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Abstract

We introduce a novel data structure called Differential Time-Histogram Table (DTHT) for visualization of time-
varying scalar data. This data structure only stores voxels that are changing between time-steps or during transfer
function updates. It allows efficient updates of data necessary for rendering during a sequence of queries common
during data exploration and visualization. The table is used to update the values held in memory so that efficient
visualization is supported while guaranteeing that the scalar field visualized is within a given error tolerance of
the scalar field sampled. Our data structure allows updates of time-steps in the order of tens of frames per second
for volumes of sizes of 4.5GB, enabling real-time time-sliders.

Categories and Subject Descriptors (according to ACM CCS): 1.3.6 [Computer Graphics]: Graphics data structures

and data types - E.1 [Data]: Data Structures

Keywords: time-varying data, volume rendering

1. Introduction

As computing power and scanning precision increase, scien-
tific applications generate time-varying volumetric data with
thousands of time steps and billions of voxels, challenging
our ability to explore and visualize interactively. Although
each time step can generally be rendered efficiently, render-
ing multiple time steps requires efficient data transfer from
disk storage to main memory to graphics hardware.

We use the temporal coherence of sequential time frames,
the spatial distribution of data values, and the histogram dis-
tribution of the data for efficient visualization. Temporal co-
herence [SH99] is used to prevent loading unchanged sample
values, spatial distribution [WG92] to preserve rendering lo-
cality between images, and histogram distribution to update
for incremental updates during data classification.

Of these, temporal coherence and histogram distribution
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are encoded in a differential table computed in a prepro-
cessing step. This differential table is used during visualiza-
tion to minimize the amount of data that needs to be loaded
from disk between any two successive images. Spatial dis-
tribution is then used to accelerate rendering by retaining
unchanged geometric, topological and combinatorial infor-
mation between successive images rendered, based on the
differential information loaded from disk.

The contributions of this paper are to identify and analyze
statistical characteristics of large scientific data sets that per-
mit efficient error-bounded visualization. We unify the sta-
tistical coherence of the data with the known spatial and tem-
poral coherence of the data in a single differential table used
for updating a memory-resident version of the data.

We define coherence and distribution more formally in
Section 2, review related work in Section 3 and support our
definition of coherence and distribution in Section 4 with a
case study. In Section 5 we show how to exploit data char-
acteristics to build a binned data structure representing the
temporal coherence and spatial and histogram distribution
of the data, and how to use this structure to accelerate inter-
active exploration of such data. We then present some results
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in Section 6 and some conclusions in Section 7, followed by
comments on possible future work in Section 7.

2. Data Characteristics

In order to discuss both previous work and our own contribu-
tions, we start by defining our assumed input and the statisti-
cal properties of the data that we will exploit for accelerated
visualization: we will support these assertions empirically in
our case study in Section 4.

Formally, a time-varying scalar field is a function f :
R* — R. Such data is often sampled f at fixed locations V =
{vi,...,vy} and fixed times T = {rq,...,t¢}. Since we ex-
ploit this sampling regularity to accelerate visualization, we
assume that our data is of the form . = {(v,t, f(v,1)) Vv €
V.t € T}, where each triple (v,7, f(v,1)) is a sample.

Previous researchers report [OMO1] that only a small frac-
tion of .# is needed for any given image generated during vi-
sualization. Thus, any image can be thought of as the result
of visualizing a subset of .% defined by a query q.

More formally, given .# and a condition ¢ at time ¢
(e.g. a transfer function), find the set .%|q of all samples
(v, f(v,1)) for which ¢ is true (e.g. the opacity of f(v,7) is
non-zero). Thus, % |q is the set of samples needed to render
g, called the active set of q.

To construct a query ¢ for isosurface extraction at isovalue
h, 7 |q consists of all samples belonging to cells whose iso-
values span /. For volume rendering, we base transfer func-
tions on the isovalue, as shown in Figure 4: the active set
therefore has a range of isovalues.

We now restate our observation: we expect ||.Z|q| <
l-# ||. Moreover, .% |q is rarely random, nor is it evenly dis-
tributed throughout the data set. Instead, .% |¢q tends to con-
sist of large contiguous blocks of samples, due to the conti-
nuity of the physical system underlying the data, and the in-
herent organization of most physical systems being studied.
We exploit both characteristics to accelerate visualization.

We also exploit the fact that human exploration of
data usually involves continuous (i.e. gradual) variation of
queries. Formally, we are interested, not in a single query
g, but in a sequence qi,...,q; of closely-related queries,
with occasional abrupt changes to a new query sequence
q/1 -+, We expect that the active sets for any two sequen-
tial queries will be nearly identical, i.e. that F#|q;11 ~ .7 |q;.

In particular, we exploit coherence and distribution. Let
us denote two samples o] = (vi,f1,f(v1,f1)) and op =
(v2,12, f(v2,12)), and choose small values 8,4 > 0.

Spatial coherence is coherence with respect to the spa-
tial dimensions x,y,z of the domain of f, and is based on
the spatial continuity of the physical system. Small spatial
changes imply small functional changes, i.e. if [v; —vp| < &
and 1] = 1, then | f] — f>| < A for small 4.

Temporal coherence is coherence with respect to the
time dimension ¢ of the domain of f and is based on the tem-
poral continuity of the physical system. Hence, if |f] — 1| <
6 and v; = vy, then |f] — f2] < A for small 4.

Given two sequential queries g;,q;;+; which differ only
slightly in space or time, % |q; and .%#|q;,; will therefore
overlap significantly. We exploit this to accelerate the task
of updating the active set for rendering purposes, focusing
principally on temporal exploration. We also exploit statisti-
cal properties of the data sets in question, which we describe
in terms of data distribution:

Histogram distribution is a property of the functional di-
mension (i.e. the range of f) and depends largely on the data
being studied. However, it is usually true that extracted fea-
tures are chosen at values where the range of f varies greatly:
thus we expect f to be fairly well distributed, although sam-
pling may affect this.

Spatial distribution is a large scale form of spatial co-
herence, and is based (again) on the physical phenomena
scientists and engineers study. Although data is commonly
generated over large domains, it is often true that nothing
interesting happens in most of the domain. As a result, the
active sets for queries made by the user are often clustered
in a subset of the space.

Histogram distribution is crucial where two sequential
queries g; and g;; differ only slightly in the functional di-
mension. For well-distributed data values, we expect .7 |g;
and . |q;1; to be substantially identical: i.e. that we can
change transfer functions more rapidly by loading only the
new data values required. Moreover, the spatial distribution
of the data allows us to have spatially sparse data structures.

3. Related Work

The difficulty of rendering large data sets is well-recognized
in the literature, with successive solutions addressing pro-
gressively larger data sets by exploiting various data charac-
teristics. Broadly speaking, however, the solutions proposed
have dealt with isosurface extraction and volume rendering
as separate topics, whereas our solution is applicable to ei-
ther with suitable modifications.

Modern isosurface extraction and volume rendering
methods are based on the recognition that the problem
is decomposable into smaller sub-problems. Lorenson &
Cline [LC87] recognized this and decomposed the extrac-
tion of an isosurface over an entire data set by extracting the
surface for each cell in a cubic mesh independently.

Almost  simultaneously, Wyvill, McPheeters &
Wyvill [WMW86] exploited spatial coherence for effi-
cient isosurface extraction in their continuation method.
Spatial coherence has also been exploited for volume
rendering [WTTL96].

(© The Eurographics Association 2005.



H. Younesy, T. Moller & H. Carr / Differential Time-Histogram Table

Other researchers [CMM™*97, Gal91, LSJ96, WG92] ex-
ploit spatial distribution for efficient extraction of isosurface
active sets. In particular, Wilhelms & van Gelder [WG92]
introduced the Branch-On-Need Octree (BONO), a space ef-
ficient variation of the traditional octree. Octrees, however
do not always represent the spatial distribution of the data,
and are inapplicable to irregular or unstructured grids.

Livnat et al. [LSJ96] introduced the notion of span space
- plotting the isovalues spanned by each cell and building
a search structure to find only cells that span a desired iso-
value. Since this represents the range of isovalues in a cell
by a single entry in a data structure, it exploits histogram
distribution. Histogram distribution has also been exploited
to accelerate rendering for isosurfaces [CVCKO03] by com-
puting active set changes with respect to isovalue.

Chiang et al. [CSS98] clustered cells in irregular meshes
into meta-cells of roughly equal numbers of cells, then built
an I/O- efficient span space search structure on these meta
cells, again exploiting histogram distribution.

For time-varying data, it is impossible to load an entire
data set plus search structures into main memory, so re-
searchers have reduced the impact of slow disk access by
building memory-resident search structures and loading data
from disk as needed.

Sutton & Hansen [SH99] extended branch-on-need oc-
trees to time-varying data with Temporal Branch-on-Need
Octrees (T-BON), using spatial and temporal coherence to
access only those portions of search structure and data which
are necessary to update the active set.

Similarly, Shen [She98] noted that separate span space
structures for each time-step are inefficient, and proposed a
Temporal Hierarchical Index (THI) Tree to suppress search
structure redundancy between time-steps, exploiting both
histogram distribution and temporal coherence.

Reinhard et al. [RHP02] binned samples by isovalue for
each time step, loading only those bins required for a given
query: this form of binning exploits histogram distribution
but not temporal coherence.

For volume rendering, Shen & Johnson [SJ94] introduced
Differential Volume Rendering, in which they precomputed
the voxels that changed between adjacent time-steps, and
loaded only those voxels that changed, principally exploit-
ing temporal coherence.

Shen [SCM99] extended Differential Volume Rendering
with Time-Space Partitioning (TSP) Trees, which exploit
both spatial distribution and temporal coherence with an oc-
tree representation of the volume. Binary trees store spatial
and temporal variations for each sub-block, and this infor-
mation is used for early termination of a ray-tracing algo-
rithm, based on a visual error metric. Shen also cached im-
ages for each sub-block in case little or no change occurred
between frames. Ma & Shen [MS00] further extended this by
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quantizing the isovalues of the input data and storing them
in octrees before computing differentials.

Finally, Sohn and Bajaj [SBS02] use wavelets to compress
time-varying data to a desired error bound, exploiting tem-
poral coherence as well as spatial and histogram distribution.

Our contribution in this paper is to unify temporal coher-
ence in the form of differential visualization with statistical
distributions in the form of isovalue binning.

Before introducing our data structures, however, we
demonstrate the validity of coherence and distribution with
some case studies.

4. Case Studies: Data Characteristics of Isabel &
Turbulence

As noted in the previous sections, our approach to acceler-
ating visualization depends on mathematical, statistical and
physical properties of the data being studied. Before pro-
gressing further, it is therefore necessary to demonstrate that
these properties are the case. We do so by means of case
studies of three different data sets.

The first and largest data set is the Hurricane Isabel data
set provided by the National Center for Atmospheric Re-
search (NCAR) for the IEEE Visualization Contest 2004 and
has 48 time steps of dimension 500x500x100. It contains 13
different floating point scalar variables of which we study
the temperature and pressure. We have also studied the Tur-
bulent Jets (jets) and Turbulent Vortex Flow (vortex) data
sets provided by

D. Silver at Rutgers University and R. Wilson at Univer-
sity of Iowa to

Kwan-Liu Ma at University of California, Davis. The jets
data contains 150 time steps of 104x129x129 floats, while
the vortex data contains 100 time steps of 1283 floating point
scalars.

4.1. Temporal Coherence

We demonstrate temporal coherence by computing the dif-
ference between adjacent time steps, and graphing the per-
centage of differences that exceed an error bound expressed
as a percentage of the overall data range. As we see in Fig-
ure 1(a), at an error bound of 0%, all of the voxels differ
from one time step to the next. This may be due to numer-
ical inaccuracies in the floating point data. It therefore fol-
lows that 100% of the samples will need to be replaced for
the memory-resident version of the data to be accurate.

However, as we see from the second line on the graph,
between 40% and 60% of the samples differ by more than
0.3%. Thus, for a 0.3% error in the isovalues displayed, we
can save as much as 60% of the load time between queries.
As the error bound is increased further, the number of sam-
ples to be loaded decreases further: at 1% error, between
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Figure 1: Temporal Coherence: Number of samples
that change by more than an error bound of A =
0%,0.3%,1%,3% for the temperature and pressure scalars
of the Isabel data set as well as the jets and vortex data sets.

80% and 90% of the samples need not be reloaded, while
at 3% error, over 95% of the samples need not be reloaded.

Similar effects can be seen for pressure in Isabel (Fig-
ure 1(b)) and for the jets and vortex data sets (Figure 1(c)
& (d)). In Figure 1(d), we believe that the sharp periodic
dips indicate that certain time steps were inadvertently du-
plicated. This aside, the overall conclusion is that relatively
small error bounds permit us to avoid loading large numbers
of samples as time changes.

4.2. Histogram Distribution

In the last section, we saw that the statistics of temporal co-
herence permit efficient differential visualization for a given
error bound. It is natural to ask whether similar statistics
are true for small changes in isovalues defining a query. We
show in Figure 2 that this is true by examining the histogram
distribution for each data set.

For this figure, we set our error bound to 1% and com-
puted the size of the active set for individual data ranges
(bins) and for different times, and also the number of sam-
ples whose values changed in the temporal dimension. For
example, we see in Figure 2(a) that temperature isosurfaces
in the Isabel data set never have active sets of more than 5%
of the size of a single slice, and that less than half of the
active set typically requires replacement between one time
step and the next. For pressure, although nearly 25% of the
samples are in the active set in the worst case, these samples
change little between timesteps, indicating that the physical
phenomenon marked by this pressure feature does not move
much in space between time steps.

In the jets data set (Figure 2(c)), the worst-case behaviour

is exhibited: at an isovalue of roughly 80% of the range,
nearly 100% of the samples are in the active set. Although
this has implications for the actual rendering step, we see
that this set changes little with respect to time. However, as
it turns out, these data values constitute most of the “air” sur-
rounding the flow under study and are likely to be ignored
during data exploration.

In the vortex data set (Figure 2(d)), we see again that data
bins involve relatively few samples, and that these samples
have a large degree of temporal coherence.

4.3. Spatial Distribution

Unlike histogram distribution, spatial distribution is harder
to test, as it is best measured in terms of the spatial data
structure used to store the data. We therefore defer consid-
eration of spatial distribution to the discussion of Table 1 in
Section 5.

5. Differential Time Histogram Table

In the previous section, we demonstrated that temporal co-
herence and histogram distribution offer the opportunity to
reduce load times drastically when visualizing large time-
varying data sets. To achieve the hypothesized reduction
in load-time we introduce a new data structure called the
Differential Time Histogram Table (DTHT) along with an
efficient algorithm for performing regular and differential
queries in order to visualize the data set.

To exploit temporal coherence and histogram distribution,
we apply differential visualization in the temporal direction
and binning in the isovalue direction. Since we expect user
exploration of the data to consist mostly of gradual varia-
tions in queries, we precompute the differences between suc-
cessive queries. We modify temporal coherence by including
in the differential set only those samples for which the er-
ror exceeds a chosen bound, further reducing the number of
samples to be loaded at each time step.

5.1. Computing the DTHT

Our DTHT, shown in Figure 3 stores samples in a two-
dimensional array of bins defined by isovalue range and time
step. In each bin, we store the active set (a), and a set of dif-
ferences (arrows) between the active sets of adjacent bins.

For a given data set with 7 time steps, we create a DTHT
with 7 bins in the temporal direction and b bins in the iso-
value direction. Large values of b will increase the size of the
table, but decrease the range of values in each bin, making
active set queries more efficient for one bin, but not neces-
sarily faster for a query covering a large range of bins. Also,
large numbers of bins will result in more storage overhead.

We choose a number b and divide the isovalue range into b
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Figure 2: Temporal Coherence + Histogram distribution:
Number of samples that change by more than an error bound
of A = 1% for the temperature and pressure scalars of the
Isabel data set as well as the jets and vortex data sets. Each
data set is divided up into 100 iso-value bins.
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Figure 3: The Differential Time Histogram Table (DTHT).
Each bin holds the active set (a) and differentials between
the bin and adjacent bins (arrows). Components not used
for our experiments are shown in a lighter shade.

bins. We also choose A, the amount of error we will tolerate
in isovalues for a single sample over time.

We compute the DTHT by loading the first time step into
memory and binning the samples. We then load the second
time step into memory alongside the first and compute the
difference between the two time steps. Any sample whose
difference exceeds the error bound is added to the differen-
tial set in the time direction. Any sample whose difference
does not exceed the error bound is modified so that the value
in the second time step is identical to the value in the first
time step: this ensures that, over time, errors do not accumu-
late beyond our chosen bound.

At the same time, differentials are computed in the iso-
value direction if these are desired. In our experiments, we
have chosen to render using splatting: in this case each sam-
ple belongs to only one bin and the active sets in adjacent
bins are disjoint. It follows that the isovalue differentials are
equal to the active sets, and can be omitted accordingly, we
show them in a lighter shade in Figure 3. In case we want to
adapt the data structure to support extraction of isosurfaces,
each voxel may belong to a range of isovalue bins depend-
ing on the values of its neighbors; therefore the bins will
have overlap and it would be reasonable to have differentials
between neighbor bins to avoid redundancy.

The first time step is then discarded, and the next time step
is loaded and compared to the second time step. This process
continues until the entire data set has been processed.

For each sample, we store location, isovalue, and normal-
ized gradient vector at a leaf node of a branch-on-need oc-
tree. At all times, the current active set is stored in a branch-
on-need octree, as are the active sets and the differentials for
each bin. Samples are added or removed from the current ac-
tive octree by tandem traversal with the octrees for the bins.

Instead of single samples, however, we store entire bricks
of data (typically 32 x 32 x 32) at octree leaves, either in
linked lists (if no more than 60% is active) or in arrays (if
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Structure List Octree Octree
All Active Sets 1st Active Set
A GB  %age GB Joage GB %oage
Isabel - temperature
0.0% 346 737% 277 591% 18.5 394%
0.3% 224 477% 17.9 382% 8.7 186%
1.0% 15.0  320% 12.0 256% 2.8 60%
3.0% 122 260% 9.8 209% 0.59 12%
Isabel - pressure
0.0% 346 737% 277 590% 18.5  394%
0.3% 176 371% 14.1 301% 49 104%
1.0% 13.8 294% 11.1 237% 1.9 40%
3.0% 124 264% 9.9 211% 0.72 15%
Turbulent Jets
0.0% 74  673% 5.0 455% 34 330%
0.3% 34 310% 2.4 216% 0.71 70%
1.0% 2.8 255% 1.9 173% 0.20 20%
3.0% 26  236% 1.8 164% 0.06 6%
Turbulent Vortex Flow
0.0% 46  731% 3.7 588% 2.5 394%
0.3% 40  636% 32 509% 2.0 320%
1.0% 35 556% 2.8 445% 1.6 252%
3.0% 26  413% 2.1 334% 093  150%

Table 1: Size (in GB and percent of original data set) of
DTHT using lists and octrees with all or only the first active
set stored.

more than 60% is active). We save space by storing sample
locations relative to the octree cell instead of absolutely, re-
quiring fewer bits of precision.

Moreover, octrees are memory coherent, so updates are
more efficient than linear lists, although at the expense of
a larger memory footprint, as shown in Table 1. We note,
however, that the memory footprint is principally determined
by the size of the octrees for the active sets.

Further reductions in storage are possible depending on
the nature of the queries to be executed. We assume that
abrupt queries are few and far between, and dispense with
storing active sets explicitly except for the first time step. If
an abrupt query is made at time ¢, we can construct the active
set by starting with the corresponding active set at time 0 and
applying all differential sets up to time ¢. Doing so reduces
the amount of storage required even further, as shown in the
third column of Table 1. As with the isovalue differentials,
we indicate this in Figure 3 by displaying the unused active
sets in a lighter shade. We can also store active sets in a sub-
set of a priorily chosen keyframes so that we always start
from the nearest keyframe instead of starting from the first
frame. Another way of reducing the storage is to remove the
active sets and differentials for the non-interesting isovalue
ranges (e.g. the empty spaces) which can have a huge impact
depending on the nature of the dataset.

5.2. Queries in the DTHT

For any query, we first classify the query as gradual (a small
change) or abrupt (a large change): as noted in Section 2, we
expect the nature of user interaction with the data will cause
most queries to be gradual in nature rather than abrupt.

We chose to implement volume rendering using point-
based splatting, in which the active set consists only of those
samples for which the opacity is non-zero. This active set
may span multiple DTHT cells, as shown in Figure 4, in
which case we use the union of the active sets for each
DTHT cell. It is also possible to use other volume render-
ing methods as long as they alow runtime update of the data.
For instance, hardware texture slicing would be suitable only
if the hardware allows texture updates without requiring to
load the whole texture for each update.

Abrupt queries are handled by discarding the existing ac-
tive set and reloading the active set from the corresponding
bin or bins on disk. Because the data was binned, the active
set is over-estimated for any given transfer function. This is a
conservative over-estimate which includes the desired active
set, but is sensitive to the size of the bin. Too few bins leads
to large numbers of discards for a particular query, while too
many bins leads to overhead in data structures and overhead
in merging octrees.

OOLO-OLO @- Active
© ) DTH Cells

Isovalue

TF Opacity Time

Figure 4: Active DTHT Cells For a Given Transfer Function.

Gradual queries in the temporal direction edit the active
set using differentials for each bin spanned by the transfer
function. Since forwards and backwards differentials are in-
verse, we only store on each arrow the set of samples that
needs to be added in that direction. The set of samples that
needs to be removed is then the set of samples stored on the
opposite-direction arrow between the same two bins.

Gradual queries in the isovalue direction discard all sam-
ples in a bin when the transfer function no longer spans that
bin, and add all samples in a bin when the transfer function
first spans that bin. It should be noted that random access to
voxels in our octree based data structure is not efficient since
it requires top down traversing of all octrees for to access the
voxel. Hence, visualizing multimodal data would be gener-
ally difficult. We have addressed that in our future work.

For faster rendering, partial images for each base level
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block in the current active octree are stored, as in the TSP
tree [SCM99]. Since we update base level blocks in the oc-
tree only when changes exceed the A-bound, these partial
images often survive two or more time steps.

6. Results and Discussion

We implemented our differential temporal histogram ta-
ble algorithm and visualized different scalar time-varying
datasets introduced in Section 4, using a 3.06GHz Intel Xeon
processor, 2GB of main memory and an nVidia AGP 8x
GeForce 6800 graphics card, with data stored on a fileserver
on a 100Mb/s Local Area Network.

In our experiments we used b = 100 isovalue bins,
set the base-level brick size in the octrees to 32x32x32,
and tested four different values for error bounds (A =
0%,0.3%,1.0%,3.0%).

In our first experiment we controlled the number of active
voxels by changing the transfer function width (the range
of non-transparent data values). Starting with a 0% width
transfer function covering no bins, we increased the width
until all data values were classified as non-transparent and
all bins were loaded. The top three rows of the figures in
the color plate show representative images under this sce-
nario. In Figure 5, we compare the performance of DTHT
active sets alone with the performance of DTHT active and
differential sets, rendering each data set with an error bound
of A = 1.0% and transfer functions of varying widths. The
performance is principally driven by the width of the trans-
fer function, and it is clear that a significant speed gain in
loading the data can be achieved with the differential sets.
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Figure 5: A = 1.0% Rendering and data loading perfor-
mance for DTHT using active and differential files. The re-
ported times are averaged over multiple time steps.

We next investigated the performance of our algorithm for
different isovalue ranges, collecting the same measurements
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as before for constant width (10%) transfer functions with
different placements. The bottom three rows of the figures
in the color plate show representative images under this sce-
nario. The results for A = 1.0% and different data sets are
shown in Figure 6.

HT direct loading
HT differential updating
togram

——DTHT direct loading
- - +DTHT differential updating

histogram

Total Rendering Cost (seconds)
Convolved histogram (%)

Total Rendering Cost (seconds)
Convolved histogram (%)

80 100

DBlanamant o trancfar finetinn

(a) Tsabel - Temperature

Biarere i ancfar fiinstinn

| 20 40 60 80 10 . 20 40 60 80  10p,
% |[—DTHT direct loading 7 HT direct loading
€ ||--- DTHT differential updating - il T 2 . =
508 istogram 50 £ 508 HT differential updating 80 2
S £ 3 £
b= g = g
gos 60 2 0. 60 &
2 S ]
g : F =
5 04 40 3 £ 0. 40 3
§ g 2 S
< ] 2 20 &
3 02 20 3 o S
© 5
°

0
20, b e i

(d) “furbulent Vortex Elow

(] 20 40 60 80 100
Placement of a 10% widih transfer function

(c) Turbulent Jet

Figure 6: A = 1.0% Performance for DTHT using active and
differential files, showing also the ratio of active voxels to all
voxels (in yellow). A transfer function spanning 10% of the
data range was used with different centre points. Results are
averaged over several time steps.

To simplify comparison, we calculated the ratio between
the differential DTHT updates and direct DTHT updates for
both sets of experiments. Since the goal of this paper was
to improve the loading times, we excluded rendering time
from our figures. The goal was to investigate the cases in
which updating the octree using differential files were faster
than straightforward loading of the active files. Figure 7 and
Figure 8 show the ratio between the performance of the two
methods, respectively for different width transfer function
and constant width transfer function.

In a third experiment we investigated performance for a
fixed time but varying transfer function. Compared to the
brute-force method, where all of the data is loaded, our
method takes advantage of the rendering parameters to load
only the voxels participating in the final rendering. Chang-
ing the transfer function caused new bins to be added to or
removed from the data set. The results are shown in Figure 9.

Loading time of DTHT methods depends greatly on the
amount of active voxels. In both experiments, when a small
number of voxels are active, loading the octree directly from
the active files is comparatively faster than using the differ-
ential files. It is mainly because of the fact that loading the
octree directly from the active_voxels files, requires going
through the octree only once per each bin, while in the differ-
ential method, it will be twice per each bin; once to remove
the invalid voxels, using voxels_to_remove files and then to
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Figure 7: Ratio between DTHT differential updating time
and DTHT direct loading time for different error bounds, for
different transfer function widths.
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Figure 8: Ratio between DTHT differential updating time
and DTHT direct loading time for different error bounds and
different placements of a transfer function of constant width
(10%).

add the new voxels using voxels_to_add files. Hence, mem-
ory access time and octree processing time overcomes the
files transaction time when small amounts of data are read
from the hard drive.

As the number of active voxels increases, more data need
to be loaded/updated from the external storage. Hence, the
memory-storage transactions become the bottleneck. Since
there are relatively few data in the differential files, the per-
formance of updating the octree using the differential files
becomes better than the direct loading. However, the ratio of
this performance highly depends on the temporal coherence
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Figure 9: Loading time of incremental transfer function
changes.

of the data set. For example since the Turbulent Vortex Flow
data set isn’t as temporally coherent as the other three data
sets, even with a 1.0% error bound, the differential updating
is slower than the direct loading and that’s simply because
the number of voxels_to_add + voxels_to_remove is larger
than the actual amount of active_voxels.

Noise in the diagrams are mainly due to loading the data
through a local area network connection which is fast, but
does not always provide a constant data rate. There are also
large variations in some parts of Figure 7 and Figure 8. It
can be seen that the noise is mostly in the parts in which not
many voxels are active. This is because of the fact that, as
the loading times become smaller, they become more error
prone to be affected by slightest activities in the hardware or
the operating system.

7. Conclusion and future work

Efficient exploration and visualization of large time-varying
data sets is still one of the challenging problems in the area of
scientific visualization. In this paper we studied the tempo-
ral coherence of sequential times and histogram and spatial
distribution of data in time-varying data sets and proposed
a new data structure called differential time histogram table
(DTHT) to take advantage of these characteristics to effi-
ciently load and render time-varying data sets.

In a preprocessing step, we encode the temporal coher-
ence and histogram distribution of the data in the DTHT
data structure. Later, during the visualization step, we use
this differential information to accelerate updating data by
minimizing the amount of data that needs to be transfered
from disk into main memory. To store the data in external
storage and to keep the active data in main memory, we use

(© The Eurographics Association 2005.
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an octree data structure which accelerates loading and pro-
cessing data by exploiting spatial distribution.

The work presented in this paper was mainly focused on
analyzing the statistical characteristics of large datasets to re-
ducing the data transfer between memory and external stor-
age during the visualization process. We are planning to fur-
ther improve performance by applying compression schemes
for the data in leaf nodes and adding multi-level informa-
tion to the sub-levels of the data structure to enable multi-
resolution renderings.

Currently the rendering time is dominating the overall
time to produce an image. This is due to the fact, that the
rendering algorithm has not been optimized at this point. We
plan to take advantage of the octree data structure for hier-
archical rendering of our data in our next implementation.
Image caching, occlusion culling and parallel rendering will
further drastically improve the rendering performance.

Our future work includes applying proper modifications
to DTHT in order to enable the extraction of isosurfaces
and to handle multi-modal datasets, investigating methods
to change the error bounds (1) during run time based on
the user control and the transfer funtion and methods to deal
with multi-dimensional transfer functions.
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