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Abstract
A comparative, empirical study of the computational performance of multithreading strategies for Marching Cubes
isosurface extraction is presented. Several representative data-centric strategies are considered. Focus is on in-core
computation that can be performed on desktop (single- or dual-CPU) computers. The study’s empirical results are
analyzed on the metrics of initialization overhead, individual surface extraction time, and total run time. In addition,
an analysis of cache behavior and memory storage requirements is presented.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Graphics data structures and
data types

1. Introduction

Volume visualization can allow discovery of structures or phe-
nomena from volumetric datasets. Indirect volume rendering
is a volume visualization paradigm in which an intermediate
representation is synthesized from the volumetric dataset and
then rendered using traditional graphics means. Often, the in-
termediate representation is a surface of constant value (i.e., an
isosurface). In many types of data, certain constant values (i.e.,
isovalues) define surfaces that correspond to the boundary of an
object or structure of interest in the volume. One very popular
isosurface extraction method is Lorensen and Cline’s Marching
Cubes (MC) algorithm [LC87]. In this paper, we consider the
class of MC-based isosurface extractions in which the volume
dataset and the isosurfacing’s supporting data structures can be
totally resident within the main memory (i.e., in-core isosur-
facing).

Multithreaded computing is one high performance comput-
ing strategy. The availability of multithreading libraries allows
development and portability of parallel programs for a range
of low- and moderate-cost computers, such as popular dual-
processor shared memory multiprocessing (SMP) systems. In
this paper, we present a comparative study of several schemes
for multithreaded in-core Marching Cubes isosurface extrac-
tion. The schemes considered are data-centric in that they seek
to divide the isosurfacing work via partitioning of the volume
among the threads. (Since Marching Cubes has an inherently
serial ordering of its sub-tasks, its efficient parallelizations have

been data-oriented rather than task-oriented.) The schemes’ ex-
traction performance, total computational performance (i.e., in-
cluding time for I/O and initialization), cache behavior, and
memory consumption are evaluated.

This paper is organized as follows. Section 2 describes re-
lated work. The multithreaded approaches to isosurfacing are
described in Section 3. Experimental results and analysis are
presented in Section 4. Section 5 contains the conclusion and
future work.

2. Related Work

In order to achieve interactive or real-time MC-based isosur-
face extraction, often approaches that avoid some computations
or that use parallel processing have been used.

2.1. Limiting Processing

The computation avoidance strategies typically exploit the fact
that most isosurfaces only pass through a small portion of the
volume. Such strategies attempt to avoid unnecessary process-
ing in the portions of the volume that are not intersected by the
isosurface. Such regions are termed inactive. In contrast, a re-
gion is active if it is intersected by the isosurface. Likewise, a
cell (i.e., cube) of a volume dataset is called an active cell if it
is intersected by the isosurface. Otherwise, a cell is called an
inactive cell.
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Figure 1: Framework for multithreaded Marching
Cubes algorithms.
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Figure 2: Illustration of (a) span space and (b) span space
bucket structure (adapted from [SG02]).

Algorithms that accelerate isosurface extraction by avoiding
unnecessary processing in inactive cells can be categorized into
three groups [SG02]: hierarchical geometric space algorithms,
range-based algorithms, and propagation algorithms, which we
discuss next.

Hierarchical geometric space algorithms organize volume
data in data structures based on the data’s geometric space.
Data structures of this type, such as octrees, group neighbor-
ing cells together. Wilhelms and van Gelder [WG92] were
one of the first teams to accelerate isosurface extraction via
use of octrees. They also introduced the branch-on-need octree
(BONO), which we discuss in Section 3.2.

Range-based algorithms organize the data in data structures
based on the range of values within each cell. Two data struc-
tures of this type are the interval tree [CMM∗97] and Livnat et
al.’s [LSJ96] span space which organize cells by minimum and
maximum scalar values. In span space approaches, each cell
is mapped to a point in 2D span space. Shen et al. [SHLJ96]
have presented the Isosurfacing in Span Space with Utmost Ef-
ficiency (ISSUE) algorithm which uses a quantized span space.
ISSUE restricts the scope of the search over the span space,
making it faster than many other span space-based techniques.

Propagation algorithms first find a set of seed cells (i.e., that
are active) and then propagate outward from the seed cells to
find all other active cells. (At least one seed cell per connected
component is required.) Propagation only visits the inactive
cells that are connected to the active cells; other inactive cells
aren’t visited. The work of Shekhar et al. [SFYC96] and Bajaj
et al. [BPS96] are examples of isosurfacing-by-propagation ap-
proaches. Sutton et al. [SHSS00] have compared the serial pro-
cessing performance of one seed set propagation approach to
other isosurface acceleration approaches, including approaches
based on the BONO, the interval tree, and the span space.

2.2. Parallel Processing

Several parallel computation strategies to accelerate isosur-
facing have been presented. For example, Newman and

Tang [NT00] have reorganized the Marching Cubes’ process-
ing steps to allow the algorithm’s inherent data parallelism to
be exploited on a vector-parallel supercomputer. Some other
methods have focused on dividing work evenly among proces-
sors via data-oriented subdivision. For example, Hansen and
Hinker [HH92] have presented a SIMD Marching Cubes ap-
proach that uses cell-based partitioning (i.e., which assigns an
identical number of cells for processing on each processor).
Miguet and Nicod [MN95] have presented an MIMD Marching
Cubes which divides the dataset’s processing among processors
in a slice-by-slice manner that attempts to balance workload
on the CPUs. In their approach, the isosurface extraction time
(i.e., workload) for each slice is estimated as a weighted sum of
the number of cells and the number of interpolated vertices in
the slice. Bajaj, Zhang, and colleagues [BPTZ99, ZBR02] have
presented MIMD-parallel out-of-core isosurfacing approaches
which divide processing among processors in a blocklet-by-
blocklet manner that attempts to balance CPU loads. (Block-
lets are small sets of adjacent cells.) In their approaches, work-
load is approximately related to the number of active block-
lets. Previously, our team has presented an MIMD Marching
Cubes approach that divides the dataset into many blocklets and
then uses a very accurate work estimation model [ZN01] in dis-
tributing blocklets among processors such that each processor
has about the same amount of work to do. Zhang and New-
man [ZN03] have also presented a hybrid granularity scheme
that aids in achieving reduced disk I/O and low total elapsed
time for MIMD-parallel isosurfacing on a supercomputer.

However, only a few multithreaded isosurface extraction
approaches—in particular, approaches that combine multi-
threading and computation avoidance—have been reported.
For example, Bartz et al. [BSGE98] have presented a balanced
multithreaded approach to octree (e.g., BONO) construction. In
order to generate a load-balanced work distribution for isosur-
facing, the octree is recursively traversed to locate active cells.
The active cells are then distributed among threads in a round-
robin manner. Sulatycke and Ghose [SG02] have presented a
multithreaded in-core span space-based isosurfacing approach
for SMPs that overlaps I/O with rendering computations.
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3. Framework of Multithreaded In-core Isosurfacing

The comparative study of multithreaded isosurfacing presented
here focuses on operation on dual-processor and hyperthread-
ing single-processor computers, which are popular computers
for desktop scientific computation. The isosurface extraction
algorithm used in the study is the standard Marching Cubes
(MC) algorithm. The MC processes a regular rectilinear vol-
ume (i.e., a set of scalar values distributed on a rectilinear grid)
in a cell-by-cell fashion. If a cell is intersected by the isosur-
face, the Marching Cubes uses linear interpolation to estimate
locations of isosurface intersection with the grid segments that
bound the cell. A predefined look-up table is typically used to
determine the isosurface topology in each cell. The output of
the MC algorithm is a set of triangle facets that approximate
the isosurface.

Fig. 1 shows the processing framework for our multithreaded
Marching Cubes strategies. The framework is composed of
initialization, preprocessing, workload dispatch, isosurface ex-
traction, and rendering stages. In the initialization stage, the
dataset is loaded into the memory. The strategies that use a span
space or a BONO structure (described later) build the structure
in the preprocessing stage. In the work dispatch stage, the work
load of the Marching Cubes is estimated and the data is dis-
tributed among threads so that each thread obtains an almost
equal amount of work. After work dispatch, each thread per-
forms the Marching Cubes on the data it was assigned. The
isosurface facets produced by the threads are then rendered by
the graphics hardware.

Generally, in parallel processing, the goal is to divide work
such that computational resources are best-utilized. When us-
ing multithreading parallelism, in the ideal case, threads coop-
erating on a task will not delay one another. One strategy to
achieve synchronized cooperation among threads is static load
balancing, which involves assigning a fixed amount of work to
each thread before parallel computation begins. The schemes
compared here use static load balancing.

We focus primarily on BONO-based and span space-based
isosurfacing due to a prior study which suggests they have
serial processing performance that is superior to other strate-
gies [SHSS00]. We also consider other approaches in the com-
parison, however.

3.1. Span Space Structure

The use of the span space structure can greatly aid in efficiency
of isosurface extraction by skipping processing of inactive re-
gions. Fig. 2(a) illustrates the span space, which represents cell
intervals (i.e., the minimum and maximum of the values stored
at the cell’s vertices) as points in a two-dimensional space. The
point (xi,yi) in the span space represents a cell with interval
[xi,yi] (i.e., a cell with minimum xi and maximum yi). All cell
intervals can be mapped onto span space points that lie above or
on the diagonal line X =Y (i.e., the shaded regions in Fig. 2(a)).
A span space whose points represent cell intervals is called a

cell-based span space. For an isovalue T, the active cells are
those mapped into the span space region bounded by the lines
X = T and Y = T (i.e., the lightly shaded rectangular region in
Fig. 2(a)).

Since the datasets used in this study contain byte data, we
used a quantized span space with unit-sized tiles (i.e., (257×
256)/2 tiles, as illustrated in Fig. 2 (b)). The tiles that corre-
spond to active cells are called active tiles of the span space.
A bucket is a collection of tiles with the same maximum value
(i.e., a bucket is a row of tiles in the span space). A bucket
is active if the maximum value corresponding to the bucket is
greater than or equal to the isovalue.

An extension of the span space data structure, the block-
based span space, can be used to organize data blocks [ZN04].
(By block, we mean a collection of adjacent cells in the volume
dataset). In the block-based span space, each point represents a
block interval.

3.2. BONO Structure

The BONO [WG92] is a space-efficient variation of the tra-
ditional octree. The BONO recursively subdivides the vol-
ume based on cell geometric positions. The subdivision is per-
formed in such a way that the “lower” subdivision in each di-
mension of the volume covers the largest possible power of two
cells. Each tree node (except the root) represents a subvolume
of the volume. At each node, the extremes of the data in the
subvolume associated with the node are stored. The subdivi-
sion process continues until subvolume size reaches a mini-
mum. Each subvolume associated with the terminal node can
be viewed to be a block. In cases where volume dimensions are
not powers of two, such an approach makes tree traversal more
efficient. Search of the BONO allows quick determination of
the subvolumes that don’t contain the isosurface, allowing iso-
surfacing to skip inactive regions.

3.3. Partitioning Schemes

In order to achieve a balanced load across the threads, data-
centric static load balancing approaches require accurate esti-
mation of the work in each data partition. To some extent, par-
tition granularity determines work estimation accuracy; with
coarsely granular division of data, it tends to be more difficult to
form partitions with equal processing requirements. The eight
data-centric partitioning schemes compared in this study dif-
fer in degree of data granularity and in how work is estimated.
These partitioning schemes are described next.

(Span Space) Bucket-based Partitioning Scheme. The
(span space) bucket-based partitioning scheme partitions the
dataset’s active buckets among the threads. The active buckets
are determined by a search of a cell-based span space. The ac-
tive buckets are divided across threads; each thread is assigned
an approximately equal number of active cells. The bucket-
based partitioning is exactly the strategy used in Sulatycke and
Ghose’s [SG02] multithreaded isosurface extraction.
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Figure 3: Illustration of (a) finer weighted slice-based and (b) weighted block-based partitioning schemes (with facet weightings).

(Span Space) Cell-based Partitioning Scheme. The (span
space) cell-based partitioning scheme partitions the span space
active tiles evenly among the threads. The active tiles are de-
termined by a search of a cell-based span space [ZN04]. The
active tiles are divided such that each thread is assigned an ap-
proximately equal number of active cells.

(Span Space) Block-based Partitioning Scheme. The
(span space) block-based partitioning scheme partitions the
(dataset’s) span space active tiles evenly among the threads.
The active tiles are determined by a search of a block-based
span space [ZN04]. The active tiles are divided such that each
thread is assigned a roughly equal number of active blocks. We
consider this method because it organizes memory accesses in
a way that can increase locality of reference.

Next, partitioning schemes which do not use the span space
are described.

Slice-based Partitioning Scheme. The slice-based parti-
tioning scheme partitions the dataset’s slices evenly among the
threads; each thread is assigned an approximately equal num-
ber of slices. Such a scheme is essentially a coarsely gran-
ular version of the partitioning scheme used by Hansen and
Hinker [HH92] for their SIMD Marching Cubes.

Weighted Slice-based Partitioning Scheme. The weighted
slice-based partitioning scheme (with active cell weighting)
partitions the dataset slice-by-slice among the threads. Since
the Marching Cubes requires more computations in some cells
than others (e.g., active cells require more processing than in-
active cells), the weighted slice-based partitioning computes
an estimate of the isosurfacing work for each slice, and then
each thread is assigned a set of slices requiring a roughly equal
amount of isosurfacing computations. Each slice work estimate
is simply that slice’s active cell count (determined by search-
ing cell-based span space). In this scheme, the cell-based span
space is used only for active cell search in data partitioning, not
for active cell search in isosurface extraction. This scheme is a
multithreaded version of Miguet and Nicod’s [MN95] MIMD
approach with a variant estimate of work.

Finer Weighted Slice-based Partitioning Scheme. The
finer weighted slice-based partitioning scheme (with facet

weighting) enhances the work estimation of the weighted slice-
based partitioning scheme. Specifically, the number of isosur-
face facets in a slice is taken as an estimate of the isosurfacing
work for that slice.

In this scheme, cells are processed slice by slice (as illus-
trated in Fig. 3 (a)). The scheme requires the active cells to be
pre-determined and those cell’s faceting topologies to be deter-
mined. The slices are then partitioned among threads such that
each thread is assigned a set of slices requiring roughly equal
isosurfacing computation. In addition, we aid the process by
storing the cell topologic patterns in a table that is re-used in the
triangle-generation stage. This scheme is a multithreaded vari-
ation of Miguet and Nicod’s [MN95] MIMD approach with a
variant estimate of work. We consider this method because it is
designed to accurately estimate work. Its cost is a large amount
of early processing to estimate work, however.

Weighted Block-based Partitioning Scheme. The
weighted block-based partitioning scheme (with facet weight-
ing), which we introduce here, uses the number of isosurface
facets in the block as an estimate of isosurfacing work for that
block. Four steps are involved to implement this scheme: first,
the volumetric dataset is divided into blocks of size m×m×m;
second, for each block b, the block’s interval [bmin,bmax]
and the cells’ topologic patterns are determined; third, the
number of facets per cell is found by referral to the Marching
Cubes topology lookup table (using the computed cell pattern
as the index); last, each thread is assigned blocks with an
approximately equal number of triangles. Fig. 3 (b) shows the
process of this scheme.

BONO-based Partitioning Scheme. The BONO-based par-
titioning scheme partitions active terminal nodes (i.e., dataset’s
active blocks) evenly among the threads. The active blocks are
determined by a search of a BONO. The active blocks are di-
vided across threads so that each thread is assigned an approx-
imately equal number of active blocks.

4. Experimental Results and Analysis

Experiments to test the performance of the eight partitioning
schemes for multithreaded in-core MC isosurface extraction
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Figure 4: Illustration of (a) α = 75 isosurface for MRA Head
and (b) α = 30 isosurface for MRI Brain.

were performed on two computers with 512 MB of RAM —
one with dual Intel Xeon 2.4GHz CPUs and the other with
one hyperthreading Intel Pentium IV 3.06GHz CPU. The Linux
Pthreads library (version 0.10) running under a hyperthreading-
supportive Linux 2.4 kernel was used to perform multithread-
ing. Two datasets with 8-bit data items (a magnetic reso-
nance angiography (MRA) head dataset (MRA Head) of size
256×256×72 and a magnetic resonance imaging (MRI) brain
dataset (MRI Brain) of size 256×256×128) were used in the
experiments. Sample isosurfaces extracted from the datasets
are shown in Fig. 4, in which α represents isovalue. The iso-
surfacing processing includes the triangle vertex normal com-
putation. The block-based strategies were tested using 4×4×4
blocks.

On each computer, runs with one to eight threads were per-
formed for each partitioning scheme. The reported extraction
times are reported as trimmed means over 10 runs. The exper-
iments reported here are for extractions at α = 75 for MRA
Head and at α = 30 for MRI Brain. 1.3% of the cells are active
for this MRA Head extraction. 5.1% of the cells are active for
this MRI Brain extraction.

4.1. Dual-CPU Computation

This section reports the schemes’ cache behavior, extraction
performance, total performance, and the degree of load balanc-
ing for extractions performed on the dual-CPU computer.

4.1.1. Cache Behavior

First, we consider the L1 and L2 cache misses and TLB misses
among the eight schemes for isosurfacing on the MRA Head
dataset at α = 75. (It is well-known that the gap between CPU
and main memory speeds can be overcome to some degree by
algorithms which make good use of cache [HP03].) Misses
were determined using the PAPI [DLM∗01] interface to the
Pentium performance counters.

In Fig. 5, we show the results for the one thread case (which
is reasonably representative). The figure shows the L1 and L2
cache misses and TLB misses for the eight schemes over the
MRA Head dataset at α = 75 on the dual-CPU machine.

The L1 and L2 cache misses were slightly higher for multi-
threaded approaches than for uni-threaded ones. The L1 and L2
cache miss counts were essentially unchanged as the number of
threads was increased beyond two. For each scheme, the num-
ber of TLB misses tended to increase marginally as the number
of threads increased.

The L1 cache misses of the eight schemes varied, but the
variation was not extreme—the maximum difference was a fac-
tor of about 2 among eight schemes. The bucket-based and
cell-based schemes had substantially more L2 cache misses
and TLB misses than the other schemes, however. The large
number of TLB and L2 cache misses imply that these two
schemes probably have low data locality of reference. Since
a bucket or active tile can contain cells from any part of the
volume, this outcome is perhaps not unexpected. In addition,
these two schemes’ more random pattern of memory accesses
probably limits the CPU’s predictive pre-fetching capability to
accurately predict future cache accesses. In contrast, the slice-
based, the weighted slice-based, and the finer weighted slice-
based schemes had the fewest L2 cache and TLB misses, be-
cause they exhibit higher data locality of reference, and because
their memory access patterns are more predictive, leading to
more accurate predictive pre-fetching by the CPU. The block-
based, weighted block-based, and BONO-based schemes had
moderately high L2 cache misses, probably because these three
schemes have at least a modest degree of locality of reference.
However, the weighted block-based and BONO-based schemes
had less TLB misses than the (span space) block-based scheme
because the (span space) block-based scheme processes blocks
based on the block-based span space. In the block-based span
space, the blocks adjacent to each other in a tile are not neces-
sarily stored in contiguous data locations, leading to lower data
locality of reference than that in the weighted block-based and
BONO-based schemes. The BONO-based scheme had more
TLB misses than the weighted block-based scheme, probably
because the BONO-based scheme processes only active blocks
of the dataset and order of active block encounter in BONO
traversal may not be the same as their memory order.

4.1.2. Extraction Performance

The isosurface extraction time of the schemes is reported in
Fig. 6 for extractions with 1, 2, 3, 4, 6, and 8 threads for (a)
the MRA Head and (b) the MRI Brain datasets. Use of multi-
ple threads tended to decrease extraction time for all schemes.
Of these schemes, the BONO-based scheme achieved modestly
better extraction performance.

Comparison of Span Space-based Schemes. In most cases,
the cell-based scheme outperformed the bucket-based scheme
by a small amount, probably because the former employs the
finer work assignment unit (i.e., tiles). Due to dividing active
tiles rather than active buckets across threads, the cell-based
scheme is more flexible than the bucket-based scheme and will
perform better in the case where all active cells for a given iso-
value are mapped into very few buckets.
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Figure 5: Comparison of (a) L1 cache misses, (b) L2 cache misses, and (c) TLB misses among eight schemes (SL=Slice-based,
WS=Weighted slice-based, BU=Bucket-based, BL=Block-based, CE=Cell-based, FW=Finer weighted slice-based, WB=Weighted
block-based, BO=BONO-based) on dual-CPU machine for MRA Head dataset at α = 75, using one thread.
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Figure 6: Extraction times for (a) MRA Head dataset at α = 75 and (b) MRI Brain dataset at α = 30 and extraction speedups for (c)
MRA Head dataset at α = 75 and (d) MRI Brain dataset at α = 30 on dual-CPU machine using various numbers of threads.

Although the cell-based and the block-based schemes had
quite similar performance for the MRA Head extraction at
α = 75, the block-based scheme performed better than the cell-
based scheme for the MRI Brain dataset at α = 30. This out-
come is because there is a higher percentage of inactive cells in
the MRA Head extraction, and the cell-based scheme more ac-
curately eliminates the inactive cells from the processing; the

block-based scheme skips a relatively smaller portion of the
inactive cells. However, the block-based scheme can utilize the
cache more effectively. Additionally, for the cell-based scheme,
as the number of threads increases, there is likely relatively
more conflict for memory per unit of time.
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Figure 7: Comparison of (a) total run time and (b) speedup of total run time on dual-CPU machine for MRI Brain dataset at α = 30,
using various numbers of threads.

Comparison with other Schemes. For the α = 75 isosur-
face on the MRA Head dataset, the performance of the slice-
based scheme was better than that of the weighted slice-based
scheme, in part because the distribution of the active cells is
very unbalanced among slices. Thus, a thread assigned few
slices each with many active cells may execute much more
quickly than a thread with many slices each with few active
cells; both may process an equal number of active cells but the
second thread has many more total cells to process, making it
run more slowly. For the extraction of the α = 30 isosurface
on the MRI Brain dataset, the distribution of the active cells
was relatively balanced among the slices. Over all, estimating
work using the number of active cells on each slice seems more
accurate than estimation using the count of slices.

The finer weighted slice-based scheme also outperformed
the slice-based scheme, probably due to its relatively more ac-
curate estimate of work. However, whenever the finer weighted
slice-based and weighted block-based schemes make a new iso-
query, there is the higher overhead of re-estimating the work
by traversing each cell to compute the number of isosurface
facets. The finer weighted slice-based scheme did outperform
the weighted block-based scheme, probably because the finer
weighted scheme computes cell patterns for work estimation in
a slice-based manner that can better-utilize the cache.

Overall Extraction Comparison. The BONO-based
scheme likely outperformed the span space-based schemes
because the BONO-based scheme might better-support lo-
cality of reference—nearby active blocks are more likely to
be nearby in the octree, whereas they might have different
extrema and be far apart in span space.

The span space-based schemes always outperformed the
non-data-structure-based schemes because they exploit the ad-
vantages of both avoiding inactive cells and having the finer
granularity (i.e., blocks or cells, rather than slices). However,

the discrepancy of extraction times between span space-based
schemes and non-data-structure-based schemes for α = 30 on
the MRI Brain dataset was less than that for α = 75 on the
MRA Head dataset, because the MRI Brain dataset extraction
has a higher percentage of active cells.

Speedup Comparison among Eight Schemes. Fig. 6 shows
the isosurface extraction speedups for the schemes for (c) the
MRA Head and (d) the MRI Brain extractions. The block-
based scheme achieved the best speedup of 1.86 using 8 threads
(MRA Head dataset, α = 75). The BONO-based scheme
achieved the best speedup of 1.68 using 6 threads (MRI Brain
dataset, α = 30). This achievement likely occurred because
these two schemes exhibit moderately high data locality of ref-
erence and employ a moderately fine data granularity that al-
lows more accurate estimate and assignment of work.

4.1.3. Total Performance

We have also tested total isosurfacing performance, which in-
cludes the I/O and initialization overhead times as well as the
extraction time for a single isoquery. Here, the initialization
overhead is the time to generate the span space or the BONO
(if necessary). Fig. 7 (a) shows the eight schemes’ total run
time for the MRI Brain dataset at α = 30. The weighted slice-
based, bucket-based, and cell-based schemes exhibited simi-
lar behavior and achieved the worst overall performance. Their
relatively worse performance was due to use of the cell-based
span space, which has a relatively long generation time. For the
MRI Brain dataset, the cell-based and block-based span space
generations took 1.86 seconds and 0.17 seconds, respectively,
and the BONO generation took 1.36 seconds. The generation
of the block-based span space is much faster than that of the
cell-based span space due to the block-based span space’s more
coarse granularity (i.e., blocks are more coarsely granular than
cells) and than that of the BONO due to the BONO’s complex
data structure (i.e., tree). In addition, the overall performance
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Figure 8: Comparison of load balancing of eight schemes on
dual-CPU machine for the MRI Brain dataset at α = 30, with
4 threads.

of the slice-based, finer weighted slice-based, and weighted
block-based schemes is approximately on par with that of the
block-based scheme due to those schemes having no overhead
for span space generation. However, we must note that it is
common to make multiple isoqueries, and the marginal time
for each additional extraction, as mentioned earlier, is lowest
for span space-based and BONO-based approaches.

Fig. 7 (b) shows the total performance speedups for the
schemes. The results show that the slice-based scheme’s
speedup was best. That speedup was 1.51 for the MRI Brain
dataset at α = 30. Its good performance is because the slice-
based scheme does not need to do as much serialized work (i.e.,
generation of the span space and work estimation), thus the par-
allelized extraction time is a relatively large component of the
total run time. The bucket-based, cell-based, and BONO-based
schemes exhibited the worst speedup, although their extraction
times were low, due to computation avoidance.

Work in medical dataset processing [HSPK92] has suggested
that practitioners will not tolerate delays of more than about 2
seconds for the production of renderings during interactive op-
eration. The experiments reported in our previous work [ZN04]
have demonstrated that conventional Marching Cubes and even
single-threaded span space approaches are often slower than
2 seconds for extractions performed on tomographic datasets.
However, the multithreading span space schemes allow the ex-
tractions to be reduced below 2 seconds. Thus, the multithread-
ing span space-based and BONO-based schemes could be a
great benefit to practitioners using in-core isosurfacing. It is
apparent from the results in Fig. 7 that even for the moderate-
sized datasets with a moderate degree of cell activity studied
here, achieving an image in less than 2 seconds can be a chal-
lenge.

4.1.4. Load Balancing

Fig. 8 compares the extraction times for each thread in a 4-
thread job for the MRI Brain dataset. The cell-based, finer
weighted slice-based, and weighted block-based schemes could
obtain a well-balanced load across threads. Among these three
schemes, the weighted block-based scheme achieved the best
load balancing. The percentage of imbalance (i.e., the relative

time difference between the fastest and slowest thread) was
1.5% for the MRA Head dataset at α = 75 and 10.1% for the
MRI Brain dataset at α = 30. The results suggest that the data
granularity (i.e., block or cell) and accuracy of work estima-
tion (i.e., using the number of active cells or triangles) are key
factors influencing the load balance.

4.2. Single-CPU Computation

This section reports experiments performed on the single-CPU
computer. For the MRI Brain dataset, the preprocessing times
to generate the cell-based span space and the block-based span
space were 1.65 seconds and 0.14 seconds, respectively; the
preprocessing time to generate the BONO was 1.01 seconds.
Due to space limits, we only report one group of experiments.
Fig. 9 shows (a) the total run time and (b) the speedup in total
run time using the eight schemes on the MRI Brain dataset at
α = 30. The relative behavior of the multithreading strategies
is similar to that reported for the dual-CPU machine. However,
the maximum speedup was about 1.2 — and use of more than
2 threads resulted in performance degradation.

4.3. Memory Consumption

Each strategy’s memory requirement is the sum of the size of
the input dataset, the output (i.e., the facetized mesh), and, if
necessary, the span space or BONO data structure. Next, we
estimate the memory requirement in a mathematical way, as-
suming the volume dataset with unsigned byte data items con-
tains N ×N ×N data points, where N is a power of two. Thus
there are (N − 1)3 cells in the volume; the number of blocks

(each of size of 4× 4× 4 data points) should be about (N−1)3

27
since each non-boundary block contains 27 cells. Storing the
output facets’ information requires G bytes. If the span space
data structure uses 3 bytes to store the index of each unit (i.e.,
block or cell), the total storage should be at least 3(N − 1)3

bytes for the cell-based span space and at least (N−1)3

9 bytes
for the block-based span space. Since N is a power of two, the
BONO will contain approximately 1

7 (N3
− 1) nodes [WG92].

If the BONO uses 13 bytes to store necessary information for
each node, the total storage should be at least 13

7 (N3
−1) bytes.

The other storage for supporting variables for any scheme is
relatively small, and we assume it to be a constant b bytes for
all the schemes.

Hence, total memory usage is about (N3 + G + b) bytes
for the slice-based scheme, about (N3 + G + 3(N − 1)3 + b)
bytes for the weighted slice-based, bucket-based, and cell-

based schemes, about (N3 + G +
(N−1)3

9 + b) bytes for the
block-based scheme, about (N3 +G+N3 +b) bytes for the finer
weighted slice-based and weighted block-based schemes, and
about (N3 + G + 13

7 (N3
− 1) + b) bytes for the BONO-based

scheme. (The finer weighted slice-based and weighted block-
based schemes need N3 bytes more memory than the slice-
based scheme since these two schemes keep the cell patterns
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Figure 9: Comparison of (a) total run time and (b) speedup of total run time among eight schemes on single-CPU machine for a
MRI Brain dataset at α = 30, using various numbers of threads.

computed during the work estimation for later use in isosurface
extraction.)

It is apparent that among three types of data structures (i.e.,
cell-based span space, block-based span space, and BONO),
the cell-based span space needs the most memory storage, the
block-based span space needs the least memory storage, and
the BONO needs a moderate-sized memory storage. Of the
eight schemes, the slice-base scheme requires the least mem-
ory since it uses no auxiliary data structure. The weighted slice-
based, bucket-based, and cell-based schemes have nearly equal
memory requirements, but use more memory than the other
schemes. For many applications, the block-based scheme’s
memory requirement may be a good compromise since it’s be-
tween that of the slice-based and the other six schemes. Thus,
when the dataset is large, the block-based scheme can achieve
high isosurfacing performance with less memory usage than
the other schemes using auxiliary data structures.

5. Conclusion

In this paper, we have examined multithreading strategies
for efficient Marching Cubes isosurface extraction on single-
and dual-CPU computers. Eight data-centric multi-threading
schemes’ cache behavior, computational performance, and
memory requirement were considered. Factors such as differ-
ent data granularity (e.g., slices, blocks, and cells) and different
work estimation strategies impact these schemes’ performance.

Of the eight schemes tested, the slice-based, weighted slice-
based, and finer weighted slice-based schemes exhibited the
best cache behavior. The BONO-based scheme appeared to
achieve the best isosurface extraction performance, however.
The bucket-based, block-based, and cell-based span space
schemes also had good isosurface extraction performance. The
block-based scheme obtained the best speedup from multi-
threading. The slice-based scheme produced the best speedup

of total performance for a single isoquery due to its lack of
overhead (no span space or BONO is generated). Its total per-
formance using a given number of threads appears similar to
the behavior of the block-based, finer weighted slice-based,
and weighted block-based schemes, however. The weighted
block-based scheme can achieve the best load balancing across
threads due to its finer data granularity and accurate work esti-
mation. While use of the cell-based and block-based span space
structures aids in acceleration of isosurfacing due to avoiding
traversal of inactive regions, if the number of isosurface facets
tends to be large for a given isovalue, the performance of ex-
traction might not be greatly improved by using the span space.
In such a case, the BONO-based scheme can achieve good ex-
traction performance due to high data locality of reference. In
the case where many isoqueries are needed, the span space-
based and BONO-based schemes can achieve better perfor-
mance than other schemes due to avoiding traversal of inactive
regions.

In summary, the (span space) block-based scheme appears
to be fairly efficient scheme for multithreaded Marching Cubes
on current generation 32 bit single- or dual-CPU systems, con-
sidering the metrics of cache behavior, computational perfor-
mance, and memory requirement together. Its extraction perfor-
mance is similar to that of the cell-based approach, but its mem-
ory requirement and set-up time are improved. In the future,
we plan to parallelize the construction of the span space and
BONO structures and extend our comparative study of multi-
threaded in-core Marching Cubes isosurfacing to consider the
impact of parallel construction of auxiliary data structures.
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