: we also consider variations of identity and pose, and include
different surface artifacts such as topological noise, clothes, hair or accessories. We
analyze both watertight meshes and meshes with disconnect components.
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6.3 Descriptors

Point descriptors characterize the neighborhood of each point on a discrete surface,
and are expected to be (1) discriminative (different points should have different de-
scriptors); (2) repeatable under noise and deformation; (3) fast to compute; and (4)
compact.

Given two descriptor fields DESCM and DESCN on shapes M and N respectively,
a point correspondence for each x ∈ M can be obtained by a nearest-neighbor search
in descriptor space:

y∗ = argmin
y∈N

‖DESCM (x)−DESCN (y)‖F . (6.1)

We use the equation above in our tests. All meshes are rescaled to a similar surface area
to eliminate differences caused by different scales.

GPS. The Global Point Signature (GPS) [272] is a point descriptor defined as the q-
dimensional vector:

GPS(x) = [λ
− 1

2
2 φ2(x), . . . ,λ

− 1
2

q+1φq+1(x)] , (6.2)

in our experiments, we set q = 100.

HKS. The Heat Kernel Signature (HKS) [296] is built upon the heat kernel between
a point and itself, expressed in a (truncated) spectral decomposition as kt (x, x) =∑K

l=1 e−tλlφl (x)2. This can be interpreted as the amount of heat that remains at point
x after a delta distribution is diffused for time t . Given a fixed set of time scales
{t1, . . . , tq } ∈Rq , the HKS at a point x is defined as:

HK S(x) = [kt1 (x, x), . . . ,ktq (x, x)]. (6.3)

We consider q = 100 as suggested in [296] and K = 200.

WKS. The Wave Kernel Signature (WKS) [209] extends the ideas above by modeling a
quantum particle on the surface with a given initial energy E . The descriptor for point
x ∈ M is defined as the average probability over time to find the particle at position x,
and is computed as wksE (x) = ∑K

l=1 fE (λl )2φl (x)2, where fE (λl )2 is log-normal energy
probability distribution. Given a set of energy levels {E1, . . . ,Eq }, the WKS is defined as:

W K S(x) = [wksE1 (x), . . . , wksEq (x)] . (6.4)

We use K = 200 basis functions and q = 100 energy levels.



80 6 Matching Humans with Different Connectivity

AWFT [215] is based on the definition of Anisotropic Windowed Fourier transform on
non-Euclidean domains, and uses the Anisotropic LBO [23]. A family of such operators
is defined depending on two parameters, anisotropy α and orientation θ. A Gaussian
window g τ

x,α,θ is expressed for given α,θ in the Anisotropic LBO basis, with variance
τ> 0, translated to each vertex and modulated with respect to the K smallest Laplacian
eigenvalues. Given a scalar function f : M →R, the coefficients of its windowed Fourier
transform (S f )τx,l .α,θ are given by the inner product between f and the atoms g τ

x,λl ,α,θ.
Dependence on parameter l is removed in [215] via application of the total weighted
power, aggregating in a single value (ST W P f )τx all coefficients with different modulation.
For a given point x ∈M , its AWFT is:

AW F T (x) = [(ST W P f )τ1
x,α1,θ1

, . . . , (ST W P f )τT
x,αA ,θO

] . (6.5)

We use K = 200 eigenfunctions and the parameters τ,α,θ are fixed as suggested in [215],
obtaining a 100-dimensional descriptor. For increased efficiency, we remesh via edge
collapse [115] all shapes with > 60K vertices and then extend the matches to full reso-
lution via nearest-neighbors in R3.

DEP. The discrete-time evolution process (DEP) [213] encodes the action of an inte-
gral operator on the surface. This action is defined on top of a pairwise potential
d : M ×M → R+ that depends on the geometry of the surface and encodes the degree
of influence that surface points exert on each other:

A f(t ) =
∫
M

d(·, y) f(t )(y)d y , (6.6)

for scalar functions f(t ) : M → R. The action of d is realized by the following recursive
relations:

f(t+1) = A f(t ) . (6.7)

A score is defined for a fixed number T of time steps as s(x) = f0(x) +∑T
t=1 At f0(x),

summing up the contributions of the evolution process (6.7) across all discrete times
t = 1, . . . ,T . A DEP descriptor is obtained by letting T →∞ and using a multiscale ap-
proach on the choice of the pairwise potential d , giving DEP (x) = [Sd1 (x), . . . ,SdK (x)]. In
our experiments we use the biharmonic distance [183] for the definition of d , approx-
imated with K = 200 eigenfunctions and the parameters of [213], resulting in a 100-
dimensional descriptor. For meshes with > 7K vertices, we only consider 7K farthest
point samples and map the matches back to full resolution through nearest-neighbors
in Euclidean space.

SHOT. The SHOT descriptor [303] encodes histograms of normals, which are more rep-
resentative of the local structure of the surface than plain 3D coordinates. This descrip-
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tor is built on top of a stable Local Reference Frame (LRF) defined as the principal eigen-
vector of a modified covariance matrix around each point. An isotropic spherical grid
with 32 partitions is aligned to the computed LRF, and the 3D distribution of the nor-
mals is represented as a local histogram per partition. The ordered concatenation of
these histograms defines the descriptor at each point. We use the standard parameters
of [303], yielding 320-dimensional descriptors.

GFrames SHOT is a variant of SHOT constructed on top of a novel, more stable LRF as
proposed in [217]. The GFrames LRF is based on the computation of the gradient of a
scalar function defined on the surface. By varying the scalar function, it is possible to
produce several LRFs depending on the desired stability properties. Following [217], we
adopt the square of the first non-constant Laplacian eigenfunction as a scalar function.
We refer to the resulting 320-dimensional descriptor as GSHOT.

6.4 Matching pipelines

Functional Maps [234, 235] are based on the idea that seeking functional (as opposed
to point-to-point) correspondences makes the problem independent of the shape dis-
cretization and easier to optimize. In this analysis, Following [233], we estimate a func-
tional map C by solving the non-convex problem of (2.25). We use 20-dimensional WKS
descriptors concatenated with 20-dimensional wave kernel maps [234] around body
landmarks detected as in [203]. We set kM = 60 and kN = 60.

Iteratively Refined Functional Maps (bFMAP) follows the map refinement and estima-
tion method of [186, 203] already presented in (4.5). As probe functions we use pairs
of corresponding deltas (δM

xi
(x),δN

π(0)(xi )
(y))q

i=1, where π(0) is the point-wise conversion

of C (0) via (2.22). The `2,1 norm promotes column-wise sparsity, allowing downweigh
mismatches during the refinement process. As done in [203], we set µ = 0.01, T = 20
iterations, and q = 1000 uniformly distributed delta functions over M .

BCICP is a recent algorithm for functional map estimation, employing an orientation-
preserving regularizer and a new refinement procedure named Bijective and Continu-
ous ICP (BCICP).

Orientation-preserving regularizer. Given two shapes M and N , and a set of q pairs
of probe functions

{(
fi , gi

)}q
i=1, a data term is setup as in (2.24). Then, the following

regularizer is introduced:

Eorient =
k∑

i=1

∥∥C ◦Ω fi −Ωgi ◦C
∥∥2

F , (6.8)
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where Ω is an operator that extracts the orientation of a local frame at each point, as
encoded by the surface normal and the gradients of the given descriptors. Equation
(6.8) attempts to preserve the orientation of every corresponding local frame induced
by the descriptors.

BCICP refinement. Similar to ICP, the refinement alternatively solve for a point-wise
map and a functional map. However, this happens both in the spectral domain and the
spatial domain by making use of several heuristics as follows:

Continuity of the point-wise map is improved by smoothing out the displacement
vector field induced by the map and filtering out the outlier regions. Assume π : xi 7→
yπ(i ) from source to target shape. To smoothen the correspondence at a vertex, we
smooth out the associated displacement vector ti = yπ(i ) − xi using the neighboring
ones. Edges are classified as ‘outliers’ if the mapped endpoints have a large distance
since they are likely to be the boundary of outlier regions; such edges are removed from
the mesh adjacency matrix, and points that do not belong to the largest connected com-
ponent of the modified connectivity will be regarded as outliers.

Bijectivity is improved by considering extra energies defined on the compound
point-wise maps from both sides. Specifically, the original ICP uses the energy:

E(CMN ,πN M ) = ∥∥ΨCMN −πN MΦ
∥∥2, (6.9)

where CMN is the functional map from M to N , andπN M is the associated point-wise
map from N to M . To promote bijectivity, the modified energy

Ê(CMM ,πMN ,πN M ) = ∥∥Φ1CMM −πMN πN MΦ
∥∥2

F (6.10)

is used, where the auxiliary variable CMM is a functional map from shape M to itself.
This energy helps to regularize the compound map πMN πN M to be identity. A similar
term for πN MπN M is also added to the total energy.

Finally, map coverage is improved by spreading out the correspondences of vertices
with a large pre-image. A vertex on the target shape is “covered” if it is the image of at
least one vertex on the source shape. More discussion can be found in [258].

For the application of BCICP, meshes are downsampled to ≈ 5K vertices using [331].
BCICP is then executed with the default parameters and 10 iterations per pair. The es-
timated maps are propagated back to the original shapes by simple nearest-neighbor
search; therefore, the final maps may have low coverage.

6.5 Evaluation
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Fig. 6.2: Two examples of dense point-to-point correspondence provided by the FARM
registration pipeline. The model in T-pose is the SMPL template. Correspondence is
encoded by colors.

p
> 0.5
≤ 0.5
≤ 0.4
≤ 0.3
≤ 0.2
≤ 0.1
≤ 0.05
≤ 0.02

We adopt the standard error measure defined in [165]. Each
method is represented as a curve denoting the percentage of
correspondences (y-axis) with (normalized) geodesic error
below a varying threshold (x-axis). We only plot the interval
[0,0.5], while the average geodesic error (AGE) considers the
interval [0,1]. The normalized distances from a point p are
shown in the inset figure.

Ground truth. The ground-truth is given by the state-of-
the-art registration method FARM [203]. We use it to register
all the shapes to SMPL, obtaining as a side-product a meaningful dense map in both di-
rections. A map between two given shapes M and N is then obtained by composing
the map from M to SMPL with the one from SMPL to N (see two examples in Fig-
ure 6.2).

Approximate geodesic error. Since our dataset includes several meshes with hundreds
of thousands of vertices, we approximate geodesic error. Given two shapes M ,N and
a correspondence:

− We only consider the subsets of 6890 vertices of the SMPL model registered via
FARM, denoted by Mv and Nv .

− We denote by Ñv the estimated matches for the points in Mv .
− We compute distances between the 6890 vertices of Nv and the 6890 vertices of Ñv

using Dijkstra’s algorithm.
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− For points located on disconnected components (e.g. due to partiality or acces-
sories) we use Euclidean distances.

− Distances are normalized to within [0,1].

6.6 Results

The dataset of 430 pairs is partitioned into separate (and possibly overlapping) subsets
described in the following.

Others vs. SMPL. We test the capability to map different human bodies to a common
template. Here we measure the stability to noise over the source shape (43 pairs).

SMPL vs. Others. This measures how noise over the target shape affects the method’s
performance (43 pairs).

with SMPL. The data here is a combination of pairs from the two previous sets. This
simulates a more realistic setting in which source and target do not have any a-priori
role (86 pairs).

Others vs. Others. The SMPL template never appears; hence one cannot rely on any
mesh regularity expectation (344 pairs).

Different Connectivity. This category is the core of our challenge. Differently from the
Others vs. Others experiment, we do not allow pairs from the same dataset. Therefore,
all shape pairs have different connectivity (415 pairs).

Different Connectivity plus Symmetry. Same as above, but for each point, we con-
sider correct both the ground-truth correspondence and its symmetric counterpart
(415 pairs).

Same Connectivity. With this reduced set, we evaluate how much methods improve by
exploiting this assumption (15 pairs).

Same Connectivity plus Symmetry. same pairs evaluated for the Same Connectivity
case, but also considering the symmetric points of the ground-truth correspondence as
correct (15 pairs).

All pairs. The complete dataset, unifying all previous experiments. In Figure 6.5, we
povide a visual summary of this set (430 pairs).
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Fig. 6.3: Runtime comparisons for descriptor computation.

6.6.1 Comparisons

All descriptors were computed on an Intel 3.6GHz i7 CPU with 32GB RAM. In Fig-
ure 6.3, we measure time from shape loading to descriptor storage for each shape and
descriptor. FMAP has an average runtime of 28s, with a large standard deviation of 22s
(worst case 151s). The average runtime for bFMAP is 427s. BCICP requires 150s of pre-
processing, and 100 – 300s for map estimation.

Descriptors. In Figure 6.4 we compare the descriptors of Section 6.3 in all the settings
detailed above. Overall, the worst results are obtained by GPS, while WKS is consistently
the best except for the Same Connectivity case. HKS is second best, followed by AWFT.
We found that the latter seems quite sensitive to the specific setting, with variations in
quality even among SMPL vs Other and Other vs SMPL. All methods perform signifi-
cantly better in the case of same connectivity. DEP seems the most sensitive overall,
with a dramatic drop in accuracy according to the symmetric evaluation. Table 6.1 (left
top) reports a summary quantitative evaluation, largely confirming the remarks above.
The largest error is observed for pairs that involve mesh n. 40 (depicted in the bottom
corner of the same Table), as also confirmed by the analysis on the 5 pairs with the
largest AGE (right top).

In Figure 6.5 we further plot the complete set of curves (one per shape pair) for each
method. We find this visualization informative, as the curves for the SHOT, GSHOT,
HKS, and WKS descriptors exhibit less spread and are more concentrated around their
mean, while for AWFT, GPS, and DEP the curves are less repeatable.



86 6 Matching Humans with Different Connectivity

AWFT DEP GPS HKS SHOT WKS GSHOT

FMAPS bFMAPS BCICP

Others vs SMPL SMPL vs Others with SMPL

Others vs Others Different Connectivity Same Connectivity

Same Connectivity Sym Different Connectivity Sym All pairs

Fig. 6.4: Descriptor and matching pipelines comparisons. Overall, we observe that
shapes with the same mesh connectivity tend to induce better correspondences.

Matching pipelines.
In Figure 6.4 we also report comparisons for the matching pipelines, where BCICP

comes out as the best performing method. We attribute this gap in performance to its
special regularizers, and further note that the accuracy of BCICP does not directly de-
pend on mesh resolution, since it mainly relies on geodesic distances that are not af-
fected too much by changes in mesh connectivity. bFMAP outperforms standard FMAP
on the pairs involving the SMPL shape, while it does not improve the other cases. This
is mainly due to its optimized parameters for the registration performed by FARM,
which operates toward the SMPL template. A quantitative comparison between the
three pipelines is better summarized in Table 6.1 (left bottom). In addition, in the same
Table (right bottom) we show comparisons on the 5 pairs with the worst AGE. Differ-
ently from the case of descriptors, however, here we do not observe any consistently dif-
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Descriptor Avg Max Max AGE
AGE AGE Pair

AWFT 0.33 0.50 27_40

DEP100 0.38 0.73 10_16

GPS100 0.35 0.63 22_40

HKS100 0.25 0.49 37_40

SHOT 0.35 0.47 18_40

WKS100 0.21 0.54 1_40

GSHOT 0.34 0.49 39_18

Corr Methods

FMAP 0.27 0.75 39_10

bFMAP 0.27 0.75 34_10

BCICP 0.08 0.57 12_40

Pairs Mean AGE AWFT DEP100 GPS100 HKS100 SHOT WKS100 GSHOT

35_40 0.45 0.50 0.39 0.56 0.37 0.42 0.52 0.40

27_40 0.44 0.50 0.43 0.57 0.35 0.41 0.44 0.40

24_40 0.44 0.44 0.37 0.56 0.39 0.43 0.52 0.40

22_40 0.44 0.47 0.34 0.63 0.39 0.43 0.44 0.39

31_40 0.43 0.43 0.41 0.57 0.35 0.45 0.39 0.42

Pairs Mean AGE FMAP bFMAP BCICP

38_3 0.62 0.74 0.74 0.39

38_9 0.60 0.71 0.72 0.37

34_13 0.59 0.69 0.69 0.40

32_26 0.57 0.74 0.74 0.21

21_1 0.56 0.73 0.72 0.24

Table 6.1: On the left, descriptor (top) and matching pipelines (bottom) results, report-
ing the shape pair achieving the max AGE in the right column. On the right, two tabels
reporting descriptors and matching pipelines on the 5 pairs with largest AGE. In the im-
age, a comparison between the high-resolution, non-uniform and partial mesh 40 and
the SMPL template mesh.

ficult shape. Finally, in Figure 6.5 we plot curves for all the shape pairs for each match-
ing pipeline. BCICP exhibits significantly less variance, confirming the good quality of
the correspondences. We further note how the bFMAP curves are more concentrated
toward the top of the graph than the standard FMAP pipeline, confirming its better be-
havior.

In Figure 6.5 (bottom right) we also plot the distribution of shape pairs (430 in total,
x axis) at increasing average geodesic error (AGE, y axis). The mean AGE over all meth-
ods is shown in blue while the minimum and maximum AGE are depicted respectively
as green and red shaded areas. The vertical blue lines identify shape pairs with the same
connectivity: these are mainly located on the lower end of the graph, meaning that es-
timating point-to-point correspondences for such cases is more manageable than for
cases with different connectivity.

6.7 Conclusion

With this Chapter, we compared point-to-point matching algorithms for human shapes
represented as triangular meshes with different connectivity. We demonstrate that the
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AWFT DEP GPS

HKS SHOT GSHOT

WKS FMAP bFMAP

BCICP

Fig. 6.5: Full comparisons on the entire dataset. Every black curve corresponds to a
shape pair (430 per subplot); the colored curves represent each method’s mean. In the
bottom right, we show the AGE (y axis) over all pairs (x axis); the blue curve is the mean
AGE across all methods, while the red and green areas denote min and max AGE. Verti-
cal dashed lines identify the pairs with shared connectivity.

recent BCICP pipeline and standard descriptors such as HKS and WKS are more sta-
ble to connectivity variations, which still pose a strong challenge to the shape analy-
sis community. We conclude that, differently from standard practice, past and future
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matching methods should be conceived and evaluated for their robustness to connec-
tivity changes. Finally, while we only considered human shapes (as a consequence of
using an accurate, although model-specific registration pipeline [203]), we conjecture
that our remarks on the relevance of connectivity in matching tasks may still hold for
more generic shape classes.
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Intrinsic/extrinsic embedding for functional
remeshing of 3D shapes

3D acquisition pipeline delivers 3D digital models accurately representing real-world ob-
jects, improving the geometric accuracy and realism of virtual reconstructions. However,
even after intensive clean-up, the captured models fall short of many of the requirements
imposed by the downstream application, such as video-games, virtual reality, digital
movies, etc. Often, the captured 3D model can only serve as a starting point for a cas-
cade of subsequent phases, by either digital artists or geometry processing algorithms,
such as a complete remeshing (or retopology), surface parameterization, skinning for an-
imation, and so on. In contrast, we propose a novel remeshing-by-matching approach,
where we automatically combine the accurate 3D geometry of the captured model with
the tessellation of a target pre-existing template which already satisfies all the profes-
sional requirements. At the core of this process, there is a matching strategy based on the
functional mapping framework. To this end, we introduce a new set of basis functions
designed for this context: termed Coordinates Manifold Harmonics (CMH). We evaluate
this strategy (quantitatively and qualitatively) over models of different classes, obtaining
a favourable comparison with existing methods.

7.1 Introduction

Digital 3D models can often be captured from reality using acquisition systems such as
range-scanning, shape-from-motion, and others. The high geometric accuracy offered
by modern 3D acquisition technologies improves the coherence between the real-world
objects and their virtual counterparts. The acquired 3D data can be automatically post-
processed to remove defects (such as holes or other inconsistencies) resulting, in the
ideal case, in a “clean” polygonal mesh. Even then, this mesh is unsuitable for direct
use in downstream applications, such as real-time rendering, animation, simulation,
or to undergo re-editing operations.
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Captured models are inherently different from those crafted for movies or video-
game production pipelines. Their meshing is triangle based and irregular; they present
a low-quality UV-map or no UV-map at all; they have no other attribute apart from pre-
shaded colors; the vertex density is usually both roughly constant and too dense; the
mesh does not match the shape symmetries; and so on. Crafted 3D models, conversely,
are semi-regular quad meshes, with irregular vertices carefully placed in appropriate
locations; their edge orientation is optimized for shape representation and animations;
they present edge-flows favoring re-editing; symmetries are exploited, when available;
they present carefully optimized and customized UV-maps; they feature adaptive reso-
lution (vertex sampling is denser in semantically important regions); they are enriched
with a variety of useful per-vertex attributes, e.g. links to bones which make them ready
for animation, and so on.

A variety of automatic Geometry Processing algorithm can fill this gap. Primarily,
surface remeshing to improve the quality of the polygonization, but also, among others:
mesh simplification to reduce and control polygonal complexity, mesh parametriza-
tion to improve UV maps. Automating these tasks is challenging due to the variety and
subtleties of the objectives to be fulfilled. Despite the progress in all these areas (see
Section 7.2), the quality obtained by skilled artists is unmatched. Consequently, in the
industry, captured objects routinely undergo intensive manual labor before they are
usable, starting with a complete redefinition of the connectivity (a process termed “re-
topology”).

As an alternative, we propose a new remeshing-by-matching approach. We assume
that a manually crafted model is available featuring a reasonably similar overall shape,
and all the desired characteristics, except accurate geometric adherence to the real-
world. This assumption is reasonable in many contexts; for example, all humans char-
acters share a roughly similar shape and so do all quadrupeds (such as cats or dogs). Our
idea consists of automatically combining in one output mesh both the accurate geom-
etry of a captured model and the high-quality meshing and other desirable structural
characteristics of a crafted model. Per-vertex attributes defined on the latter (such as
UV-map or skinning) are also inherited when they are reusable. Our output is a morph
of the crafted mesh, which assumes the geometry of the captured shape.

To implement this idea, we need an automatic and accurate estimation of point-to-
surface correspondence. We propose a workflow to meet this challenge (Section 7.3)
where an initial estimation is refined in a subsequent phase. The initial estimation
(Section 7.3.2) is based on the functional map framework, which is state of the art for
non-rigid shape matching (see Section 7.2). We improve over it by introducing a set of
orthonormal basis functions, which we term Coordinates Manifold Harmonics (CMH)
(Section 7.3.1); they ameliorate the efficiency and reliability of the functional map esti-
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mation by integrating extrinsic geometric information with the standard intrinsic spec-
tral shape processing. In the refinement phase (Section 7.3.3), we maximize the local
rigidity of the mapping with a local-global approach, thus inducing better preservation
of local geometric features. The code of our method is available online [7].

7.2 Related works

Different basis for Functional Maps. Hamiltonian operators have been proposed as an
alternative to the Laplace-Beltrami basis [75,216]. In [232], the Fourier basis is extended
with all the set element-wise products, without requiring any additional optimization.

Regularized Principal Component Analysis (RPCA) [17] obtains a function basis which
is well suited for shape processing by leveraging PCA and regularizing it according to
the Laplace-Beltrami operator. RPCA is similar to our CMH in that it combines both
intrinsic and extrinsic properties in one hybrid basis. However, RPCA depends on a sta-
tistical analysis of a set of input shapes (for which the one-to-one correspondences are
sought). Conversely, our CMH definition relies only on a single shape, making it better
suited for our targeted scenario. Moreover, RPCA is designed for shape reconstruction,
and its adaptation to shape matching is not necessarily trivial.

The functional map has been successfully employed in tangent-vector-field transfer
[29], which is useful for generating a consistent quadrangulation of shape pairs [30].
The latter task resembles our work in that an existing tessellation is recreated over an
input shape, but our premises are more general (for example, we are not limited to quad
meshes), and our approach differs in many crucial elements, including the strategy to
define the functional map.

Surface remeshing. Surface remeshing aims at constructing a good meshing for a sur-
face that is initially given in terms of (most frequently) an irregular mesh. The literature
on surface remeshing spans decades and presents a large variety of approaches [22],
based on slightly different problem statements and pursuing a variety of specific char-
acteristics on the produced mesh.

Existing approaches range from connecting existing vertices of a point cloud with
new triangles [106], parametrizing the surface and then lifting regular tri or quad grid
in the parametric space [46], coarsening the original mesh and then regularly subdivid-
ing the resulting low-poly mesh [245], following a tangent direction-field to guide edges
of the output mesh [257], aligning edges to user strokes [298], performing a sequence
of local operations on the input mesh [139], or restricting a Voronoi diagram on the
surface and leverage Lloyd relaxation to drive vertex placement [332, 333]. Some geom-
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etry processing tasks are a prerequisite for surface re-meshing, and are often studied
together: surface parametrization [140], tangent field definition [312], and coarse quad
layouts partitioning [58].

This variety of approaches reflect the variety of sought objectives, which are ulti-
mately imposed by different downstream applications. Objectives often include regu-
larity of the meshing, tolerating only few irregular vertices (semi-regular remeshing),
or none (fully regular remeshing). The location of irregular vertices can also be care-
fully optimized. Irregular vertices can be required to be connected by short sequences
of edges, implying the implicit partition of S into a few large, fully-regular patches (a
coarse quad-domain) [59, 299], and thus easing texture mapping or shape editing. Tar-
geted polygons can also vary: in traditional scenarios, triangles are used; other times,
quadrilaterals are sought (quad-remeshing [45]), sometimes tolerating a few exceptions
(quad-dominant remeshing); other cases, such as hexagonal meshes, are also occasion-
ally studied [230, 311]. The shape of the faces is often a concern; the default ideal shape
are, implicitly, equilateral triangles and squares; alternatively, controlled anisotropy
can be sought, e.g. [21, 239], where elements are elongated along prescribed directions
(anisotropic remeshing). Constant face size is also required, implying that vertices con-
stitute a regularly distributed sampling (i.e., isotropic, or uniform remeshing); alterna-
tively, adaptive resolution is sought, concentrating vertices in more geometrically com-
plex or more semantically meaningful areas. Edge orientation can also also be impor-
tant. Reproducing creases of the surface as mesh edges is crucial for geometrical fidelity
in, e.g., CAD models; more in general, edges orientation must adhere to curvature di-
rections or to arbitrary prescribed directions (also interactively so, e.g., [153]). For ani-
mated meshes, edge orientation can be optimized according to the intended deforma-
tions [200]. Finally, specialized techniques strive to explicitly identify symmetries and
reproduce them in the meshing [238, 248].

Despite a long history of advancement and breakthroughs, and the number of ex-
isting specialized solutions, automatic surface remeshing is not yet capable of entirely
replacing the manual design of meshes by digital artists trained to fulfill a variety of ob-
jectives. This motivates our approach, which can be seen as a way to sidestep, rather
than solve, the task of surface remeshing. In our approach, most characteristics of care-
fully crafted models are automatically reproduced in the output.

The class of remeshing approaches which most closely resemble our work is example
based remeshing, where good polygonal configurations are automatically learnt from
existing examples [201]. Like in our case, good meshes, e.g. manually crafted by artists,
are assumed to exist and are leveraged to drive the construction of new meshes with
similar characteristics.
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Fig. 7.1: A visualization of the proposed method. The scheme highlights the modules
that compose the proposed pipeline.

7.3 Method

Given a triangular target mesh S and a source shape M , our goal is to automatically
transfer the connectivity of S on the geometry M . For this purpose, we define a new ba-
sis: the Coordinate Manifold Harmonics (CMH). We exploit this basis in the Functional
Maps framework and we propose a proper refinement strategy to improve the transfer
on local regions. In Figure 7.1, we visualize the proposed pipeline. In this Section, we
describe step by step all the modules involved. Each of the following subsections cor-
responds to a colored box in Figure 7.1: the Coordinate manifold Harmonics (red box),
the functional map estimation (green box), the fine-tuning for vertices placement (blue
box).

7.3.1 Coordinates Manifold Harmonics (CMH)

The functional map framework is an efficient and effective solution for the point-to-
point matching of non-rigid shapes that is independent of the adopted discretization.
However, the functional map C ∈RkS×kM is estimated by solving the optimization prob-
lem in Equation (2.23), where the number of unknowns is given by the product of kS and
kM . These two numbers define the number of frequencies involved, namely, the larger
kS and kM are, the wider the low-band filter applied is. This relation introduces a trade-
off: to represent the higher frequencies correctly, Functional Maps requires a higher
number of unknowns, and therefore a more complex optimization should be solved.

The standard choices for kS and kM are 30,60,100 while 200 or 300 are already
considered too large values. However, as can be seen in the center of Figure 7.2 with
kS = kM = 106 the representation of the geometry is very poor and many details are
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original
geometry

representation
with 106 MH

representation
with 53 CMH

Fig. 7.2: Comparison between the geometry representation provided by 106 standard
MH and the proposed 53 CMH. From left to right: the original shape, the low-pass repre-
sentation provided by 106 MH and our geometry representation. Using a small number
of basis, we drastically improve the quality of the represented geometry.

lost. This lack of quality motivates our definition of the CMH. This basis perfectly repre-
sents the 3D embedding of the given shapes just by adding three functions to a fixed set
of standard manifold harmonics. On the right of Figure 7.2, the improvement provided
by the CMH can be appreciated.

Given a shape M and the set of its first kM LBO eigenvectors ΦkM
= [φ1, . . . ,φkM

].
The coordinates Manifold Harmonics (CMH) are a set of kM +3 orthonormal functions
composed by the kM first eigenfunctions of the LBO plus three new functions: φx ,φy

and φz . We introduce φx , then sequentially φy and φz .
Let XM be the x-coordinates of the vertices of M . We compute X̃M as the low-pass

filter representation of XM provided by ΦkM
:

X̃M =ΦkM
Φ>

kM
AM XM , (7.1)

where AM is the mass matrix of M . The function φx is defined as the representation
error of XM provided by the first kM eigenfunctions of the LBO:

φx = X̃M −XM . (7.2)

We emphasize that φx is orthogonal to the space spanned by ΦkM
for construction.

Then we normalize φx :

φx = φx

‖φx‖M
, (7.3)

where ‖φx‖M =√〈φx ,φx〉M .
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Fig. 7.3: CMH construction. With respect to the 3D embedding, we compute the differ-
ence in each coordinate between the original geometry and its low pass representation
provided by the first MH (in our case 50 MH). On the right we visualize the three dif-
ferent functions, each of which will generate a CMH function. Positive values are repre-
sented in red, negatives in blue and 0 in white.

We update ΦkM
adding φx obtaining a new set of kM + 1 orthonormal functions

Φx
kM

= [φ1, . . . ,φkM
,φx]. At this point, φy can be computed applying the steps in Equa-

tions (7.1), (7.2) and (7.3), substituting XM with YM and ΦkM
with Φx

kM
. The same can

be done for φM
Z substituting YM with ZM and Φx

kM
with Φ

x,y
kM

= [φ1, . . . ,φkM
,φx ,φy ]. At

the end of this process we obtain Φ
x,y,z
kM

= [φ1, . . . ,φkM
,φx ,φy ,φz], namely the Coordi-

nates Manifold Harmonics (CMH) on M .
These new functions φx ,φy , and φz encode, by definition, the essential extrinsic in-

formation to fully reconstruct the original shape (see Figure 7.2) recovering the details
lost by the few LBO eigenfunctions (low-frequency). Therefore, the CMH exploits the
benefit to integrate intrinsic and extrinsic geometry of the surface M . On the other
hand, our dependence on extrinsic information limits our CMH basis to work with
shapes with the same (or very similar) poses. In Figure 7.4 we visualize an example of
the CMH computed on two shapes.

7.3.2 Functional Map Estimation.

We equip M and S with the CMH, respectively Φ
x,y,z
kM

and Ψ
x,y,z
kS

. We exploit these bases

in the functional map framework estimating a map C ∈ R(kS+3)×(kM+3) between M and
S.

We rely on the formulation already presented in Section 2.2.2, that we report for the
sake of clarity:

min
C

∑
p
‖C X̂(p) − Ŷ(p)C‖2

F +γ1‖C F̂− Ĝ‖2
F +γ2‖CΛM −ΛSC‖2

F . (7.4)



98 7 Intrinsic/extrinsic embedding for functional remeshing of 3D shapes

ψx ψy ψz
ψx ψy ψz

+

−

Fig. 7.4: CMH computed on two different shapes (a female shape from TOSCA [55]
and SMPL model [195]). As can be seen, the order of the CMH is not shared by the two
shapes. This is due to a different embedding in the 3D shapes; in other words, the two
shapes are not aligned and differ for a rigid transformation.

map on 50 MH map on 53 CMH φx φy φz

ψx

ψy

ψz

0.8

0

0

0.1

0.1

−0.9

0

1

0.1

Fig. 7.5: A comparison between functional maps. From left to right: the maps computed
for the first 50 eigenfunctions, the map computed for the proposed CMH, a detail of the
coefficients representing how the three new bases are mapped from one shape to the
other. These maps are estimated for the pair visualized in Figure 7.4. As can be seen, the
map computed on the CMH solves for the switches of the CMH functions. Red encodes
values close to 1, blue close to −1 while white is equal to 0.

For all our experiments we set γ1 = 0.1 and γ2 = 0.001.
The selection of the probe functions is fundamental since they lead the energy, and so
the optimization. Following [233], we adopt the WKS descriptors [209] (20 time scales)
and five landmarks functions (delta functions to which is applied a diffusion operator
for 20 different scales). Usually, these landmarks require supervised selection, but they
can be automatically selected for the human body through the method proposed in
FARM (See Section 4.3.2). In Figure 7.5, we compare the 50× 50 map in the standard
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MH (left) and the 53×53 map exploiting the CMH (right) estimated on the same set of
probe functions.

Given the functional map C , as proposed in [234] we convert it in a point-to-point
map Π : S →M solving ∀s ∈ S the following nearest neighbor assignment in the spectral
domain:

Π(s) = argmin
m∈M

‖CΦ
x,y,z
kM

(m)−Ψ
x,y,z
kS

(s)‖F (7.5)

7.3.3 Fine tuning for vertices placement

Once we have this point mapping Π, we need to refine it for the mesh transfer appli-
cation. We introduce a point-to-surface matching strategy to allow the target mesh to
“slide” along the source object to enclose its surface coherently.

Hands refinement through local correspondence. On the hands, denoted as H(S),
where usually the error is large, we apply a matching refinement. Similarly to FARM, we
define a local geodesic ball around hands and, we register them using Coherent Point
Drift (CPD) approach [226], which provides a local correspondence on the hands Πcpd .
Merging global and local correspondences we obtain Π f i nal :

Π f i nal (x) =
{
Πcpd (x) x ∈ H(S)

Π(x) otherwise
(7.6)

which we adopt to transfer the mesh.
Note that there are no guarantees that meshes have the same number of vertices.

Furthermore, a vertex-to-vertex correspondence is a constrained solution and can lead
to undesired collapsing, flipping and other artifacts. For this reason, we would provide
to our pipeline the possibility to generate solutions different from the vertex-to-vertex
ones.

Connectivity consistency. In this step, we regularize the transferred connectivity with
an as-rigid-as-possible formulation as proposed in [68]. From now on we refer to MS

as the shape with the geometry of M and the connectivity of S that is produced by
our method. We optimize the position of the vertices of MS, minimizing the following
energy:

Ear ap = 1

4

∑
ei j∈E

cotαi j |qi j −Rpi j |2 (7.7)

where pi j = i − j , qi j is the value of pi j in the new configuration and Ri j is the ro-
tation that best approximate the transformation occurred between the two configura-
tions. In [68] the authors provide a gradient derivation for the energy (7.7). This energy
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measures how far we are from a rigid transformation and encourage the vertices neigh-
borhoods to find an elastic equilibrium. In our case, we apply this energy between the
mesh S and the new vertex positions obtained from MS. This approach has two main
advantages: firstly, the as-rigid-as-possible approach fosters local rigidity and helps
solve inconsistent situations derived from vertex transfer. Secondly, it can be efficiently
optimized by gradient techniques. The optimization tends to fall in a local minimum
without destroying the global correspondence achieved before.

Geometry fitting. Finally, note that for now, we do not require to fit the geometry of
M . It is reasonable in some cases because changing the connectivity of a model also
means a different discretization of the underlying geometry, but the geometry that we
obtain is close to the one we desire. On the other hand, some artifacts can still arise: they
may be caused by pose misalignment between two models (e.g. different pose traits
between two subjects), noise in correspondence and also by stitching the Π with Πcpd .
All these issues are transformed in a coherent continuous surface by previous ARAP step
and we do not expect huge artifacts (e.g. intersections, triangles flipping). In the worst
cases, the surface locally has been collapsed in some points and need to be inflated,
or the optimization for connectivity consistency has sensibly modified local details of
geometry.
For these reasons, we perform a final geometry fitting:

Er eg = waEar ap +wd Ed ato (7.8)

where Ear ap is defined as in Equation (7.7) (we still require the coherence with the orig-
inal mesh). Ed ato is defined as:

Ed ato = ∑
i∈VMS

min
x∈M

||i −x||2 (7.9)

where x is a point on the surface of M . This energy is needed to well approximate the
geometry of M and it encodes the distances between the vertices of MS and the surface
of M . The weights wa and wd are chosen empirically; in our experiments, we found
that 0.3 and 1 respectively provide a stable setup. We optimize Er eg using a gradient
technique. The optimal solution leads to the final MS; a model that shares the connec-
tivity of S and approximates the geometry of M .

7.4 Evaluation measures

We introduce the set of measures adopted in the quantitative evaluation of the pro-
posed method. We divide the evaluation into two categories: mesh quality and transfer
quality.
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7.4.1 Mesh quality

These measures are used to evaluate our method in terms of preservation of the original
connectivity.

(a)

(b)

(c)

(d)

Degenerate triangles. These artifacts are
generated when a vertex get aligned on an
edge or on another vertex incident on the
same triangle (inset Figure). This measure
is important to ensure that mesh is adapt.
We classify a triangle as degenerated if:

− at least one of the angles is between 5◦

and 175◦, as done in [49];
− the longest edge length is major or

equal to the sum of the lengths of the other two;
− the area is close to 0.

We exclude the degenerate triangles from the calculation of the other measures.

Aspect ratio. A common method to evaluate the quality of a mesh is the Aspect ratio
(AR) of the triangles. This measure has several definitions in literature. As done in [199],
we adopt the following one:

AR = 4
sinαsinβsinγ

sinα+ sinβ+ sinγ
(7.10)

where α, β and γ are the angles of a given triangle. In figure 7.6 we show the differ-
ences between different AR average values on planar meshes and on a given human
model.

Small angles. As done in [164], we consider θmi n , θmi n and θ<30◦ which are respectively:
the minimum angle of the mesh, the average of the minimum angles of all the triangles
and the percentage of angles < 30◦. Large values for θmi n and θmi n denote higher qual-
ity meshes while meshes with small θ<30◦ value are preferred to the ones with larger
θ<30◦ .

7.4.2 Transfer Quality

These measures highlights the quality of the transfer in terms of distortion introduced
by the re-meshing concerning the surface area, angles of the mesh and error fitting to
the original data.
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Fig. 7.6: On the left, three examples with different values of average Aspect Ratio. Low
values attest irregularities in connectivity, while for values close to 1, the triangles are
almost equilateral. On the right, a model that hosts various connectivities. The three
different patches highlight differences in the Aspect Ratio.

Area distortion. This error considers the variation of the area of each triangle in the
transfer. The area distortion (Ar D) is evaluated on S and MS. Large values for this dis-
tortion indicate that the area of the triangles is not preserved in the transfer. As in [338],
the area distortion definition is:

Ar D =∑
t

∣∣∣∣ A(Tt )

A(S)
− A(Ut )

A(MS)

∣∣∣∣ (7.11)

where A(Tt ), A(Ut ) are respectively the areas of the t th triangles of S and MS while
A(M ) and A(MS) are their total area. The summation is on the set of triangles of the
transferred mesh. The value that represents each triangle is the ratio between the tri-
angle area and the total area of the shape. This measure is thus scale-invariant. Small
values of this distortion correspond to good transfer quality.

Angle distortion. Similarly, we consider the variation of the angles of each triangle in
the tessellation transfer. Given S and MS we can define the angle distortion (AnD) as:

AnD = 1

3F

∑
t

3∑
l=1

|θt ,l −ωt ,l |. (7.12)
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θt ,l and ωt ,l are the l th angle of the t th triangle of S and MS respectively. Also in this case
the first summation is on the set of triangles of the transferred mesh and small values
of this measure correspond to good transfer quality.

Error fitting. The fitting error is defined as the point-to-surface distance in Equation
(7.9). With this measure, we evaluate how much the output fits the original shape’s ge-
ometry M . When it is not specified, the roles of M and MS are the same as in Equation
(7.9) measuring how each point of MS is close to the surface of M . In some cases can
be useful to evaluate the opposite direction, how well each point of M is approximated
by the surface of MS. When we consider the last evaluation, we explicit it in the related
text.

7.5 Results

This Section evaluates our method through several experiments and applications show-
ing results both on humans and animals among heterogeneous datasets. We show the
connectivity transfer between different models through qualitative and quantitative re-
sults. Then, we investigate the contribution of the different components of our pipeline,
performing an ablation study. Finally, we also show our performances on matching and
property (e.g. texture) transfer.

Data. Here, we briefly list the data involved in our experiments. SMPL model [195] a
widely used parametric model of the human body represented as a triangular mesh
with 6890 vertices. With this model, we can generate several different human shapes
that share a common pose and connectivity. We will refer to these shapes as SMPL
dataset.In particular, we generate three subsets of shapes, namely SMPL 10K, SMPL 6K,
and SMPL 3K, where the original SMPL models have been remeshed to reach 10K, 6K,
and 3K vertices respectively. FAUST [43] is another dataset that shares the same con-
nectivity of SMPL. It is composed of 100 shapes from ten different subjects in the same
ten different poses. For all these shapes the ground truth correspondence is provided.
TOSCA [55] a synthetic dataset that contains different classes including three human
shapes (two male and one female). All the shapes in the same class share the same con-
nectivity. MakeHumans [34] is an open-source software for human body generation.
Varying the parameters, it is possible to obtain different shapes and details of the hu-
man shapes. We refer to shapes generated by this tool as MakeHumans.

Finally, for animal experiments we rely upon SMAL [348], which provides a paramet-
ric model for a wide class of animals. We also test a real-world texture transfer scenario
using two freely available artist-made meshes of dogs [2, 4].
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degTri ARave θmi n θave
mi n θ<30◦ (%)

SMPL 10K 81.80 0.67 0.11 39.14 17.54

Tosca 4 0.70 2.46 39.14 15.49

S 8 0.83 1.88 32.42 4.47

TOSCAS 32 0.78 1.18 36.55 9.72

SMPL 10KS 22.80 0.80 1.17 37.68 7.09

M S Ar D AnD Ed ato Time

SMPL 3K SMPLmodel 0.08 6.79 0.047 342.83

SMPL 6K SMPLmodel 0.08 5.53 0.037 389.56

SMPL 10K SMPLmodel 0.08 5.60 0.044 502.46

Tosca SMPLmodel 0.11 8.55 0.063 437.66

MakeH 8k SMPLmodel 0.12 6.59 0.087 539.83

MakeH 13k SMPLmodel 0.12 6.70 0.090 774.07

Table 7.1: On the left, mesh quality evaluation of the examples shown in the first two
columns of Figure. 7.7. Tosca and SMPL10K rows highlight the features of the connec-
tivity on the target Geometry. S is the SMPL model that provides the connectivity. The
last two rows evaluate the quality provided by our method. The measures adopted are
(from left to right): the number of degenerate triangles, average Aspect Ratio, minimum
angle (in degrees), the average of the minimum angle for each triangle in the shape
and the percentage of angles under 30◦. On the right, the transfer quality evaluation
using our method to transfer the SMPL model connectivity to shapes from 6 different
datasets. The values in the columns represent in order: the area distortion, the angle
distortion, the fitting error (cm) and the execution time (s).

Connectivity transfer. To assess the performance in connectivity transfer, we conduct
various experiments and collect quantitative evaluations. Firstly, we transfer the SMPL
template mesh over two different data: a SMPL model remeshed at 10K and a subject
from TOSCA. Table 7.1 reports the measures described in Section 7.4.1. Even in the pres-
ence of substantially geometry differences, our method produces a satisfactory output,
as qualitatively shown in the first two columns of Figure 7.7. In another experiment, we
test on a large collection of shapes from six different datasets. Table 7.1 (right) reports
measures on connectivity quality, geometry error and computation time. The results
show a good performance for several different numbers of vertices and tessellations.
In Figure 7.7 we report further experiments on an articulated pose (third column) and
on animals domain (fourth and fifth column). The last row reports the point-to-surface
distance between our output and the target geometry.

Ablation. We perform an ablation study to highlight the different contributions of each
step in our pipeline. We selected two models from the FAUST dataset in A-pose. Then,
we transferred the original mesh of the first over the remeshed geometry of the sec-
ond. The two subjects have non-isometric deformations induced by the different iden-
tities and performed remeshing (e.g. sharper fingers compared to the ground truth).
The various pose traits not precisely aligned introduce a further challenge. The result
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Fig. 7.7: Some qualitative results for connectivity transfer. In the last row we show the
point-to-surface error of our output from the target geometry. This error is encoded by
the heatmap (expressed in cm and saturated at 1cm).

of the ablation is reported quantitatively in Table 7.2 and it is presented qualitatively
in Figure 7.8. As a first remark, the worst result is obtained by removing CMH basis.
This underlines the key role of our novel basis set in catching geometry representation,
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in particularly on peripheral regions. In the same spirit, removing the ARAP energy for
geometry fitting causes dramatic misrepresentations. This is evident in the highly non-
isometric differences among the shapes. Another critical aspect is the representation of
the thinnest details; while they are overall reproduced correctly, hands requires an ad-
hoc strategy. Without our local CPD correspondence, several collapses occur. Finally,
the ARAP energy for connectivity consistency is the only element in our pipeline spe-
cialized in the original mesh features preservation. While it is hard to appreciate quali-
tatively, we refer to Table 7.2 to notice the regularization role of this step. This optimiza-
tion avoids several artifacts like triangles collapsing and angles distortions that would
make the result unusable for several applications. We would conclude this Section by
highlighting that the most misrepresented part is the face due to the presence of the
beard in the target geometry. However, in all cases, it is correctly mapped in the front of
the head and the local connectivity is coherent with the global one.

complete w/o CMH w/o CPD w/o CC w/o GF

mean MS to M 0.057 0.105 0.063 0.057 0.169

max MS to M 1.938 3.026 1.938 1.749 4.649

mean M to MS 0.141 0.605 0.156 0.149 0.300

max M to MS 1.396 7.569 1.987 1.733 5.282

Ar D 0.114 0.229 0.119 0.577 0.146

AnD 7.80 11.13 9.11 NaN 9.41

Table 7.2: Ablation Study. In order to assess the contribution of each individual step,
we compare the results obtained by the complete pipeline (second column) with the
results obtained omitting one step (subsequent columns). We report the error in terms
of: point-to-surface distances (cm), evaluated in both direction, Area distortion, and
Angle distortion. CC and GF denote, respectively, ARAP for connectivity consistency
and ARAP for geometry fitting.

Point-to-point matching. Firstly, we show how CMH can improve the spectral repre-
sentation of the models in the same pose. Adopting the point-to-point matching ap-
proach based on the functional map framework [233], we estimate a functional map
on a set of given probe functions, then assign the matching through the nearest neigh-
bor in the spectral domain. In Figure 7.9, we quantitatively compare the results using
53 MH against 50 MH plus the 3 CMH. Although this experiment is performed only for
shapes with the same pose, we appreciate that the CMH improves the point-to-point
matching. In particular, as we will confirm in the next experiments, the improvements
of CMH are concentrated on the detailed parts such as the hands and arms, where even
small errors introduce unpleasant visual effects.
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without CMH without CPD without CC without GF complete pipeline

Connectivity Geometry Ground truth

Fig. 7.8: An ablation study performed with two of meshes from the FAUST dataset:
“Connectivity” and “Ground truth”. Our system takes in input the former, and an ir-
regular arbitrary remeshing of the latter (labelled “Geometry”). Below: results obtained
if the specified part of our pipeline is omitted.

7.5.1 Comparison with other methods

The proposed matching pipeline is quantitatively compared to the following approaches:

MH: this method is defined by our pipeline applied on a standard functional map of
size 53×53 using the classic manifold harmonics. This is a baseline to test improve-
ment induced by our CMH basis.

LMH: this method involves another strategy to exploit local information on the spec-
tral domain using the localized manifold harmonic recently proposed in [216]. The
functional map is estimated from 50 standard plus 3 localized manifold harmonics.

D&D: this method employs the refinement procedure proposed in [100] starting from
a functional map of size 53×53. This refinement strategy represents the state of the
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Fig. 7.9: On the left, point-to-point matching evaluation on all the possible (450) pairs
with the same pose selected at random from the FAUST dataset. The evaluation is per-
formed accordingly to [165]. The y-value corresponds to the percentage of matched
points with an error smaller or equal to the x-value. In the legend we report the aver-
age geodesic error in centimeters. On the right, comparison on the SMPL dataset. The
results are on average on ten shapes remesh with the SMPL connectivity. Solid lines rep-
resent results on 10K vertices shapes, dashed lines results on meshes with 6K vertices
and dotted ones on meshes with 3K vertices.

art for point-to-surface matching based on the functional map framework, which is
very similar to our use of the ARAP constraint to deal with fine details.

All the functional maps used in these experiments are estimated through the method
proposed in [233] using the same probe functions and landmarks. The datasets in-
volved have three different resolutions (3K, 6K, and 10K) and each one consists of ten
shapes generated by SMPL. The results depicted in Figure 7.9 show that the proposed
CMH are better suited for this task with respect to both MH and LMH. Furthermore our
pipeline, applied on all the three bases, provides results that outperform the state of the
art refinement methods.

Texture transfer. A compelling application of a remeshing pipeline is texture transfer,
for example when one texture is to be shared among different models; texture transfer
requires skills and artists direction, according to criteria that are hard do encapsulate
as general rules. In Figure 7.10 we show a mesh equipped with a texture and a target ge-
ometry for which would be challenging apply the same. By transferring the connectivity,
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Connectivity Texture Geometry Connectivity + Texture + Geometry

Fig. 7.10: An example of texture transfer between models. From the left: a regular con-
nectivity, a defined texture and an irregular geometry we desire to texturize. On the right
the result. We would like to underlie that transferring good connectivity let the geome-
try to inherit some desirable properties (e.g. face and feet details).

the resulting model can be textured directly with the inherited UV-map. Figure 7.11 re-
ports two real-world examples: on the left, the texture is obtained Autodeskś Character
Generator and transferred over a MakeHumans model in a similar pose. On the right,
we transfer a texture between two models of dogs of different breeds. Texture coher-
ence is obtained in spite the different sources, morphology, proportions and traits of
the models.

Fig. 7.11: Two artist made texture transfer example. On the left the original texture on
S, on the right the texture transferred using our method on a different geometry.

Full model transfer from multiple targets. In modeling and animation frameworks,
it is often required to effectively define not only the tessellation or the texture as seen
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Geometry Connectivity+Texture Geometry+Connectivity+Texture Animated Results

Connectivity Geometry Ground truth

Fig. 7.12: The full model transfer experiment. From left to right: the SMPL model pro-
vides the geometry, an Autodesk Character Generator model (around 10K vertices) that
provides the connectivity and the texture; the result of our transfer and some model
generated by including our output inside SMPL framework. We can automatic substi-
tute the SMPL template with an arbitrary one, generating many texturized and shaped
models, and move them using inherited skinning information.

above but also an additional set of attributes, e.g., the rigging and skinning properties.
Such amount of properties may not be designed directly on a single target shape. We
show that using our method it is possible to equip the source shape with the required
properties from a collection of targets that disjointly have such features. For instance,
using SMPL we can obtain rigging and skinning information ready-to-use. However,
no texture is provided, and also its resolution is limited (i.e., 6890 vertices). To over-
come these limits, we involve a further target model obtained by Autodesk Character’s
Generator equipped with a higher resolution and a texture. Given the source shape (as
geometry), we employ our pipeline with both the target models. In this fashion, the
source shape inherits texture and the high-resolution tessellation from the Autodesk
Character, and the rigging and skinning weights from the SMPL model. In particular,
the rigging properties are obtained using the devoted regressor (see [195] ) on the ver-
tices of the new tessellation from SMPL. The skinning weights are also obtained from
the SMPL matching, but then they are extended to the higher resolution mesh by ap-
plying a nearest-neighbor procedure between the two (i.e., high and low) tessellations.
Results are very promising as illustrated in Figure 7.12 where we can generate more
zombie-like models.

7.6 Conclusions

This chapter proposes a new approach for surface remeshing based on a fully automatic
shape matching strategy. Our experiments show that this system can produce meshes
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Fig. 7.13: Two visualizations of the main limitation of the proposed method. In the first
row, the input shape and the target mesh have different poses. In the second row, the
two quadruped animals (a dog and a fawn) are not isometric. The mesh transfer error is
larger where the differences in the poses (the right leg) and from isometry (on the ears)
are more evident.

combining the geometrical shape of a captured mesh shape with the tessellation and
associated attributes of another similar shape. To this end, we introduced a new set of
basis functions, the Coordinates Manifold Harmonics (CMH), that accounts for both
intrinsic and extrinsic information within one unified spectral matching framework.
We leverage on the capabilities of CMH in a pipeline that extracts the point-to-point
correspondences from the functional map and refines the results by optimizing for the
preservation of local isometries. Our experimental results show the improved ability of
our method of transferring a desired connectivity on previously unseen geometry for
different application domains. The method has been recently applied in SHREC 2020
challenge [94], showing state-of-the-art results in matching non-isometric animals.

7.6.1 Limitations

The main limitation of our method it is that it needs input shapes in a relatively similar
geometry, including the pose. In Figure 7.13 we exemplifies this limitation.

7.6.2 Future work

A shape retrieval strategy can be introduced to improve the automatic identification
of the most appropriate target shape with the desired tessellation. In future work, we
plan to make our method able to work also for stronger non-isometric pairs. Recently,
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other refinement methods for correspondence have been proposed such as, among
others, [101, 102, 214, 258]. We plan to inject each of these (and possibly others) re-
finement methods and compare them in the surface remeshing task. Furthermore, this
work assumes that polygonal meshes represent shapes. We plan to extend our work
exploiting new matching strategies between meshes and point clouds to deal with the
cases where the tessellation is not available for the source shape. Finally, thanks to the
flexibility of the framework of functional maps, we aim at adopting our CMH tool in the
challenging cases of topological error and partiality, exploiting the CMH basis in the
partial functional maps framework as proposed in [265].

Concluding this Part, we would offer few comments. We observed that modern tools
to match and describe surfaces heavily rely on their discretization; matching non-
isometries is more difficult when the triangulations significantly differ. The connectivity
impacts the geometry and the linkage of different ones. This fact is as trivial as unde-
sirable; we need to discretize our object for computational reasons, but we would limit
information loss. As stated in this thesis introduction, discretization and geometry are
two different entities with different purposes. Following this road, we have extended a
common intrinsic representation to consider extrinsic information, and we can transfer
connectivity between different geometries in the same pose. The enhancement given
by the extrinsic information has an exact reason: disentangling the object geometry
from its connectivity is easier by knowing something about its spatial position.

Also, we highlight that the mesh transfer task is a particular case of matching. We
do not only put them in correspondence, but we describe the two geometry with the
same discretization. Someone could reply that a template registration pipeline (like
FARM and its resolution augmentation) provides a geometry description with differ-
ent connectivities. While it is right in some sense, these methods are limited to the
availability of a deformable template; our remeshing method is general, providing a
way to transfer connectivity between arbitrary shapes. Secondly, registration pipelines
require deforming the source template through several intermediate geometries. This
optimization can affect final geometry due to local minima, and intermediate results
do not define any target geometry property. Our remeshing algorithm skips this pro-
cess, providing an initial transfer that already represents the target geometry structure.
Then, our optimization is only locally, looking for a trade-off between details catching
and connectivity preservation.

Finally, working with more faint surface representations (like point clouds) is not
explicitly addressed by previous Chapters. We face this challenge in the next Part.



In the previous Parts, we mainly focused on correspondences between triangle
meshes, combining or extending existing representation. In this Part, we face dif-
ferent representations: firstly, we present a learning pipeline extending our match-
ing capability on point clouds [205]. We learn a high-dimensional pointwise em-
bedding, where a linear transformation is enough to solve for the non-rigid cor-
respondence. Secondly, we propose to link two super-compact representations: the
Laplacian spectra of a shapes collection and an AutoEncoder latent space [206].
Our method accepts shapes regardless of their representation and outputs them in
a unique discretization, providing natural correspondence between the geometries.

Part III

Learning Representations
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8

Correspondence Learning via Linearly-invariant
Embedding

In this chapter, we propose a fully differentiable pipeline for estimating accurate dense
correspondences between 3D point clouds. The proposed pipeline is an extension and a
generalization of the functional maps framework. However, instead of using the Laplace-
Beltrami eigenfunctions as done in virtually all previous works in this domain, we
demonstrate that learning the basis from data can both improve robustness and lead
to better accuracy in challenging settings. We interpret the basis as a learned embedding
into a higher dimensional space. Following the functional map paradigm the optimal
transformation in this embedding space must be linear and we propose a separate archi-
tecture aimed at estimating the transformation by learning optimal descriptor functions.
This leads to the first end-to-end trainable functional map-based correspondence ap-
proach in which both the basis and the descriptors are learned from data. Interestingly,
we also observe that learning a canonical embedding leads to worse results, suggesting
that leaving an extra linear degree of freedom to the embedding network gives it more
robustness, thereby also shedding light onto the success of previous methods. Finally, we
demonstrate that our approach achieves state-of-the-art results in challenging non-rigid
3D point cloud correspondence applications.

8.1 Introduction

Computing correspondences between geometric objects is a widely investigated task.
Its applications are countless: rigid and non-rigid registration methods are instrumen-
tal in engineering, medicine and biology [113, 155, 177] among other fields. Point cloud
registration is important for range scan data, e.g., in robotics [122,276], but the problem
can also be generalized to abstract domains like graphs [109, 319].

The non-rigid correspondence problem is particularly challenging as a successful
solution must deal with large variability in shape deformations and be robust to noise in
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the input data. To address this problem, in recent years, several data-driven approaches
have been proposed to learn the optimal transformation model from data rather than
imposing it a priori, including [48, 127, 321] among others. In this domain, a promi-
nent direction is based on the functional map representation [234], which has been
adapted to the learning-based setting [91, 131, 186, 271]. These methods have shown
that optimal feature or descriptor functions (also known as “probe” functions) can be
learned from data and then used successfully within the functional map pipeline to
obtain accurate dense correspondences. Unfortunately, the reduced functional basis,
which forms the key ingredient in this approach, has so far been tied to the Laplace-
Belrtami eigen-basis, specified and fixed a priori. While this choice might be reasonable
for near-isometric 3D shapes represented as triangle meshes, it does not allow to handle
more diverse deformations classes of or significant noise in the data. The main limita-
tions of this pipeline are two-fold: first, the quality of the map is strongly tied to the
choice of probe functions, and second, the choice of the basis plays a fundamental role
both for the expressive power and the accuracy of the final results. Several approaches
have been proposed to learn the probe functions from data [91, 131, 186, 271]. How-
ever, as mentioned above, no existing methods have attempted to learn the basis. This
is particularly problematic since, as we show below, the Laplacian eigen-basis is not
only tied to near-isometric deformations; even more fundamentally, it can only be re-
liably computed on shapes represented as triangle meshes. While some attempts (e.g.,
in [214, 265]) have been made to compute eigenfunctions using existing discretizations
of Laplace-Beltrami operators on point clouds, e.g., [35, 180]. Nevertheless, in part due
to the differential nature of the Laplacian, such discretizations cannot handle even mild
noise levels in practice. Inspired by the success and robustness of these techniques, we
propose the first fully-differentiable functional maps pipeline, in which both the probe
functions and the functional basis are learned from the data. Our key observation is that
basis learning can be phrased as computing an embedding into a higher-dimensional
space in which a non-rigid deformation becomes a linear transformation. This follows
the functional map paradigm in which functional maps arising from pointwise corre-
spondences must always be linear [234] and computing such a linear transformation
is equivalent to solving the non-rigid correspondence problem. In the process, we also
observe that training a network that aims to compute a canonical embedding, in which
optimal correspondences are simple nearest neighbors, leads to a drop in performance.
As we discuss below, this suggests that the additional degree of freedom, by learning a
linearly-invariant embedding, helps to regularize the learning process and avoid over-
fitting in challenging cases.

Finally, we demonstrate that our simple (but effective) formulation leads to accurate
dense maps. The code, datasets and our pre-trained networks can be found online [8].
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Fig. 8.1: Pipeline overview: starting from point cloud coordinates we obtain a set of
linearly-invariant basis functions via the Invariant Embedding Network N (a), and de-
scriptors using the Probe Function Network G (b). The learned basis and probe func-
tions are used to compute the optimal linear transformation ÂX Y (c). This transforma-
tion is used to align the two sets of bases (d). The correspondence between point clouds
is then estimated using nearest neighbors between the aligned basis sets (e). Note that
the underlying meshes are depicted only for the sake of clarity of visualization.

8.2 Motivation and notation

Our main goal is to learn an optimal basis for the functional map pipeline on point
cloud data. One possibility would be to use triangle meshes and learn a discretization
of the Laplacian that would approximate the low-frequency basis functions on point
clouds. However, this requires differentiating through a sparse eigen-decomposition,
which can be expensive and unstable.

Instead, we propose an end-to-end learnable pipeline that uses a dual point of view.
We summarize our overall pipeline in Figure 8.1. Our first remark is that entries of
the basis functions can be interpreted as an embedding of the original 3D shape into
a higher k-dimensional space. Namely, each point x ∈ X gets associated with a k-
dimensional vector [φX

1 (x),φX
2 (x), . . . ,φX

k (x)]. This is called the “spectral” embedding
and it is well-known (see e.g., [272]) that when using the Laplacian basis on smooth sur-
faces, as k →∞ this embedding becomes injective so that no two points can have the
same associated vectors.

The spectral embedding plays a role in the conversion between functional and
pointwise maps. The standard approach for this conversion [234] is by mapping Dirac
δx functions associated with each point x on the source shape and finding the near-
est Dirac δ function on the target. Interestingly, δx is not a real-valued function but
is rather a distribution, which acts on real-valued functions through inner products:
< δx , f >= f (x). As functional maps are operators that map real-valued functions, in
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principle they cannot be used to transport Dirac δ’s. To transport such distributions, a
more sound approach is to use the adjoint operator of a functional map [146]. Surpris-
ingly, although the notion of the adjoint has been studied , both its role and the limita-
tions of functional maps in transferring δ functions seems to have been ignored in the
functional maps literature so far. The adjoint operator is defined implicitly as follows:
given a functional map CY X , its adjoint AX Y is defined so for any pair of real-valued
functions f ∈ F (X ) and g ∈ F (Y ) : <CY X g , f >=< g , AX Y f >. Note that the adjoint
operator: 1) associates functions in the opposite direction to that of the functional map,
and 2) is defined using the L2 inner products, and can thus be used to transport distri-
butions. It is easy to see that the adjoint of the pull-back of a point-to-point map TX Y

has the following nice property: AX Y δx = δTX Y (x). We refer to the appendix C for a
more complete treatment of the adjoint operator.

Finally, we note that the coefficients of Dirac δ function δx are precisely the vector
of values [φX

1 (x),φX
2 (x), . . . ,φX

k (x)]. Moreover, the adjoint is a linear operator that asso-
ciates δ functions with δ functions. As such, the adjoint can be seen as a linear transfor-
mation that aligns the spectral embeddings of X and Y . We emphasize that the same
does not hold for a functional map, in general.

This discussion implies that in the functional map framework, the basis can be in-
terpreted as an embedding, and moreover the corresponding embeddings are related
by a linear transformation, which is precisely the adjoint of the functional map.

Strategy Our overall strategy is to mimic this construction using a learning-based ap-
proach. We propose to train a network that computes for each shape an embedding
into some k dimensional space, such that the embeddings of two shapes are related by
a linear transformation. We then train a separate network that computes probe func-
tions to establish the optimal linear transformation at test time. Remarkably, this de-
composition of the problem consistently outperforms a baseline approach that aims to
compute a canonical embedding, in which correspondences can be obtained through
nearest neighbor search directly. As described below, we attribute this primarily to the
fact that learning a canonical embedding is a difficult problem, and splitting it into two
parts (invariant embedding + transformation) helps to regularize the problem in chal-
lenging practical settings. Note that we use the term “basis” only by analogy with the
Laplace-Beltrami eigenfunctions, and do not formally impose a basis structure on our
learned set of functions.
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8.3 Linearly-invariant embedding

This section proposes a novel learning strategy to generalize the Functional Maps
framework to noisy and incomplete data.

We discretize a shape X as a collection of 3D points xi ∈R3 where i ∈ {1, . . . ,nX }. We
collect these nX points in a matrix PX ∈ RnX ×3 such that the i -th row of PX captures
the 3D coordinates of xi . We refer to the matrix PX as the natural embedding of X .

Given a pair of shapes X and Y our goal is to find a correspondence between them.
This correspondence is a mapping between the points of X and the points of Y . We de-
note a correspondence as a map TX Y : X →Y such that TX Y (xi ) = y j , ∀i ∈ {1, . . . ,nX }
and some j ∈ {1, . . . ,nY }. This map has a natural matrix representation ΠX Y ∈ RnX ×nY

such that ΠX Y (i , j ) = 1 if TX Y (xi ) = y j and 0 otherwise.
Let ΦX and ΦY denote the matrices, whose rows can be interpreted as embed-

dings of the points of X and Y as described in Section 2.1.4. Below we do not as-
sume that ΦX and ΦY represent the Laplacian eigenbasis, but consider general em-
beddings into some fixed k dimensional space. Recall that in the formalism of Func-
tional Maps, there must exist a linear transformation AX Y that aligns the correspond-
ing embeddings. This can be written as: AX Y ΦT

X
= (ΠX Y ΦY )T , where ΠX Y is the

binary matrix that encodes the correspondence between X and Y . In the functional
map framework, the linear transformation AX Y is precisely the adjoint operator, since
AX Y = (Φ+

X
ΠX Y ΦY )T =C T

Y X
using the standard definition of a functional map CY X

[235].
Given AX Y , we can estimate ΠX Y by solving the following optimization problem:

ΠX Y = argmin
x Π

‖ΦX AT
X Y −ΠΦY ‖2. (8.1)

Note that Equation (8.1) can be solved in closed form by finding, for every row of
ΦX AT

X Y
, the closest row in ΦY in the standard L2 sense.

Based on Equation (8.1), our general goal is to train a network N that can produce for
any shape X an embedding ΦX into a k-dimensional space, such that embeddings of
every pair of shapes ΦX ,ΦY are related by a linear transformation. In other words, the
network N transform a shape from the original 3D space, in which complex non-rigid
deformations occur, to another space, in which transformations across shapes must al-
ways be linear. Interestingly, as we show below, the additional linear degree of freedom
helps to regularize the learning procedure, achieving better results than merely learning
a canonical embedding in which corresponding points are nearest neighbors.

8.3.1 Learning a linearly-invariant embedding
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PX

PY

N

N

Θ

ΦX

ΦY

Φ̂X =ΦX AT
X Y

softmap SX Y

L(ΦX ,ΦY )

To learn a linearly-invariant embedding we
first observe that for fixed matrices ΦX ,ΦY

the expression ‖ΦX AT
X Y

− ΠX Y ΦY ‖2 de-
pends both on AT

X Y
and ΠX Y , which can

make training difficult. However, for a fixed correspondence matrix ΠX Y the optimal
matrix AX Y can be obtained in closed form simply as: AX Y = (Φ+

X
ΠX Y ΦY )T , which

can be computed by solving a linear system of equations. Importantly, this procedure
can be differentiated using the closed-form expression of derivatives of matrix inverses,
which we exploit in our approach.

Embedding network training Given a set of training pairs of shapes X ,Y for which
ground truth correspondences Π

g t
X Y

are known, our embedding network N computes
an embedding ΦX ,ΦY for each shape using a Siamese architecture with shared param-
eters. I.e., NΘ(PX ) =ΦX and NΘ(PY ) =ΦY . We use the notation NΘ to highlight that this
network has trainable parameters Θ which are shared across shapes. In the following,
we refer to this network as simply N.

To define our loss we compute AX Y = (Φ+
X
Π

g t
X Y

ΦY )T as the optimal linear transfor-
mation, and use it to obtain a transformed embedding Φ̂X = ΦX AT

X Y
. We then com-

pare the rows of Φ̂X to those of ΦY to obtain the soft permutation matrix SX Y that ap-
proximates the discrete mapping between the shapes in a differentiable way using the
softmax operation. Finally, we use the following loss to train the embedding network:

L(ΦX ,ΦY ) = 1

nβ

∑‖SX Y PX −Π
g t
X Y

PX ‖2
2. (8.2)

Recall that PX is the matrix encoding the 3D coordinates of the shape X .
Intuitively, the main goal of the loss in Equation (8.2) is to compare the ground truth

correspondence Π
g t
X Y

to the computed softmap matrix SX Y . An alternative would to
use the geodesic distances as weights as done in [186], but the geodesic distances are
expensive and unreliable to compute on point clouds. Other options are the direct
Frobenius loss on the permutation matrix or a multinomial regression loss as done in
e.g. [207, 251]. However, these losses ignore the geometry and penalize incorrect corre-
spondences independently of their proximity to correct ones. Instead, our loss penal-
izes incorrect correspondences based on the Euclidean distances of associated points.
Moreover, Equation (8.2) can be seen as the comparison between the action of the
ground-truth functional map in the full basis and the action of the estimated functional
map on a specific set of functions that completely describe the geometry of the data.
Our loss is efficient, takes the geometry into account, and is related to the Functional
Maps formalism.
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8.3.2 Learning the optimal transformation PX

PY

ΦX

ΦY

G

G

Θ

GX

GY

adjoint ÂX Y L(GX ,GY )As mentioned above, we train our approach in
two stages: first we train an embedding net-
work using the loss described in Section 8.3.1.
We then train a separate network that aims to compute an optimal linear transforma-
tion between the embeddings, which can be used to compute correspondences at test
time. Our observation is that this linear transformation can be obtained given enough
constraints, by solving a linear system. Therefore, following the ideas in Deep Func-
tional Maps [186] our second network G takes as input the natural embedding of a
shape and outputs a set of p “probe” functions via GΘ(PX ) = GX and GΘ(PY ) = GY

using shared trainable parameters Θ. We then minimize the following loss:

L(GX ,GY ) = ‖Ag t
X Y

− ÂX Y ‖2. (8.3)

Here Ag t
X Y

is the ground truth linear transformation between the learned embeddings

Ag t
X Y

= (Φ+
X
Π

g t
X Y

ΦY )T whereas ÂX Y =
(
(Φ†

Y
GY )T

)†
(Φ†

X
GX )T . This equation arises

from the fact that if AX Y is the adjoint that aligns the embeddings then AT
X Y

is a func-

tional map from Y to X which implies that AT
X Y

Φ†
Y

GY = Φ†
X

GX whenever GX ,GY

are corresponding functions. We report in Appendix C a more detailed discussion

8.3.3 Test phase

Once we train these two networks, we can estimate the correspondence between an
arbitrary pair of point clouds X and Y in four steps: (1) compute the embeddings ΦX

and ΦY using the embedding network N; (2) compute the set of probe functions, GX

and GY using the network G; (3) solve for the linear transformation AX Y using the
expression given for ÂX Y above; (4) estimate for the correspondence ΠX Y via nearest
neighbor search as described in Equation (8.1).

Discussion While the basis and probe function networks appear similar as they both
output a matrix, they are different in their losses and, consequently, in the task they
solve. Our first linearly-invariant embedding (basis) network aims to output a repre-
sentation in k dimensions so that different shapes share the same structure up to ro-
tation and non-uniform scaling. Further, our loss in Equation (8.2) promotes continu-
ity of the embedding with respect to the original shape coordinates. In contrast, the
descriptor network aims to find a small set of reliable descriptors that can establish
the linear transformation in the k dimensional space. Our strategy is different from a
network which would aim to find an embedding where correspondences are directly
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Fig. 8.2: The evaluation of the correspondence for point clouds generated from the
FAUST dataset without or with additional noise. On the left, cumulative curves with
mean error in the legends. On the right, a qualitative example in Noise setup, with the
related hotmap error.

obtained as nearest neighbors (we call this option a “universal embedding”), as such
a network would have to disambiguate each point directly. Instead, by first obtaining a
smooth embedding and then using a small number of salient feature descriptors (probe
functions in our case), our approach allows us to find a dense correspondence even in
challenging cases, in which individual points may not be easy to distinguish.

8.4 Experiments

We evaluate our pipeline on the correspondence problem between non-rigid 3D point
clouds in the challenging class of human models. We use this class because of the avail-
ability of data and baselines for comparison but stress that our method is general and
can be applied to any shape category.

Architecture and parameters Both of our networks N and G are built upon the Point-
Net architecture [252]. For our experiments we train over 10K shapes from the SURREAL
dataset [310], resampled at 1K vertices. We learn a k = 20 dimensional embedding (ba-
sis) and p = 40 probe functions for each point cloud.

8.4.1 Non-isometric pointclouds

We consider a first test set composed by the 100 shapes from the FAUST dataset [43] (10
subjects in 10 poses). We treat each shape as an unorganized point cloud selecting only
1K of its vertices and discarding mesh connectivity. We generate a second test set per-
turbing the first one with Gaussian noise. In both test sets, we deal with non-isometric
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Fig. 8.3: Qantitative results on 100 pairs of the test set with 30% outlier points, com-
pared to the baselines, with a qualitative example.

Fig. 8.4: Despite the presence of clutter, partiality and non-isometry our point cloud-
based approach shows resilience.

pairs (different subjects) and strong non-rigid deformations (different poses). The sec-
ond one is particularly challenging because it ruins the underlying shape structure.

As competitive baselines we consider universal embeddings (Uni20 and Uni60) ob-
tained with the same architecture we used for N by learning 20 and 60 basis respectively,
but enforcing the optimal linear transformation to be identity. We also compare our
method with the standard functional maps, with 5 ground-truth landmarks (FMAP),
the recent state-of-the-art methods (GFM) [91], and finally against 3D-CODED [127]
(3DC). For the GFM and FMAP methods we also compare to a version refined with
ZoomOut [214] (FMAP+ZOO, GFM+ZOO). For the methods that require the LBO basis,
we adopt the estimation of LBO for point clouds proposed in [80].
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Fig. 8.5: A result of two
shapes from different dis-
creti zation and datasets,
from the collection pre-
sented in Chapter 6.

As can be seen in Figure 8.2, we outperform the base-
line and all the competitors including the state-of-the-art
methods GFM and 3DC in both the considered scenarios.
We stress that both [127] and [91] are very recent highly
complex state-of-the-art methods, with e.g. [127] being
directly adapted to point clouds with an expensive test-
time post-processing. Our method achieves state-of-the-
art results without any additional post-processing. Fur-
ther robustness of our method is illustrated in Figure 8.3,
where we evaluate our networks trained on clean data,
on the FAUST test set augmented with outliers points.
Our method shows resilience and outperforms compet-
ing methods in this challenging setting, despite not being
presented with outlier data at training time.

In Figure 8.4 we also visualize a correspondence, computed using our network, be-
tween a pair of real-world scans taken from the Scan the world project collection [11].
The presence of significant topological changes, partiality, clutter, non-isometry and
self-intersections represents a considerable challenge. Despite this, our method, shows
remarkable resilience and provides a reliable result even without retraining or post-
processing. Finally, in Figure 8.5 we show a result over two shapes from the collection
presented in Chapter 6. The left one is from a real-world scan, while the second is a
non-human with different proportion and structure.

8.4.2 Fragmented partiality

Finally, we compare our approach, the universal embedding and the LBO basis (LBO)
in an extreme scenario. We compute a correspondence between each of the 100 full
shapes from FAUST and a fragmented version that consists of several small discon-
nected components. This experiment tests how each basis is affected by heavy loss of
geometry. Fixing a basis, we evaluate 1) the matching using a ground-truth transfor-
mation to retrieve the optimal linear transformation, on the left of Figure 8.6; 2) the
correspondence estimated with the best pipeline for the given basis, on the right. The
average geodesic errors are reported in the legends. In 2) for LBO we consider partial
functional maps (PFM) [265], which extends the functional maps framework to partial
cases. In the middle we visualize a qualitative comparison on one of the 100 pairs tested,
where the correspondence in encoded by the color transfer. We highlight that it is not
always possible to have a transformation that produces a perfect matching. LBO+opt
and PFM suffer from the significant sensitivity of the LBO to partiality and topological
noise. The universal embedding shows also a significant loss of information. With the
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Fig. 8.6: Partial setup. The shape is matched with a fragmented version of itself. We
show the amount of information lost by the basis due to surface destruction and com-
pare our method to baseline and partial functional map (pfm) [265]. More details in the
main text.

linear invariant embedding it is still possible to retrieve good information and general-
ize to corrupted data that are completely unseen during training.

8.5 Conclusion

This Chapter presented an extension to the Functional Maps framework by replacing
the standard Laplace-Beltrami eigenfunctions with learned functions. We achieve this
by learning an optimal linearly-invariant embedding and a separate network that aligns
embeddings of different shapes.

While general, our approach still assumes that the input data poses a “natural” em-
bedding in 3D making it yet not applicable to data such as graphs. Moreover, we do
not exploit the mesh structure that might be available in certain cases. Combining our
method with a mesh-aware approach is an exciting direction for future work.

Our preliminary investigation outperforms the competitors in challenging scenar-
ios. We believe that these results only scratch the surface and pave the way for future
work on invariant embeddings for shape correspondence and other related problems.
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Instant recovery of shape from spectrum via
latent space connections

We introduce the first learning-based method for recovering shapes from Laplacian spec-
tra. Our model consists of a cycle-consistent module that maps between learned latent
vectors of an auto-encoder and sequences of eigenvalues. This module provides an effi-
cient and effective linkage between Laplacian spectrum and geometry. Our data-driven
approach replaces the need for ad-hoc regularizers required by prior methods, while pro-
viding more accurate results at a fraction of the computational cost. Our learning model
applies without modifications across different dimensions (2D and 3D shapes alike), rep-
resentations (meshes, contours and point clouds), as well as across different shape classes,
and admits arbitrary resolution of the input spectrum without affecting complexity. The
increased flexibility allows us to address notoriously difficult tasks in 3D vision and ge-
ometry processing within a unified framework, including shape generation from spec-
trum, mesh super-resolution, shape exploration, style transfer, spectrum estimation from
point clouds, segmentation transfer and point-to-point matching.

9.1 Introduction

Constructing compact encodings of geometric shapes lies at the heart of 2D and 3D
Computer Vision. While earlier approaches have concentrated on handcrafted repre-
sentations, with the advent of geometric deep learning [56, 208], data-driven learned
feature encodings have gained prominence. A desirable property in many applications,
such as shape exploration and synthesis, is to be able to recover the shape from its (la-
tent) encoding, and various auto-encoder architectures have been designed to solve
this problem [14, 114, 185, 222]. Despite significant progress in this area, the structure
of the latent vectors is arduous to control. For example, the dimensions of the latent
vectors typically lack a canonical ordering, while invariance to various geometric de-
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pose target style target our result eigenvalues
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Fig. 9.1: Our spectral reconstruction enables correspondence-free style transfer. Given
pose and style “donors” (left and middle columns respectively), we synthesize a new
shape with the pose of the former and the style of the latter. The generation is driven by
a learning-based eigenvalues alignment (rightmost plots). Our approach handles differ-
ent resolutions (middle row) and representations (bottom row; the surface underlying
the point cloud is only for visualization purposes).

formations is often only learned by data augmentation or complex constraints on the
intermediate features.

At the same time, a classical approach in spectral geometry is to encode a shape
using the sequence of eigenvalues (spectrum) of its Laplacian operator. This represen-
tation is useful since: (1) it does not require any training, (2) it can be computed on
various data representations, such as point clouds or meshes, regardless of sampling
density, (3) it enjoys well-known theoretical properties such as a natural ordering of its
elements and invariance to isometries, and (4) as shown recently [85,255], alignment of
eigenvalues often promotes near-isometries, which is useful in multiple tasks such as
non-rigid shape retrieval and matching problems.

Unfortunately, although encoding shapes via their Laplacian spectra can be straight-
forward (at least for meshes), the inverse problem of recovering the shape is very dif-
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ficult. Indeed, it is well-known that certain pairs of non-isometric shapes can have the
same spectrum, or in other words “one cannot hear the shape of a drum” [124]. At the
same time, recent evidence suggests that such cases are pathological and that in prac-
tice might be possible to recover a shape from its spectrum [85]. Nevertheless, existing
approaches [85], while able to deform a shape into another with a given spectrum, can
produce highly unrealistic shapes with strong artifacts failing in a large number of cases.

In this Chapter, we combine the strengths of data-driven autoencoders with those of
spectral methods. Our key idea is to construct a single architecture capable of synthesiz-
ing a shape from a learned latent code and from its Laplacian eigenvalues. We show that
by explicitly training networks that aim to translate between the learned latent codes
and the spectral encoding, we can recover a shape from its eigenvalues and endow the
latent space with certain desirable properties. Remarkably, our shape-from-spectrum
solution is extremely efficient since it requires a single pass through a trained network,
unlike expensive iterative optimization methods with ad-hoc regularizers [85]. Among
the applications, we also propose a new efficient and compact approach for point-to-
point matching directly from the Laplacian spectrum. It is used as a bridge to bring
different geometries in the same discretization, and so naturally in correspondence.
Furthermore, our trainable module acts as a proxy to differentiable eigendecomposi-
tion, while encouraging geometric consistency within the network.

Overall, our key contributions can be summarized as follows:

− We propose the first learning-based model to robustly recover shape from Laplacian
spectra in a single pass;

− For the first time, we provide a bidirectional linkage between learned 3D latent space
and spectral geometric properties of 3D shapes;

− Our model is general, in that it applies with no modifications to different classes even
across different geometric representations and dimensions and to data that does not
belong to the datasets used at training time;

− We showcase our approach in multiple applications (e.g., Fig. 9.1), and show signifi-
cant improvement over the state of the art; see Fig. 9.2 for an example.

The code of our method is available online [6].

9.2 Related work

Spectral quantities and in particular the eigenvalues of the Laplace-Beltrami operator
provide an informative summary of the intrinsic geometry. For example, closed-form
estimates and analytical bounds for surface area, genus and curvature in terms of the
Laplacian eigenvalues have been obtained [69]. Given these properties, spectral shape
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Fig. 9.2: Comparison in estimating a shape from its Laplacian spectrum between the
state-of-the-art method [85] (middle) and ours (right) for a mesh and a point cloud. The
shapes recovered by our method are significantly closer to the target.

analysis has been exploited in many computer vision and computer graphics tasks such
as shape retrieval [260], description and matching [54, 209, 234, 296], mesh segmenta-
tion [259], sampling [236] and compression [162] among many others. Typically, the
intrinsic properties of the shape are computed from its explicit representation and are
used to encode compact geometric features invariant to isometric deformations.

Recently, several works have started to address the inverse problem: namely, recov-
ering an extrinsic embedding from the intrinsic encoding [47,85]. This is closely related
to the fundamental theoretical question of “hearing the shape of the drum” [124, 160].
Although counterexamples have been proposed to show that in certain scenarios mul-
tiple shapes might have the same spectrum, there is recent work that proposes effective
practical solutions to this problem. In [47] the shape-from-operator method was pro-
posed, aiming at obtaining the extrinsic shape from a Laplacian matrix where the 3D
reconstruction was recovered after the estimation of the Riemannian metric in terms of
edge lengths. In [84] the intrinsic and extrinsic relations of geometric objects have been
extensively defined and evaluated from both theoretical and practical aspects. The au-
thors revised the framework of functional shape differences [273] to account of extrin-
sic structure extending the reconstruction task to non-isometric shapes and models ob-
tained from physical simulation and animation. Several works have also been proposed
to recover shapes purely from Laplacian eigenvalues [12,78,237] or with mild additional
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information such as excitation amplitude in the case of musical key design [38]. Most
closely related to ours in this area is the recent isopectralization approach introduced
in [85], that aims directly to estimate the 3D shape from the spectrum. This approach
works well in the vicinity of a good solution but is both computationally expensive and,
as we show below, can quickly produce unrealistic instances, failing in a large number
of cases in 3D, as shown in Fig. 9.2 for two examples.

In this Chapter we contribute to this line of work, and propose to replace the heuris-
tics used in previous methods such as [85] with a purely data-driven approach for the
first time. Our key idea is to design a deep neural network, that both constraints the
space of solutions based on the set of shapes given at training, and at the same time, al-
lows us to solve the isospectralization problem with a single forward pass, thus avoiding
expensive and error-prone optimization.

We note that a related idea has been recently proposed in [147] via the so-called Op-
eratorNet architecture. However, that work is based on shape difference operators [273]
and as such requires a fixed source shape and functional maps to each shape in the
dataset to properly synthesize a shape. Our approach is based on Laplacian eigenval-
ues alone and thus is completely correspondence-free.

Our approach also builds upon the recent work on learning generative shape mod-
els. A range of techniques have been proposed using the volumetric representations
[323], point cloud autoencoders [14, 28], generative models based on meshes and im-
plicit functions [73, 126, 167, 185, 289], and part structures [114, 176, 222, 324], among
many others.

Although generative models, and in particular autoencoders, have shown impres-
sive performance, the latent space structure is typically difficult to control or analyze
directly. To address this problem, some methods proposed a disentanglement of the
latent space [28, 324] to split it into more semantic regions. Perhaps most closely re-
lated to ours in this domain, is the work in [28], where the shape spectrum is used to
promote disentanglement of the latent space intro intrinsic and extrinsic components,
that can be controlled separately. Nevertheless, the resulting network does not allow to
synthesize shapes from their spectra.

Extending the studies of these approaches, our work provides the first way to con-
nect the learned latent space to the spectral one, thus inheriting the benefits and pro-
viding the versatility of moving across the two representations. This allows our network
to synthesize shapes from their spectra, and also to relate shapes with very different
input structure (e.g., meshes and point clouds) across a vastness of sampling densities,
enabling several novel applications.
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9.3 Background

We model shapes as connected 2-dimensional Riemannian manifolds X embedded in
R3, possibly with boundary ∂X , equipped with the standard metric. On each shape X

we consider its positive semi-definite Laplace-Beltrami operator ∆X , generalizing the
classical notion of Laplacian from the Euclidean setting to curved surfaces.

Laplacian spectrum. ∆X admits an eigendecomposition

∆Xφi (x) =λiφi (x) x ∈ int(X ) (9.1)

〈∇φi (x), n̂(x)〉 = 0 x ∈ ∂X (9.2)

into eigenvalues {λi } and associated eigenfunctions {φi }1.
The Laplacian eigenvalues of X (its spectrum) form a discrete set, which is canoni-

cally ordered into a non-decreasing sequence

Spec(X ) := {0 =λ0 <λ1 ≤λ2 ≤ ·· · } . (9.3)

In the special case where X is an interval in R, the eigenvalues λi correspond to the
(squares of) oscillation frequencies of Fourier basis functions φi . This provides us with
a connection to classical Fourier analysis and a natural notion of hierarchy induced by
the eigenvalues’ ordering. In the light of this analogy, in practice, one is usually inter-
ested in a limited bandwidth consisting of the first k > 1 eigenvalues; typical values in
geometry processing applications range from k = 30 to 100.

Furthermore, the spectrum is isometry-invariant, i.e., it does not change with defor-
mations of the shape that preserve geodesic distances (e.g., changes in pose).

Discretization. In the discrete setting, we represent shapes as triangle meshes X =
(V ,T ) with n vertices V and m triangular faces T ; depending on the application, we
will also consider unorganized point clouds. Vertex coordinates in both cases are rep-
resented by a matrix X ∈Rn×3.

The Laplace-Beltrami operator ∆X is discretized as a n ×n matrix via the finite el-
ement method (FEM) [79]. In the simplest setting (i.e., linear finite elements), this dis-
cretization corresponds to the cotangent Laplacian [246]; however, in this Chapter we
use cubic FEM (see e.g. [259, Section 4.1] for a clear treatment), since it yields a more
accurate discretization as shown in Fig. 9.3. Differently from [85,255], this comes at vir-
tually no additional cost for our pipeline, as we show in the sequel. On point clouds, ∆X

can be discretized using the approach described in [48, 80].

1 Similarly to [85] we use homogeneous Neumann boundary conditions; see Equation (9.2), where n̂(x) denotes
the outward normal to the boundary.
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unknown
target

linear FEM cubic FEM

Fig. 9.3: Reconstruction examples of our shape-from-spectrum pipeline. We show the
results obtained with two different inputs: the eigenvalues of the Laplacian discretized
with linear FEM, and those of the cubic FEM discretization. The heatmap encodes
point-wise reconstruction error, growing from white to dark red.

9.4 Method

Our main contribution is a deep learning model for recovering shapes from Laplacian
eigenvalues. Our model operates in an end-to-end fashion: given a spectrum as input,
it directly yields a shape with a single forward pass, thus avoiding expensive test-time
optimization.

Motivation. Our rationale lies in the observation
that shape semantics can be learned from the data,
rather than by relying upon the definition of ad-
hoc regularizers [85], often resulting in unrealistic
reconstructions. For example, a sheet of paper can be isometrically crumpled or folded
into a plane (see inset figure). Since both embeddings have the same eigenvalues, the
desirable reconstruction must be imposed as a prior. By taking a data-driven approach,
we make our method aware of the “space of realistic shapes”, yielding both a dramatic
improvement in accuracy and efficiency, and enabling new interactive applications.

X X̃

Spec(X )

E D

π

ρ

v

Latent space connections. Our key
idea is to construct an auto-encoder
(AE) neural network architecture, aug-
mented by explicitly modeling the
connections between the AE’s latent
space and the Laplacian spectrum of
the input shape; see the inset Fig-
ure for an illustration of our learning
model. The input shape X and its Laplacian spectrum Spec(X ) are passed, respec-
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tively, through an AE enforcing X ≈ X̃ , and an invertible module (π,ρ) mapping the
eigenvalue sequence to a latent vector v. The two branches are trained simultaneously,
forcing v to be updated accordingly. The trained model allows to recover the shape
purely from its eigenvalues via the composition D(π(Spec(X ))) ≈X .

Loosely speaking, our approach can be seen as implementing a coupling between
two latent spaces: a learned one that operates on the shape embedding X , and the
one provided by the eigenvalues Spec(X ). In the former case, the encoder E is train-
able, whereas the mapping X → Spec(X ) is provided via the eigen-decomposition and
fixed a priori. Finally, we introduce the two coupling mappings π,ρ, trained with a bidi-
rectional loss, to both enable communication across the latent spaces and to tune the
learned space by endowing it with structure contained in Spec(X ).

We phrase our overall training loss as follows:

`= `X +α`λ , with (9.4)

`X = 1

n
‖D(E(X))−X‖2

F (9.5)

`λ =
1

k
(‖π(λ)−E(X)‖2

2 +‖ρ(E(X))−λ‖2
2) (9.6)

whereλ is a vector containing the first k eigenvalues in Spec(X ), X is the matrix of point
coordinates, E is the encoder, D is the decoder, ‖ · ‖F denotes the Frobenius norm, and
α = 10−4 controls the relative strengths of the reconstruction loss `X and the spectral
term `λ. The blocks D , E , π, and ρ are learnable and parametrized by a neural network.
Equation (9.6) enforces ρ ≈ π−1; in other words, π and ρ form a translation block be-
tween the latent vector and the spectral encoding of the shape.

At test time, we recover a shape from the spectrum Spec simply via the composition
D(π(Spec)) (Section 9.5). For additional applications we refer to Section 9.6.

Shape representation. We consider two different settings: triangle meshes in point-to-
point correspondence at training time (typical in graphics and geometry processing),
and unorganized point clouds without a consistent vertex labeling (typical in 3D com-
puter vision).

Autoencoder architecture. Our model can be built with potentially any autoencoder. In
our applications we chose relatively simple ones to deal with meshes and unorganized
point clouds, although more powerful generative methods would be equally possible.
The latent space dimension is fixed to 30 (the same as k).

Remark. Our architecture takes Spec(X ) as an input, i.e., the eigenvalues are not com-
puted at training time. By learning an invertible mapping to the latent space, we avoid
expensive backpropagation steps through the spectral decomposition of the Laplacian
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Target Ours NN

10 20 30

Fig. 9.4: Shape reconstruction from eigenvalues using our approach on different rep-
resentations (i.e. 2D contours, 3D meshes and point clouds). The eigenvalues of the
shapes on the left are given to our network, which outputs the shapes in the middle.
For each representation, the eigenvalues are computed on the appropriate Laplacian
discretization as per Section 9.3. The NN column shows the nearest-neighbor solution
sought in the training set.

∆X . In this sense, the mapping ρ acts as an efficient proxy to differentiable eigende-
composition, which we exploit in several applications below.

Since eigenvalue computation is only incurred as an offline cost, it can be performed
with arbitrary accuracy (we use cubic FEM, see Fig. 9.3) without sacrificing efficiency.

9.5 Results

In this section we report the results on our core application of shape from spectrum
recovery.

To evaluate our method, we trained our model on 1,853 3D shapes from the COMA
dataset [256] of human faces; 100 shapes of an unseen subject are used for the test
set. We repeated this test at four different mesh resolutions: ∼4K (full resolution), 1K,
500 and 200 vertices respectively. For each resolution, we independently compute the
Laplacian spectrum and use these spectra to recover the shape.
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Comparison. We compared our method in terms of reconstruction accuracy to the
state-of-the-art isospectralization method of Cosmo et al. [85], as well as to a nearest-
neighbors baseline, consisting in picking the shape of the training set with the closest
spectrum to the target one. full res 1000 500 200

Ours 1.61 1.62 1.71 2.13

Ours without ρ 1.89 1.82 2.06 2.42

NN 4.45 4.63 4.01 2.65

Cosmo et al. [85] − 16.4 7.11 4.08

Table 9.1: Shape-from-spectrum recon-
struction comparisons with nearest neigh-
bors (between spectra) baseline and a state
of the art spectral approach; we report av-
erage error over 100 shapes of an unseen
subject from the COMA dataset [256]. Best
results (in bold) are obtained with our full
pipeline. ‘−’ denotes out of memory; all er-
rors must be rescaled by 10−5.

In addition, we trained two separate ar-
chitectures (with and without the ρ block)
and compared them.

The test without this network com-
ponent is an ablation study to validate
the importance of the invertible module
connecting the spectral encoding to the
learned latent codes.

The quantitative results are reported
in Table 9.1 as the mean squared er-
ror between the reconstructed shape and
the ground-truth. Figures 9.2 and 9.4 fur-
ther show qualitative comparisons with
the different baselines involving different
shape representations. In Fig. 9.4, for the
sake of illustration, similarly to [85, 255], we also include 2D contours, discretized as
regular cycle graphs.

As the results suggest, the ρ block both contributes to reduce the reconstruction er-
ror, and to enable novel applications (see in Section 9.6). Note that our method achieves
a significant improvement over nearest neighbors in terms of accuracy, and an order of
magnitude improvement over isospectralization. The latter approach also consists of
an expensive optimization that requires hours to run, while our method is instanta-
neous at test time.

Spectral bandwidth has a direct effect on reconstruction accuracy, since increasing this
number brings more high-frequency detail into the representation. Following [85, 255,
271], in all our experiments we use k = 30.

9.6 Additional applications
Our general model enables several additional applications, by exploiting the connec-
tion between spectral properties and shape generation.

Style transfer. As shown in Fig. 5.1, we can use our trained network to transfer the style
of a shape Xstyle to another shape Xpose having both a different style and pose. This is
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pose target style target our result eigenvalues

style pose 3.7 our 0.56

pose target style target our result

style pose 0.9 our 0.65

style pose 1.4 our 0.76
10 20 30

style pose 1.6 our 0.41

Fig. 9.5: Examples of style transfer. The target style (middle) is applied to the target pose
(left) by solving problem (9.7) and then decoding the resulting latent vector (right). For
each example we also report the corresponding eigenvalue alignment (rightmost plots).
The black dotted line is the image of ρ. The numbers in the legend denote the distance
from the target “style” spectrum to the source pose and to our generated shape; a small
number suggests near-isometry between the generated shape and the style target.

done by a search in the latent space, phrased as:

min
v

‖Spec(Xstyle)−ρ(v)‖2
2 +w‖v−E(Xpose)‖2

2 (9.7)

Here, the first term seeks a latent vector whose associated spectrum aligns with the
eigenvalues of Xstyle; in other words, we regard style as an intrinsic property of the
shape, and exploit the fact that the Laplacian spectrum is invariant to pose deforma-
tions. The second term keeps the latent vector close to that of the input pose (we ini-
tialize with vinit = E(Xpose)). We solve the optimization problem by back-propagating
the gradient of the cost function of Equation (9.7) with respect to v through ρ.

The sought shape is then given by a forward pass on the resulting minimizer. In
Fig. 9.5, we show four examples.

We emphasize here that the style is purely encoded in the input eigenvalues, there-
fore it does not rely on the test shapes being in point-to-point correspondence with the
training set. This leads to the following:
Property 9.1. Our method can be used in a correspondence-free scenario. By taking
eigenvalues as input, it enables applications that traditionally require a correspon-
dence, but side-steps this requirement.
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input shape
low-pass

modification
band-pass

modification

10 20 30

eigenvalues

Fig. 9.6: Exploring the space of shapes via manipulation of the spectrum. The low-pass
modification (middle) decreases the first 12 eigenvalues of the input shape, leading to
more pronounced geometric features (e.g. longer legs and snout); the band-pass mod-
ification (right) amplifies the last 12 eigenvalues, affecting the high-frequency details
(e.g. the ears and fingers);

Input: low resolution shapes

Interpolation of latent vectors

Fig. 9.7: Latent space interpolation of four
low-resolution shapes with different con-
nectivity (top row, unseen at training). The
spectra of the input shapes are mapped via
π to the latent space, where they are bi-
linearly interpolated and then decoded to
R3. The reconstructions of the input are de-
picted at the corners of the grid.

This observation was also mentioned
in other spectrum-based approaches [85,
255]. However, the data-driven nature of
our method makes it more robust, effi-
cient and accurate, therefore greatly im-
proving its practical utility.

Shape exploration. The previous results
suggest that eigenvalues can be used to
drive the exploration of the AE’s latent
space toward a desired direction. An-
other possibility is to regard the eigenval-
ues themselves as a parametric model for
isometry classes, and explore the “space
of spectra” as is typically done with la-
tent spaces. Our bi-directional coupling
between spectra and latent codes makes
this exploration feasible, as remarked by
the following property:

Property 9.2. Latent space connections pro-
vide both a means for controlling the la-
tent space, and vice-versa, enable explo-
ration of the space of Laplacian spectra.
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Since eigenvalues change continuously with the manifold metric [32], a small vari-
ation in the spectrum will give rise to a small change in the geometry. We can visualize
such variations in shape directly, by first deforming a given spectrum (e.g., by a sim-
ple linear interpolation between two spectra) to obtain the new eigenvalue sequence
µ, and then directly computing D(π(µ)).

ta
rg

et

∼4000 1000 500 200

in
p

u
t

C
o

sm
o

et
al

.
[8

5]
N

N
o

u
rs

Fig. 9.8: Mesh super-resolution for inputs
at decreasing resolution (top row, left to
right). Our method fits closely the origi-
nal input shapes (top left), while other ap-
proaches either predict the wrong pose (NN
baseline) or generate an unrealistic shape
(Cosmo et al.).

In Fig. 9.7 we show a related experi-
ment. Here we train the network on 4,430
animal meshes generated with the SMAL
parametric model following the official
protocol [348]. Given four low-resolution
shapes Xi as input, we first compute their
spectra Spec(Xi ), map these to the la-
tent space via π(Spec(Xi )), perform a bi-
linear interpolation of the resulting latent
vectors, and finally reconstruct the cor-
responding shapes. Finally, in Fig. 9.6 we
show an example of interactive spectrum-
driven shape exploration. Given a shape
and its Laplacian eigenvalues as input, we
navigate the space of shapes by directly
modifying different frequency bands with
the aid of a simple user interface. The
modified spectra are then decoded by our
network in real time. The interactive na-
ture of this application is enabled by the
efficiency of our shape from spectrum re-
covery (obtained in a single forward pass)
and would not be possible with previous methods [85] that rely on costly test-time op-
timization.

Super-resolution. A key feature that emerges from the experiment in Fig. 9.7 is the per-
fect reconstruction of the low-resolution shapes once their eigenvalues are mapped to
the latent space via π. This brings us to a fundamental property of our approach:

Property 9.3. Since eigenvalues are largely insensitive to mesh resolution and sam-
pling, so is our trained network.

This fact is especially evident when using cubic FEM discretization, as we do in all
our tests, since it more closely approximates the continuous setting and is thus much
less affected by the surface discretization.
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Fig. 9.9: Evaluations of point cloud spectra estimation. On the left we show the qualita-
tive comparison for different samplings on three classes (animals, human faces and ob-
jects). We show the eigenvalues estimations alongside the input point cloud (depicted
as surface samplings), and the ground truth spectrum (in red). On the last two columns,
we report the average cumulative error curves evaluated on the FLAME dataset for the
two different distributions (F1 and F2) and on ShapeNet (S).

Remark. It is worth mentioning that existing methods can employ cubic FEM as well;
however, this soon becomes prohibitively expensive due to the differentiation of spec-
tral decomposition required by their optimizations [85, 255].

These properties allow us to use our network for the task of mesh super-resolution.
Given a low-resolution mesh as input, we aim to recover a higher resolution counterpart
of it. Furthermore, while the input mesh has arbitrary resolution and is unknown to the
network (and a correspondence with the training models is not given), an additional
desideratum is for the new shape to be in dense point-to-point correspondence with
models from the training set. We do so in a single shot, by predicting the decoded shape
as:

Xhires = D(π(Spec(Xlowres))) . (9.8)

This simple approach exploits the resolution-independent geometric information en-
coded in the spectrum along with the power of a data-driven generative model.

In Fig. 9.8 we show a comparison with nearest-neighbors between eigenvalues (among
shapes in the training set), and the isospectralization method of Cosmo et al. [85].
Our solution closely reproduces the high-resolution target. Isospectralization correctly
aligns the eigenvalues, but it recovers unrealistic shapes due to ineffective regulariza-
tion. This phenomenon highlights the following

Property 9.4. Our data-driven approach replaces ad-hoc regularizers, that are difficult
to model axiomatically, with realistic priors learned from examples.

This is especially important for deformable objects; shapes falling into the same
isometry class are often hard to disambiguate without using geometric priors.
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Estimating point cloud spectra. As an additional experiment, we show how our net-
work can directly predict Laplacian eigenvalues for unorganized point clouds. This task
is particularly challenging due to the lack of a structure in the point set, and existing ap-
proaches such as [35, 80] often fail at approximating the eigenvalues of the underlying
surface accurately. The difficulty is even more pronounced when the point sets are ir-
regularly sampled, as we empirically show here. In our case, estimation of the spectrum
boils down to the single forward pass:

�Spec(X ) = ρ(E(X )) . (9.9)

To address this task we train our network by feeding unorganized point clouds as
input, together with the spectra computed from the corresponding meshes (which are
available at training time). For this setting we use a PointNet [252] encoder and a fully
connected decoder, and we replace the reconstruction loss of Equation (9.5) with the
Chamfer distance. This application highlights the generality of our model, which can
accommodate different representations of geometric data.

We consider two types of point clouds: (1) with similar point density and regularity
as in the training set, and (2) with randomized non-uniform sampling. We compare the
spectrum estimated via ρ(E(X )) to axiomatic methods [35, 80], and to the NN baseline
(applied in the latent space); see Fig. 9.9. The qualitative results are obtained by train-
ing on SMAL [348] (left), COMA [256] (middle) and ShapeNet watertight [145] (right). To
highlight its generalization capability, the network trained on COMA is tested on point
clouds from the FLAME dataset, while on ShapeNet we consider 4 different classes (air-
planes, boats, screens and chairs). We compute the cumulative error curves of the dis-
tance between the eigenvalues from the meshes corresponding to the test point clouds.
The mean error across all test sets is also reported in the legend. Our method leads to a
significant improvement over the closest state-of-the-art baseline [35].

Matching from spectrum. Finally, we compute dense correspondences between shape
pairs using only their spectra. These are fed into our network; since the output points
are naturally ordered by the decoder, we exploit this to establish a sparse correspon-
dence. In the case of meshes, we extend it to a dense one by using the functional maps
framework [234]. In the case of point clouds, we can propagate a semantic segmen-
tation using nearest neighbors. We perform a quantitative evaluation on SMAL [348],
testing on 100 non-isometric pairs of animals from different classes. Two applications
that benefit from our approach are texture and segmentation transfer; we tested them
respectively on animals and segmented ShapeNet [336]. The comparison baseline con-
sists of 100 iterations of ICP [37] to rigidly align the two shapes followed by nearest-
neighbor assignment as correspondence (see Fig. 9.10).
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Fig. 9.10: On the left, quantitative evaluation of matching [165] between 100 pairs of
animals. On the right, the qualitative comparison on texture and segmentation transfer.

9.7 Conclusions
We introduced the first data-driven method for shape generation from Laplacian spec-
tra. Our approach consists in enriching a standard AE with a pair of cycle-consistent
maps, associating ordered sequences of eigenvalues to latent codes and vice-versa. This
explicit coupling brings forth key advantages of spectral methods to generative models,
enabling novel applications and a significant improvement over existing approaches.
Our limitations are shared with other spectral methods in the computation of a robust
Laplacian discretization. Adopting the recent approach [284] for such borderline cases
is a promising possibility. Further, while the Laplacian is a classical choice due to its
Fourier-like properties, spectra of other operators with different properties may lead to
other promising applications.
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Thesis Conclusions

This thesis investigated different representations with their peculiarities, exploring how
their properties impact 3D shape matching problem, and proposing innovative solu-
tions to overcome their limitations. We introduced theoretical advancements in the
field, moving from the shape matching as a correspondence between representations,
to a correspondence between geometries.

Our work opens to many future directions. An emerging trend in functional match-
ing pipelines is including higher frequencies. Recent methods showed exciting results
on them [97, 214]. We believe such unstable representation and its detail level will pro-
duce much attention to handle them properly. A recent work [98] introduced a learning-
based matching pipeline with high-frequencies, replacing the nearest-neighbor in the
spectral domain with an optimal transport approximation, and so moving the perspec-
tive from a point-to-point pairing to a more global method. This latter work proposes
to rediscuss some underlying structure of standard matching approaches. For future,
such changes could be extended to many different aspects of the matching pipeline,
similarly to our Chapter 8 (in which we propose to replace Laplace-Beltrami eigenfunc-
tions). In particular, basis functions can be expressed as non-linear ones, e.g., other
neural networks, using the so called hypernetworks [130]. Similarly, the standard metric
of the embedding space and the linear transformation can be replaced by some more
sophisticated methods, aiming to Hyper-Functional Maps framework. On the same line
of work, we just introduced an intrinsic/extrinsic paradigm that could be extended to
work at higher frequencies (i.e., catch local extrinsic features and relaxing the same-
pose constraint).

Also, many representations are left unexplored. Signed Distance Functions (SDF)
have recently shown promising results in shape matching task [39]; find a correspon-
dence in these representations would be continuous and synthesizable at an arbitrary
resolution, providing a more grounded representation for the geometry. In the future,
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we could extend our registration template-based pipeline to them by designing mor-
phable SDF, providing more detailed information for the optimization process, avoid-
ing artifacts like self-intersections, and also providing registration of objects with vary-
ing topologies.

In the last years, textual descriptions of shapes gained much popularity [15, 70]. It
would be interesting to involve these representations to shape matching, which would
be attractive for not-expert people; for example, textual hints could be translated in
shape descriptors and plugged in many of our proposed works. Also, recent word em-
beddings methods [90, 190, 277] would provide some super-compact encodings that
could be directly exploited by our latent connections paradigm; shapes descriptions
can be linked to geometric entities, learning a sort of translator from human to geo-
metric languages. Furthermore, we think that after identity, shape and albedo, also the
sound produced by a shape could be part of the morphable model representation [87]
and so be included in the registration pipeline.

Finally, we believe that the emerging field of Reinforcement Learning would be
tremendously useful for the discrete nature of 3D representatons. Some of the most re-
cent works solve impressive and arduous problems, showing better performance than
humans in almost every competitive games [170,243,261,287]. Formulating the match-
ing as a game problem where an agent aims to achieve the highest geometric reward
(e.g., bijectivity or minimal distortion) could give insights into the matching process;
it could tell us the best places for landmarks in a particular domain, or select descrip-
tors progressively to match increasing frequencies. It can be useful also for modeling,
and some preliminary works already started this direction [181,227]. A remeshing agent
may be trained to modify the representation (e.g., it might choose where to add extrinsic
information), improving its coherency among different discretizations and respecting
underlying geometry. A 3D model could be represented by a scuplting policy learned
from data, open to a new complete set of possibilities for shape representations.



A

Summary of Notation

Here we collect some symbols that appear in the manuscript.

General

M ,N Shapes, in general as smooth surfaces or manifold meshes

VM Vertices set of a mesh M

FM Faces set of a mesh M

∆M Laplace-Beltrami Operator of mesh M

AM Diagonal matrix of area weights on shape M

WM Stiffness matrix of shape M

ΛM Diagonal matrix of LBO eigenvalues of shape M

θ ∈R72 SMPL Pose parameters

β ∈R10 SMPL shape parameters

TMN Point-to-point correspondence that associate for each point of M one point of N

ΦM Eigenfunction of ∆M

(F (M)) Functional space defined on M

T F
N M

Functional Map associated to TMN via pull-back

CMN Functional Map in matricial form (pedix omitted if clear from the context
† Moore Penrose pseudoinverse

fM A function defined over a surface M (pedix omitted if clear from the context)

F,G Matrices of Fourier expansion coefficients

Π Permutation matrix that econde correspondence
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¯ Element-wise product

Chapter 3

J2D OpenPose skeleton on the 2D image

J3D OpenPose skeleton in 3D

T homogeneous transformation

Di n Input depth map

Dβ,θ OpenDR synthetic depthmap

D̃i n Depth map part which rapresenting the human

D̂i n Di n without D̃i n

H ⊂ PC Part of the pointcloud that belongs to human body

γ Trashold to separate foreground and background

πNN(VM )
List of the vertices VM obtained as the ordered euclidean nearest neighbor
with respect to the points in H

Chapter 7

φx ,φy ,φz Three coordinates based orthonormals functions

Φx
kM

First k LBO basis plus φx

Φ
x,y,z
kM

First k LBO basis plus φx ,φy ,φz
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Fig. B.1: Visualization of joints and planes used in the algorithm.

The aim of this step is to detect the front of the target shape in order to discriminate
the left side from the right side. Starting from the skeleton as input, we follow the steps:

1. We fix the vector v (in purple in Figure B.1, right), defined as the vector that connects
the ankle with the foot joint (with direction from ankle to foot), which semantically
identifies the front of the shape.

2. We propagate v along the leg of the skeleton under torque-penalizing constraints.
3. Once we reach the pelvis joint (in green in Figure B.1, left) we identify the front as

the direction of the resulting vector (shown in green in Figure B.1, right).
4. Finally we assign the left/right labels to the landmarks as per Algorithm 1.

In the algorithm we adopt the following notation:

− P = pl ane(p1, p2, p3) is the plane that contains non-collinear points p1, p2, p3.
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− P = pl ane(p1, p2,⊥Q) contains points p1, p2, and is orthogonal to plane Q.
− P = pl ane(p1,⊥u) contains p1 and is orthogonal to vector u.
− By saying that we “transfer” the normal from one plane to another we mean that we

fix the sign of the normal of the second plane such that it is coherent with the normal
of the first plane.

ALGORITHM 1: Left/Right labeling
1: Input: S ∈ M atR(24,3), i.e. the 3D coordinates of 24 labeled skeleton joints on N ,{

pel vi s, spi ne, f oot , ankle, knee, hi p
} ∈ S.

2: v = vector( f oot −ankle).

3: P f oot = plane(ankle, ⊥v).

4: P⊥shi n = plane( f oot , ankle, knee).

5: Pshi n = plane(knee, ankle, ⊥P⊥shi n ).

6: Transport vector v from the ankle to the knee as the vector applied on the knee joint that is orthogonal to the
plane Pshi n .

7: Pthi g h = plane(hi p, knee, ⊥P⊥shi n ).

8: Transfer the normal from Pshi n to Pthi g h .

9: P⊥thi g h = plane(hi p, knee, ⊥Pthi g h ).

10: Transport vector v from the knee to the hi p as the vector applied on the hi p joint that is orthogonal to the
plane Pthi g h .

11: P f i nal = plane(pel vi s,hi p, ⊥P⊥thi g h ).

12: Transfer the normal from Pthi g h to P f i nal .

13: front = normal(P f i nal ) applied at the pel vi s joint.

14: top = vector(spi ne −pel vi s).

15: The right versor is obtained as the cross product top× front.

16: if the label of the right hi p joint is not consistent with the label of the right hi p joint on the template then we
switch the left/right labels on the landmarks.

17: else we leave the left/right labels on the landmarks as they are.



C

Adjoint operator definition and properties

In this section, we provide a concise description of the adjoint operator and its relation
to the transfer of Dirac delta functions and functional maps. Note that the adjoint op-
erator of functional maps has been considered, e.g., in [146] although its role in delta
function transfer was not explicitly addressed in that work.

Formal definition of the Adjoint operator. Suppose we have a pointwise map TX Y :
X → Y between two smooth surfaces X ,Y . Then we will denote T F

Y X
the functional

correspondence defined by the pull-back: T F
Y X

: f → f ◦TX Y , where f : Y → R and
f ◦TX Y : X →R such that f ◦TX Y (x) = f (TX Y (x)) for any x ∈X .

The adjoint functional map operator AX Y is defined implicitly through the follow-
ing equation:

< AX Y g , f >Y =< g ,T F
Y X f >X ∀ f : Y →R, g : X →R. (C.1)

Here we denote with <,>X and <,>Y the L2 inner product for functions respectively
on shape X and Y . The adjoint always exists and is unique by the Riesz representation
theorem (see also Theorem 3.1 in [146]).

Adjoint operator and delta functions. As mentioned in the main manuscript, the ad-
joint can be used to map distributions (or generalized functions), which is particularly
important for mapping points represented as Dirac delta functions.

Recall that ∀y ∈Y , a Dirac delta function δy is a distribution such that, by definition,
for any function f we have < δy , f >Y = f (y).

Theorem C.1. If AX Y is the adjoint operator associated with a point-to-point mapping
TX Y as in Eq. (C.1), then AX Y δx = δTX Y (x).

Proof. Using Eq. (C.1) we get:
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< AX Y δx , f >Y =< δx ,T F
Y X f >X=< δx , f ◦TX Y >X (C.2)

= f (TX Y (x)). (C.3)

Therefore, AX Y δx equals some distribution d such that < d , f >Y = f (TX Y (x)) for any
function f : Y →R. By uniqueness of distributions this means that: AX Y δx = δTX Y (x).

In other words, the previous derivation proves that, unlike a functional map, the
functional map adjoint always maps delta functions to delta functions.

Relation between the functional maps and the adjoint operator in the discrete set-
ting. Here we assume that the two shapes are represented in the discrete setting, with
two embeddings ΦX ,ΦY , and a pointwise map ΠX Y . Our goal is to establish the rela-
tionship between the functional map matrix and the linear operator, which aligns the
two embeddings.

Given two embeddings ΦX ,ΦY and a pointwise map ΠX Y we would like to find a
linear transformation AX Y such that:

AX Y ΦT
X = (ΠX Y ΦY )T , or equivalently (C.4)

ΦX AT
X Y =ΠX Y ΦY (C.5)

Formulating this as a least squares problem we get:

min
A

‖ΦX AT
X Y −ΠX Y ΦY ‖2, (C.6)

from which the solution is given by:

A =
(
Φ†

X
ΠX Y ΦY

)T
(C.7)

Recall that a functional map induced by ΠX Y is defined as CY X = Φ†
X
ΠX Y ΦY .

Therefore, we can write: AX Y =C T
Y X

. In other words, in the discrete setting the adjoint
is nothing but the transpose of the functional map in the opposite direction.

Probe function constraints. Below we derive the relation between the probe func-
tion constraints for functional maps and those for the adjoint operator used in our
approach, as described in Section 8.3. Here we derive the formula used in the main
manuscript directly below Equation (8.3).

In the main manuscript (Equation (2.23) of the main manuscript) we wrote the basic
optimization problem for estimating functional maps:

CX Y = argmin
x C∈Rk×k

‖CΦ†
X

GX −Φ†
Y

GY ‖2. (C.8)
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Inverting the role of X and Y :

CY X = argmin
x C∈Rk×k

‖CΦ†
Y

GY −Φ†
X

GX ‖2. (C.9)

This implies that the optimal CY X can be found as the solution of CY XΦ†
Y

GY =
Φ†

X
GX . This is equivalent to (Φ†

Y
GY )T C T

Y X
= (Φ†

X
GX )T that can be solved as a least

squares problem:

C T
Y X =

(
(Φ†

Y
GY )T

)†
(Φ†

X
GX )T . (C.10)

From the equation AX Y =C T
Y X

we can conclude that:

AX Y =
(
(Φ†

Y
GY )T

)†
(Φ†

X
GX )T . (C.11)

This is precisely the equation used in the main manuscript directly below Equation
(8.3).

This provides an explicit connection between the functional map and the linear
transformation that we are optimizing for.

To summarize, one advantage of the adjoint is that it can be used to map distribu-
tions and not just functions. In particular, unlike a functional map, the functional map
adjoint always maps delta functions to delta functions. At the same time, similarly to
functional maps, it also allows estimation via probe functions and a solution of a linear
system. For this reason, despite the strong relation with functional maps, the adjoint is
better suited for estimating the correspondence.
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