
Unsolved Problems and Opportunities for High-quality, High-performance 3D 
Graphics on a PC Platform 

David B. Kirk 
NVIDIA 

1226 Tiros Way 
Sunnyvale, CA 94086, USA 

dk@nvidia.com 

ABSTRACT 

In the late 1990’s, graphics hardware is experiencing a 
dramatic board-to-chip integration reminiscent to the 
minicomputer-to-microprocessor revolution of the 1980’s. 
Today, mass-market PCs are beginning to match the 3D 
polygon and pixel rendering of a 1992 Silicon Graphics 
Reality EngineTM system. The extreme pace of 
technology evolution in the PC market is such that within 
1 or 2 years the performance of a mainstream PC will be 
very close to the highest performance 3D workstations. 
At that time, the quality and performance demands will 
dictate serious changes in PC architecture as well as 
changes in rendering pipeline and algorithms. This paper 
will discuss several potential areas of change. 

A GENERAL PROBLEM STATEMENT 

The biggest focus of 3D graphics applications on the PC 
is interactive entertainment, or games. This workload is 
extremely dynamic, with continuous updating of 
geometry, textures, animation, lighting, and shading. 
Although in other applications such as Computer-Aided- 
Design (CAD), models may be static and retained mode 
or display list APIs may be used, it is common in games 
that geometry and textures change regularly. A good 
operating assumption is that everything changes every 
frame. The assumption of pervasive change puts a large 
burden on both the bandwidth and calculation capabilities 
of the graphics pipeline. 

GEOMETRY AND PIXEL THROUGHPUT 

As a baseline, we’ll start with some data and cycle 
counting of a reasonable workload for an interactive 

application. PC graphics hardware is capable of this 
throughput. As an example, this is a bandwidth analysis of a 
400 MHz Intel Pentium IITM PC with an Nvidia RNA 
TNTTM graphics processor. This analysis does not derive 
from a specific application, but is simply a counting exercise. 
Many applications push one or more of these limits, but few 
programs stress all axes. 

For a typical application to achieve 1M triangles/second, 
1 OOM 32bit pixels/second, 2 textures/pixel requires: 

1 M triangles * 3 vertices/triangle * 32 bytes/vertex = 100 
MB; triangle data crosses the bus 3-5 times (read, 
transform and written by the CPU, and read by the 
graphics processor, so simply copying triangle data 
requires 300-500 MB/second on the PC buses. 
1OOM pixels * 8 bytes/pixel (32bit RGBA, 32bit 
Z/stencil) = 800 MB; with 50% overhead for RMW 
requires 1.2 GB/second 
2 textures/pixel * 4 texelsltexture * 2 byte&exe1 * IOOM 
pixels = I.6 GB; a texture cache can create up to 4X reuse 
efficiency, so requires 400 MB/second 

Assumptions here include: 
32-byte vertices are Direct3DTM TLVertices 

(X,Y,Z,R,G,B,A,F,SR,SG,SB,W) 
triangle setup is done on the graphics processor 
bilinear texture filtering 
16bit texels are RSG6B5 
50% of pixels written after Zbuffer read/compare 

Transferring triangle vertex data to the graphics processor 
from the CPU is commonly the bottleneck. This is different 
from typical workstations or the PCs of just 1 year ago, when 
transform and lighting calculation, fill rate, or texture rate 
were limiting factors. 

GEOMETRY REPRESENTATION 

As pixel shading, texturing, and fill rates rise, the most 
constrained bottleneck in the system will increasingly 
become creation and transfer of geometry information. The 
data required to represent a triangle comprises the bulk of 
system bus traffic in an aggressive 3D application. As 

11 



triangles become smaller, there is increasing inefficiency 
in transferring information for 3 vertices, especially if 
fewer than 5 pixels are to be rendered. 

There is an opportunity to re-think geometric 
representations to increase the number of screen pixels 
that are defined by the geometry information that is 
provided to the graphics processor. Potential solutions to 
this problem include geometry compression, as suggested 
by Deering [2]. One other alternative is the use of 
geometric level of detail (LOD), representing polygon 
models as families of similar models which may be 
substituted based on the viewing distance. Finally, 
geometry may be represented as curved surfaces and 
dynamically tesselated into triangles or pixels, but there 
are problems associated with the choice of surface 
formulation. 

In addition to algorithmic issues, there are some 
additional constraints on the geometry representation 
problem. First, the source of the data is important. Model 
information is created through the use of authoring 
packages and it is important that the rendering pipeline 
directly consumes the representation that authoring 
packages create. Second, since the PC system is an open 
system standard, the communication mode between the 
application and the graphics accelerator is through a 
cross-vendor API. This API needs to match the 
representation as well. Microsoft’s FahrenheitTM 
initiative has the potential to unify competing APIs, but 
needs to address conflicts between software application 
needs and issues related to efficient hardware 
implementation. Finally, the more technical part of the 
problem is the algorithm and hardware for converting the 
geometry representation into pixels. Note that the 
technical issues are only a small part of the overall 
problem to be solved. 

TEXTURE FILTERING 

The increasing bandwidth cost of obtaining high quality 
texture samples motivates improved texture filtering 
quality beyond the standard set by square trilinear mip- 
mapping, described by Williams [5]. The primary shift in 
emphasis has been toward accurate representation of 
effects such as anisotropic projection of the texture area to 
be filtered, as described by Barkans [I]. An alternative 
method for accurate filtering of anisotropically projected 
textures is based on assembly of multiple trilinear 
samples, by Schilling, et al [4]. Heckbert [3] also did 
some fundamental work in this area. Note that trilinear 
filtering may be thought of as a composition of bilinear 
samples, and there may be an opportunity to improve the 
efficiency and quality of sampling through more 
generalized composition of bilinear samples. 

Although the quality of the various anisotropic filtering 
solutions is improved over rectangular mip-mapping 
(particularly for the rendering of textures containing text), 
none of the algorithms described are practical for low-cost 
hardware implementation, due to the expenditure of 
sampling bandwidth on potentially large numbers of filtered 
samples, with limited advantage taken of coherence. Also, 
none of the techniques accurately sample and filter bump or 
environment maps. 

The profligate use of many samples in obtaining a filtered 
texture estimate produces a high quality result, but fails to 
provide the predictable, regular memory access and 
precalculation benefits of the trilinear mip-mapping scheme. 
These factors make efficient hardware implementation 
problematic. 

PER PIXEL SHADING AND LIGHTING 

Both of the commonly used PC graphics APls, Direct3DTM 
and OpenGLTM, provide a lighting and shading model. Most 
interactive content developers do not use the provided 
lighting model, choosing instead to implement their own 
custom lighting. One reason for this is that both APIs 
present lighting models that are primarily vertex oriented. 
Vertex lighting results are interpolated across a triangle, but 
no per-pixel lighting occurs. The types of operations that 
may occur on a per-pixel basis include texturing and the 
composition of texture information with diffuse and specular 
lighting calculation results. 

Consequently, the interactive entertainment content 
developers have gravitated to using textures for illumination, 
since that allows per-pixel shading operations to simulate 
per-pixel lighting through the use of texture blending and 
composition. Further, the use of multiple textures (for 
example, a surface material color texture multiplied by a 
diffuse lighting texture) has allowed content developers to 
create high quality lighting and shading. An illumination 
map texture can also include effects from multiple light 
sources as well. 

This trend suggests that the graphics processor pipeline 
needs to evolve toward more aggressive shading at the per- 
pixel level, in order to provide more complex simulation of 
lighting. Possible directions include more extensive use of 
multiple textures (a full per pixel shader with any and all 
operands read from textures), and a greater level of 
programmability of the shading operations. Any lighting 
equation can be extended to consider any or all inputs 
sampled from texture maps. 

CONCLUSIONS 

In conclusion, there is a need to shift the focus of algorithm 
development for hardware implementation of 3D graphics. 

12 



The requirements are changing from “more polygons” 
and “more pixel fill rate” to more complex dynamic 
geometry and richer pixels. More complex dynamic 
geometry does not necessarily mean more triangles or 
structures for more efficient updates of triangle geometry, 
but rather better shapes and motion with less data, 
integrating authoring tools, APIs, and hardware 
accelerated rendering. Richer pixels does not necessarily 
mean more pixels rendered but rather that each pixel 
rendered is the result of far more effort spent lighting, 
shading, and texturing. The end result will be a higher 
degree of realism in the interactive experience. 

BIBLIOGRAPHY 

[l] Barkans, A., High Quality Rendering using the 
Talisman Architecture, Proceedings of the 1997 
Siggraph/Eurographics Workshop on Graphics Hardware, 
pp. 79-88. 

[2] Deering, M., Geometry Compression, Proceedings of 
Siggraph 199.5, pp. 13-20. 

[3] Heckbert, P., Fundamentals of Texture Mapping and 
Image Warping, Master’s thesis, Department of Electrical 
Engineering and Computer Science, University of 
California, Berkeley, 1989. 

[4] Schilling, A., Knittel, G., Strasser, W., Texram: A 
Smart Memory for Texturing, Computer Graphics & 
Applications, May 1996, pp. 32-4 1. 

[5] Williams, L., Pyramidal Parametrics, Proceedings of 
the 1 Oth Siggraph Conference, pp. 1- 11. 

13 


