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Abstract

The sketch community has, over the past years, developed a powerful arsenal of recognition capabilities and
interaction methods. Unfortunately, many people who could benefit from these systems lack pen capture hardware
and are stuck drawing diagrams on traditional surfaces like paper or whiteboards.

In this paper we explore bringing the benefits of sketch capture and recognition to traditional surfaces through
a common smart-phone with the Sketch Practically Anywhere Recognition Kit (SPARK), a framework for build-
ing mobile, image-based sketch recognition applications. Naturally, there are several challenges that come with
recognizing hand-drawn diagrams from a single image. Image processing techniques are needed to isolate marks
from the background surface due to variations in lighting and surface wear. Further, since static images contain
no notion of how the original diagram was drawn, we employ bitmap thinning and stroke tracing to transform
the ink into the abstraction of strokes commonly used by modern sketch recognition algorithms. Since the timing
data between points in each stroke are not present, recognition must remain robust to variability in both perceived
drawing speed and even coarse ordering between points. We have evaluated Rubine’s recognizer in an effort to
quantify the impact of timing information on recognition, and our results show that accuracy can remain con-
sistent in spite of artificially traced stroke data. As evidence of our techniques, we have implemented a mobile
app in SPARK that captures images of Turing machine diagrams drawn on paper, a whiteboard, or even a chalk-
board, and through sketch recognition techniques, allows users to simulate the recognized Turing machine on their
phones.

Categories and Subject Descriptors (according to ACM CCS): 1.7.5 [Document and Text Processing]: Docu-
ment Capture—Graphics Recognition and Interpretation 1.3.3 [Computer Graphics]: Picture/Image Generation—

Digitizing and Scanning

1. Introduction

While sketch research has demonstrated the impressive po-
tential of pen based interfaces across a wide array of appli-
cation domains, devices appropriate for deep sketch interac-
tion are still quite rare. Touch systems are getting closer to
the required functionality, but the size of the displays and
the large impressions required by capacitive touch sensors
make it difficult to create large or intricate diagrams. While
it is possible to create a true digital whiteboard experience
through a combination of pen capture systems like Live-
Board or eBeam, such set-ups are still not ubiquitous be-
cause they require space, money, and calibration time. The
reality is that most sketching today still happens on tradi-
tional whiteboards, paper, and even chalkboards.

Rather than requiring users to move their work to devices
appropriate for pen capture, the goal of this work is to ex-
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amine bringing the power of sketch recognition to existing
drawing surfaces by use of the modern smart-phone. The
high quality of images provided by the cameras on even
entry-level devices means that diagrams drawn on white-
boards and paper can be precisely captured after they are
drawn, in theory allowing users to interact with aspects of
their drawings (or models derived from them) directly on
their phones. While this capture-then-recognize model cer-
tainly restricts the set of interactions that are possible, it does
cover some interesting and important cases — for example
the users who wish to operate on systems represented by a
complex graphical notation such as a chemical formula or a
mathematical expression.

In this work, we present the Sketch Practically Anywhere
Recognition Kit (SPARK), a framework for developing mo-
bile, image-based sketch recognition apps, as well as our ex-
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Figure 1: Apps within SPARK use sketch-recognition tech-
niques on strokes extracted from photographs, enabling
users to simulate Turing machine diagrams drawn on sur-
faces such as whiteboards, paper, and even chalkboards.

periences developing a Turing machine simulator within the
framework (figure 1). The result is a full system that allows
users to capture images of Turing machine diagrams drawn
on paper, whiteboards, or even chalkboards, and to simulate
them step-by-step on a mobile device. The system extracts
stroke information from the captured ink in order to employ
known sketch recognition techniques to this new domain.

Of course there are several challenges to overcome in un-
dertaking such an endeavor. Despite the ever-improving ca-
pabilities of modern smart-phone cameras, there still exists
noise from digitizing the image, as well as the issues of
shadow, reflection, skew, and clutter. Even after the draw-
ing area is isolated and normalized, current diagram recogni-
tion methods typically require sketch information presented
using a model of separate strokes, each made up of a list
of timestamped coordinate points. However, static image
data contains no temporal information to determine how and
when strokes are drawn, so we can only partly satisfy the
standard sketch abstraction. We necessarily lose even coarse
stroke timing information, so whatever sketch recognition
techniques we use must not be overly sensitive to metrics
like drawing speed or point ordering.

To explore these issues in an end-to-end way, we have
developed the Turing machine app within SPARK as an
example of the general architecture for this new kind of
sketch recognition application. Through novel modifications
to known image processing techniques, our framework can
reliably capture hand-drawn marks and convert them to a
form more readily handled by sketch processing systems.
We describe the problems encountered when attempting to
apply standard techniques, such as thinning, to the specific

problem of stroke extraction and how, by making use of
information about stroke thickness and common intersec-
tion patterns, we can overcome these limitations. We further
show that timing information is not as critical to Rubine’s
gesture classifier for basic symbol recognition as may have
been previously assumed, and we evaluate its accuracy under
the new constraints presented by image-based sketch recog-
nition. We find that, at least for simple, single-stroke sym-
bols, recognition accuracy is minimally affected by the arbi-
trary ordering of points within- and between strokes. Finally
we describe the overall software architecture of the app and
how we bring both recognition and interaction to tradition-
ally passive drawings.

The rest of the paper is structured as follows. In Section 2,
we discuss previous work in capturing, tracing, and recog-
nizing hand-drawn ink. In Section 3 we explain the usage
and overall architecture of SPARK. We provide detailed ex-
planation of our stroke extraction method in Section 4, while
we describe the diagram recognition procedure and evalu-
ate the performance of Rubine’s classifier in Section 5. In
Section 6 we explore the general consequences of adapting
common sketch-based interfaces to image-based stroke cap-
ture methods and finally conclude with Section 7.

2. Related Work

At a high level, related projects that augment real ink with
computation can be broken down according to their varying
levels of recognition. Applications like Tableau [OL10] or
He and Zhang’s whiteboard capture system [HLZ02] have
as a common goal cleaning up images of whiteboards or
other handwritten content in order to archive, for example,
meeting notes or other board work. These systems must em-
ploy image processing techniques such as board localization
(finding the board in a cluttered image), adaptive threshold-
ing for reflection and shadow filtering, skew adjustment, and
alignment between multiple photos to produce their desired
output. Zhang’s whiteboard scanner, for example, stitches
together a single panoramic image of an entire board’s con-
tents from multiple images, despite variations in angle, shad-
owing, and board location in each image [ZHO7]. In general,
systems in this class clean up board images so that they can
be easily stored and shared in digital form, but they do not
typically perform any recognition of the drawing region’s
contents.

More similar to our aim of mobile sketch recogntion from
images of diagrams is work by Farrugia et al. [FBC*04].
Users of their system draw a specification on paper that
describes a 3D “rotational component,” which is then rec-
ognized from a cameraphone photograph, and the user is
presented with a rendered version of the component. While
the general interaction method of photographing real ink is
shared between our system and theirs, the authors only dis-
cuss paper as an input surface, where we aim to recognize
on a wider variety of surfaces with different background
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and ink characteristics. Further, while their image process-
ing steps follow a similar binarization/skeletonization pre-
processing step, they do not convert the thinned bitmaps to
strokes, which our framework requires to leverage stroke-
based sketch recognition algorithms. Instead, their General-
ized Randomized Hough Transforms (GRHT) symbol rec-
ognizer can operate over raw bitmap structures, and as such
they omit the conversion step.

Most commonly, applications that produce cleaned up
versions of photographs and perform content recognition
target the problem of optical character recognition (OCR)
over typeset text. Specifically in the mobile sphere, OCR-
droid [ZJK*] and Google Goggles [Gooll], allow users
to extract text from printed documents and labels using
the camera on a mobile phone. When operating on typeset
text, OCR algorithms can leverage regularity in the char-
acters that they recognize, and recognition is largely an
issue of adequately compensating for skew, rotation, and
other variation introduced by the scanning process before ex-
tracting vision-based features to classifying individual char-
acters [Eik93]. Typeset diagram recognition, such as the
ReVision [SKC*11] system, can also exploit precision in-
herent in automatically generated charts, but recognition
techniques will vary with the type of chart that is targeted.

Recognizing handwriting from image data presents
unique challenges not present in typeset text recognition,
though systems such as that used by the US postal ser-
vice to parse envelope addresses have shown great practi-
cal success [PS00]. Separate projects from Vajda [VPF09],
Liwicki [LB09], and Schenk [SLRO8] have addressed hand-
writing recognition from images of whiteboards. This do-
main presents different challenges than that of smaller-
scale, paper-sized handwriting recognition, since assump-
tions about consistent slant and baselines no longer hold
when sentences can span an arm’s length or more [WFS03].
Different from printed characters, handwriting (especially
from cursive) must often be segmented into individual char-
acters using subtle algorithms before recognition can even
take place. Further, since characters can vary in the thick-
ness with which they are drawn, straight bitmap comparison
can be unreliable, and hand drawn ink must first be converted
to a common form before analysis. Commonly this is done
through the use of bitmap thinning (skeletonization) algo-
rithms, which take as input a solid region of pixels from
a bitmap, and produce a single-pixel wide approximation
of the medial axis for that shape [LLS92]. Depending on
the thinning methodology, certain errors can be introduced
into the final result. Work by Kato [KY99] showed that, in
some applications, misaligned intersections can be corrected
by utilizing the average width of a stroke in a global analy-
sis phase, and clustering branch pixels in the identified “S-
line” regions. Our method exploits a similar notion of stroke
thickness to filter spurious edges and to correct misaligned
intersections, but since the ink captured on whiteboards and
chalkboards can vary in thickness even within a stroke, we
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Figure 2: The system architecture for our Turing machine
app built within the SPARK framework. Photos taken on the
mobile phone (1) are processed by the remote server, which
isolates ink in the original image (2), extracts stroke infor-
mation from the ink (3), and performs recognition on the
generated strokes (4). The final semantic meaning of the di-
agram is sent back to the phone, where a user can simulate
the Turing machine (5).

compute thickness on a per-point basis to guide our correc-
tion process, rather than for each stroke as a whole.

While not always necessary, specific applications of
image-based handwriting recognition require some notion
of temporal data within pen strokes. For instance, forensic
signature verification often requires a directed path through
the ink points to produce worthwhile results. In these tech-
niques, generating plausible path information is a matter of
traversing an adjacency graph for the ink pixels, and previ-
ous works have explored driving traversal using probabilis-
tic techniques, such as hidden Markov models [NdPHO5], as
well as static rules derived from assumptions about the num-
ber of strokes and their intersections [KY99]. These systems
employ advanced path tracing techniques because they must
be accurate for a small amount of ink data in a very spe-
cific context. In order to recognize a wider set of diagram
domains, we wish to leverage general sketch recognition al-
gorithms, which tend to represent diagrams as a sequence
of strokes. Like a signature, the notion of a stroke requires
path information, but without domain-specific assumptions
about our multi-stroke, hand-drawn diagrams, our method
provides only a coarse approximation of stroke timing in-
formation. We show, however, that our current tracing tech-
nique does not greatly impact final recognition accuracy.

3. System Description

Driving our work in ubiquitous surface, image-based sketch
recognition is a Turing machine simulator built with the
SPARK framework that enables people to simulate Turing
machines by drawing a diagram and taking its picture with a
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Figure 3: The overall process of recognizing sketched ink from an image of a whiteboard. The raw image (a) is processed to
remove the background shadows and reflections (b), and is contrast boosted (c) before binarization (d). Strokes are thinned and
traced (e) and then submitted for basic glyph recognition (f), and finally assembled into a Turing machine and displayed on the

phone(g)

mobile phone. Students or researchers in computation theory
can easily draw Turing machines, but traditional methods of
reasoning step-by-step and manually tracking changes to the
I/O tape are tedious book keeping tasks well-suited to au-
tomated simulation. A person using the app draws a Turing
machine on a whiteboard, piece of paper or chalkboard us-
ing normal pen, marker, or chalk implements. Once the user
reaches a point where she wishes to analyze her work, she
photographs the relevant diagram portion, and a picture is
sent to a recognition server. In a matter of seconds, the server
returns a Turing machine recognized from the photo, which
is displayed in “Simulation” mode on the device.

As can be seen in figure 1, when a recognized diagram
is loaded into the simulation view, the initial state is “ac-
tive” (colored red), and the user can begin stepping through
the operation of the Turing machine straight away, with the
I/0O tape displayed below the diagram updating upon each
press of the step button, and the states gaining or losing high-
light depending on their active status. Through a menu sys-
tem, she can define a different tape string to be placed on
the tape for simulation, or save the recognized Turing ma-
chine for later examination. Upon the Turing machine halt-
ing (given no valid out edge from the current state), the col-
ors are dulled and stepping the simulation has no effect.

Our app recognizes Turing machines as represented by
state machine-like diagrams (shown in figure 1). In these di-
agrams, the machine’s logic is represented as a set of states
with transition edges denoted by triplets (R,W,d), where
R e A={“0",“17,“-"} is the character on the tape currently
under the read/write head, W € A is the character to write in
the space when taking the transition, and § € {“L”, “R”,*“-"}

(short for “left”, “right” and “stay put”) is the direction the
read/write head moves upon taking the transition.

Since Turing machine diagrams do not require a tight in-
teraction loop for useful simulation (it is reasonable to ex-
pect that users will draw for a while before invoking recogni-
tion), they serve as a good model for a class of sketch appli-
cations that we believe are both amenable to the draw-then-
interact paradigm as well as provide useful functionality.
Further, recognizing them brings application requirements
common to modern sketch recognition interfaces. Interpret-
ing these diagrams involves accurately classifying several
different alphabet symbols (letters and symbols that label the
transition edges), which users can be expected to draw with
relatively consistent structure. At the same time, recognition
must also handle structures that cannot be statically matched
according to their overall shape, namely arrows whose tail
strokes can trace any path between nodes. Finally, a dia-
gram’s meaning is derived from the structure of recognized
primitives. For example, a directed graph consists of nodes
with arrows that "point towards" them.

3.1. Architecture Overview

SPARK apps are implemented as applications on the An-
droid mobile platform that communicate with a back end
server written in Python 2.7 with OpenCV extensions. To
simulate a Turing machine, the user will draw a diagram on
a whiteboard, chalkboard or piece of paper, and then start
the app on her phone. The initial interface is a live preview
display of the camera’s view and a camera button that, when
pressed, invokes the device to capture an image and upload it
to the remote recognition server. As shown in figures 2 and 3,
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(b)

Figure 4: The long tails in the value histogram associated
with the light (4a) versus dark (4b) ink better distinguish sur-
faces than the median value.

when the server receives an image from the phone, it pro-
ceeds along three major steps: Image processing, Stroke ex-
traction, and Sketch recognition.

Image processing performs background subtraction, con-
trast boosting, and thresholding on the image to generate a
black and white image of the ink. Stroke extraction then op-
erates on the black ink areas by first thinning them down
to single-pixel wide skeletons and then tracing paths over
the unordered points to form strokes. Next, the collection of
strokes extracted from the image passes to our recognition
framework, where they are first matched against a low-level
symbol alphabet using a Rubine classifier before being as-
sembled into a description of a Turing machine. Finally, the
strokes, along with a semantic description of the board’s di-
agram structure, are sent to the phone, where the Turing ma-
chine is displayed, and simulated by the user.

4. Extracting Strokes from an Image

When a user takes a photograph of her diagram, we can-
not expect uniform lighting conditions across the medium.
Shadows, reflections, and smudges from unclean boards can
turn what should be an evenly colored surface like a white-
board or chalkboard into an image where static threshold
values for ink and background separation will not suffice.
Once a user’s photograph is received by the server, the
framework performs several image processing steps before
attempting to extract stroke data that will be recognized by a
specific app.

4.1. Image Normalization

After an initial step of converting the image to grayscale, we
must first determine the medium on which the diagram is

(© The Eurographics Association 2012.

drawn from the value histogram of the image, whether dark
ink on a light background, like on paper or a whiteboard, or
the opposite, as in the case of a chalkboard. While the me-
dian pixel value of the image is not a reliable metric for sep-
arating blackboards from whiteboards (neither is distinctly
black or white, but rather more of a gray), our system ex-
ploits the tail of the histogram, where values correspond to
the ink as shown in figure 4. If there are more pixels signifi-
cantly darker than the median than those that are lighter, we
assume the ink is dark, and vice versa for ink that is lighter
than the background. In the latter case, we invert the image,
so our algorithms can proceed assuming dark ink.

Since surface wear or uneven lighting from reflection
and shadow introduce background variation, our algorithm
performs a modification of Niblack’s adaptive thresholding
[Nib86] that also enhances image contrast. To produce a sig-
nature image of the background, we perform a median fil-
tering with increasingly large kernel sizes until there is only
one local maximum in its value histogram, corresponding
to the board’s median value (meaning all ink is removed
from the image). The background signature image is then
subtracted from the grayscale image. A side effect of com-
pensating for the background value is that ink pixels stand
out less dramatically than before, so we then enhance im-
age contrast in order to better separate ink from the board,
before finally binarizing the image with an emperically cho-
sen threshold value. Though contrast boosting can increase
the potential for noise artifacts, in practice we have found
the extra step to be worthwhile; as further discussed in Sec-
tion 5, our recognition logic filters out extra strokes better
than it compensates for missing strokes, as can occur if ink
blends into the background. However, further evaluation is
necessary to quantify the impact of noise for general sketch
recognition applications.

4.2. Bitmap Thinning

After image normalization, user ink can be reliably separated
from the background of a photo, but it is represented as re-
gions of solid black against a white background, with poten-
tially dozens of pixels corresponding to each “point” in the
logical stroke that they represent. As a first step in transform-
ing the bitmap of ink regions into strokes, we must determine
the logical coordinates of each point in a path. The system
accomplishes this by thinning the broad pixel regions into
single-pixel wide lines that approximately follow the center
axis of each stroke.

We utilize established thinning techniques [NS84,
LLS92], modified to take into account the local stroke thick-
ness at each point for improved results. Pixels that provide
only redundant connections between black regions can be re-
moved without globally disconnecting any neighboring pix-
els, and iterative scans of the image with a 3x3 window will
find redundant pixels by setting a maximum and minimum
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Figure 5: An illustration of the spurious edge artifacts from
basic thinning. The true stroke can be iteratively merged by
assuming intersections are in the stroke and iteratively con-
necting points not already covered by the thickness of the
current true stroke.

threshold on the center pixel’s “crossing number” (the count
of transitions from black to white while circling it).

While this technique is common for turning thick bitmaps
into narrower skeletons, iteratively making decisions local
to 9-pixel regions has a tendency to magnify early errors.
Shown in figure 5, a “spurious edge” error occurs when a
pixel mistakenly forms what looks like a legitimate endpoint
(one with only a single neighboring dark pixel) early in the
thinning process. The pixel is then retained for subsequent
thinning iterations, and the error compounds since other pix-
els must be retained to avoid disconnecting the initial point
from the rest of the thinned stroke.

Spurious edges can be eliminated if their entire length
falls within the thickness of another point on the stroke,
which we examine while building the adjacency graph. As
shown in figure Sc, our graph building algorithm first iden-
tifies intersection points as part of the final graph of correct
points. Then, it iteratively merges any point that falls outside
of the total thickness region covered by the current graph
(along with the points that needed to connect it to a node in
the graph) until all thinned points are covered by the cumu-
lative thickness region.

Intersections in a drawing can also be corrupted by the
traditional thinning process. Thinning is a form of intelligent
erosion, where regions of a bitmap are evenly shrunk from
all directions until the bitmap is a single pixel wide, passing
ideally through the center of mass of the pixels. This works
well for the length of a single lines, but when two lines meet,
the centroid is often a poor descriptor of the intended in-
tersection point. As illustrated in figure 6, intersections that
should share a single point can be split into multiple seg-
ments in the final result.

To address this shortcoming, our modified algorithm ex-
amines a circular region with a radius of the stroke’s thick-
ness around every intersection in the adjacency graph, where
the thinning results are reexamined. If multiple intersections

(a) (b)

Figure 6: An illustration of the split intersections due to thin-
ning. If the regions defined by stroke thickness surrounding
two intersections overlap, they are collapsed into one.

overlap according to their thickness regions, then the algo-
rithm creates a point with their average coordinates to use as
a single replacement point.

4.3. Stroke Tracing

At the conclusion of the thinning process, strokes are repre-
sented by an adjacency graph with spurious edges removed,
and more accurate intersection points. An adjacency graph
can have arbitrary connections, though, and we wish to pro-
duce ordered lists of points that form strokes, so we must
group points into associated strokes, and impose an ordering
between them.

Since points in a stroke have at most two neighbors (points
before and after in the path), we must decide the direction
any stroke takes at an intersection. Our tracing algorithm
begins by finding all intersection points within the graph
(pixels with more than two neighbors), and links together
pairs of points whose joining maximizes smoothness, com-
puted as the median curvature over multiple point resolution
scales.

Our tracing algorithm then repeatedly selects some pixel
in the graph that does not yet belong to a stroke, and traverses
the graph until it finds an end point (a pixel with a single
neighbor), or it covers the entire graph (meaning the figure is
cyclical). This endpoint (or the initial seed point) is chosen
as the starting point of a new stroke, from which we can
traverse the graph, extending the stroke with each pixel we
encounter until another endpoint (or the initial seed point) is
reached. Tracing is complete when all points in the graph are
part of a stroke, at which point the entire collection is passed
to the recognition phase.

5. Recognition over Extracted Strokes

The process of extracting strokes from an image of ink intro-
duces unique challenges if we are to leverage sketch recog-
nition techniques to understand the meaning of a diagram.

(© The Eurographics Association 2012.
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Feature Domain(s)
Cosine from first to last point Shape, Graph
Sine from first to last point Graph

Dist. from Ist to last point Shape, Graph, Class
Dist. from Ist to last / bounding box size Shape,
Minimum drawing speed Class

Table 1: Classification features determined to be timing-
dependent. These features were disabled when generating
results for R~ and R,

0 20 40 60 80 100

ER
91.25 R-
91.25 m Rt
Shape 9220 =Rt

92.29

96.47

96.68
95.23
94.40

Graph

Class

89.46
89.53
89.56
89.00

Average

Figure 7: Accuracy of the classifier when training and clas-
sifying on traced strokes as a factor of accuracy when using
actual stroke data as captured, with all features enabled.

In this section, we examine possible implications for adapt-
ing known recognition techniques given two differences be-
tween strokes resulting from this process and those captured
directly from a digitizing pen: the lack of timing information
and potential for extraneous “noise” strokes.

5.1. Impact of Stroke Timing on Recognition

If the thinning process works perfectly, strokes extracted
from the image have the same geometric properties as if they
were captured from a digitizing pen and tablet, but by the na-
ture of generating strokes from a single image, even coarse-
grain timing characteristics (for example, which points are
“first” and “last”) are necessarily lost. Stroke-based sketch
recognition algorithms rely on this timing information to
varying degrees, and it serves to quantify the impact of arti-
ficially imposed timing on recognition accuracy, so a system
designer can decide whether or not key algorithms should be
re-engineered to work independent of timing data.

Following the work of Blagojevic et al. [BCP10], we im-
plemented a Rubine classifier [Rub91] that uses domain-
specific sets of features over three domains of user draw-
ings: basic shapes (Shape), directed graphs (Graph), and
object-oriented class specification diagrams (Class). While
the stroke data sets were provided by the authors, we im-
plemented our own classifier and features (due to time con-
straints feature 4.1, “The result of the shape/text divider,”

(© The Eurographics Association 2012.

was omitted). To establish a baseline accuracy of our clas-
sifier implementation, we first tested the Rubine recognizer
with the complete sets of diagram-specific features on the
original data sets (R in figure 7).

To evaluate the effects of tracing on Rubine’s recognizer,
we measured the classification accuracy over two sets of
stroke data: the original data sets, as well as a “traced” ver-
sion of the same strokes. To generate the traced data sets,
we first converted each original stroke into a pixel-adjacency
graph by linking together sequential points and inserting new
points to link together self-intersections. We then ran our
stroke tracing algorithm on this graph to generate a trans-
formed stroke, with the same label as the original stroke.
If multiple strokes were traced from a graph, we used the
longest one as the best single-stroke approximation. The ac-
curacy results of running the baseline recognizer on each
data set on these transformed strokes are shown as Ry.

As shown by Blagojevic, more features are not always
better, since poorly chosen features can adversely impact
recognition accuracy. A possible consequence of image-
based stroke extraction is that the timing information gener-
ated from the thinning and tracing processes will hurt clas-
sification accuracy; features that work well with real tim-
ing data could confuse the overall classification by over-
weighing inconsistent stroke characteristics. If this is the
case, then since poor features cannot be entirely ignored in
Rubine’s classifier, disabling the offending features to ex-
clude them from the training/classification process would be
necessary to improve the accuracy of classifying over strokes
extracted from an image.

To gauge the impact of timing-based features in general
and when dealing with traced strokes, we identified five fea-
tures of the original set that depend on timing characteristics
of a stroke (table 1). We then tested training/classification
accuracy with these features disabled on the original stroke
data (R™), as well as on the traced strokes (R, ).

As can be seen in figure 7, the impact of using traced ap-
proximations of strokes rather than the original strokes (R;)
was minimal; classification accuracy remained relatively sta-
ble despite the potentially significant transformation. We be-
lieve that the high accuracy results from the tendency for our
tracing algorithm to produce strokes very similar to the orig-
inal, which is likely aided by the fact that the original stroke
data sets are composed of single-stroke symbols with limited
self-intersections and little over-tracing.

While tracing more complicated symbols could produce
strokes that are significantly different from the original, our
symbol alphabet (“17, “0”, “-”, “R”, “L”) fits the simple,
single-stroke model, and we have found classification to be
reliable throughout development. Small increases in accu-
racy are likely due to some classification features benefitting
from normalization side-effects of the tracing process.

Though tracing has little effect on recognition accuracy
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given the full feature set, our data show that removing fea-
tures has the potential to worsen accuracy (R~ vs. R and R,
vs. Ry). With the original stroke data, R~ is not substantially
worse that R, meaning that the timing-based features were
not key to discriminating between symbol classes. However,
disabling timing features when recognizing traced strokes
seems to impact recognition, with R;” producing slightly
worse results than R;. We suspect that the tracing process ex-
presses some useful geometric property as timing data, and
ignoring it produces worse results.

5.2. Low-level Recognition

Recognition for apps within SPARK begins when, one at a
time, the strokes are submitted to custom recognition library.
In this library, strokes are added to a central Board, where
various Observers, which implement recognition sub-tasks,
are alerted to board recognition changes in an event-based
manner. Low-level observers register to be alerted when new
strokes are added to the board, so that they can directly ex-
amine the input for recognized patterns. Specifically in our
Turing machine app, Rubine’s symbol classifier is imple-
mented as a low-level observer, as is logic for recognizing
closed shapes, and arrowheads with their associated tails.
When a low-level observer recognizes its specified pattern,
it builds a semantic description of the symbol in the form of
an Annotation, which is then tagged onto the associated set
of strokes within the central board.

5.3. Impact of Extraction Noise on Recognition

Traditional writing surfaces commonly contain extraneous
marks due to regular use; whiteboards and chalkboards are
especially likely to have marks surrounding the relevant di-
agram space, whether from insufficient erasure or from un-
related, simultaneous board work. Beyond the ambiguity of
separating relevant from irrelevant board work, the image
normalization stage discussed in Section 4 boosts the con-
trast between ink and the background board before perform-
ing a threshold, which can result in noise artifacts eventually
propagating to the recognition logic as extraneous strokes.

In order to remain robust to both sources of noise, sketch
recognition logic that operates on strokes extracted from
images of general surfaces should account for extraneous
marks, for example through domain-specific filtering.

5.4. Turing Machine Recognition

Our application relies on the reliable structure of Turing ma-
chine diagrams to filter out ill-formatted text, as well as in-
complete graphs. While there is still the possibility of false
positives causing error in the final diagram’s meaning, the
chances are significantly reduced since, for example, text la-
bels must have the correct number and type of characters.

Once individual strokes (or pairs of strokes for arrows) are

annotated as basic structures, higher-level observers, which
have registered with the board to be alerted to these anno-
tations, examine the basic annotations for further meaning
and can tag additional annotations of their own. For Turing
machine recognition, our system implements three higher-
level observers. First, a Text observer listens for individual
letters as annotated by the Rubine recognizer, and, assum-
ing they are of a similar scale and proximity and share a
common baseline, assembles them into longer strings. Sec-
ond, a Directed Graph observer listens for closed shape anda
arrow annotations and assembles them into larger graph an-
notations by first considering arrow direction and proximity
to nodes. Finally, a Turing machine observer collects text
strings with length three as labels and directed graphs as a
state machine, which are assembled into a Turing machine if
they meet label and topological structure requirements, for
example having one edge with no leading node ensures a
valid start state is specified. These Turing machine annota-
tions represent the semantic meaning recognized from the
input strokes.

After all of the strokes extracted from the image along
with their annotations have propagated through the recogni-
tion process, the state of the central board (strokes and an-
notations) is sent in XML format to the mobile phone. From
here, a user can interact with her diagram using a mobile
interface, such as the one discussed in Section 3.

6. Discussion

Our Turing machine simulator app serves as a proof-
of-concept application within SPARK, combining sketch
recognition and image-based stroke extraction, and as such
there are many open questions regarding opportunities to in-
crease the general quality of the system by improving stroke
extraction, recognition accuracy, and the overall user inter-
face.

In this work, we leverage the stroke-thickness locally to
correct errors introduced during bitmap thinning, but there
is still a gap between automated results and those that an ex-
pert would choose by hand. We suspect that ink drawn by
people in a real world context may be too complicated to re-
liably thin with pixel decisions that only consider extremely
local regions of pixels. For example, a more holistic view of
the board could disconnect “weakly connected” pixels in the
adjacency graph and split ink that belongs to overlapping but
logically separate symbols. Beyond thinning, such a holistic
perspective could also serve stroke tracing through evaluat-
ing multiple combinations of the strokes that arise from an
image and choosing the best one according to some global
metric which reasonably approximates human drawing pat-
terns. Specifically, it should account for over-traced intersec-
tions better than simple smoothness metrics.

While we hope that the automated techniques will some-
day trace strokes as accurately as a human observer, timing
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information available to recognition algorithms will always
be somewhat arbitrary when using strokes extracted from
a single image. We have explored the possible impact of
this information degradation on one popular style of stroke
classification algorithm, Rubine’s recognizer, but it is worth
exploring similar impact on other methods. For example,
the dynamic Bayesian networks built up by SketchREAD
[ADO04] seem like they could be robust to arbitrary varia-
tions in stroke ordering, but complicated machine learning
techniques often react in surprising ways to abnormal data.

When making use of recognition, an important consid-
eration for any sketch application is the rectification of in-
evitable (but hopefully infrequent) errors. Sketch is inher-
ently ambiguous as an input mode, and without user guid-
ance, some drawings would be recognized incorrectly, even
by human observers. With our current system, users are able
to see the inner workings of the recognition logic when they
touch the screen to see the semantic labels that have been
applied to their strokes, but future versions of the mobile in-
terface will support user-guided rectification of recognition
errors. We foresee a mode where users will select strokes
using touch, on which they will impose the desired interpre-
tation by “suggesting” a new annotation. Currently, the only
means for correction are modifying the original drawing and
re-capturing an image.

Users of SPARK apps do not need to plan ahead to incor-
porate recognition into their workflow, since they can cap-
ture their work after-the-fact from any whiteboard or paper,
once the diagram is recognized, the current system does not
support further modification of the diagram once it is cap-
tured. However, as pen + touch devices grow in consumer
availability, the interaction benefits afforded by touch will
come hand-in-hand with the precise drawing abilities of a
stylus, and extending our framework to support user modifi-
cation of captured ink will be a natural next step.

One thing that seems fundamental to this type of inter-
face is that, once the drawing is captured, any changes that
come about on the device will not be reflected in the origi-
nal copy. However, since the diagram now exists as digital
strokes, users are able to transition their work to a traditional
sketch-enabled device, like a tablet PC. Blending the two
workflows leverages the benefits of the impromptu recogni-
tion afforded by our mobile, image-based framework, while
also gaining the interaction benefits of traditional sketch ap-
plications, such as eager recognition and immediate visual
feedback.

7. Conclusion

Performing image-based stroke extraction from a mobile in-
terface offers several unique advantages over traditional pen
capture hardware. The devices themselves are ubiquitous,
and by extracting strokes from images, we can add intelli-
gence to a variety of common surfaces using sketch recogni-
tion methods.

(© The Eurographics Association 2012.

Extracting strokes from images of drawn data is not triv-
ial, however, and several considerations must be taken into
account to provide results that are reasonable to a user. Raw
photos of drawn ink must be robust to variations in lighting,
and surface properties through image normalization. The ink
that is separated from the board after normalization can be
transformed into a single pixel wide adjacency graph using
local values of stroke width. Tracing strokes from a single
image necessarily strips accurate timing data, yet the results
from our evaluation of Rubine’s recognizer suggest that a
general class of sketch recognition applications can still pro-
duce accurate results, despite the loss of information.

Our implementation of a Turing machine simulator in
SPARK is a proof of concept system that ties together im-
age normalization with contrast boosting for ink isolation,
bitmap thinning and stroke tracing for stroke extraction, and
timing-robust sketch recognition techniques for semantic un-
derstanding into a ubiquitous-surface Turing machine simu-
lator.
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