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Abstract

Direct Volume Visualization is an efficient technique to explore complex
structures within volumetric data. Its main advantage, compared to standard
3D surface rendering, is the ability to perform semitransparent rendering in
order to provide more information about spatial relationships of different
structures. Semitransparent rendering requires to process a huge amount of
data. The size of volumetric data is rapidly increasing, on the one hand due
to the boost of processing power in the past years, and on the other hand
due to improved capabilities of newer acquisition devices. This large data
presents a challenge to current rendering architectures and techniques. The
enormous data sizes introduce a growing demand for interactive 3D visual-
ization. Conventional slicing methods already reach their limit of usability
due to the enormous amount of slices. 3D visualization is more and more
explored as an attractive alternative additional method for examinations of
large medical data to support the necessary 2D examination.

Within this dissertation a set of approaches to handle and render large
volumetric data is developed, enabling significant performance improvements
due to a much better utilization of the CPUs processing power and avail-
able memory bandwidth. At first, highly efficient approaches for addressing
and processing of a cache efficient memory layout for volumetric data are
presented. These approaches serve as a base for a full-blown high-quality
raycasting system, capable of handling large data up to 3GB, a limitation
imposed by the virtual address space of current consumer operating systems.
The core acceleration techniques of this system are a refined caching scheme
for gradient estimation in conjunction with a hybrid skipping and removal
of transparent regions to reduce the amount of data to be processed. This
system is extended so that efficient processing of multiple large data sets is
possible. An acceleration technique for direct volume rendering of scenes,
composed of multiple volumetric objects, is developed; it is based on the
distinction between regions of intersection, which need costly multi-volume
processing, and regions containing only one volumetric object, which can be
efficiently processed. Furthermore, V-Objects, a concept of modeling scenes
consisting of multiple volumetric objects, are presented. It is demonstrated
that the concept of V-Objects in combination with direct volume render-
ing, is a promising technique for visualizing medical data and can provide
advanced means to explore and investigate data.

In the second part of the dissertation, an alternative to grid-based vol-
ume graphics is presented: Vots, a point-based representation of volumetric
data. It is a novel primitive for volumetric data modeling, processing, and
rendering. A new paradigm is presented by moving the data representation
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from a discrete representation to an implicit one.



Kurzfassung

Direkte Volumenvisualisierung ist eine effiziente Methode um komplexe Struk-
turen volumetrischer Datensétze zu untersuchen. Der Hauptvorteil, vergli-
chen zur normalen Oberflichenvisualisierung, ist die Md&glichkeit halbtrans-
parente Visualisierungen zu generieren, dadurch erhélt man mehr Informa-
tionen iiber die rdumlichen Zusammenhénge verschiedener Strukturen. Um
solch halb transparenten Visualisierungen zu erzeugen, muss eine enorme
Datenmenge abgearbeitet werden. Durch immer leistungsfdhigere Prozes-
soren und durch verbesserte Aufnahmegeridte werden diese Datenmengen
immer grofler. Diese enormen Datenmengen stellen eine grofie Herausfor-
derung fiir derzeitige 3D Rendering Architekturen und Algorithmen dar.
Die immer gréferen Datenmengen erhohen die Nachfrage an 3D Visualisie-
rung. Die herkommliche 2D Visualisierung erreicht, durch die enorme Anzahl
von Schichtbildern, bereits die Grenze der Benutzbarkeit. Die 3D Visuali-
sierung wird immer mehr als eine alternative unterstiitzende Methode von
Schichtbild-Untersuchungen groffer medizinischer Datensétze eingesetzt.

In dieser Dissertation werden effiziente Verfahren zur Handhabung und
dem Rendern grofier volumetrischer Daten vorgestellt, welche zu einer signifi-
kanten Geschwindigkeitssteigerung, durch bessere Ausniitzung von Prozessor-
und Speicher-bandbreite, fithren. Zuerst werden Verfahren zum Adressieren
und Verarbeiten eines Cache-effizienten Speicher-Layouts fiir grofle volume-
trische Daten vorgestellt. Diese Verfahren dienen als Basis fiir ein komplettes
hochqualitatives Raycasting-System, welches in der Lage ist grofle Daten bis
zu 3 GB, eine Limitierung des virtuellen Adressbereichs heutiger Betriebs-
systeme, zu handhaben. Die Hauptbeschleunigungs-Komponenten dieses Sy-
stem sind eine raffinierte Caching Methode fiir die Gradientenberechnung in
Verbindung mit einer hybriden Technik zum Uberspringen und Entfernen
transparenter Regionen, wodurch die Menge der zu verarbeitenden Daten si-
gnifikant reduziert wird. Dieses System wird dann so erweitert, dass effizientes
Verarbeiten mehrerer volumetrischer Datensétze moglich ist. Ein Beschleuni-
gungsverfahren zum Rendern von Szenen, die aus mehreren volumetrischen
Datensétzen bestehen, wird vorgestellt. Die Grundidee des Verfahrens basiert
auf der Unterscheidung zwischen Regionen, in denen sich mehrere Objekte
iiberschneiden, die eine teure Verarbeitung erfordern, und Regionen in denen
sich nur ein Objekt befindet und somit eine effizienteres Verarbeiten erlau-
ben. Weiterhin werden V-Objects, ein Konzept zur Modellierung von Szenen,
welche aus mehreren volumetrischen Objekten bestehen, vorgestellt. Es wird
gezeigt, dass das Konzept der V-Objects zusammen mit direkter Volumen-
visualisierung eine viel versprechende Methode zur Visualisierung medizini-
scher Daten ist und das es eine weiterte Moglichkeit zum Untersuchen und
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Erkunden der Daten bietet.

Im zweiten Teil der Dissertation wird eine Alternative zur gitter-basierten
Volumengraphik vorgestellt: Vots, eine punkt-basierte Representation volu-
metrischer Daten. Es ist ein neues Primitive zur Modellierung, Verarbei-
tung und Rendern von volumetrischen Daten. Ein neues Paradigma wird
préasentiert durch die Umwandlung der Daten von einer diskreten zu einer
impliziten Darstellung.
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Chapter 1

Introduction

Figure 1.1: Volume Visualization.

Just as 2D raster graphics superseded vector graphics,
volume graphics has the potential to supersede surface
graphics for 3D geometric scene representation,
manipulation, and rendering.

Arie E. Kaufman [24]



2 CHAPTER 1. INTRODUCTION

1.1 Volume Visualization

Volume visualization is a method used to extract meaningful information
from volumetric data sets. A typical medical imaging example is shown
in Figure 1.1. A wvolumetric data set is the 3D conceptual counterpart of
a 2D image. It consists of volume elements, called voxels, which together
represent an entire volume, analogous to picture elements, or pixels, which
together represent a 2D image, see Figure 1.2.

Pixel Voxel

(a) (b)

Figure 1.2: (a) Image cell composed of four pixels. (b) Volume cell composed of eight voxels.

Each vozel is a quantum unit of a volumetric data set and has one or more
numeric values associated with it. The sources of volume data are sampled
objects, measured phenomena, or the result of simulations. Volume data oc-
curs in many areas, typical examples are medical imaging (computed tomog-
raphy, magnetic resonance imaging, and ultra sound), biology, geoscience,
and meteorology.

1.1.1 Grid Types

The voxels of a volumetric data set are usually arranged on a grid structure to
allow efficient spatial addressing of the data. The different grid-structures can
be classified into three main grid-types: rectilinear grids, curvilinear grids,
and unstructured grids. Rectilinear grids consist of convex cells with implicit
neighborhood connectivity, see Figure 1.3a. Curvilinear grids can be obtained
by applying a non-linear transformation on a rectilinear grid, see Figure 1.3b.
Unstructured grids do not have a regular topology; therefore, the implicit
neighborhood connectivity is lost, see Figure 1.3c. Each of these different grid
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topologies requires different rendering algorithms for visualization. Within
the scope of this dissertation, the focus is on rectilinear grids.

(a) (b) (c)

Figure 1.3: Different grid types: (a) Rectilinear grid. (b) Curvilinear grid. (c) Unstructured
grid.

1.1.2 Classification and Segmentation

Classification is used to define different features within the data. The clas-
sification information is represented by a transfer function: for each possible
voxel value, possibly combined with other input parameters, an opacity, color
and other properties are specified as output. Opacity allows the user to ex-
plore the inside of an object by hiding and showing certain features within
the data, see Figure 1.4a. Additional different material properties can be as-
signed which influence shading and lighting. In practice it is rather difficult
and time-demanding to specify the appropriate transfer function. Usually,
histograms are used to simplify the transfer function set up, because they
provide a better understanding of the distribution of voxel values within the
data set. Furthermore, in order to highlight feature boundaries, opacity can
be modulated according to the gradient magnitude [35].

Classification is a very powerful tool to explore the data, however, due
to the scanning process, different types of material are often mapped to the
same voxel value. In this case, traditional classification fails and the data
must be segmented. Each voxel is assigned a certain label. Depending on the
acquisition method and the scanned object this can either be done manually,
semiautomatically, or fully automatically. This label information is then
later used during the visualization process in order to identify the different
objects. In Figure 1.4b, for example, the brain and the major vessels have
been segmented.

Segmentation is an effective technique to simplify the transfer function
specification. However, it does not solve the problem of simultaneously vi-
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sualizing multiple occluding objects. One way to enable such a visualization
is achieved by the use of clipping, as shown in Figure 1.4c. In this visualiza-
tion the most common and straightforward clipping technique based on axis
aligned cutting planes is used. There are more advanced clipping techniques
which take into account properties, such as the distance between the eye and
the object, or segmentation information [75, 3, 72].

(b)

Figure 1.4: CT scan of a human head (512x512x333, 16 bit). (a) Classification. (b) Segmen-
tation. (c) Clipping planes.

1.1.3 Illumination and Shading

[Nlumination and shading within volume rendering refers to the same illumi-
nation models and shading techniques used in polygon rendering. The goal
is to enhance the appearance of rendered objects, especially to emphasize
their shape and structure, by simulating the effects of light interacting with
the object. A comparison between shaded and non shaded volume rendering
is shown in Figure 1.5. Two different illumination models are distinguished:
global illumination and local illumination.

The contribution from the light that goes directly from the light source
and is reflected from the objects is described by a local illumination model.
In this model the shading of any object is independent from the shading of
all other objects.



1.1. VOLUME VISUALIZATION 5

A global illumination model adds to the local model the light that is
reflected from other objects to the current object. It is more comprehensive,
more physically correct, and produces images that appear more realistic.
This model is also computationally more expensive.

(@)

Figure 1.5: Volume rendering: (a) Without shading. (b) With shading. CT scan of a human
head (512x512x333, 16 bit).

For volume rendering usually a local illumination model is used, due to its
lower computational costs. Most of the time the Phong illumination model is
applied [60]. Although it lacks physical validity, it is commonly used, as it can
be efficiently computed. The Phong model addresses point and directional
light sources only and models three types of reflected light, namely:

Ambient Reflection models the reflection of light which arrives at the sur-
face from all directions, after having bounced around the scene in mul-
tiple reflections from all the surfaces of the scene. Basically, it repre-
sents the natural light of a scene. In the Phong model, ambient light
is assumed to have a constant intensity throughout the scene. Each
surface, depending on its physical properties, has a coefficient of ambi-
ent reflection that measures what fraction of the light is reflected from
the surface. For an individual surface the intensity of ambient light
reflected is:

Tomp = 1o Kamp

where [, is the constant intensity of the ambient light and kg, is the
coeflicient of the ambient reflection of the surface.
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N

A N

Figure 1.6: Parameters of Phong's illumination model.

Diffuse reflection models the reflection from non shiny surfaces from which
light is equally scattered in all directions. Thus, the intensity at a
point on a surface, as perceived by the viewer, does not depend on
the position of the viewer. For an individual surface the intensity of
diffusely reflected light is:

I I; - Kaipp - cos(@), 0] < 90°
aff 0 otherwise
where I; is the intensity of the incident light, kg ¢r is the coefficient

of diffuse reflection for the material, and 6 is the angle between the
surface normal and the light vector L, see Figure 1.6.

Specular Reflection models the reflection of light from mirror-like sur-
faces. Specular reflection is caused by the mirror-like property of a
surface. A perfect mirror will reflect light arriving at the surface at
an angle of incidence 6 to the normal at a reflected angle of € to the
normal, in the same plane as the normal and the incident light. This
means that only a viewer on the reflected ray will actually see the re-
flected light. In practice, no surface is a perfect mirror and there will
be a certain amount of light scattered around the reflected direction.
The reflected light is, therefore, seen as a highlight over an area of the
surface. For an individual surface the intensity of specularly reflected
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light is:

I I; - Kgpec - cos™(7y), || <90°
spec 0 otherwise

where [; is the intensity of the incident light, kg, is the coefficient of
specular reflection for the material, 7 is the angle between the reflection
vector R and the viewing vector V', and m controls the extension of the
highlight, see Figure 1.6.

The complete basic reflection model is given as:

I = Iamb + Idiff + Ispec

1.1.4 Reconstruction

Many volume rendering algorithms resample the volumetric data by using
rays, planes, or random sample points. As these resample points most likely
do not match the existing voxel locations, the volume has to be reconstructed
at these new positions. Thus, new voxel values have to be interpolated from
the existing ones. There are numerous different interpolation methods, which
differ in quality and computational costs. The most popular methods for
volume rendering are:

Nearest neighbor interpolation is the simplest and fastest method; it
also is the most inaccurate one. Given a resample position, the closest
of all neighboring voxel values is assigned which results more in a se-
lection than filtering. This approach leads to severe artifacts, such as
staircase effects.

Trilinear interpolation is obtained by the application of a linear interpo-
lation in each dimension, it assumes a linear relation between neigh-
boring voxels. In 1D there a two, in 2D there are four, and in 3D there
are eight interpolation points. It is superior to the nearest neighbor in-
terpolation. When using large magnification factors, three dimensional
crosses (diamonds) appear due to the nature of the trilinear kernel.

Cubic interpolation provides a much better quality, however, the compu-
tational costs are considerably high. In contrast to linear interpolation,
cubic interpolation takes four interpolation points into account, along
a single dimension. Thus, two more multiplications are necessary, com-
pared to linear interpolation. This leads in 3D to a considerable amount
of instructions. Cubic filtering allows a more extended flexibility with
respect to reconstruction. The influence on the final result of each
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interpolation point is controlled by parameters. Thus, smoothing or
sharpening can be achieved.

Higher order interpolation methods, such as cubic convolution, are superior
to trilinear interpolation regarding the achievable image quality. However,
trilinear interpolation provides sufficient quality for most applications and,
therefore, provides a good tradeoff between quality and computational costs.

1.1.5 Gradient Estimation

In order to achieve a realistic display of 3D volumetric objects, shading and
illumination are essential, see Section 1.1.3. Shading requires a gradient, i.e.,
a surface normal vector, to compute the diffuse and specular components.
Volumetric data is usually obtained by sampling continuous objects, after
the sampling the surface normals are not available anymore. Therefore, the
normal of the surface is estimated by investigating the close neighborhood of
a given voxel. The quality of the generated image is strongly influenced by
the estimation method used for the normal vector computation. The most
popular gradient estimation methods for volume rendering are:

Figure 1.7: Input patterns, green spheres, of different gradient estimation schemes: (a) Inter-
mediate difference gradient. (b) Central difference gradient. (c) Neumann gradient.

Intermediate difference gradient takes as input four neighboring voxels,
see Figure 1.7a. For a given voxel V' at the position (z,y, z) the gradient
V is:
vx = V;:-i-l,y,z - V;c,y,z
Vy= Vigtr: = Vay,:
vz = ‘/x,y,z+1 - ‘/z,y,z
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Central difference gradient takes as input six neighboring voxels, see
Figure 1.7b. For a given voxel V' at the position (x,y,z) the gradi-

ent V is:

V, =
V, =

VwH,y,z -
V;:,y—l-l,z -

\171 z

'Y

i ry—1,z
Y )

vz - ‘/Zv,y,z—‘rl - ‘/x,y,z—l

Neumann gradient takes as input 26 neighboring voxels, see Figure 1.7c.
In general, this gradient estimation approach is a theoretical framework
based on linear regression; it is the generalization of many previous
approaches. In order to achieve highest gradient quality, Neumann et
al. [54] recommend, for a given voxel V' at the position (x,y, z), to use
the following 3x3x3 filter masks for gradient V:
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This method of gradient estimation also allows to filter the original
voxels values with low additional computational costs, as intermediate
results of the gradient estimation can be reused. The filter mask for

the voxel value is:
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In Figure 1.8 the different gradient estimation methods are compared.

The advantage of the intermediate difference operator is that it detects
high frequency detail, which can be lost when using the central difference
operator. This also leads to less appealing images when rendering data sets

with a lot of noise.

The central difference operator is a good low-pass filter, nevertheless, very
narrow structures are sometimes missed due to the central difference. Similar
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Figure 1.8: Different gradient estimation methods: (a) Intermediate difference gradient esti-
mation. (b) Central difference gradient estimation. (c) Neumann gradient estimation. (d)
Neumann gradient estimation and voxel filtering.

to the intermediate difference gradient, the central difference gradient is not
isotropic; this may become troublesome when using the gradient magnitude
as further input parameter to assign opacities.

The Neumann gradient estimation method, as well as other higher order
gradient estimation approaches, produce nearly isotropic gradients and less
fringing artifacts than other methods. Although this gradient estimation
method has considerably high computational costs, it is used later on in the
presented high-quality rendering system due to its superior quality. This
quality can be supported by additionally using the filtered density value,
however, this causes fading of small details. While this smoothness effect
is beneficial to the visual appearance of the image, this approach typically
cannot be used in real medical applications.

More detailed information about different gradient estimation methods
can be found in [84, 47, 70].

1.1.6 Compositing

Compositing refers to the process where all contributions to a pixel are com-
bined into one final pixel value. It can be expressed as an approximation of
the well-known Low-Albedo volume rendering integral [2, 29, 41]:

L

I(x,r) :/C’,\(s)p(s)e

0

(— [ u(t)d)
10N (1.1)
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Figure 1.9: (a) Standard compositing. (b) Maximum Intensity Projection. CT scan of a gecko
(512x512x88, 16 bit, courtesy of University of Veterinary Medicine Vienna).

L is the length of ray r. Considering the volume to be composed of particles
with certain densities u, then these particles receive light from all surrounding
light sources and reflect this light towards the eye point according to their
specular and diffuse material properties. Additionally, the particles may also
emit light by themselves. Thus, in Equation 1.1, C)) is the light of wavelength
A reflected and/or emitted at the location s in the direction r. In order to
take into account the higher reflectance of particles with larger densities, the
reflected color is weighted by the particle density. The light scattered at
s is then attenuated by the density of the particles between s and the eye
according to the exponential attenuation function.

In practice, it is impossible to evaluate this integral analytically. There-
fore, the integral is approximated by:

L/As i—1

I(z,7) = Z Calsi)a(sy) - [T (1= als;)) (1.2)

J=0
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Here, a(s;) represent the opacity samples along a ray and C)(s;) are the local
color values derived from the illumination model. C' and « are referred to as
transfer functions. These functions assign color and opacity to each intensity
value in the volume.

There are also other popular compositing operators, such as Maximum
Intensity Projection (MIP) and X-Ray Projection. For MIP the final pixel
value is determined by the maximum along a ray:

I(z,7r) = max(u(s)),s € [0, L] (1.3)

L is the length of a ray and p are the densities. For X-Ray projection the
final pixel value is determined by the sum of intensity values along a ray:

I(o,r) = Y uls) (14)

L is the length of a ray and p is the density.
In practice, Equation 1.2 and Equation 1.3 are the most often used ones,
examples are shown in Figure 1.9.

1.1.7 Indirect Volume Rendering

Using Indirect Volume Rendering (IVR), the volume data is converted into an
intermediate traditional computer graphics representation. Usually an iso-
surface or an iso-contour is extracted and the resulting graphics primitives
(polygons) are then rendered using standard computer graphics hardware.
The most popular approach of IVR is probably the Marching Cubes algo-
rithm [38], where each volume cell of eight neighboring voxels is classified
according to a specified iso value. Each voxel has two states; it is either in-
side or outside of an iso surface. Thus, there are 28 = 256 ways a surface can
intersect the cube. In the original paper on Marching Cubes, these 256 cases
were reduced to 15 cases by inverting or rotating the classification cubes,
see Figure 1.10. However, later research showed that this reduced case table
generates inconsistencies, which result in holes in the iso surface. Therefore,
the full 256 case table is usually used.

1.1.8 Direct Volume Rendering

In contrast to IVR, methods of Direct Volume Rendering (DVR) generate
images without the necessity of creating an intermediate polygonal represen-
tation. Instead, the volume data set is projected onto an image plane.
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Figure 1.10: Marching Cubes.

Raycasting

In the image-space oriented ray casting approaches, rays are cast from the
view-point through the view-plane into the volume, see Figure 1.11. The
volume is equidistantly sampled along the ray and the integral of Equation 1.2
is computed by repeated application of the over operator [61] in front-to-back
order. That is, at each resample location, the current color and alpha values
for a ray are computed in the following way:

Cout = Cin+ C(I)@(I)(l - Oém)
Qout = Qip + Oz([L‘)(l - ain)

(1.5)

cin and oy, are the color and opacity the ray has accumulated so far. z is
the reconstructed function value, and ¢(x) and «(z) are the classified and
shaded color and opacity for this value. Basically, at every resample position
a sample is interpolated out of the corresponding surrounding eight voxels,
see Figure 1.2b. This sample is then classified according to a transfer func-
tion. If the sample has a contribution to the ray, a gradient is also computed
from the surrounding voxels, in order to apply shading. Finally, the sample
is composited with the previous samples of the ray. Most acceleration meth-
ods avoid unnecessary computations, such as early ray termination, where
sampling along the ray is terminated once full opacity has been reached, or
space leaping where fully transparent areas of the volume are left out based
on a given distance field. Raycasting has seen the largest body of publica-
tions over the years; this is mainly because raycasting provides the highest
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quality and its computation scheme allows to exploit parallel computing as
well as memory efficient data-structures [33, 57, 73, 26].

Ray exit
Image plane

Ray

Ray entry

AN Vo

Current pixel

O\

Line of vision

Sample points on ray

Figure 1.11: Raycasting.

Splatting

Splatting, first proposed by Westover [78, 79], is as opposed to raycasting an
object-order approach. Each voxel is projected onto the image plane as an
overlapping, orientation invariant Gaussian kernel with an amplitude scaled
according to the voxel value, see Figure 1.12a. The major advantage of
splatting is that voxels that, due to fully transparency, do not contribute to
the final image can be immediately left out of processing. This enormously
reduces the amount of data to be processed. In order to obtain correct com-
positing, the volume has to be processed in the correct visible order. The
most common method is to use a sheet buffer [50], see Figure 1.12b. The
voxel kernels are processed within slabs that are aligned parallel to the im-
age plane. All voxel kernels that overlap a slab are summed into a sheet
buffer which is then composited with the previous sheet. This method signif-
icantly reduces the severe popping artifacts that can occur during splatting.
The splatting method that provides the best quality is currently Elliptical
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Weighted Average (EWA) splatting [86]. Their footprint function combines
an elliptical Gaussian reconstruction kernel with a Gaussian low-pass filter,
thereby the image quality is significantly improved.

Volume slices

_ Splats

—

Sheet buffer

Compositing buffer

Image plane Splat footprints

Image plane \

(@ (b)

Figure 1.12: Splatting: (a) Splat footprints. (b) Sheet buffer compositing of splats.

Shear warp

The shear-warp was first proposed in a orthographic projection version by
Cameron and Undrill [6] and then extended and improved by Lacroute and
Levoy [32]. It is still considered to be one of the fastest software volume
renderers. The algorithm is based on a shear-warp factorization of the view-
ing transformation. The volume data is transformed by a shear into the so
called sheared object space, see Figure 1.13. In the sheared object space all
viewing rays are parallel to the major axis which is most perpendicular to the
viewing direction. Here, the sheared volume slices are composited together
in front-to-back order using the over operator, see Section 1.1.8. This step
projects the volume into a 2D intermediate image in sheared object space.
Finally, the intermediate image is transformed to an image space by using a
warping operation.

This slice-wise processing scheme allows memory efficient processing as it
allows straightforward prefetching of data from main memory into the cache.
To accelerate the processing, screen space RLE-encoding can be exploited;
this encoding is always updated whenever a pixel does not alter its value any
further, for instance, if full opacity has been reached or the corresponding
ray leaves the volume. Furthermore, due to its inherent parallelism, the
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performance of the algorithm is significantly accelerated by mapping onto a
SIMD architecture [43, 6].

The encoding scheme is axis aligned, therefore, it requires the construc-
tion of a separate encoded volume for each axis. Furthermore, the resampling
takes place within the volume slices using bilinear interpolation, which leads
to a significant lower image quality compared to raycasting.

. Shear
Viewing rays )

Volume slices

=

— — | Project

Warp

Image plane

(@) (b)

Figure 1.13: Shear Warp: (a) Object space. (b) Sheared object space.

Graphics Hardware

Opposed to the pure software-based approaches, hardware-accelerated tech-
niques try to offload the computational expensive processing of the volume
data onto the graphics hardware. The data is, therefore, packed into a tex-
ture. Two types of textures are distinguished:

2D Textures: This approach stores stacks of slices for each major view-
ing axis as two-dimensional textures in memory [4, 64]. Similar to the
shear-warp method described in Section 1.1.8, the texture stack that is
most perpendicular to the viewing direction is chosen, see Figure 1.14.
For rendering each texture is mapped onto an appropriate geometry.
These geometries are rendered in back to front order using alpha blend-
ing. Although this approach provides high performance it is of limited
practicability, as the three texture stacks consume a considerably high
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Figure 1.14: 2D texture-based Volume Rendering.

amount of graphics card memory. It is more practicable to use 3D
textures, now supported by almost every graphics card.

3D Textures: This approach stores the volume data in memory as one three
dimensional texture [11, 9, 77, 44]. For rendering, viewplane aligned
polygons are drawn from back to front as illustrated in Figure 1.15. For
each polygon the graphics hardware trilinear interpolates the correct
colors and opacities from the 3D texture. These polygons are blended
together using alpha blending. The entire set of viewing rays is treated
simultaneously, resulting in a tremendous speedup due to the high ras-
terization performance of the graphics accelerator.

Figure 1.15: 3D texture-based Volume Rendering.

The main problem of these approaches is the limited amount of memory pro-
vided by graphics cards. In recent years the amount of available memory
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considerably increased due to strong demands of the gaming industry. Nev-
ertheless, the amount of data produced by newer acquisition devices even
increased with a higher pace. A considerable amount of research is devoted
to overcome this issue by using compression and advanced data structures
which allow to upload only the data needed for processing [18]. The increas-
ing programmability of the graphics hardware motivated several acceleration
techniques for GPU-based volume rendering [65, 30]. However, performance
and implementation remains specific to hardware.

Special Purpose Hardware

Several special-purpose volume rendering architectures have been proposed,
due to the high computational demands of direct volume rendering. Recent
research has focused on accelerators for raycasting of rectilinear volume data,
such as VOGUE [25], VIRIM [17], VIZARD II [46], and EM-Cube [56]. A
comprehensive comparison of these architectures can be found in [63]. The
EM-Cube architecture evolved into a commercially available volume render-
ing hardware, VolumePro board [58], which is capable of rendering a 512-
cubed data set at approx. 30 frames/second.

Comparison of Direct Volume Rendering Approaches

A comparison of popular direct volume rendering algorithms can be found
in [45]. Although research has evolved since this study was performed the
basic conclusions are still valid. Shear-warp, as well as 3D Texture map-
ping, provide the highest performance, however, the performance benefit is
accompanied by a loss of image quality. Raycasting and splatting produce
comparable image quality. Regarding performance, splatting is superior if
sparse data is processed, on the other hand, raycasting performs better for
semitransparent, dense data.

1.2 Outline of Dissertation

The remaining chapters of this dissertation are organized into two parts.

Part I describes the handling and processing of large rectilinear volume
data, specifically in the context of direct volume rendering. There are two
major strategies to accelerate volume rendering. The first one is to reduce
the computational costs at one resampling location. The second strategy is
to efficiently avoid processing of data regions that do not affect the rendering
result.
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Most volume rendering systems based on CPU volume raycasting still
suffer from inefficient CPU utilization and high memory usage. In Chapter 2
these issues are targeted and a new technique for efficient data addressing is
presented. Furthermore, a new processing scheme for volume raycasting, that
exploits thread-level parallelism is introduced. By using these techniques the
computational cost at one resample position is significantly reduced.

Most CPU-based volume raycasting approaches achieve high performance
by advanced memory layouts, space subdivision, and excessive precomput-
ing. Such approaches typically need an enormous amount of memory. They
are limited to sizes which do not satisfy the medical data sizes used in daily
clinical routine. In Chapter 3 a solution is presented based on image-order
raycasting with object-order processing; it is able to perform high-quality
rendering of very large medical data in real-time on commodity comput-
ers. For large medical data, such as computed tomographic (CT) angiogra-
phy run-offs (512x512x1202, 16 bit), rendering times of up to 2.5 fps on a
commodity notebook are achieved. This is realized by introducing a mem-
ory efficient acceleration technique for on-the-fly gradient estimation, and a
memory efficient hybrid removal and skipping technique of transparent re-
gions. Quantized binary histograms, granular resolution octrees, and a cell
invisibility cache are employed. These acceleration structures require just a
small extra storage of approximately 10%.

In Chapter 4 an approach to efficiently visualize multiple intersecting
volumetric objects is presented, using the previously presented techniques
to accelerate mono-volume rendering. The concept of V-Objects is intro-
duced. V-Objects represent abstract properties of an object connected to a
volumetric data source. A method to perform direct volume rendering of a
scene comprised of an arbitrary number of possibly intersecting V-Objects is
presented. The main idea is to distinguish between regions of intersection;
separating the ones that need costly multi-volume processing, from regions
containing only one V-Object, which can be processed using a highly efficient
brick-wise volume traversal scheme. By using this method, a significant per-
formance gain for multi-volume rendering is achieved. Furthermore, possible
medical applications, such as surgical planning, diagnosis, and education, are
presented.

Part II deals with alternatives to grid-based volume graphics. In Chap-
ter 5 Vots, a point-based representation of volumetric data, are introduced.
An individual Vot is specified by the coefficients of a Taylor series expansion,
i.e., the function value and higher order derivatives at a specific point. A Vot
does not only represent a single sample point, it represents the underlying
function within a region. With the Vot representation a more intuitive and
high-level description of the volume data is achieved. This allows direct an-
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alytical examination and manipulation of volumetric data sets. Vots enable
the representation of the underlying scalar function with specified precision.
User-centric importance sampling is also possible, i.e., unimportant volume
parts are still present but represented with just very few Vots. As a proof of
concept Maximum Intensity Projection, based on Vots, is shown.

This dissertation concludes with Chapter 6, which summarizes the pre-
sented topics and achievements.

. in 10 years, all rendering will be volume rendering.

Jim Kajiya at SIGGRAPH '91 [10]
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Chapter 2

Low-level Acceleration
Techniques

Figure 2.1: CT scan of human hand (244x124x257, 16 bit).

This chapter is based on the following publications:

Grimm S., Bruckner S., Kanitsar A., Groller E., A Refined Data Ad-
dressing and Processing Scheme to Accelerate Volume Raycasting,
Computers € Graphics, 28(5), pp. 719-729, 2004.

Grimm S., Bruckner S., Kanitsar A., Groller E., Hyper-Threaded Cache
Coherent Raycasting, Technical Report TR-186-2-03-05, Vienna Univer-
sity of Technology, 2003.
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2.1 Introduction

Three main volume rendering approaches can be distinguished. Two of them
are hardware based; the first one utilizes commodity graphics-cards [77, 30,
65, 18, 19]; the second one utilizes special purpose hardware, e.g. Volume-
Pro [58] and Vizard [46]; the third is CPU based ([9, 85, 77, 43, 48]).

Purely hardware based solutions provide real-time performance and high
quality; however, they are limited in their functionalities: basic visualization
systems are supported by hardware volume rendering solutions; consequently,
they are the mostly applied approach in the practice. Advanced visualization
systems provide preprocessing features such as filtering, segmentation, and
morphological operations. If such operations are not supported by hardware,
they have to be performed on the CPU and the result must be transferred
back. This transfer is very time consuming; thus, no interactive feed-back is
possible.

In contrast to that, in a purely CPU based solution this transfer is un-
necessary. Therefore, CPU based solutions are still commonly used in such
systems. Another advantage of such a solution is the high flexibility it pro-
vides. Many high-level optimization techniques are developed to achieve high
performance CPU solutions. Most of these techniques make one common as-
sumption: only parts of the data need to be visualized. This assumption is
still valid, but the data delivered by new higher-resolution acquisition devices
increases rapidly. This introduces a new main issue: an enormous amount
of data must be handled. Previous volume raycasting approaches, such as
Knittel [26] or Mora [48], achieved impressive performance by using a spread
memory layout. The main drawback of these approaches is the enormous
memory usage. In both systems, the usage is approximately four-times the
data size, plus storage for gradients if shading is used. This memory con-
sumption is quite a limitation, considering that the maximum virtual address
space is 3 GB on commodity computer systems. This issue is analyzed in
order to present a new approach that uses significantly less memory. In con-
trast to other methods in the presented approach, all computations are done
on-the-fly. To accelerate this on-the-fly computation, refined data addressing
techniques for a bricked volume layout are presented. Furthermore, a data
processing scheme is presented, which exploits common and new hardware
technologies such as thread-level parallelism. Such a technology enables more
efficient CPU utilization, and consequently provides a significant speedup.

The presentation of ideas is as follows: Section 2.2 surveys related work;
Section 2.3 provides a brief introduction to caches, describes the used volume
memory layout and the new data addressing schemes; Section 2.4 presents a
highly efficient multi-threaded raycasting approach. Finally, in Section 2.5
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the approach is discussed and in Section 2.6 the conclusions are presented.

2.2 Related Work

A prominent volume rendering approach which achieves high performance
by using cache coherency is the Shear-Warp Factorization algorithm [32].
Cache coherency is achieved by resampling slice-wise and keeping the data
in memory for each major viewing axis. The main drawbacks are the low
quality and the threefold memory usage. In contrast to this Knittel [26]
achieved very high cache coherency by introducing a spread memory layout
for fast access. He virtually locked all needed address lookup tables and color
lookup tables into the cache. This leads to a rather high cache coherency
and, therefore, high CPU utilization; however, memory usage is increased by
a factor of four. This memory storage requirement is too high, considering
that the maximum virtual address space of today’s mainstream workstations
is three Gigabyte. Consequently, the maximum data-set size is limited by
three Gigabyte divided by four = 768 MB. This seems to be an adequate size.
However, in most of the visualization systems the simultaneous examination
of multiple data sets is required. Furthermore, additional volumes or data-
structures have to be kept in memory to support various operations such
as segmentation and filtering. Mora [48] also based his approach on this
spread-memory layout; he used an octree to obtain even more performance
for first-hit volume raycasting. The enormous memory usage of both systems
is a considerable limitation on state-of-the-art commodity computer systems.
Moreover, these approaches are more limited by memory bandwidth than by
CPU performance. This is not favorable, since the evolution of computer
systems shows that CPU performance tends to increase faster than memory
bandwidth does.

Law and Yagel [33] proposed a parallel raycasting algorithm for a mas-
sively parallel processing system: they proved that appropriate data subdi-
vision and distribution to the available caches lead to high cache coherency.
The scheme can be adapted to commodity single- and multi-processors. The
use of this scheme leads to high cache coherency of all caches; however,
high CPU utilization is not inherent. Thread-level parallelism and advanced
data addressing schemes turn out to be a solution to this utilization issue.
Throughout the research process the basic data processing scheme was ex-
tended, in order to significantly increase CPU utilization, accelerating the
raycasting process.
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2.3 Efficient Memory Layout

There are two main requirements to achieve high CPU utilization: first,
execution units have to operate at full capacity; second a high cache hit rate is
desirable, which implies that no cache trashing occurs. The first condition is
fulfilled by thread-level parallelism, see Section 2.4. For the second condition
working sets are defined so that they follow two known principles of locality,
temporal locality - an item referenced now will be referenced again in the near
future, and spatial locality - an item referenced now also causes its neighbors
to be referenced.

The cache hierarchy of a x86-based system is shown in Figure 2.2. Going
up the cache hierarchy towards the CPU, caches get smaller and faster. In
general, if the CPU issues a load of a piece of data the request is propagated
down the cache hierarchy until the requested data is found. It is very time
consuming if the data is only found in a slow cache. This is a consequence of
the propagation itself as well as of the back propagation of data through all
the caches. Since the focus is on speed, frequent access to the slower caches
has to be avoided. Accessing the slower caches, like hard disk and main
memory, only once would be optimal. This is straightforwardly achieved for
the hard disk level, as it is assumed that there is enough main memory to
load all the data at once. To achieve this for the main memory is much more
sophisticated.

¢ Level 2 RAM
<>

1-3 ns
1 KB

Figure 2.2: Cache hierarchy.

The work-flow of a standard volume raycasting algorithm on a linearly
stored volume, commonly xyz-storage order, is as follows: for every pixel of
the image plane a ray is shot through the volume and the volume data is
resampled along this ray. At every resample position resampling, gradient
computation, shading, and compositing is done. From a performance point
of view this work flow is very inefficient:
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e The closer the neighboring rays are to each other, the higher the prob-
ability is that they partially process the same data. Given the fact that
rays are shot one after the other, the same data has to be read several
times from main memory, because the cache is not large enough to
hold the entire processed data of a single ray.

e Different viewing directions cause different numbers of cache-line re-
quests to load the necessary data from main memory which leads to a
varying frame-rate.

These are the two main reasons, which lead to a bad CPU utilization.

The main focus is on supporting semitransparent as well as first-hit views
with high real-time performance, without increasing the memory usage dra-
matically. It is a known fact that bricking of data is an effective way to
achieve high cache coherency, without increasing the memory usage. The
concept of bricking supposes the decomposition of data into small fixed-sized
data bricks. The brick data in this case is stored linearly in common xyz-
order; the bricks themselves are linearly stored in common xyz-order. How-
ever, accessing data in a bricked volume layout is very costly. In contrast to
the proposed two-level subdivision hierarchy in [57], a one-level subdivision
of the volume data is chosen. This is due to the fact that every additional
level introduces costs for addressing the data. For this one-level subdivision
layout a very efficient addressing scheme is developed, see Section 2.3.1.

The presented raycasting system is able to support different brick-sizes,
as long as each brick-dimension is a power of two. If the brick-size is set to the
actual volume-dimensions a common raycaster is obtained that operates on
a simple linear volume layout. This allows to make a meaningful comparison
between a raycaster that operates on a simple linear volume layout and a
raycaster which operates on a bricked volume layout with optimal brick size.
To underline the effect of bricking, different brick sizes are benchmarked.
Figure 2.3 shows the actual speedup achieved by brick-wise raycasting. For
testing purposes a semitransparent transfer-function is specified, such that
the impact of all high level optimizations, such as early ray termination,
brick skipping, and zero-opacity skipping is overridden. In other words, the
final image was the result of brute-force raycasting of the whole data. Data
sizes up to 512 MB are tested. The size of the data set had no influence
on the actual optimal performance gains. The exemplary tested data shown
in Figure 2.3 was a 256x256x256 typical medical data set, with 16 bit per
voxel. Furthermore, a worst-case comparison with respect to the viewing
direction is done. In case of small bricks the worst case is similar to the best
case. In contrast to that, using large bricks shows enormous performance
decreases depending on the viewing direction. This is the well known fact
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of view-dependent performance of a raycaster operating on a simple linear
volume layout. The constant performance behavior of small bricks is one of
the main advantages of a bricked volume layout. There is nearly no view
dependent performance variation anymore.

Going from left to right in the chart shown in Figure 2.3, first there
is a speedup of about 2.0 with a brick-size of 1KB. Increasing the brick-
size up to 64KB also increases the speedup. This is due to more efficient
usage of the cache. The chart shows an optimum at a brick size of 64KB
(32x32x32) with a speedup of about 2.8. This number shows the optimal
tradeoff between the needed cache space for ray-structures, sample data, and
the color lookup table. Further increase leads to performance decreases due
to exceeding the cache capacity and bricking overhead. This performance
drop-off is reduced, once the brick subdivisions almost correspond to no
subdivision. In other words, with a brick size of the same size as the volume
itself, the ray-structures have no influence on the performance. In this case
there is only one brick and, therefore, only one list of rays must be processed.
This is exactly the same rendering context of a common raycaster for a simple
linear volume layout.

8 3.0 Optimal brick size
2 T m
= 2.8
I
20 ®
Bricking overhead  Linear volume
Ls b affects speedup layout
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Figure 2.3: Brick-based raycasting speedup compared to common raycasting on a linear volume.
Test system specification: Pentium 4 Xeon 512KB Level-2 cache.
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2.3.1 Addressing

The evolution of CPU design shows that the length of CPU pipelines grows
progressively. This is very efficient as long as conditional branches do not
initiate pipeline flushes. Once a long instruction pipeline is flushed there
is a significant delay until it is refilled. Most of the present systems use
branch prediction. The CPU normally assumes that if-branches will always
be executed. It starts processing the if-branch before actually checking the
outcome of the if-clause. If the if-clause returns false, the else-branch has to
be executed. This means that the CPU flushes the pipeline and refills it with
the else-branch. This is a very time consuming procedure.

Using a bricked volume layout one will encounter this problem. The ad-
dressing of data in a bricked volume layout is more costly than in a linear
volume layout. To address one data element, one has to address the brick it-
self and the element within the brick. In contrast to this addressing scheme,
a linear volume can be seen as one large brick. To address one sample it
is enough to compute just one offset. In algorithms like volume raycasting,
which need to address a certain neighborhood of data in each processing step,
the computation of two offsets instead of one has a considerable performance
impact. To avoid this performance penalty, an if-else statement can be con-
structed. The if-clause consists of testing, if the needed data elements can
be addressed within one brick. If the outcome is true, the data elements can
be addressed as fast as in a linear volume. If the outcome is false, the costly
address calculations have to be done. On the one hand, this simplifies ad-
dress calculation, but on the other hand the involved if-else statement incurs
pipeline flushes. In the following this issue is addressed.

For raycasting, two major neighborhood access patterns are distinguished.
The first one is for resampling; the second one is for gradient computation.
The latter will be solved generally for a 26-connected neighborhood access
pattern. For the resampling computation the eight surrounding samples are
needed. The necessary address computations in a linear volume layout are:

SampleOffset; ; x — i+j-D,+k-D,-D,,

SampleOffset; ;1 x — SampleOffset; ; . +1
SampleOffset; ;1 x — SampleOffset; ; . +D,
SampleOffset; 1 j41, — SampleOffset; ; ,+1+D,
SampleOffset; ; r+1 — SampleOffset; ; ,+D,-D,
SampleOffset; 1 jr+1  — SampleOffset; ; ,+1+D,-D,
SampleOffset; j11 541 — SampleOffset; ; ,+D,+D,-D,
SampleOffset; ;1 j414+1 — SampleOffset; ; ,+1+D,+D,-D,

Thereby Dy, .y define the volume dimensions and i, j, k the integer parts of
the current resample position in 3D. This addressing scheme is very efficient.
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Once the lower left sample is determined the other needed samples can be
accessed just by adding an offset. In contrast to the linear volume addressing,
the brick volume addressing is given by:

if (" < BD,-1) and (j < BD,-1) and (k' < BD.-1))

SampleOffset; ; x — 1'+j-BD,+k’-BD,-BD,
SampleOffset; 1 x — SampleOffset; ; 1 +1

SampleOffset; 1 x — SampleOffset; ; . +BD,
SampleOffset;; j+1, — SampleOffset; ; ,+1+BD,
SampleOffset; ; x11 — SampleOffset; ; ,+BD,-BD,
SampleOffset; 1 jr+1 — SampleOffset; ; ,+1+BD,-BD,
SampleOffset; ;11 x+1 — SampleOffset; ; ,+BD,+BD,-BD,
SampleOffset;;1 j+1,4+1— SampleOffset; ; ,+1+BD,+BD,-BD,,

}

else

{
SampleOffset; ; x — 1'+j"-BD,+k’-BD,-BD,
SampleOffset; ;1 j — ComputeOffset(i+1,j,k)
SampleOffset; 11 1 — ComputeOffset (i,j+1,k)
SampleOffset; 1 ;11 — ComputeOffset(i+1,j+1.k)
SampleOffset; ; 541 — ComputeOffset(i,j,k+1)
SampleOffset; 1 ;x+1 — ComputeOffset(i+1,j,k+1)
SampleOffset; ;11441 — ComputeOffset(i,j+1k+1)
SampleOffset; ;1 j+1 x+1— ComputeOffset(i+1,j+1,k+1)

¥

ComputeOffset(i,j,k) — BlkOffset; ;,-(BD,-BD,-BD,) +

Offset WithinBIk; 5
BlkOffset; ; 1 — (i"+j”-BVD,+k”-(BVD,-BVD,))
OffsetWithinBIk;  x — (I'+j-BD,+k’(BD,-BD,)

Thereby BDy,, .} define the brick dimensions, Dy, .} define the volume di-
mensions. BVDy, , .1 denote the brick volume dimensions defined by BVDy, ,, 1
= (D{2,y,23/BD{ay.21), 1, j, and k are the integer parts of the current resample
3D-position, i’, j’, k" are defined by i’ = (i mod BD,), j” = (j mod BD,), and
k’ = (k mod BD,), and i”, j”, k” are defined by i” = (i div BD,), j” = (j div
BD,), and k” = (k div BD,).

To avoid the costly if-else statement and the expensive address computa-
tions, a lookup table to address all the needed samples is created.

The straight-forward approach would be to create a lookup table for each
possible sample position in a brick. Since the optimal brick size is 323,
this would mean that 32 different lookup tables are needed to address the
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Figure 2.4: Sample position (i, j, k) is defined by the integer parts of the resample position.
The sample positions (i, j, k) of a brick are subdivided into subsets. The membership depends
on the location of the adjacent samples. They are either in the same brick or in one of the
neighboring bricks. (a) Resampling: Four areas, because only samples to the right and to the
top are accessed. (b) Gradient computation: Nine subsets, because samples in every direction
are accessed.

neighboring samples. In the resampling case, seven neighbors need to be
addressed; the corresponding size of the lookup tables is 323 - 7 - 4 Bytes
= 896 KB (4 Bytes per offset). In the gradient computation case more
neighbors need to be addressed: 26 neighbors need to be addressed, which
leads to a table size of 32%-26 - 4 Bytes = 3,25 MByte (4 Bytes per offset) in
total. Such a huge size for a lookup table is not preferable, due to the limited
size of the cache. However, the addressing of such a lookup table is straight-
forward, because the indexes in the lookup table are the corresponding offsets
of the current sample position, assuming the given offset is relative to the
brick memory address. A more efficient approach is developed, first for the
resampling access pattern and then for a general 26-connected neighborhood,
commonly needed for gradient estimation.
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2.3.2 Efficient Addressing: Resampling

The possible resample locations are distinguished by the locations of the
needed neighboring samples. The first sample location (i, j, k) is defined
by the integer parts of the current resample position. The access pattern of
adjacent samples during resampling is defined by accessing samples to the
right, top, and back. Moreover, the samples of a brick are subdivided into
subsets. For the largest subset the seven adjacent samples of a sample (i, j,
k) lie within the same brick. The other subsets are defined by samples (i, j,
k) on the border of the current brick. The adjacent samples lie partially or
completely within neighboring bricks. These other subsets are defined by the
needed neighbor bricks to access all seven adjacent samples. The 2D case
is illustrated in Figure 2.4a. Only samples to the right and to the top are
needed; thus, there are only four cases. Basically, if the sample (i, j) lies on
one or two of the brick faces (top-, and right-face), neighboring bricks must
be accessed. This can be straightforwardly mapped to the 3D case, by also
taking into account the back-face. The eight occurring cases in 3D are shown
in Figure 2.5.

Case i element of j element of k element of
0o | {0,..,BD_-2} {0, ..., BD, - 2} {0, ..., BD -2}
1 {0, ..., BD_- 2} {0, ..,BD -2} BD -1
2 | {0,..,BD -2} BDy-1 {0, .., BD -2}
3 {0, ..., BD_-2} BDy-1 BD -1
4 BD -1 {0, ..., BD, - 2} {0, ..., BD -2}
5 BD -1 {0, ..,BD -2} BD -1
6 BD -1 BDy-1 {0, .., BD -2}
7 BD -1 BDy-1 BD -1

Figure 2.5: The eight neighbor brick constellations.

As mentioned before, the bricks themselves are stored in xyz-order, there-
fore, the necessary offsets for the eight neighboring samples can be precom-
puted and stored in a lookup table. Furthermore, the lookup table is the
same for each brick. The lookup table contains 8 - 7 = 56 offsets. There
are eight cases, and for each sample (i, j, k) the offsets to its seven adjacent
samples are needed. The seven neighbors are accessed relative to the sample
(i, j, k). Since each offset consists of four bytes the table size is 224 bytes.
This is an improvement of a factor of 4096 compared to the straight-forward
solution.

By compressing the lookup tables in this way the index computations for
the lookup table access become more difficult. It can be achieved efficiently
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if the brick dimensions are a power of two, and a power of two apart. The
second constraint can be removed by introducing a simple shift operation to
virtually keep the constraint. To exemplify the algorithm it is assumed that
the brick dimensions are 32x16x8. The input of the lookup table addressing
function is the sample position (i, j, k). As first step the brick offset part
from i, j, and k is extracted by anding the corresponding BDy, , .3-1. The
result can be seen in Figure 2.6 second column. The next step is to increase
all by one. By this operation the current maximal possible value BDy, ,, .1-
1 is moved to BDy,,, ;. All the other possible values stay within the range
[1,BDyzy,-3-1]. Then a conjunction of the resulting value and the complement
of BDy, y -1-1 is performed. After this operation the input values are mapped
to {0, BD{;,..} }, as shown in Figure 2.6, in column four. The last and final
step is to sum up the three values and divide the result by the minimum of
the three brick-dimensions BDy, .y, which maps the result into the range
[0,7]. This last division can be substituted by a shift operation. The final
algorithm for a 32x16x8 brick is:

SampleOffset; ; « — ComputeOffset(i,jk)
Index — ((((1&0x1F)+1)&0xE0)+
— (((j&0x0F)+41)&0xF0)+
— (((k&0x07)+1)&0xF8))>>3
SampleOffset; 1 ;x — SampleOffset; ; ,+Lut[Index][0]
SampleOffset; ;11 — SampleOffset; ; ,+Lut[Index][1]
SampleOffset; 1 ;41 — SampleOffset; ; ,+Lut{Index][2]
SampleOffset; ; ;11 — SampleOffset; ; ,+Lut[Index][3]
SampleOffset; 1 ;441 — SampleOffset; ; ,+Lut{Index]|[4]
SampleOffset; ;11,11 — SampleOffset; ; ,+Lut[Index][5]
SampleOffset; 1 j11 541 — SampleOffset; ; ,+Lut[Index]|[6]

The ComputeOffset step can be simplified to only the offset calculation within
one brick; this is possible as the processing is done brick-wise; therefore, the
brick-offset remains constant, while processing one brick.

2.3.3 Results

Compared to the if-else solution which has the costly computation of two
offsets in the else branch, a speed up of about 30% is achieved. The ben-
efit varies, depending on the brick dimensions. For a 32x32x32 brick size
the else-branch has to be executed in 10% of the cases and for a 16x16x16
brick size in 18% of the cases. With larger brick-sizes the percentage of the
else-branch executions is smaller and, therefore, also the benefit decreases.
The focus is, nevertheless, on small brick sizes, for which the overhead is
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significantly reduced. The other important benefit is that it does not mat-
ter anymore where in the brick adjacent samples are accessed; addressing is
always performed with constant computational time.

Case i& j& k & i+ j+ k+ i& j& k& i+j+k)/

(BD-1) (BD-1) (BD,-1) 1 1 1 “(BD,-1) (BD,-1) (BD,-1) Min(BD,

BD_BD)
0 0-30 0-14 0-6 1-31 1-15 1-7 0 0 0 0
1 0-30 0-14 7 1-31 1-15 8 0 0 8 1
2 0-30 15 0-6 1-31 16 1-7 0 16 0 2
3 0-30 15 7 1-31 16 8 0 16 8 3
4 31 0-14 0-6 32 1-15 17 32 0 0 4
5 31 0-14 7 32 1-15 8 32 0 8 5
6 31 15 0-6 32 16 17 32 16 0 6
7 31 15 7 32 16 8 32 16 8 7

Figure 2.6: Lookup table addressing for resampling. Thereby BDy, , ., = {32,16,8}.

2.3.4 Efficient Addressing: Gradient Estimation

A similar addressing approach, as presented for resampling, can also be done
for the gradient estimation. A general solution for a 26-connected neighbor-
hood is presented. Analogous to the resample case, 27 cases are distinguished.
The 2D case is illustrated in Figure 2.4b. Depending on the position of sam-
ple (i, j, k) a brick is subdivided into 27 subsets. In contrast to the resample
situation, additional sample positions on the bottom-, left-, and front faces
must be handled.

The first step is to extract the brick offset, by anding BDy,, ;-1 as shown
in Table 2.7, second column. Then, one is subtracted, and a conjunction with
BDys,y,-3 +BDys y.21-1 is used to separate the case if one or more components
are zero. In other words zero is mapped to (2-BDy,, .3-1) (Table 2.7, third
column). All the other values stay within the range {0,...,.BD,, .3-2}. The
other case which has to be separated is the case if one or more of the compo-
nents are BDy, ,, .1-1. This can be done by adding one, after the previous mi-
nus one operation is undone by a disjunction with 1, without loosing the sep-
aration of the zero case. The result can be seen in Table 2.7, fourth column.
Now all the cases are mapped to {0,1,2} to obtain a ternary-system; this is
achieved by dividing the components by the corresponding brick-dimensions.
These divisions can be substituted by fast shift operations. The last and final
step is then the calculation of 9-i4+3-j+k to get unique values in the range of
[0,26]. The final lookup table index computation for a 32x16x8 brick is:



Case i & j& k & i-1& i-1& k-1& il1 i1 i|1 | i/BD, j/BD, k/BD, | 9i+3j+k
(BD,-1) (BD,-1) (BD,-1)|(BD,+BD_-1)(BD,+BD,-1) (BD,+BD-1)| +1 +  +I
0 1-30  1-14 1-6 0-29 0-13 0-5 2-30 2-14 2-6 0 0 0 0
1 1-30  1-14 7 0-29 0-13 6 2-30 2-14 8 0 0 1 1
2 1-30  1-14 0 0-29 0-13 15 2-30 2-14 16 0 0 2 2
3 1-30 15 1-6 0-29 14 0-5 2-30 16 2-6 0 1 0 3
4 1-30 15 7 0-29 14 6 2-30 16 8 0 1 1 4
5 1-30 15 0 0-29 14 15 2-30 16 16 0 1 2 5
6 1-30 0 1-6 0-29 31 0-5 2-30 32 2-6 0 2 0 6
7 1-30 0 7 0-29 31 6 2-30 32 8 0 2 1 7
8 1-30 0 0 0-29 31 15 2-30 32 16 0 2 2 8
9 31 1-14 1-6 30 0-13 0-5 32 2-14 2-6 1 0 0 9
10 31 1-14 7 30 0-13 6 32 2-14 8 1 0 1 10
11 31 1-14 0 30 0-13 15 32 2-14 16 1 0 2 11
12 31 15 1-6 30 14 0-5 2 16 2-6 1 1 0 12
13 31 15 7 30 14 6 2 16 8 1 1 1 13
14 31 15 0 30 14 15 2 16 16 1 1 2 14
15 31 0 1-6 30 31 0-5 2 32 2-6 1 2 0 15
16 31 0 7 30 31 6 2 32 8 1 2 1 16
17 31 0 0 30 31 15 2 32 16 1 2 2 17
18 0 1-14 1-6 63 0-13 0-5 64 2-14 2-6 2 0 0 18
19 0 1-14 7 63 0-13 6 64 2-14 8 2 0 1 19
20 0 1-14 0 63 0-13 15 64 2-14 16 2 0 2 20
21 0 15 1-6 63 14 0-5 64 16 2-6 2 1 0 21
22 0 15 7 63 14 6 64 16 8 2 1 1 22
23 0 15 0 63 14 15 64 16 16 2 1 2 23
24 0 0 1-6 63 31 0-5 64 32 2-6 2 2 0 24
25 0 0 7 63 31 6 64 32 8 2 2 1 25
26 0 0 0 63 31 15 64 32 16 2 2 2 26

Figure 2.7: Lookup table addressing for a 26-connected neighborhood. Thereby BDy, , .3 = {32,16,8}.
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i = ((i& 0xIF) - 1) & 0x3F
j’ — ((j & 0x0F) - 1) & Ox1F
K — ((k & 0x07) - 1) & OxOF
i — ((I"| 0x01) + 1) >>5
i — ((G7]0x01) + 1) >> 4
K — (K] 0x01) + 1) >> 3
Index — (i”7-9+4j"-3+k”)

2.3.5 Results

Compared to the if-else solution which has the costly computation of two
offsets in the else branch, a speed up of about 40% is achieved. The index
computation is more costly compared to the resample lookup table index-
ing computation. However, the percentage where the else-branch has to be
executed nearly doubled. Consequently, the more costly index computation
is compensated by the higher percentage of costly cases. The size of the
lookup table has not been discussed so far. It is 27 cases - 26 offsets - 4
byte per offset = 2808 Bytes. This can be reduced by a factor of two due to
symmetry reasons. Therefore, a very small lookup table of 1404 Bytes is ob-
tained. This is an improvement of approximately a factor of 2427 compared
to the straight-forward solution. Thus, the resample lookup table and the
26-connected neighborhood lookup table fit into 2KB.

It is assumed that bricks are stored linearly; this has simplified the ex-
planation of the addressing scheme. However, storing the bricks at arbitrary
locations in memory is also possible. It requires creating a specific lookup
table for each brick. The base structure of the address lookup tables and
their indexing remain the same; only the stored offsets change according to
the memory locations of the adjacent neighboring bricks. This possibility en-
ables the exploitation of different brick arrangements, such as arrangements
based on space filling curves, to improve the spatial locality. Storing an ad-
dress lookup table for each brick requires only a small additional storage of
(1/65536) - (2808 + 224) - 100 ~ 4.63% per brick. The brick size in this case
is 323 - 2 byte = 65536 byte, the resample lookup table size is 224 byte, and
the 26-neighbor address lookup table size is 2808 byte. The symmetry of the
26-neighbor address lookup tables can not be exploited, due to the arbitrary
brick arrangement requirement.

Another possible option to simplify the addressing would be to inflate
each brick by an additional border of samples. However, such a solution
considerably increases the overall memory usage. For instance, for a brick
size of 32x32x32 the total memory usage of the volume data by is increased
approximately 20%. This is an inefficient usage of memory resources and the



2.4. MULTI-THREADING 37

storage redundancy reduces the effective memory bandwidth. In contrast to
that, our approach has a memory usage increase of just 4.63 % per brick
even if an arbitrary brick arrangement is permitted. Hardly any additional
memory is required for a linear brick arrangement, as all bricks share one
global address lookup table. In conclusion, a very efficient approach to access
neighboring samples within a brick based volume layout by using a small
lookup table has been presented. Furthermore, a refined index computation
has been developed to access the lookup tables in a very efficient manner.

2.4 Multi-threading

So far, CPU designers have tried to improve the CPU performance mainly
by increasing the clock-rate. Today’s main processors perform at 3 GHz
resulting in 0.33 ns per clock-cycle. Achieving higher rates becomes more
and more difficult due to physical laws and manufacturing costs. Other
strategies to increase CPU performance were explored. The Pentium CPU
was the first to allow the parallel execution of several instructions per clock-
cycle. However, this feature was insufficient, because normally there are
not enough sequential instructions that can be performed in parallel. To
overcome this issue an out-of-order execution unit was introduced. This
unit reorders the instruction stream such that the CPU can execute more
instructions in parallel. This concept is called instruction level parallelism.
At first sight this is a very efficient solution, but studies have shown that in
a typical application at most 2.5 instructions can be found to be executed
simultaneously [40, 27].

Thus, there are still unused execution resources on the CPU. In order
to use them, hyper-threading technology for commodity CPUs has been in-
troduced to exploit thread-level parallelism. With this technology, the CPU
designers go one step further. Additionally to the instruction level paral-
lelism, thread level parallelism (TLP) is introduced to identify even more
instructions for parallel execution. In the past, the out-of-order execution
unit could choose from an instruction buffer of only one thread. Now, this
buffer contains instructions of two threads which obviously increases the like-
lihood of finding data-independent instructions. This technology makes a
single physical processor appear as two logical processors. It just duplicates
the architectural state, while the physical execution resources and caches are
shared, see Figure 2.8. In other words, the CPU is capable of holding two
thread contexts at the same time. The two threads are executed simulta-
neously on the same execution units, using the same caches. If one thread
stalls due to a cache miss, the other one uses the idle execution resources.
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More information to hyper-threading technology can be found in [22, 23, 40].

( Conventional ) [ Hyper-threaded )
CPU CPU
Architectural > | Architectural\
- State ~ 1 State |
Can hold — \ _ = - ( < Canhold
one thread s | Architectural two threads
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Figure 2.8: Hyper-threading technology duplicates the architectural state of the physical pro-
cessor, providing two logical processors.

In Section 2.3 a bricked memory volume layout with a highly optimized
addressing scheme has been presented. This layout is now the base for a
highly efficient volume raycasting system. The main idea to perform ray-
casting on a bricked volume layout is to have data working-sets which can
be shared between two hyper-threads. This is very important since hyper-
threads share caches.

2.4.1 Processing Scheme

To get optimal cache coherence, high CPU utilization, and the ability to do
efficient threading, the system is based on Law’s and Yagel’s [33] raycast-
ing method. They proposed a parallel raycasting algorithm for a massively
parallel processing system (Cray T3D Supercomputer). The data was sub-
divided into small units and then evenly distributed among the processors,
so that optimal cache coherence was achieved. This distribution scheme can
still be used on current multi-processor systems; however, it can not be used
straight-forward for a hyper-threaded system. Therefore, their distribution
scheme is extended to support logical CPUs within one physical CPU. The



2.4. MULTI-THREADING 39

Initialization:
1.) Create ordered list of bricks.

Preprocessing

2.) Assign rays to bricks that are hit first.

Raycasting:
for (all bricks b)
while (brick b contains rays to process)
for (all active rays r of brick b)
1.) Resampling at position of ray r.
2.) Gradient computation at position of ray r.
3.) Shading at position of ray r.
4.) Compositing at position of ray r.
5.) Advance ray r.
6.) if (ray enters subsequent brick)
(i) Remove ray r from current brick.

(ii) Assign ray r to subsequent brick.

Figure 2.9: Brick-wise raycasting algorithm.

main difference is that logical CPUs within one physical CPU need to operate
on the same data to be efficient.

The work-flow of the algorithm, as shown in Figure 2.9, is as follows: It is
based on the previous described bricked volume layout and uses the optimal
brick size of 32x32x32, see Section 2.3. Each brick contains data-structures
for high-level optimizations and a reference to a list of rays to process. The
bricks themselves are stored in xyz-order. Initially a list of bricks is created.
It is sorted by the traversal order of the rays. Therefore, each brick has to be
processed only once. Law and Yagel [33] showed that this has to be done only
once for the eight view quadrants, see Figure 2.10. Each brick has initially
an empty list of rays. In the preprocessing phase all viewing rays are assigned
to those bricks through which they first enter the volume. During volume
raycasting, each of the bricks is processed until all the rays enter subsequent
bricks. If a ray enters a subsequent brick, it is removed from the current brick
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Figure 2.10: Brick-wise processing order.

and assigned to the subsequent one. Subsequent bricks, which now contain
the rays, are processed in the same manner. By this mechanism the rays are
completely carried through the volume when all bricks are processed. These
bricks basically define the data working-sets mentioned in Section 2.3.

The work-flow of the volume raycasting system exploiting thread-level
parallelism on a system with two physical CPUs supporting hyper-threading
technology, illustrated in Figure 2.11, is as follows:

In the beginning seven treads, T1,..., T7, are started. T1 is responsible for
all the preprocessing. In particular it has to assign the rays to those bricks
through which the rays enter the volume first. Then T1 chooses the lists
of bricks which can be processed simultaneously, with respect to the eight
distinguished viewing directions. Each list is evenly subdivided by T1 and
sent to T2 and T3. After a list is sent, T1 sleeps until its slaves are finished.
Then, it sends the next list to process, and so on. T2 sends one brick after the
other to T4 and T5. T3 sends one brick after the other to T6 and T7. After a
brick is sent, T2 and T3 sleep until their slaves are finished. Then they send
the next brick to process, and so on. T4, T5, T6, and T7 perform the actual
raycasting. T4 and T5 simultaneously process one brick, and T6 and T7
simultaneously process one brick. By this mechanism all bricks are processed
in the correct order. During this process the most critical part is when rays
are assigned to subsequent blocks. As mentioned before, each block holds
a list of rays to process. It can happen that several threads simultaneously
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Figure 2.11: Volume raycasting system exploiting thread-level parallelism speedup.

want to assign rays to the same block. This problem is illustrated in Figure
2.12a. The straight-forward solution would be to ensure that only one thread
at a time can assign rays to a block. But this decreases the performance
drastically. There are two common synchronization mechanism to choose
from, one is a mutex the other is to define a critical section. In general,
a critical section is used to synchronize threads, because it is considerably
faster. Using hyper-threading, however, introduces the same synchronization
issue as when using multi-processing. Once two threads can be executed
simultaneously a critical section is internally implemented as a slower mutex.
This leads to an enormous performance decrease, due to the fact that the
operating system has to check the mutex periodically to wake up waiting
threads if the mutex is free. Performance can be increased by setting the
spin loop count, in other words by changing the period of time the operating
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system is checking the mutex. Since this is still not optimal a solution is
developed without any synchronization; it is illustrated in Figure 2.12b. Each
thread has its own ray-list in a block. Thus, if a thread assigns a ray to a
block, it is ensured that it is the only one which is writing into that list. There
are four threads and only two threads are processing a single block, therefore,
each thread has to read from two lists at a time. With this approach the
rays of all lists are processed. Processing also includes removing rays from
the lists. However, this is not critical. It is ensured by the processing order
of the blocks that a ray can never be assigned to a block which is currently
being processed. The last open question is the load-balancing. This is done
by interleaving the rays during initialization.
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Figure 2.12: (a) Several threads assign rays to the same subsequent block. (b) Solution
without synchronization.

Implementation issues

In order to keep complete control over the thread execution and synchroniza-
tion flow, no special parallel programming library was used. The threads are
created once during start-up, according to the number of physical and logical
CPUs and synchronized by light-weight events. Expensive thread creation is
avoided and thread context switches are kept low. For optimal CPU utiliza-
tion a CPU-specific compiler was employed. Full optimization was enabled,
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performing interprocedural optimizations and inlining across multiple source

files.

2.4.2 Results

Test system specification: Dual Pentium Xeon 2.4 GHz, 512 KB level-2 cache,
8 KB level-1 data cache, 1GB Rambus memory, and a GeForce IV graphics-
card. The graphics card capabilities are only used to display the final image.
The system is able to force threads on specific physical and logical CPUs.
The system can also be forced to run only on one physical CPU using both
logical CPUs. Benchmarks were performed using several different data sets
and transfer functions. Figure 2.1 shows the results of an exemplary test
run using a CT scan of a human hand (244x124x257, 16 bit). Different
transfer-functions were specified in order to achieve high work loads. The
images (512x512) from left to right show renderings with progressively more
translucent transfer function settings. Measured render timings are: (a) 0.46
sec, (b) 2.0 sec, (c) 4.6 sec. Non-translucent transfer functions lead to frame
rates of up to 2.5 fps for this particular data set. All test runs consistently
showed the same speedup factors.

i}}::g};sical Ezgfé;ng Computational time Speedup
One Disabled (One thread ) 1.0
One Enabled | ((Two threads ) 30% saving 1.42
Two Disabled (Two threads )‘ 49% saving _ 1.96
Two Enabled ‘ Four threads L 69% saving _ 2.78

Figure 2.13: Thread-level parallelism speedup.

The achieved thread-level parallelism speedup is shown in Table 2.13.
Testing thread-level parallelism on only one CPU showed an average speedup
of 30%. While changing the viewing direction, the speedup varies from 25%
to 35%, due to different transfer patterns between the level-1 and the level-
2 cache. Whether hyper-threading is enabled or disabled, adding a second
CPU approximately reduces the computational time by 50%. This shows
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that the thread-level parallelism scheme scales very well on multi-processor
machines. Moreover, the hyper-threading benefit of approximately 30% is
maintained if the second hyper-threaded CPU is enabled.

Figure 2.14 shows the thread-level parallelism speedup according to dif-
ferent brick sizes. The speedup significantly decreases with larger brick sizes.
Once the level-2 cache size is exceeded, the two threads have to request data
from main memory. Therefore, the CPU execution units are less utilized.
Very small brick sizes suffer from a different problem. The data fits almost
into the level-1 cache. Consequently, one thread can utilize the execution
units more efficiently, and the second thread is idle during this time. The
overall disadvantage is the inefficient usage of the level-2 cache. The opti-
mal speedup 1/((100 - 30)/100) ~ 1.42 is achieved with 64KB (32x32x32).
This is also the optimal brick size for the bricked volume memory layout, see
Section 2.3.

m 30 —> 1.42 speedup
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! |

Thread-level parallelism
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Figure 2.14: Thread-level parallelism speedup for different brick sizes.
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2.5 Discussion

Efficient usage of hardware resources for basic graphics algorithms is very
important. It is a known fact, that thread-level parallelism can increase per-
formance by a factor of 30% for effectively parallelized algorithms. However,
effectiveness is only achieved if threads operate on coherent data. Tests have
shown that large brick-sizes lead to very low thread-level parallelism perfor-
mance benefits. In this case there is a low cache hit rate, and, therefore,
expensive main memory requests result in execution stalls. For instance, by
just splitting the image plane in half and assigning each half to a hyper-
thread, result in a performance decrease instead of an increase; two threads
are constantly requesting data from different memory locations. This leads
to enormous cache trashing, since the two threads share caches.

The bricking speedup is about a factor of 2.8. However, it is important
to note that this speedup factor characterizes the improvement in traversal,
resampling and gradient computation. These are the components of the
system which are directly affected by the accelerated memory access. Other
parts, such as compositing and shading do not benefit from the presented
optimizations. In the system, however, these parts only play a minor role in
overall performance. It uses front-to-back compositing and Phong shading
with two light sources.

Experiments showed that with the optimal brick-size of 32x32x32 a speedup
factor of 2.8 is achieved. Enabling thread-level parallelism results in an addi-
tional speedup of 1.42. The combined speedup is 2.8%1.42 = 4.0. High-level
optimizations, such as empty space skipping or early ray termination, did not
influence this speedup factor. The efficient addressing scheme considerably
reduces the cost of addressing in a bricked volume layout. Its influence on the
overall performance gain depends on the filter support size used for resam-
pling and gradient estimation, as well as on the complexity of the remaining
calculation, such as shading and compositing.

2.6 Conclusion

A very efficient raycasting system utilizing thread-level parallelism has been
presented. A bricked volume layout has been utilized in order to design
a highly efficient threading scheme that maximizes the benefits of thread-
level parallelism. The high cache coherency inherently present in a bricked
volume layout combined with the two refined addressing schemes significantly
reduced the costs of resampling and gradient computation.

For the efficient usage of thread-level parallelism a multi-threading scheme
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has been introduced, such that two threads running on one physical CPU si-
multaneously process one data brick. Processing the same data brick simul-
taneously with both hyper-threads is essential for exploiting this technology.
The results have proven that inefficient CPU utilization can be significantly
reduced by taking advantage of hyper-threading technology. The realization
of the system showed that using this new technology is not straightforward.
Systems have to be adapted in order to take advantage of this architecture.
Most of today’s used multi-threaded systems have to be redesigned. By just
starting more threads one can encounter a significant performance decrease
instead of an increase, due to the fact that hyper-treads share caches.

A significant speedup has been achieved by using the new addressing
method in a bricked volume layout. The new addressing scheme can be used
for any volume processing algorithm, which has to address adjacent samples.
The results showed that conditional branches have quite some performance
impact, due to the growing length of the CPU pipeline. Advanced low-level
optimizations lead to efficient CPU utilization, as well as to a significant
speedup factor of 4.0.
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Techniques

Figure 3.1: Close-up of the visible male.
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3.1 Introduction

Direct Volume Rendering is known as a powerful technique to visualize com-
plex structures within three-dimensional data. Its main advantage, compared
to standard 3D surface rendering, is the ability to perform translucent ren-
dering in order to provide more information about spatial relationships of
different structures. In general, 3D visualization helps to understand pa-
tient’s pathological conditions, improves surgical planning, and is a big aid
in medical education. A typical data size of today’s clinical routine is up
to 512x512x512. However, some examinations, such as peripheral CT an-
giography run-offs, require even larger scans. For example, Rubin et al. [67]
reported a mean of 908 transverse reconstructions. Furthermore, due to im-
proved capabilities of newer acquisition devices, it is possible to scan with
even higher resolution. The high resolution is often used for difficult cases
resulting in larger data sets. This large data presents a challenge to current
rendering architectures and techniques. The increasing demand of interac-
tive 3D visualization is basically driven by the size itself. Conventional slicing
methods have already reached their limit of usability due to the enormous
amount of slices. 3D visualization is more and more explored as an attrac-
tive alternative additional method for examinations of large medical data to
support the obliged 2D examination. Figure 3.1 shows an example of a 3D
visualization.

Within the research area of accelerating volume rendering, two main re-
search streams can be identified. One stream is focused on exploiting special
purpose hardware such as Volume Pro (Pfister et al. [58]), Vizard (Meissner
et al. [46]) or graphics cards (GPU) (Cabral et al. [4], Westermann et al.
[77], Guthe et al. [18] and many others). This approach usually provides
high performance when data fits into internal memory. However, this issue
becomes the most critical bottleneck once the data size exceeds the onboard
internal memory capacity. Expensive transfers of data from main to inter-
nal memory have to be performed, which lead to an enormous performance
penalty. Furthermore, the accelerated pace of the GPU’s development cycle
produces heterogenous multi-user hardware environments. This makes the
adoption of such special purpose hardware solutions even more difficult. The
other research stream is based on CPU technologies. In general, they provide
better performance for large data due to the inherent larger memory capac-
ity. Many proposed approaches for CPU based volume raycasting achieve
high performance by utilizing super-computers or clusters; e.g., Parker et al.
[57] presented a volume rendering approach on an SGI Reality Monster and
were capable to render the Visible Woman (approx. 1 GB) with up to 20 fps
utilizing 128 processors. However, it is a large scale solution which does not
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apply to the needs and capacities of an ordinary medical environment.

The purpose of this work is to present a solution which resolves the is-
sues presented before: an interactive real-time volume rendering approach for
large medical data, capable of performing in a heterogeneous hardware envi-
ronment, by using commodity computers such as notebooks, and providing
high performance and high quality images. This is achieved by introducing
an efficient method for on-the-fly gradient estimation and an efficient hybrid
removal and skipping technique of transparent regions. The presentation
of the new approaches is subdivided as follows: Section 3.2 surveys related
work. Section 3.3 presents a brief overview of the raycasting processing work-
flow. In Section 3.4 acceleration techniques such as a refined caching scheme
for gradient estimation and a hybrid skipping and removal of transparent
regions method to reduce the amount of data to be processed is introduced.
In Section 3.5 the conclusion is presented.

3.2 Related Work

The most popular CPU-based direct volume rendering algorithms are shear-
warp, splatting, and raycasting. Shear-warp is considered to be the fastest
software algorithm (Lacroute et al. [31]); however, the inherent bi-linear
interpolation provides quality which is, in general, insufficient for medical
purposes. Splatting was first proposed by Westover et al. [78]; it was later
improved in terms of quality and speed by Mueller et al. [51, 52|, and Hung
et al. [21]. This technique provides high quality images. However, it still
lacks the speed provided by the general volume raycasting technique.

Volume raycasting is still widely used when high quality rendering of
large data is desired. Several acceleration techniques for volume raycasting
have been proposed over the last decade. Knittel et al. [26] and Mora et
al. [48] proposed volume raycasting approaches for commodity computers.
They achieve impressive frame-rates by using a spread memory layout and
precomputed gradients; however, their method requires an enormous amount
of additional memory. The spread memory layout itself increases the memory
usage by a factor of four. This becomes a rather limitation factor if large
data needs to be handled, or if the the rendering system is part of a larger
visualization systems and memory resources need to be shared.

In contrast, the presented approach does not rely on extensive precom-
puting or a spread memory layout; it is based on a bricked volume layout.
In order to achieve high performance advanced acceleration structures and
techniques are necessary. In the following Sections several memory efficient
acceleration approaches are presented.
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3.3 Volume Raycasting Work-flow

The following paragraph presents a brief overview of the work-flow of the
volume raycasting approach which is based on the memory layout and low-
level acceleration techniques presented in Chapter 2. The volume data is
decomposed in bricks and the processing is performed brick-wise. The volume
raycasting process is subdivided into preprocessing, prerendering, rendering,
and postrendering. The preprocessing step is done only once during start-up
and the remaining steps are performed every time the image needs to be
rerendered.

Preprocessing: During loading, the data is decomposed into small bricks
of size 323. The data within the bricks and the bricks themselves are
stored in common xyz-order. For each brick information about the con-
tained density values is stored, e.g., min-max values, quantized binary
histograms, etc.

Prerendering: In this phase transparent regions are removed and the rays-
volume intersections are computed. There are eight different brick lists
which are defined by the eight possible viewing-octants in 3D. Depend-
ing on the viewing direction the appropriate list is selected to process
the volume brick-wise and in correct visibility order.

Rendering: According to the brick list, all rays traverse the bricks in visibil-
ity order, until all bricks are processed or all rays are terminated due
to complete opacity accumulation. During traversing regular resam-
pling, gradient computation, classification, shading and composition
are performed.

Postrendering: At this point the final image is displayed, written to a file,
or sent over the network to a client.

3.4 Acceleration Structures

There are two major strategies to accelerate volume raycasting. The first
one is to reduce the computational cost at one resampling location. This
is achieved by using an acceleration technique for gradient estimation. The
second strategy is to efficiently remove and skip transparent regions, which is
achieved by using quantized binary histograms, granular resolution octrees,
and a cell invisibility cache.
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3.4.1 Efficient Gradient Caching

The most common method to accelerate gradient estimation is to read pre-
computed gradients from memory. However, this acceleration technique has
several drawbacks. In order to gain high performance the gradients must be
stored in memory, resulting in an inefficient usage of resources. Furthermore
such a solution is limited by memory bandwidth instead of preferably CPU
throughput. The evolution of computer systems has shown that CPU per-
formance increases faster than memory bandwidth. Going one step further
if the data exceeds the main memory capacity, out-of-core rendering has to
be performed and the gap between CPU throughput and memory bandwidth
becomes even larger. Experience has shown that not every gradient estima-
tion scheme performs equally well on all kinds of data. Therefore, the ability
to switch between different gradient estimation schemes is an important fea-
ture and basically not efficiently given if precomputing is used. Additionally,
often only gradient direction is stored and the gradient magnitude is omitted,
otherwise the storage requirements can become considerably high. Finally,
precomputing the gradients is quite time consuming. Considering a now-a-
days medical visualization system, the doctor’s main interest is to carry out
the examination as fast as possible. The total time from scanning the patient
to the actual examination is a highly critical factor.

To avoid these issues, the presented approach performs on-the-fly gradi-
ent estimation. In order to obtain highly accurate images, a dense object and
image sample distance is inevitable, which implies high computational costs.
A typical resampling resolution illustrated in 2D is shown in Figure 3.2a. In
this case there are eight resample locations within a cell. Each gradient at
the corners of one cell has to be computed eight times. Furthermore, each
corner is shared between four cells in 2D. The total amount of redundant gra-
dient computations at one corner is eight resampling positions multiplied by
four cells which gives a total of 32 computations. In 3D the computational
costs are even considerably higher. These very costly redundant gradient
computations can be avoided by refined caching. However, not every gradi-
ent estimation scheme is suitable for caching. There are several studies on
gradient filters for volume rendering with focus on accuracy, importance in
terms of image quality and efficiency. Especially, Moeller et al. [47] give a
thorough comparison of commonly used normal estimation schemes. They
differentiate between four types of gradient estimation schemes:

1. Continuous Derivative uses a derivative filter which is preconvolved
with the interpolation filter. The gradient at a resample location is
then computed by convolving the volume with this combined filter.
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2. Analytic Derivative uses a special gradient filter derived from the in-
terpolation filter for gradient estimation.

3. Interpolation First computes the derivative at the resample position
by resampling the data on a new grid, such that the used derivative
operator can be applied directly. This is very beneficial if orthographic
rendering is performed.

4. Deriwative First computes the gradients at the grid-points and then
interpolates these at the desired resample position.

For scheme one and two no caching mechanism is available. Only schemes
three and four can be considered for efficient gradient caching. Due to their
numerical equivalence only a comparison with respect to efficiency is nec-
essary. Moeller et al. [47] proposed the Interpolation First method as the
most efficient one. Considering volume rendering and no caching this is
quite obvious. However, applying the Interpolation First scheme requires
resampling of the original grid to a much larger grid if the object sample
distance is significantly smaller than one. Already an object sample distance
of 0.25 increases the grid size by a factor of four. This enormous amount of
data makes caching inefficient and difficult. Especially if the object sample
distance should be kept dynamical or if jittering techniques are applied to
improve the image accuracy. Due to these reasons the Derivative First gra-
dient estimation scheme is more efficient from a performance point of view,
since it is more suitable for caching. In this case, the amount of data to cache
is always determined. This makes interactive changes of the object sample
distance possible.

An efficient per brick gradient caching approach is introduced; the caching
scheme requires two data structures: the cache itself and a second structure
to store the corresponding valid bits. The used processing entity is not the
whole volume; in fact the volume is decomposed in bricks and each brick
defines a processing entity. The size of the cache matches the number of
gradients needed for one brick. The most straightforward way to use this
cache would be to precompute all gradients which correspond to the current
brick and use those during brick processing. This would be very inefficient,
since more gradients than necessary would be precomputed if only parts of a
brick are visible. In contrast to that additionally valid bits are used, which
encode if a gradient is already computed and stored in the cache. During
brick processing every time a gradient needs to be computed, it is checked
if the gradient is already stored in the gradient cache. If not, the gradient
is computed and stored in the cache and the corresponding valid bit is set
to true. This mechanism ensures that gradients are computed only once at
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each sample position during brick processing. The cache remains only valid
during the processing of one brick. Once the next brick is processed the
cache is reset. This has the effect that the gradients which are also needed
in adjacent bricks are processed more than once. The resulting performance
penalty is low, since the number of those gradients is small compared to the
number of all gradients.

Gradient has to Cell has to
be computed be classified
eight times eight times
per cell

/!
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(a) (b)

Figure 3.2: Typical resampling resolution of a cell in 2D. (a) In the shown case each gradient
at the cell corners has to be computed 8 times while processing one cell. (b) In the shown
case a cell has to be classified 8 times.

3.4.2 Results

The memory consumption of the gradient cache is very low. The cache size
is not related to the volume dimensions. It is related to the brick dimensions.
The brick dimension is 32x32x32, the size of the gradient cache is (dimension
of brick+1)? multiplied by dimension of gradient multiplied by size of gra-
dient component, which is (33)%-3-4 ~ 421,14 KByte. Additionally for each
cache entry a valid bit is stored, which adds up to 33% Bit ~ 4.39 KByte.
This is altogether less than 512 KB. For performance reasons the data shall
remain in the level 2 cache. This is not an issue as current commodity CPUs
have a level 2 cache size of 1 MB.

Figure 3.3 shows the effect of per brick gradient caching compared to
per cell gradient caching and no gradient caching at all. Per cell gradient



o4 CHAPTER 3. HIGH-LEVEL ACCELERATION TECHNIQUES

3,5p 15¢
Zoomfactor 0.5 Zoomfactor 1.0

3,0k

12
2,5k
2.0k o
1,5 - 6 L
1,0

3=
0,5k
O O [ ] [ ] [ ] [ ] [} O [ ] [ ] [ ] [ ] []
1.0 075 0.5 0.25 0.125 1.0 075 0.5 0.25 0.125
60
Zoomfactor 2.0
54.4
OF == No cache
40 - -&  Cell cache
==  Brick cache
30
27.9
208
13.2
10 [ ._//
7.9
O [ ] [ ] [ ] [ ] [}

1.0 075 05 025 0.125

Figure 3.3: Comparison between no gradient caching, per cell gradient caching, and per brick
gradient caching. Timings are given in seconds. The tested object sample distances are 0.125,
0.25, 0.5, 0.75, and 1.0. Data: UNC head, 256x256x224, 12 bit. Intensity range [0,1136] is
mapped to 0.0 opacity and range [1136,4095] to a linear opacity ramp between 0.0 and 1.0.
System specification: CPU - Intel®Pentium®M 1.6 GHz, Cache - 1 MB Level2, RAM - 1
GB, GPU - GForce4 4200 Go (32MB).

caching means that gradients are cached while a ray resamples a cell. For
gradient estimation the gradient filter proposed by Neumann et al. [54] is
used, see also Chapter 1. This filter produces slightly better quality than the
Sobel filter, supports inherent volume filtering and has approximately the
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Figure 3.4: Data: Visible Male (587x341x1878). System: (Notebook) Intel®Pentium®M
1.6 GHz. Image size: 1024x768. Object sample distance: 0.25. Render timings: no gradient
caching — 21.1 sec, with full gradient caching — 9.6 sec.

same computational cost. Due to the on-the-fly computations, the filtering
can be enabled and disabled interactively. The on-the-fly filtering has low
computational cost and can be used to increase the quality, when a smaller
number of rays are shot to increase the frame-rate during interaction.

For testing an adequate opacity transfer function is chosen to enforce
translucent rendering. The charts in Figure 3.3 show different timings for
object sample distances from 1.0 to 0.125 for three different zooming factors
0.5, 1.0, and 2.0. In case of zooming factor 1.0 there is one ray per cell,
already here per brick gradient caching performs better than per cell gradient
caching. This is due to the shared gradients between cells. For a zooming
out factor of 0.5 both gradient caching schemes perform equally well. The
rays are so far apart that nearly no gradients can be shared. On the other
hand for zooming in (factor 2.0), per brick caching performs much better
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than per cell caching. This is due to the increased number of rays per cell.
As more rays process the same cell, the more beneficial the per brick caching
becomes. Per brick gradient caching compared to no caching shows already
with a zoom factor of 2.0 and an object sample distance of 0.5 an impressive
speedup of approximately 3.0. The speedup favorably scales with the zoom
factor. Figure 3.4 shows an example rendering of the Visible Male with a
high proportion of transparency. The caching scheme compared to no caching
shows a speedup factor of ~ 2.2.

3.4.3 Empty Space Skipping

Fully transparent
brick
<« Partially transparent
brick
£
(a) (b) (c) (d)

Figure 3.5: General work-flow of the hybrid transparent region removal and skipping technique:
Blue are brick boundaries, red are octree boundaries, grey are transparent regions and yellow
is visible volume data. (a) — (b): removal of transparent bricks, (b) — (c) removal based on
octree projection and (c) — (d) removal using the cell invisibility cache.

For medical imaging, interactive classification of data is mandatory. In
general, during examination large parts of the data are often classified as
transparent to allow a more precise view of the region of interest. For accel-
eration purposes it is quite beneficial to exploit this transparency information
and start the actual resampling of the data right where the visible data be-
gins. The work-flow of the hybrid transparent region removal and skipping
technique is shown in Figure 3.5. At first transparent regions are removed
on a brick basis (Figure 3.5a — Figure 3.5b). Then to support an even more
refined removal of smaller transparent regions octree projection is performed
(Figure 3.5b — Figure 3.5¢). Due to efficiency reasons the octree subdivi-
sion does not fully go down to individual cells. The granular resolution of
the octree leads to conservative rays-volume intersections. To overcome the
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resulting performance penalty a Cell Invisibility Cache (CIC) is introduced
to skip the remaining transparent cells (Figure 3.5¢ — Figure 3.5d). In the
following the hybrid transparent region removal and skipping technique is
described in more detail.

Quantized Binary Histograms

At first, an efficient encoding for finding transparent bricks is described. The
most common methods are minimum-maximum encodings and summed area
tables. A summed area table encodes the opacity transfer function by

S(0) = a(0)
S(k) = S(k — 1) + a(k)

Hereby k € H = [0..4095], which is the possible range of Houndsfield units
and « represents the opacity. i,,;, and i,,,, denote the minimum and maxi-
mum density value within a brick. The integral of the discrete function a over
the interval i, imaz] can be approximated in constant time by performing
two table lookups:

tmazx

Z Oé(k) = S(Zmax) o S<me)

k=imin

If S(imaz) — S (imin) = 0 then the brick is transparent and can be skipped. At
this point pre- and postclassification is distinguished. For postclassification
the min-max encoding is the most accurate, since due to interpolation of data
all values between the minimum and the maximum may occur. However, if
preclassification is performed the min-max encoding may be too granular
when applied on large regions. Figure 3.6 shows an example where the min-
max encoding is too conservative. The min-max encoding would report both
bricks as being visible. The main issue is that the min-max encoding accuracy
relies heavily on the underlying data. If the region is large it is quite likely
that its values differ considerably. The min-max encoding becomes too gran-
ular to effectively encode the area. A more refined structure, i.e., a quantized
binary histogram is used. In general, a binary histogram is encoded as:

1, e B
0, otherwise

ou(B) = |

Hereby B is the set of all density values a brick contains, with B C H =
[0..4095]. 0,(B) = 1 means that the density value x is given at least at one
grid position in the underlying brick. This encoding is effective, however, it is
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quite inefficient in terms of memory usage and efficient evaluation. Addition-
ally to the binary codomain quantization also the domain itself is quantized.
This quantized binary histogram is stored for each brick.

It is determined by

[ 1, e Bxe(128-4..128 - (i +1)[
oi(B) = { 0, otherwise
Where (0 < ¢ < 31). Within quantized binary histograms the existence of
data within a specific interval is encoded. The intervals are concatenated,
disjunct, have same length, and cover the range of Houndsfield units. In the
preprocessing phase every brick is parsed and encoded. The same encoding
can be performed for the transfer-function with respect to opacity:

N 1, 3z : opacity(x) # 0,2 € [128 -0..128 - (i + 1)]
1 0, otherwise

Hereby x € H and i € [0,31]. Every time the transfer-function changes, the
transfer-function is re-encoded in this way.

With this information one can quickly determine the transparent bricks.
A brick is transparent if

This conjunction test can be done very efficiently on an x86 based CPU.
Note that this is a conservative estimate of a brick’s visibility. It is possible
that due to the chosen encoding a brick is considered as visible although all
contained values are classified as transparent. However, looking at Figure 3.6,
it can be seen that the quantized binary histogram would report the bricks
correctly if preclassification is performed. This is due to the fact that the
quantized binary histogram is more sensitive for largely varying data values.
This property can be efficiently exploited if the binary histogram encodes a
segmentation information volume. In such a volume, segmented objects are
encoded by labels. These labels can differ largely and interpolation is not
applicable. Only preclassification can be performed in this case

Granular Resolution Octrees

With the method described in Section 3.4.3 entirely transparent bricks are
determined and unnecessary processing is avoided. Also avoiding processing
of transparent regions within a brick is desired. Therefore, each brick con-
tains a granular resolution octree to enable the determination of transparent
regions within a single brick. A min-max octree is one of the best known
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Figure 3.6: Min-Max encoding granularity issue if preclassification is performed: If the range of
non-transparent values is set from 130 to 150, the min-max encoding would report both bricks
as being opaque. The quantized binary histograms would report brick | being transparent and
brick Il being opaque.

space subdivision structures to support refined skipping of small transparent
areas (Lacroute [31], Wilhelms et al. [80], and Mora et al.[48]). Each brick
(32x32x32) contains a 3-level min-max octree, shown in Figure 3.7a. For
each octree level the minimum and maximum value is stored as a pair of
numbers. For level 0 there are eight pairs, level 1 needs eight by eight = 64
pairs, and level 2 needs eight by eight by eight = 512 pairs. When classifica-
tion changes the octree is recursively evaluated by a summed area table for
all bricks. The classification information is efficiently stored by hierarchical
compression [26]. Nodes of level 2 are either opaque or transparent. All other
nodes have an additional inhomogeneous state. The information whether a
node of level 2 is transparent or opaque is stored in one bit. The state of a
level 1 node is determined by testing of one byte, which contains all the bits
of its children. For level 0 such a hierarchical compression requires to test
eight bytes for a node and 64 bytes for the brick. Due to efficiency reasons
the state information of level 0 is explicitly stored. There are three possible
states; thus, two bits are needed for each level 0 node. Thus, additionally
two bytes per brick are required. Due to this encoding, the octree can be
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very efficiently traversed.
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Figure 3.7: (a) Octree classification scheme for an individual brick. Transparent bricks are
white, opaque bricks are red and inhomogeneous bricks, partially transparent and partially
opaque, are striped. (b) Brick projection template.

Removing of Transparent Regions

There are two structures, a quantized binary histogram and a granular oc-
tree, to find the rays-volume intersections up to the resolution of the granular
octree (Figure 3.5¢). The bricked geometry of the volume and the octrees
within the bricks are converted to a polygonal structure and rendered into a
z-buffer [68]. Basically the brick list is traversed and it is determined which
brick has visible data and needs to be evaluated for rays-volume intersec-
tion [18]. The evaluation is performed by quantized binary histograms in case
of preclassification or min-max encodings in case of postclassification. The
octree of those bricks is evaluated and the sub-bricks which contain visible
data are rendered. This rays-volume intersection computation by rendering
requires the granular resolution of the octree. With more than three octree
levels the number of polygons would exceed the rendering performance of
commodity graphics hardware.
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Utilizing OpenGL for rendering provides high performance and high ac-
curacy; however, if the approach is used as an integrated module it requires
off-screen rendering. This is available in OpenGL by PBuffers. Unfortu-
nately, this feature is not available on every graphics card. Furthermore the
rendering requires a huge amount of graphics cards memory. Considering a
1024x1024 image, the needed buffer is already 8 MB. Most of the more ad-
vanced medical visualization systems support high-resolution dual-displays.
This feature normally utilizes all the available graphics card memory. There
is no space left for graphics hardware accelerated off-screen rendering. Due
to this reason, the rendering is also developed in software. This can be done
very efficiently, if the simple polygonal structure of the bricked octree layout
is exploited. Since every brick is of the same structure, one can use template
based projection of the octree. Similar work has be done by Srinivasan et
al. [69]. The main idea is to project just one brick per viewing direction
for each octree level as shown in Figure 3.7b. This projection is used as a
template for all other bricks of the same level. Any other brick of the same
level has the same projection footprint and is obtained by translation. The
projected footprint consists of z-values, since the z-buffer footprint of the
octree is of interest. All possible entry bricks are rendered in a front-to-back
order by using the projected z-value template. The resulting z-buffer foot-
print of the octree is then used to determine the rays-volume intersections.
This is as fast as the OpenGL implementation, since the costly projection
itself has to be done only for one brick per viewing direction. Furthermore
no costly OpenGL glReadPixels() instruction is involved and the resulting
z-buffer directly contains the z-components of the ray starting-positions.

Cell Invisibility Cache

As the granular resolution octree does not go down to cell level, a cell invis-
ibility cache is used to skip the remaining transparent cells ((Figure 3.5¢ —
Figure 3.5d)). The volume-rays intersections estimation by template-based
projection of the octree subbricks brings us as close as 4x4x4 samples to the
visible data. This is inefficient from a performance point of view. Especially
if first-hit-raycasting is performed every non skipped sample has a large im-
pact on the resulting frame-rate. A resolution of 4x4x4 results in a large
number of non skipped samples. This is depicted by the red samples shown
in Figure 3.8. All these samples have to be classified in order to determine
which cell can be skipped. Depending on the object-sample distance and the
zoom factor these cells have to be classified several times. This is shown for a
typical resampling resolution in Figure 3.2b. In this case each cell has to be
classified eight times. Considering the same example in 3D, the number of
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Level 1 Level 2 Not skipped by
(8x8) (4x4) octree projection

Figure 3.8: Zoom in granular octree of one brick. Yellow crosses: skipped samples, white
crosses: opaque samples, and red crosses are samples that can not be skipped due to the
granular resolution of the octree.

redundant cell classifications would be considerably larger. Due to this rea-
son a refined cell invisibility caching is introduced. The volume raycasting
pipeline is extended in such a way that classification of these invisible cells
has to be done only once. The extended pipeline is shown in Figure 3.9. A
Cell Invisibility Cache (CIC) is attached at the beginning of the traditional
volume raycasting pipeline. This CIC is initialized in such a way that it re-
ports every cell as visible. In other words every cell has to be classified. Now,
if a ray is send down the pipeline, every time a cell is classified as invisible (all
its samples have zero opacity contribution) this information is cached in the
CIC. A cell can either be invisible or visible, this information can be encoded
in just one bit. Once a cell is classified as invisible, the costly classification
of a whole cell is exchanged by a binary test. This leads to an enormous
performance increase. On the one hand, this is due to the reduced memory
access and on the other hand due to the inherent classification and conjunc-
tion information of 8 samples. The information stored in the CIC remains
valid as long no transfer-function change is performed. The CIC is stored per
brick and, therefore, allows interactive changes of the transfer function. If
the transfer function changes only the CICs of the bricks which are affected
need to be reset. During the examination of the data, e.g., by changing the
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viewing direction, the CIC fills up and the performance increases progres-
sively. The same mechanism is also very beneficial for general empty space
skipping within the data.

Traditional raycasting pipeline

NO :
Resampling ¢
Classi- YES Gradient- o
1S1 — imati vance
fication | > Visible estimation —> ray <
Compositing

(NO Shading

Y

Terminate

YES

J

Figure 3.9: Cell Invisibility Cache (CIC) - Acceleration by caching invisibility information of
cells. The acceleration path is emphasized in red.

3.4.4 Results

The additional memory usage of all three acceleration structures, i.e., quan-
tized binary histogram, granular resolution octree, and the cell invisibility
cache, is rather low. Considering the size of the volume as 100%, they in-
crease the size by approximately 10%. Bricks of size 32x32x32 are used stor-
ing 2 bytes for each sample, which is a total of 65536 bytes. Additionally for
each brick is stored: Quantized binary histogram — 4 byte, Min-max infor-
mation — (5124644-8+41) * 4 = 2340 byte, Octree classification information
— (64 + 2) = 66 byte, and Cell Invisibility Cache — 323 bit /8 = 4096 byte.
In total the storage increase is ((4 4 2340 + 66 + 4096),/65536) - 100 ~ 9.9%.

Figure 3.10 shows the effect of the hybrid removal and skipping tech-
nique of transparent regions and shows the corresponding rendering out-
put. For benchmarking a commodity notebook is used equipped with an
Intel®Pentium®M 1.6 GHz CPU, 1 MB Level2 cache, 1 GB RAM, and a
GForce4 4200 Go (32MB). The graphics card capabilities are only used to
display the final image. Different data sets are tested: A rather small data
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set, the UNC head is used to be able to compare the speed of the presented
approach to the approach of Mora et al. [48]. This approach is slightly faster
than the UltraVis system [26]. They are both based on a spread memory
layout and use precomputed gradients. This leads to an inefficient memory
usage and so they are restricted to rather small data. Mora’s total render time
is approximately a factor of two faster than the presented approach. How-
ever, Mora’s approach uses precomputed gradients, does preshading, and its
template based interpolation scheme limits the zooming to a zooming-factor
of four. In contrast to that some performance is sacrificed for increased flex-
ibility, high quality, and a significantly lower memory usage. This enables
us to render large data, used in clinical routine, on commodity hardware.
Three different large typical medical data sets are tested. The results show
that the acceleration techniques typically achieve render-times of about 2 fps
even for these large data sets. Figure 3.10, fourth column, shows the total
render time achieved by brick based transparent region removal. In the fifth
column additionally the granular octree projection is applied. And finally
in the sixth column the Cell Invisibilty Cache is enabled to see the overall
total render time achieved by the combined effect of all three acceleration
structures.

3.5 Discussion and Conclusion

A volume raycasting approach which provides high-quality images in real-
time for large data on standard commodity computers without advanced
graphics hardware has been presented. For large medical data such as com-
puted tomographic (CT) angiography run-offs (512x512x1202) rendering times
up to 2.5 fps on a commodity notebook have been achieved. This shows that
real-time rendering of such large data on commodity notebooks is within
reach. The method can be straightforwardly adapted to other modalities such
as MR. Furthermore, the approach can utilize symmetric multi-processing
systems as processing is performed brick-wise. It scales well and achieves a
speedup factor of approximately 2.0 on a dual CPU machine. This is very
beneficial if a large amount of data has to be processed. Costly precomputing
is avoided and although each part of the volume raycasting pipeline is com-
puted on-the-fly, performance in the same range as approaches which heavily
rely on the memory bandwidth such as Mora et al. [48] has been achieved.
The refined caching scheme for gradient estimation in conjunction with hy-
brid skipping and removal of transparent regions enables us to achieve high
quality while maintaining high performance. The efficient memory consump-
tion of the acceleration structures (quantized binary histogram + granular
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(@) (b) (© (d) ©)
Name Dimension Size BR BR +OR| BR+OR+CIC

(a) Visible Male | 587x341x1878 | 0.70 GB | 0.61 sec | 0.46 sec | 0.40 sec /2.5 fps
(b) Visible Male | 587x341x1878 | 0.70 GB | 0.68 sec | 0.53 sec | 0.45 sec /2.2 fps
(¢) Run-off 512x512x1112 | 0.54 GB | 1.16sec | 0.93 sec | 0.61 sec/ 1.6 fps
(d) CTA run-off | 512x512x1202 | 0.59 GB | 0.86 sec | 0.70 sec | 0.64 sec/ 1.6 fps
(e) CTA run-off | 512x512x1202 | 0.59 GB | 0.69 sec | 0.46 sec | 0.37 sec /2.7 fps
(f) UNC head 256x256x256 0.03GB | 0.71 sec | 0.26 sec | 0.18 sec/ 5.6 fps

Figure 3.10: Performance results for different data sizes, which are used in daily clinical routine.
Image size: 512x512, Sample rate: 0.5, and Hardware: CPU - Intel®Pentium®M 1.6 GHz,
Cache - 1 MB Level2, RAM - 1 GB, GPU - GForce4 4200 Go (32MB). BR: brick based
transparent region removal. OR: octree projection based transparent region removal. CIC: cell
based transparent region skipping.

resolution octree + Cell Invisibility Cache) and the bricked volume layout
allow to handle very large data. All acceleration structures require only an
extra storage of approximately 10%. Data sizes up to 3 GB are possible,
which is a limitation imposed by the virtual address space of current con-
sumer operating systems.
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Chapter 4

Rendering of Multiple Volumes

Figure 4.1: Multi-volume rendering of several V-Objects.

This chapter is based on the following publications:

Grimm S., Bruckner S., Kanitsar A., Groller E., Flexible Direct Multi-
Volume Rendering in Dynamic Scenes, Proceedings of Vision, Modeling,
and Visualization, pp. 379-386, 2004.

Grimm S., Bruckner S.; Kanitsar A., Groller E., Memory Efficient Ac-
celeration Structures and Techniques for CPU-based Volume Ray-
casting of Large Data, Proceedings of IEEE/SIGGRAPH Symposium on
Volume Visualization and Graphics, pp. 1-8, 2004.

Grimm S., Bruckner S., Kanitsar A., Groller E., A Refined Data Ad-
dressing and Processing Scheme to Accelerate Volume Raycasting,
Computers & Graphics, 28(5), pp. 719-729, 2004.

67
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Grimm S., Bruckner S., Kanitsar A., Groller E., V-Objects: Flexible Di-
rect Multi-Volume Rendering in Interactive Scenes, Technical Report
TR-186-2-04-06, Vienna University of Technology, 2003.

4.1 Introduction

Direct volume rendering is an important and flexible technique for visual-
izing 3D data. It allows the generation of high quality images without a
need of an intermediate interpretation. Traditionally, medical volume visu-
alization systems feature only simple scenes consisting of a single volumetric
data set. It has been proposed to extend these scenes to a more complex
description [53]. In this work a flexible data structure called V-Objects is
introduced for representing scenes containing multiple volumetric objects.
An efficient approach to render a scene composed of V-Objects is presented.
Furthermore, by presenting practical examples for possible applications it
is demonstrated that medical visualization systems can take advantage of
V-Objects. The main contributions are an efficient technique to render V-
Objects and to show that common medical volume visualization systems can
greatly extend their flexibility by supporting concurrent display of multiple
volumetric objects.

The presentation is subdivided as follows: Section 4.2 surveys related
work. In Section 4.3 the new data-structure V-Objects and in Section 4.4
an approach to efficiently render a scene composed of multiple V-Objects is
presented. In Section 4.5 the results are presented. In Section 4.6 possible
medical applications are presented. Finally, in Section 4.7 ideas for future
work are given and the work is concluded.

4.2 Related Work

The past decade has seen significant progress in volume visualization, driven
by applications such as medical imaging. A number of different volume ren-
dering algorithms have been developed, improved, and extended [35, 32, 51].
Today, it is possible to perform interactive high-quality volume rendering on
commodity hardware [65, 14, 13]. Hybrid algorithms have been designed,
which allow concurrent display of intersecting volumetric and polygonal ob-
jects [36, 28]. Direct rendering of scenes consisting of multiple volumetric
objects, however, has received less attention. With the increasing perfor-
mance of modern hardware, this topic will become more important in the
future. This work is inspired by Leu and Chen, who introduced a two-level
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hierarchy for complex scenes of non-intersecting volumes [34]. While their
approach allows multi-volume rendering, the individual volumes cannot in-
tersect. However, the display of intersecting semitransparent objects can be
a powerful visualization technique. In the work of Nadeau [53] intersecting
volumes are possible, however, the whole scene description has to be resam-
pled every time a volume’s transformation changes. The idea behind the
presented method, is to allow multiple intersecting volumetric objects to be
rendered directly, without requiring costly resampling. Thus, the approach
is well-suited for animations.

4.3 V-Objects

V-Objects

Data sources
(@) (b)

Figure 4.2: Different representations of the same data source using V-Objects: (a) V-Object
definition. (b) Rendering of multiple V-Objects.

A V-Object is an element of a scene description which is connected to
one volumetric data source. The V-Object comprises the following visual
properties:

e [llumination: This includes the selected Illumination model and its pa-
rameters. For example, for the Phong-Blinn Illumination model the

ambient, diffuse, specular, and emissive material coefficients are speci-
fied.
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e Transfer Functions: For each defined region in the attached volumetric
data source a mapping function between scalar values and colors as well
as opacities is stored.

e Region of Interest: An arbitrary number of planes define a convex
region of interest.

o Transformation: An affine transformation defining position, orienta-
tion, and scaling of the V-Object.

The separation of visual properties and volumetric data sources allows an
arbitrary number of varying representations of the same data source within
one scene, as illustrated in Figure 4.2(a). This is achieved by assigning sev-
eral V-Objects to the same volumetric data source. To take full advantage
of the V-Objects direct volume rendering is applied to simultaneously vi-
sualize a scene consisting of several V-Objects, see Figure 4.2b and Figure
4.1. The properties of a V-Object influence the positions in a scene at which
it is defined. For example, regions of the volume which are classified as
transparent due to the transfer function specification are not part of a V-
Object. In Chapter 2 it has been shown how mono-volume raycasting can be
greatly accelerated by a bricked volume layout and an appropriate brick-wise
processing scheme. This performance benefit is exploited in Section 4.4 to
accelerate multi-volume raycasting.

4.4 Rendering of V-Objects

Before describing the approach to accelerate multi-volume rendering, it is
briefly discussed how compositing of multiple volumes is performed [5]. The
basic idea of volume raycasting is to cast for each pixel of the image plane a
ray through the volume. For a single object the final color and opacity of the
image pixel is determined by the over-operator [61] in front-to-back order.
That is, at each resample location, the current color and alpha values for a
ray are computed in the following way:

Cout = Cin T C(l’)&(l‘)(l - ain)

Doyt = ip + a(x)(l — Oéin) (41)

¢in and «y, are the color and opacity the ray has accumulated so far. x
is the reconstructed function value and ¢(z) and «(x) are the classified and
shaded color and opacity for this value.

For the simultaneous processing of multiple volumes it must be decided
how they should be combined. Volumes are considered as clouds of particles
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and all volume are simultaneously taken into account at the corresponding
sample position. The simultaneously compositing of multiple volumes is
achieved by sequentially applying Equation 4.1 for each individual volume.
Hereby, an approximation for compositing multiple volumes at the same
location is obtained.

As described in Chapter 2, the key to high performance for mono-volume
rendering is to optimize the memory access pattern. This can be achieved
by using a bricked volume layout. However, to find such a suitable memory
layout for multi-volume rendering is very difficult, due to the unpredictable
memory access pattern. Every time multiple volumes have to be simulta-
neously processed, several data entities from memory regions far apart have
to be accessed. This leads to enormous cache trashing. To keep this cache
trashing penalty as low as possible, multi-volume rendering is separated from
mono-volume rendering within a scene composed of multiple volumes. While
the processing of the intersection between multiple volumes requires costly
computations, the non-intersecting regions could be efficiently computed by
using a mono-volume rendering technique. In the following this issue is ad-
dressed and a solution is presented to efficiently decompose the scene in
mono- and multi-volume rendering regions.

It is distinguished between the concepts of a mono- and a multi-volume
renderer. Both types of renderers are initially supplied with a list of rays.
Each entry in the ray data structure contains, among other data, a start and
an end depth. A mono-volume renderer processes one V-Object efficiently by
using the cache coherent volume traversal, based on a bricked memory layout
as presented in Chapter 2. A multi-volume renderer performs compositing
in multiple V-Objects. As the V-Objects can have different volumetric data
sources and transformations, efficient brick-wise traversal is, in general, not
possible. Thus, the multi-volume renderer performs classical ray traversal.
As resample positions along a ray are likely to lie within totally different
memory locations for different V-Objects, lacking cache coherence results in
considerable performance penalties. In the approach, a mono-volume ren-
derer is set up for every V-Object in the scene, while there is only one global
multi-volume renderer.

The main idea is to first identify different segments along a ray’s path in
the initialization phase. There are two basic types of segments:

e Mono-object segment: A mono-object segment is a continuous interval
along a ray lying within the same V-Object.

e Multi-object segment: A multi-object segment is a continuous interval
along a ray lying within one or more V-Objects. Thus, each mono-
object segment is also a multi-object segment.
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The goal is to maximize the combined length of mono-object segments, as
mono-object segments can be processed more efficiently. In general, the inter-
sections between a ray and all V-Objects need to be known. A conservative
approach is applied by using the octree projection explained in the previous
Chapter 3. Theoretically using bounding box projections would also be pos-
sible, however, they do not provide sufficient resolution. An example of these
projections of multiple V-Objects and the resulting multi-volume rendering
is shown in Figure 4.3. For each V-Object, the entry and exit points of all
rays can be obtained by projecting its octree and setting the depth test to
either less or greater. By a depth sort of these entry and exit points mono-
and multi-object segments can be determined.

(@) (b) ©

Figure 4.3: (a) Bounding box projection of multiple V-Objects. (b) Octree projection of
multiple V-Objects. (c) Resulting multi-volume rendering.

All mono-object segments are assigned to the mono-volume renderer which
is responsible for this V-Object. These segments can then be processed effi-
ciently, as brick-wise traversal is possible. All other segments are added to
one global multi-volume renderer. This renderer traverses every ray segment
and performs multi-volume compositing in every step for all V-Objects which
are defined at one resample location. This distribution of ray segments be-
tween mono- and multi-volume rendering is done in the initialization phase.
After all ray segments have been assigned to their corresponding renderer,
the actual raycasting process is started. All renderers operate independently.
After they have finished, a final compositing step is required which combines
the values accumulated in each segment of a ray.

The distribution of ray segments between mono- and multi-volume ren-
derers is illustrated in Figure 4.4. Ray A consists only of one mono-object
segment (Al). Ray B consists of the mono-object segments Bl and B3
which pass through V-Object II, and the multi-object segment B2 which
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passes through the intersection of the two V-Objects. Ray C consists of the
mono-object segments C1 and C3 which pass through V-Object II, and the
multi-object segment C2 which passes through the intersection of the two
V-Objects. Thus, Al is the only ray segment added to the mono-volume
renderer for V-Object I. The segments B1, B3, C1, and C3 are added to
the mono-volume renderer for V-Object II. The multi-volume segments B2
and C2 are added to the global multi-volume renderer. Through this kind
of distribution only a fraction of the ray segments have to undergo costly

multi-volume processing.

Mono-volume renderer § | Mono-volume renderer
A for V-Object I for V-Object 11
—_— s >

Al
V-Object I

B2
V-Object I

V-Object I n
V-Object I1

(@)

Figure 4.4: (a) Segmentation of three rays, A, B, and C, in a scene consisting of two V-Objects.
(b) Distribution of ray segments among mono- and multi-volume renderers.

4.5 Results

The performance gains achieved through the multi-volume rendering ap-
proach depend on the size of intersections between the individual V-Objects.
Typically, intersections are small, which allows us to exploit the high perfor-
mance of mono-volume processing to accelerate the rendering. Moreover, if
there is no intersection between any V-Object, the algorithm evaluates to a
pure mono-volume renderer.

The approach is compared to a standard multi-volume raycaster where
rays are processed sequentially, performing resampling and compositing in
each of the V-Objects defined at every point along a ray. Figure 4.5 shows
the speed-ups achieved for different degrees of intersection. As can be seen
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from the figure, the performance gains due to the algorithm depend on the
size of the intersection between the V-Objects. For typical scenes, where the
size of intersections is normally not excessively large, speed-ups of about 2.5
are achieved.

Speedup Overlap Octree Projection Direct Multi-Volume Rendering

2.78 0.0 %

2.43 21.7%

Figure 4.5: Obtained speed-ups for different degrees of intersection. The first column shows
the achieved speed-up of the approach compared to brute-force multi-volume rendering, and
the second column shows the ratio between the combined lengths of all ray segments and
the multi-object ray segments. The third column shows the octree projections of both V-
Objects. The images (512 x 512) in the fourth column show the rendering results. Test
system specifications: Intel Pentium 4, 2.4 GHz, 1 GB RAM.

4.6 Application of V-Objects

In general, in a volume rendering system there exist several means to enhance
visual perception. Such means are for example transfer function, segmenta-
tion, and clipping. Since their introduction to volume visualization by Levoy
[35], piecewise linear transfer functions mapping scalar values to colors and
opacities are featured in virtually every volume visualization system. Many
researchers have proposed to extend transfer functions to higher dimensions
to increase their usability, as their specification is a non trivial task. Some
approaches for semi automatic transfer function definition have been pre-
sented. However, a fully automatic transfer function selection remains a
widely unsolved problem. Still, much research needs to be done to produce



4.6. APPLICATION OF V-OBJECTS 75

results automatically as shown in Figure 4.6a.

(b)

Figure 4.6: (a) Transfer function example. (b) Segmentation example: The main vascular
structures and the kidneys have been segmented.

One way to simplify the transfer function specification is segmentation.
Many methods exists to identify certain structures within in the data. Most
of these approaches produce a labeling of the data. Different transfer func-
tions can be assigned to the identify regions or objects. Figure 4.6b shows
an example of segmentation based on region growing. The main vascular
structures and the kidneys have been segmented.

One problem in the visualization of volumetric data is occlusion. While
transparency can be useful to simultaneously display different structures of
interest, it can lead to cluttering when used extensively. It is common to cut
away opaque objects to reveal occluded features. Cutting can be performed
using axis aligned or arbitrary oriented planes, convex regions or arbitrarily
shaped objects. However, complex cutting shapes are often difficult to in-
terpret by the user. Figure 4.7 shows the use of cutting planes to reveal the
inner parts of a torso.

In the following it is shown how such basic tools can be greatly enhanced
by the use of V-Objects. Though many systems allow modification of transfer
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Figure 4.7: Clipping example.

functions and illumination properties can be specified on a per object basis
certain limitations apply: objects typically can not intersect, are unique and
static. These limitations are overcome in a natural way by assigning V-
Objects to components of a data set. For example, with V-Objects it is
possible to move an object while keeping a virtual copy in place. These two
objects can have a totally different appearance. This capability can be used
in applications such as surgical planning, education, illustration, and for in-
vestigation or exploration of data. In the following several examples for the
use of V-Objects are given in combination with the previous described ba-
sic tools. Examples are shown for moving objects, simultaneously changing
the appearance of objects, time varying, and multi-modal data. As some of
these concepts are very hard to illustrate in still images, several animation
sequences have been produced. The application features an interactive tool
for the generation of animation sequences using key-framing. V-Objects can
be interactively positioned in the scene and their properties can be modified.
Between the key-frames, V-Object states are interpolated. This enables spec-
ification of animation paths, transfer function fades, light movement, control
of clipping planes, change of data sources, enabling and disabling of objects,
etc. For each of these properties, different interpolation schemes can be ap-
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plied. In the following application examples are presented.

4.6.1 Advanced Browsing Techniques

Figure 4.8: Virtual dissection of a human skull.

Traditional techniques for inspecting volumetric data like cutting involve
removing portions of the data. This has the disadvantage of potentially
hiding important contextual information. McGuffin et al. [42] have pre-
sented novel tools for browsing volume data which employ transformations
and deformations of semantic layers contained in the data set. In the future,
multi-volume rendering will be an important tool to improve the visual qual-
ity of such interaction techniques. Figure 4.8 demonstrates that V-Objects
can be used to realize this kind of visualization. A virtual dissection of a
human skull can be seen. Stills of a whole animation can be seen in Fig-
ure 4.9. Although only affine transformations are supported at present, the
concept can be extended to more complex deformations in the future. On
the other hand V-Objects can be used to indicate the positions of displaced
structures. Multiple V-Objects can be assigned to the same structure in the
data, only one of these V-Objects is deformed, the other objects remain in
place to indicate the original position in space. Transparency is especially
useful to indicate the position while not hiding surrounding important infor-
mation. In Figure 4.10, an example of such an application of V-Objects is
shown. The images represents stills of an animation. In the animation it
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Figure 4.9: Stills of an animation to illustrate advanced browsing of volumetric data based on
V-Objects. Virtual dissection of a human skull, uncovering the nervous and vascular system.

can be seen that a kidney is relocated to the left to reveal a tumor. Also
other interesting features, such as transfer function fading, moving, and ob-
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Figure 4.10: Stills of an animation to illustrate advanced browsing of volumetric data based
on V-Objects. Enhancing anatomical features by spatial displacement (kidney and tumor).

ject specific cutting planes are shown. There are other applications, such as
preoperative planning. For example, in maxillofacial surgery an important
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task is to fit implants, see Figure 4.11. Multi-volume rendering allows to
simulate this process using actual patient data.

Figure 4.11: Maxillofacial surgery.

4.6.2 Time Varying Data

Visualization of time varying volume data is a very complex task, due to
their dynamic nature. Animations often do not allow an in depth analy-
sis of certain data characteristics. Static images on the other hand, often
suffer from cluttering when many time-steps are visualized. It has been pro-
posed to apply more advanced projection and mapping techniques to aid the
understanding of such data. For example, Woodring at al. [82] apply hyper-
slicing to a 4D dataset. The flexibility of V-Objects allows to use a variety
of different mappings using the combination of transfer functions and spatial
arrangement of objects. An example of a time varying data set is shown in
Figure 4.12. It is a electrocardiogram triggered CT scan of a beating heart.
Time is mapped to color and opacity. This type of visualization allows si-
multaneously the three dimensional examination of several time steps. The
fanning in time allows to convey similarities and differences in the progress
of time. Furthermore, a topological relationship between different time steps
is visualized. In general, V-objects support the explorations of useful layouts
and mappings.
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Figure 4.12: Stills of an animation to illustrate 4D visualization based on V-Objects. Fanning
in time allows to convey similarities and differences in the progress of time.

4.6.3 Multi Modal Imaging

Multi-modal imaging is a method for combining disparate sets of 3D imaging
data that contain complementary information on overlapping length scales.
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Figure 4.13: Fusion of CT and PET scan based on V-Objects.

In medicine, for instance, morphological modalities are combined with func-
tional modalities to increase the information content of the resulting image.
The concept of V-Objects inherently includes the ability to perform multi-
modal visualization of registered data sets. In Figure 4.13 an example is
shown of a combination of computed tomography (CT) and positron emis-
sion tomography (PET). While the CT method supplies high precision, it
is difficult to distinguish between tumors and healthy tissue. PET, on the
other hand, is a functionally oriented method that allows to identify tumors,
but provides lower resolutions.
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4.7 Conclusion

V-Objects, a concept of modeling scenes consisting of multiple volumetric
objects has been presented. It has been demonstrated that this concept, in
combination with direct volume rendering, is a promising technique for vi-
sualizing medical data. Three examples for its application have been shown:
browsing, time varying data, and multi-modal imaging. It has been shown
that V-Objects can provide advanced means to explore and investigate data.
Multi-volume visualization has great potential to improve medical applica-
tions.



84

CHAPTER 4. RENDERING OF MULTIPLE VOLUMES



Part 11

Alternative Representation of
Volume Data

85






Chapter 5

A Point-based Primitive for
Volume Data

This chapter is based on the following publications:

Grimm S., Bruckner S., Kanitsar A., Groller E., VOTs: VOlume doTS as
a Point-Based Representation of Volumetric Data, Computer Graph-
ics Forum, 23(3), pp. 661-668. 2004.

Grimm S., Bruckner S., Kanitsar A., Groller E., VOTs: VOlume doTS
as a Point-Based Representation of Volumetric Data, Technical Re-
port TR-186-2-04-08, Institute of Computer Graphics and Algorithms, Vi-
enna University of Technology, 2004.

5.1 Introduction

In general, volume graphics is the subfield of computer graphics that employs
a volume buffer to represent a scene and is concerned with synthesizing, ma-
nipulating, and rendering such scenes. In this context it is referred to as
grid-based volume graphics, when the volume data has a grid-based represen-
tation, and it is referred to as point-based volume graphics, when the volume
data has a point-based representation.  Figure 5.1 shows the taxonomy
and dataflow of point-based volume graphics and grid-based volume graph-
ics. The use of point-based volume graphics in various stages of volume
processing and visualization is shown with red lines, the correspondences for
grid-based volume graphics are shown with black lines. The major source
of data for both volume graphics paradigms are analytical or discrete data.
Grid-based volume graphics is very popular, as it allows efficient spatial ad-
dressing. The different grids, typically used, can be categorized into three
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Figure 5.1: Grid-based volume graphics versus point-based volume graphics.

main types: rectilinear grids, curvilinear grids, and unstructured grids, see
Chapter 1.

Research has shown that using grid structures has many advantages, such
as the implicit efficient addressing of data elements and their regularity which
is exploited by most algorithms. However, grids also have several limitations:

e The regular sampling pattern and limited resolution of such a grid
representation results in limited position precision for sample points.
This makes them inefficient when precisely representing high-frequency
details.

e Data is only given at discrete locations, reconstruction for positions in
between is necessary by using: nearest neighbor, linear, cubic, or sinc
filters. Reconstruction inaccuracies are associated with it.
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e Grid points regularly cover the underlying 3D domain, irrespective of
the complexity of the volumetric function. It is a regular and not
adaptive sampling.

e Mixing different grid types within a scene is considerably difficult as
each of the grid structures needs a different kind of processing.

e The size of volumetric data sets is constantly increasing due to more
advanced acquisition devices. The resulting data output of such devices
can be enormous. In many cases, however, only a small portion or
region of this data is actually of interest to the user.

A lot of research is devoted to efficiently handle grids and to overcome
their limitations with sophisticated algorithms. In the previous chapters
an efficient direct volume rendering approach for regular grids was pre-
sented [14, 13, 12]. Efficient algorithms for curvilinear grids have also been
investigated [74, 16].

Medical applications, for example, suffer from several of the above men-
tioned limitations. Especially, the large amount of data which needs to be
processed represents a huge challenge. Medium sized data, used in today’s
clinical routine, can be handled by current visualization systems. However, if
it comes to time varying data or large scans, the systems are beyond their ca-
pabilities. The data sizes exceed the available physical memory and process-
ing power. For example, Rubin et al. [67] reported a mean of 908 transverse
slices for CT angiography. The grid resolution in this case is 512x512x908.
Due to improved capabilities of newer acquisition devices it is possible to
scan with higher resolution. The higher resolution is often used for sophis-
ticated cases which also results in larger data. This large data presents a
challenge to current volumetric data processing methods, such as rendering
and segmentation. The applied data handling techniques are the outcome
of many years of international research. There are several approaches which
deal with large or time-varying data. Many of these approaches are based
on compression or down-sampling techniques. The main drawback is that
accuracy is traded off for performance. While this may be appropriate for
some applications, it is generally not the case.

Volumetric data often only contains small regions of interest relevant to
the application context. If the data is given on a regular grid non relevant
volumetric regions are explicitly represented. This explicit representation
demands costly storage resources and introduces additional complexity in
processing algorithms. Furthermore, volumetric data sets where not all parts
have to be represented with the same accuracy or resolution, i.e., sparse data
sets, are often used.
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Medical applications such as angiography or colonoscopy are examples
that use sparse volumetric data sets. Figure 5.2a and Figure 5.2b show
typical angiography and colonoscopy scans. The aorta is roughly 20 percent

Figure 5.2: (a) Colon - regular grid size 512x512x400 (b) Aorta, including and kidney and
other features - regular grid size 512x512x1200.

of the data set, and the colon even less because just the colon wall is of
interest. Due to its rigid shape a regular grid structure is very inefficient for
such sparse volumetric data sets. When examining Computed Tomography
(CT) angiography run-offs, only the aorta is of main interest although the
rest of the data contains much more information. The other parts of the data
are less interesting, they are of lower importance. These other parts should
not be completely ignored or removed, because they are needed as 3D context
information. It would be sufficient to represent these other unimportant parts
with lower accuracy and the important part (aorta) with higher accuracy.
While this is a good property, which could be exploited to reduce the amount
of data to handle, it is difficult to achieve using grid-based volumetric data
representations. For a grid-based data representation, it is hard to change
resolution in some parts of the volume; it would require to remove some grid
positions. This, however, destroys the benefits of the grid and introduces
additional problems.

Therefore, a paradigm shift from grids, as a spatial-oriented representa-
tion, to points, as an object-oriented representation, promises considerable
advantages. Removing the grid-structure and introducing a point-based rep-
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resentation of volumetric data has the potential to simplify, and often even
completely avoid many problems incurred by a grid-based representation.

In this chapter, the prior issues are addressed and Volume dots (Vots) [15]
a new point-based primitive for volumetric data modeling, processing, and
rendering is proposed. Vots are a functional representation of sample-based
volumetric data. A Vot comprises the coefficients of a Taylor series expansion,
which describes the underlying function in a given region. This approach
converts a discrete representation into an implicit representation, and allows
to exploit the advantages of analytically processing the data. Vots are a more
intuitive and high-level description of the data. They enable the application
of focus and context strategies to visualize data, and allow the representation
of regions with different levels of detail. Vots also allow to leverage resources
where they are needed, because they can be placed at any position.

The Vot representation opens new ways of data processing. But, it is not
intended to replace the conventional representations. Vots are not well suited
for very complex data sets with a high level of variation among the samples,
where all samples are of equal importance. Vots work well for volumetric
data in which only parts of the volume are of great importance.

This chapter is structured as follows: Section 5.2 surveys related work.
Section 5.3 presents the general Vots data structure. Section 5.4 describes
the Vot generation. Section 5.5 shows Maximum Intensity Projection based
on Vots as an example application. In Section 5.6 results are presented and
discussed. Finally, in Section 5.7 a conclusion is given and ideas for future
work are presented.

5.2 Related Work

Recently more and more research is focused on point-based primitives for rep-
resentation, modeling, processing, and rendering. The main reason for this
is the increasing amount of data due to more advanced acquisition devices.
Common representations reach their limits in the sense of performance and
usability, therefore, new ways of data representations have to be exploited.
The presented work, in this chapter, is also focused on such a point-based
representation and is mainly inspired by the following work:

Levoy et al. [37] first proposed points as a rendering primitive in the
mid-eighties. Following this idea, Pfister et al. [59] discussed Surfels as a
method to efficiently render complex geometric objects at interactive frame
rates. Unlike classical surface discretizations, i.e., triangles or quadrilateral
meshes, surfels are point primitives without explicit connectivity. Welsh et
al. [76] use wavelets to convert regular sampled point data to an irregular



92 CHAPTER 5. A POINT-BASED PRIMITIVE FOR VOLUME DATA

point hierarchy without reducing the precision of the data. Alexa et al.
[1] propose a smooth manifold surface derived from a set of points close to
the original surface. It is based on local maps from differential geometry,
approximated by the method of moving least squares. Carr et al. [7] propose
to use Radial Basis Functions (RBF) to reconstruct surfaces from point-cloud
data. Surfaces are defined implicitly as the zero set of a RBF. Hopf et al.
[20] propose a hierarchial splatting algorithm to visualize very large scattered
point data at interactive frame-rates. Expensive resampling of the data is
hereby avoided. Qu et al. [62] propose a rendering primitive called O-Buffers.
It is a flexible structure that stores the positions of arbitrarily distributed
samples relative to a regular grid. Rossl et al. [66] present a new approach to
reconstruct non-discrete models from gridded volume samples. As a model,
they use quadratic, trivariate super splines on a uniform tetrahedral partition.
Csebfalvi et al. [8] propose a volume-rendering technique based on Monte
Carlo integration. A point cloud of random samples is generated using a
normalized continuous reconstruction of the volume as a probability density
function. This point cloud is then projected onto the image plane. Lu et al.
[39] present a framework for an interactive direct volume illustration system
that simulates traditional stipple drawing. Xie at al. [83] address the problem
of surface reconstruction from highly noisy point clouds. They fit at each
sample point a quadric field which are then blended together to produce
a pseudo signed distance field. Turk et al. [71] introduce new techniques
for modeling with interpolating implicit surfaces. A 3D implicit function is
created using a variational scattered data interpolation approach. The result
surface is described by an iso-surface of this function. Ohtake et al. [55]
investigate a shape representation, the multi-level partition of unity implicit
surface, that allows to construct surface models from sets of points. There
are also approaches which propose hybrid solutions. For example Wilson et
al. [81] propose to mix conventional hardware assisted texture-based volume
rendering with point-based rendering.

These ideas are extended and integrated, presenting a new primitive for
volumetric data modeling, processing, and rendering. Vots are an alternative
point-based representation of volumetric data.

5.3 Vot Data-Structure

Volumetric data sets can be seen as a volumetric scalar function f : U C
R3 — R, where U is the domain of f. With Vots a piece-wise representation
ﬁ- : V; CU — R of the volumetric scalar function f is presented. V; with
U,—; v Vi CU partitions the underlying space ¢. Unimportant areas of U,
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e.g., background areas are omitted. The scalar function over set V; is repre-
sented by an individual Vot V;. Analogous to a Taylor series expansion all
the relevant information for local function reconstruction is concentrated at a
specific point P; within a Vot V;. Relevant information includes the function
value and higher order derivatives, such as gradient and Hessian matrix, at
this point P;. Vots are, thus, a set of points {P;, P, ..., Py} in R3. Each
point P, = (P*, P, P*) constitutes a Taylor expansion point and locally
represents the scalar volume function via the Taylor series expansion.

In general, the Taylor series expansion is defined as:

f(P+AP)= > iaaf(P)APa +R

lo| <N

1
R= ) —0"f(P +0AP)AP®, 6 €(0,1]

with:

a € {zxy,z}*

o 0% 9 9oz
9 T Ozor Yy 9zz
al = aglayla,!

pPe — pr...pTpy...pyp:...p?
—_—

Qg ay a

Hereby a, denotes the number of occurrences of character p in string o. For
Vots, only terms of the Taylor series expansion up to a specific degree N are
taken into account. The Taylor series expansion is approximated by:

f(P+AP) ~ f(P+AP) = iaaf(P)AP“ (5.1)

la|<N

Due to increasing storage demands and computational complexity with higher
degrees, a degree of two or three is a good choice from a practical point of

view. The derivatives up to degree three 0% f(P), 1 < |a| < 3 can be com-
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bined as follows:
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Hereby V denotes the gradient, H denotes the Hessian matrix, and 71" the
tensor of third partial derivatives. The Hessian matrix, as well as the tensor
of the third derivatives are symmetric. This property can be exploited for
storage optimization.

Since each Vot V; represents a certain neighborhood of the volumetric
scalar function f, a validity area V; is defined. This area V; can be of arbi-
trary shape. From a practical point of view convex shapes such as spheres,
ellipsoids, boxes, k-dops, etc. are advantageous. Each of these validity areas
V; is defined in such a way that for a given error ¢ (which might be zero) it
holds:

V(P +AP) CVi: |f(Pi+ AP) = f(B + AP)| <e. (5:2)
A basic Vot V; consists of:
e Position P;.
o (0°f(P))jaj<n
e Validity area V; for a given e.

Vot properties can be extended to include attributes such as time-step, im-
portance, etc. Vots represent the underlying volume data with data centric
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importance. Important data areas (i.e., large function variation) are repre-
sented with many small Vots (small validity areas V;). Homogenous areas
are represented with just a few large Vots. In addition the user may locally
vary the approximation error ¢, allowing a user-centric importance sampling.
Focus areas are represented with € = 0. The context areas might have large
errors, which could, for example, increase with distance to the focus area.
The Vots data structure concentrates the information where data needs it
and the user wants it.

5.4 Vot Generation

Before presenting a general method for Vot construction it is first shown, for
illustration purposes, how to directly obtain a Vot representation for a 2x2x2
cell of a rectilinear grid. As reference reconstruction trilinear interpolation
within the cell is assumed.

5.4.1 Vot Generation of a Cell

A cell is given as eight pairs: (P, fpijk)i,j,ke{o’l}. Hereby P;j;, denotes a po-
sition at one of the corners of the cell, and fp,, the corresponding function
value. Furthermore a trilinear reconstruction filter is assumed. The expan-
sion point needed for the Taylor expansion is defined as the center of the cell

by:
1
P= 3 E Pk

The terms f(P), Vf(P), H(P), and T7(P) for the Taylor series expansion
up to degree three can directly be specified by:

fp)y = DI

Zj,k fPljk - Zj,k fPOjk

Vf(P) = i Zi,kz fPilk - ZiJc fPiOk
Zz’,j sz‘jl - Z%ﬁ fPijO

e (5.3)
Hf(P) = % szy ~0 fyz
Juz nyz 0

T:P) = fays
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where B
fxy = Zijke{OO0,00I,llo,lll} fPijk_
~ Zijke{Ol0,0ll,lOO,lOl} fPijIc
foz = Zijke{OO0,0lo,lol,lll} fPijk_
~ ijke{001,011,100,110} me
fyz = Zijke{ooo,on,loo,nu fPijk_
Zijke{OOl,OlO,lOl,llO} fPijIc
and

Joyz = Zijke{om,mo,mo,nu fPijk_
jk€{000,011,101,110} fPijk

Every data value within the cell can be reconstructed by evaluating Equa-
tion 5.1. The Vots representation of a cell requires altogether eight values.
f(P) ~ 1, Vf(P) ~ 3, Hf(P) ~ 3, and T7(P) ~ 1. All the remaining
values are either redundant due the symmetry of the Hessian matrix or are
zero. In terms of storage requirement a Vot representation is equal to a cell
representation. However, in a regular grid, grid points are reused for (eight)
neighboring cells. A straightforward conversion of a regular grid into a Vot
structure would therefore increase the storage requirements by a factor of
eight. A closer look reveals that only every other cell (in each of the three
spatial directions) must be represented by a Vot. The function in cells which
do not contain a Vot can be exactly reconstructed from the neighboring Vots.
Such an approach would not change the storage requirements. With the Vots
representation a more intuitive specification of the underlying function is ob-
tained.

5.4.2 General Vot Generation

One of the major reasons for the introduction of Vots is to be able to lever-
age resources where they are needed. Homogeneous or non important regions
should be represented just by few resources. On the other hand, inhomoge-
neous and important regions should be represented by an adequate amount
of resources. The amount is defined by the desired accuracy. Vots provide
this feature, as they can be placed at any arbitrary position.

In the following an approach is presented to generate a Vot for a given
set of m scattered data points @; € R with data values Jq, Tt is assumed
that a Vot uses the Taylor series expansion up to degree N = 3, as shown in
Equation 5.1. This can be extended to arbitrary degrees straightforwardly.
To generate the Vots, an approach is employed which is similar to the linear
regression approach for normal vector estimation used in [54]. To be able to
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apply this approach the mean square error of the fitting process is defined
as:

=> (@)~ fo,) (5.4)

J=1

Hereby fq, denotes the function values given at the m scattered points, f (Qj)
denotes the function value reconstructed by the approximated Taylor series
f at ;, and E is the sum of the squared differences between the original
values and the reconstructed values. As Taylor series expansion point the
center of gravity is chosen:

1
:EZQJ'

The unknown variables of E are:

l

f~7f~ fj? ijk

where 4,7,k € {z,y,2} and fl,f”,fwk denote the partial derivatives 9'f,
i f, 8”’“ f. The number of unknowns can be reduced due to symmetry of
the Hessian matrix H and the the tensor T of the third derivatives to 20
unknowns. Furthermore it is defined:

AQ; =Q; —P=(Q;" = P, QY = PY,Q;" = P7)

The minimum of the error function F is determined by taking the partial
derivatives with respect to the unknowns and setting these partial derivatives
to zero. To achieve this, f(Q);) is substituted according to Equation (5.1)
with:

1 -
S° o f(P)AQ,”

|| <3
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The derivatives are given as:

2 _oy [ v L0 F(P)AQ;* — fo,

7=1 \la|<3
=23 | X a0 f(P)AQ — fo, | AQS
v J=1 \ |a|<3

3(3{1 Qi (Z alaa ( )AQja_fQj

|a|<3

e DRI [

) AQ;"AQ;Y

(5.5)

Setting the derivatives to zero, leads to the following system of linear equa-

tions:

f: fo,

2

E fo,AQ;"

il [, AQ;"AQ;"
f:l fo, (AQ;")2AQ,"

(5.6)

where M is the 20x20 matrix resulting from the following sum of vector
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direct products:

1 1 T
AQ;” AQ;”
AQ,Y AQ;Y
AQ;* AQ;*
(AQ;"AQ;")/2 (AQ;"AQ;")/2
AQ;"AQ;Y AQ;"AQyY
AQFAQS? AQAQ)
(AQ;YAQ;Y)/2 (AQ;YAQ;Y)/2
- ( AijAQj)z/ ( AijAQj)Z/
_ AQ;*AQ;%)/2 AQ;*AQ;%)/2
M2 | agragrAgns |9 agAgragns | BT
3 (AQ;"AQ;*AQ;Y)/6 3 (AQ;"AQ;"AQ;Y)/6
3. (AQ;"AQ;"AQ;7)/6 3-(AQ;"AQ;TAQ;7)/6
3+ (AQ;"AQ;YAQR,Y) /6 3-(AQ;"AQ;YAQ,Y)/6
3-(AQ;7AQ;"AQ;7)/6 3-(AQ;7AQ;"AQ;%)/6
AQFAQYAQ;? AQ;"AQYAQ;®
(AQ;YAQ;YAQ;Y)/6 (AQ;YAQ;YAQ;Y)/6
3- (AQYAQYAQ;7) /6 3- (AQYAQ;YAQ;%) /6
3 (AQYAQ;7AR;%) /6 3 (AQYAQ7AQ;%)/6
(AQ;"AQ;*AQ;7)/6 (AQ;AQ;*AQ;7)/6

The inversion of matrix M produces the solution for the unknown variables.
The error is calculated by € = max;|f(Q;) — fo,|- The mechanism described
allows the construction of a Vot for a given input set of points @, (j =
1,...,m).

5.4.3 Vot-Space

Vots allow an importance-based representation of volume data. To achieve
this they abandon the implicit connectivity information of regular grids. The
most basic question the data structure has to answer is: Given an arbitrary
point P find the corresponding Vot V; (P € V;) so that the function value at
position P can be determined. Depending on the shape of the validity area
V; efficient indexing structures from computational geometry, such as range
trees, interval trees, octrees and bounding volume hierarchies can be used to
accelerate this search. Application dependent indexing structures might also
help to quickly address, for example, all the Vots whose gradient is within a
certain magnitude or direction range.

A Vot-Space (V;,Z) comprises a set of Vots V; and a set of indexing
structures Z. 7 contains at least I*, which is an unsorted list of all Vots.
It is used to address each Vot. For some application this simple indexing
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structure is sufficient, see Section 5.5. It is application specific on which kind
of indexing structure a Vot-Space depends on.

5.5 MIP as an Application of Vots

To give a proof of concept of the new data structure, an application of Vots
is shown. Maximum Intensity Projection (MIP) of a Vot-Space is presented.
Maximum Intensity Projection [49] is a technique that displays the maximum
scalar value seen through each image pixel. By depicting the maximum
data value, high intensity structures contained in the data are captured. A
straight-forward method for calculating Maximum Intensity Projection is to
perform ray casting and search for the maximum sample value along each
ray. This visualization method is used to illustrate the advantages of Vots.
Instead of using sampling, the maximum of a viewing ray within the validity
area of a Vot is analytically determined.

5.5.1 From a Grid-based to a Vot-based Representa-
tion

(a) (b)

Figure 5.3: (a) Vot density distribution of lobster data set: 114 665 Vots generated from
445 568 input samples. (b) Vot density distribution of UNC head data set: 570 690 Vots
generated from 1 746 360 input samples.
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As input a rectilinear grid is assumed. It is given as a set of pairs G =
{(Py, fp,), 3 = {1,...,N}} where P; = (P;*, P;¥, P;*) defines a position
within the grid and fp, the corresponding function value f(P;). The task is
to find a small number of Vots V; which covers completely the underlying
volumetric data. Reconstruction should be bound by an error €, as given in
Equation 5.2.

A growing approach is used. As growing criterion the function F(7T) is
defined as follows:

F(T) = maz;|f(Q;) — fo,,Q; €T (5.8)

where T" C G. F implements Equation 5.6 for the point set T, it solves
the linear equation system and returns the maximal error. Furthermore,
for simplicity box-shaped validity areas of the Vots are assumed. As possible
start positions of Vots the positions given by G are choosen. The validity area
of each Vot is initially cell-sized, covering eight adjacent grid positions. At
this point, the growing process of each Vot is iteratively started by increasing
one of its validity area dimensions either in the positive or negative direction.
In every step the error computed by F is tested. The current input set T
is defined by all grid positions which lie within the increased validity area.
According to the outcome of F and the given e-bound either the increased
validity area is kept as new area or the old validity area is kept. A Vot grows
until error F(T') is larger than e. According to Equation 5.8 the error is just
tested at positions @);.

The result of this process is a set of the largest possible Vots for every
grid position with e accuracy. The next step is to find a minimal subset of
the set of Vots which completely cover the underlying volumetric data. In
order to achieve this a cover weight W, is assigned to each Vot V;. The
weights initially correspond in size to the validity areas V;. The Vots are
sorted according to their weights WW; in decreasing order. The Vot with the
largest W; is taken and is included in the minimal subset of Vots. The
number of grid points is determined this Vot would cover in the grid. Only
those grid positions are counted, which are not covered by other Vots in the
current small subset. The weights WW; of all the remaining Vots are adapted,
according to the number of grid positions they could cover, which are not
already covered by other Vots out of the current small subset. Then the
Vots are resorted and the process starts all over. Once the complete grid is
covered the process stops and a small subset of Vots is found which defines
the Vot-Space with a given indexing structure I*.

Figure 5.3 shows the Vot distribution of typical data sets. Dark areas
correspond to high Vot density and bright areas to low Vot density.
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5.5.2 Maximum Intensity Projection

For Maximum Intensity Projection the following question arises: Given a
Vot V and a viewing direction, how to compute the maximum along this ray.
The answer is provided by the Taylor series expansion of one Vot, as given
in Equation 5.1. For simplicity reasons N = 2 is chosen in the explanation.
From this follows that the Taylor series is given as:

f(P+ AP)= f(P)+ Vf(P)AP + AP H;(P) AP (5.9)

A ray r is given as:

r(t) =S+tD
To determine the extreme the ray equation is substituted into Equation 5.9
and the first derivative is taken. Furthermore APy := S — P is defined and
it is:

ONF(S+tD)=ag+ at
with

oy = fxDz + fyDy + szz+
fxzDzAPSx + fnyyAPSy + fzzDzAPSZ+
fey(D*APsY + DYAPs™) + f,.(D*APs* + D*APs®)+
fy-(DYAPs* + D*APsY)

a; = fxg:(Dm)2 + fyyg)y)2 + fzz(?z)z“‘
2foyD* DY + 2f,.D*D* + 2f,. DY D

The position of the extreme is then determined by setting the first derivative
to zero. The resulting equation is solved with respect to ¢:
—a
t=—2
ay
To determine wether the extreme is a maximum or minimum, S + tD is
substituted into Equation 5.9, and the second derivative is taken:

Of(S+tD) = [for(D")? + [y (DY)* + [..(D?)*+
2fpy D*DY +2f,,D*D* 4 2f,, DY D?
The sign of the second derivative determines if the extreme is a maximum or
a minimum. Knowing these two derivatives it is straightforward to determine

the maximum along a ray within the validity area of a Vot. There are two
cases:

1. A maximum within the validity area is found.
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Figure 5.4: Maximum Intensity Projection of one Vot: (a) lllustrated in 2D. (b) lllustrated in
3D.

2. No maximum within the validity is found, the maximum along the ray
occurs at one of the intersection points with the validity area box.

With this method, the maximum scalar value of an arbitrary ray passing
through a Vot can be determined analytically. The MIP algorithm works
as follows: The unsorted list of Vots is traversed. For each Vot, its validity
region is represented by a polygonal model. For every ray that intersects
the Vot, the intersection point S is calculated and the maximum along the
ray is computed and stored in an image. There is one image for each visible
face of the polygonal model. In this case, the validity area is always box-
shaped, therefore at most three faces are visible. Texture mapping is used to
transform the images according to the validity area geometry. The images
are textured onto the corresponding faces of the model, as illustrated in
Figure 5.4. The graphics hardware’s capability is used to perform maximum
blending of different Vots. With a prototype application two example data
sets are rendered, see Figure 5.5.

5.6 Discussion and Results

This work is at an initial stage and still has many issues to address. The
brute-force algorithm, of Section 5.5.1, for converting a rectilinear data set
into a Vot-Space representation has high computational complexity. Even for
small data sets, for example of size 1283, it needs several hours of computa-
tion time on a commodity PC. This is mainly due to the applied exhaustive
growing strategy. The larger a validity area V; becomes, the higher is the
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Figure 5.5: (a) Maximum Intensity Projection of Lobster: 114 665 Vots. (b) Maximum
Intensity Projection of UNC head: 570 690 Vots.

number of fitting operations that have to be performed. Currently Vots are
grown from every grid-position and later on a huge number of redundant
Vots are discarded. It is obvious that for example centers of homogeneous
regions are better choices to place Vots than inhomogeneous regions. Apply-
ing a more sophisticated seeding strategy will considerably reduce the Vots
generation effort.

Another issue which needs to be addressed is the size of Vots and the
number of Vots needed. In Figure 5.3 quite a high number of Vots is used.
Such high numbers are only of limited practicability. A Vot with a Taylor
series expansion of up to degree three defines a rather rigid underlying volume
function with limited shape possibility. Medical data often contains high
frequencies and noise. To adhere to the defined error bound the Vots are,
thus, rather limited in size. To obtain bigger Vots or a smaller number of
Vots one has to allow a higher error e. However, a higher error € leads to
discontinuities. Figure 5.6 shows the resulting number of Vots for different
error bounds €. Discontinuity at the borders can be handled through blending
of adjacent Vots or of Vots with overlapping validity areas V;. Overlapping
is not an issue in the presented MIP application, as the maximum along
a ray remains the same even if it is determined multiple times due to the
overlapping. In the current implementation the error function of Equation
5.8 is evaluated only at sample positions ();. To ensure the error bound
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Error : I 0.4096| 4.096| 40.96| 409.6

(a) # Vots: | 570 690 | 538919 § 333650 | 35079
(b) # Vots: | 114 665 § 114 665 | 112604 | 60353

Figure 5.6: Number of Vots for different error bounds €. The error ¢ defines the maximum
allowed deviation with respect to the original samples. Reconstructing data samples in between
the original samples can lead to larger errors. The data range interval is [0,4095]. (a) UNC
head (126x126x110): 1 746 360 samples. (b) Lobster (118x118x32): 445 568 samples.

also in between a finer sampling of this error function is recommended. The
overall fitting process remains the same.

Finally, a rendering approach of a Vot-Space is needed, which performs
at least in the same range as conventional volume rendering approaches. In
general, it should be possible to apply image- and object-order direct volume
rendering. For an image order approach a ray is send through the Vot-
Space, jumping from Vot to Vot in the correct visible order while resampling
each individual Vot along the ray. The jumping corresponds to empty space
skipping. For object order rendering one could apply a technique similar to
splatting. However, an appropriate interpolation kernel has to be developed
as a Vot contains the condensed information of a region instead of one sample
position.

5.7 Conclusion and Future Work

A novel primitive for volumetric data modeling, processing, and rendering
has been proposed. As the data representation is moved from a discrete to
an implicit representation, a new paradigm is presented. The new function
oriented paradigm is a more intuitive and constructive representation of the
data. The volumetric data is divided into regions to achieve a more expres-
sive representation. Some Vots represent larger regions than others, but all
Vots represent the data in the same way. The size of a Vot can be adjusted
by modifying the allowed error bound e. This allows user-centric importance
sampling. Unimportant regions are represented by just a few Vots, while
important regions are represented with many Vots. One Vot contains all
the information about the volumetric data within a region; thus, no explicit
connectivity between Vots is necessary for reconstruction. Furthermore, the
Vots representation allows to process the data analytically as shown with
Maximum Intensity Projection. In general, Vots open a wide range of new
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data examination approaches. For future work it would be interesting to
explore the new possibilities and approaches that Vots allow. One challenge
is to construct Vots from other types of data structures, such as point clouds,
unstructured grids, curvilinear grids, etc. Different strategies must be devel-
oped to obtain an accurate conversion. Vots provide a starting point for new
types of volume processing, new ways of rendering, even exploring new types
of visualizations based on the condensed information that a Vot contains. It
would also be interesting to map Vots onto graphics hardware and analyze
their capabilities from that point of view.

A related interesting area is to investigate a point cloud representation
of volume data. Moving Least Square (MLS) could be used to dynamically
fit a Vot to an arbitrary resampling position. In this case the fitting process
of Section 5.4.2 will be slightly modified as each point is weighted by the
distance to the resampling position. Similar operations as done for MLS
fitting of surfaces can also be done for MLS fitting of volumetric functions,
such as point cloud thinning, importance-based sorting of the point cloud,
etc.
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Conclusion

(@) (b)

Figure 6.1: Comparison between hand drawing and volume rendering: (a) Diirer, Albrecht
(1471-1528): Der Hirschkafer (1505). (b) Direct volume rendering: CT scan of a stag beetle
(2005) (1005x1005x748, 16 bit, courtesy of J. Kastner, Wels College of Engineering).

Don’t fear failure so much that you refuse to try new
things. The saddest summary of a life contains three
descriptions: could have, might have, and should have.

Louis E. Boone
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In this dissertation several new techniques have been presented to handle the
efficient visualization of large data on commodity PC hardware. Special focus
was put on volume rendering, memory management, parallel processing, and
on efficiently skipping parts of the volume that do not contribute to the
visualization results.

It has been shown that efficient memory management is fundamental to
achieve high performance and to be able to handle large amounts of data.
Furthermore, it has been demonstrated that well-known parallelization pro-
cessing schemes for large parallel systems can be adapted and extended to ex-
ploit evolving technologies, such as simultaneous multi-threading. A bricked
volume layout has been utilized in order to design a highly efficient thread-
ing scheme that maximizes the benefits of thread-level parallelism. The high
cache coherency inherently present in a bricked volume layout combined with
the two presented refined addressing schemes significantly reduced the costs
for resampling and gradient computation. The new addressing scheme can
be used for any volume processing algorithm that has to address adjacent
samples.

A full-blown high-quality raycasting system for large data has been dis-
cussed, using the presented memory layout for volumes and the highly ef-
ficient data addressing and processing scheme. The core acceleration tech-
niques are a refined caching scheme for gradient estimation in conjunction
with a hybrid skipping and removal of transparent regions to reduce the
amount of data to be processed. Due to the efficient memory consumption
of the acceleration data structures (quantized binary histogram + granular
resolution octree 4+ Cell Invisibility Cache) and the bricked volume layout
the system is able to handle very large data. All acceleration structures re-
quire only an extra storage of approximately 10%. Data sizes up to 3 GB can
be processed, which is a limitation imposed by the virtual address space of
current consumer operating systems. The memory efficient data structures
enable the system to achieve a several frames per second performance even
for large data sets. A key point of this dissertation has been the demonstra-
tion that standard computers without advanced graphics hardware are able
to achieve the performance necessary for real-world medical applications. Is
has been demonstrated that for large medical data, such as computed tomo-
graphic (CT) angiography run-offs (512x512x1202, 16 bit), rendering times
of up to 2.5 fps can be achieved on a commodity notebook. Real-time ren-
dering of large data on commodity notebooks is within reach. In future work,
out-of-core techniques and compression methods will be investigated to per-
mit the processing of even larger data sets. The system is not only capable
of rendering large data, it also supports all the corresponding standard fea-
tures necessary for a general purpose medical imaging system, such as cutting
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planes, segmented objects, separate transfer functions, and any combination
thereof, see Figure 6.2. It is integrated into a commercially available medical
workstation and its usage has been proved in practice.

Figure 6.2: Integrated Features of the high quality raycasting system, CT scan of a human
head (512x512x333, 16 bit): (a) High quality rendering. (b) Axis aligned cutting planes.
(c) Viewing aligned cutting planes. (d) Transfer functions on cutting planes. (e) Segmented
objects with separate transfer functions. (f) Segmented objects with separate cutting planes.

Due to the low memory footprint of the acceleration structures, the sys-
tem is also capable of efficiently handling multiple large data sets. An accel-
eration technique for direct volume rendering of scenes composed of multiple
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volumetric objects has been presented. The idea is to distinguish between
regions of intersection, which need costly multi-volume processing, and re-
gions containing only one volumetric object, which can be processed using
the presented highly efficient mono-volume rendering system. Furthermore,
V-Objects, a concept of modeling scenes consisting of multiple volumetric
objects, have been presented. V-Objects in combination with direct volume
rendering, are a promising technique for visualizing medical data. Different
examples for its application,i.e., browsing, time varying data, and multi-
modal data have been presented. Each of example illustrated that the con-
cept of V-Objects can provide advanced means to explore and investigate
data.

In the second part of the dissertation, an alternative to grid-based vol-
ume graphics: Volume Dots (Vots), a point-based representation of volu-
metric data, has been investigated. It is a novel primitive for volumetric
data modeling, processing, and rendering. The data representation has been
moved from a discrete to an implicit representation. The novel, function
oriented approach is a more intuitive and constructive representation of the
data. The volumetric data is divided into regions to achieve a more expres-
sive representation. Some Vots represent larger regions than others, but all
Vots represent the data in the same way. The size of a Vot can be adjusted
by modifying the allowed error bound e. This allows user-centric importance
sampling. Unimportant regions are represented by just a few Vots, while
important regions are represented by a larger number of Vots. One Vot con-
tains all the information about the volumetric data within a region; thus,
no explicit connectivity between Vots is necessary for reconstruction. Fur-
thermore, the Vots representation allows to process the data analytically as
shown with Maximum Intensity Projection. In general, Vots open a wide
range of new data examination approaches. In the future, it would be inter-
esting to further explore the possibilities and approaches that Vots introduce.
One challenge is to construct Vots from other types of data structures, such
as point clouds, unstructured grids, and curvilinear grids. Different strategies
must be developed to obtain an accurate conversion.

6.1 Visualization Results

Finally, several rendering examples of the high-quality raycasting system are
shown, Figure 6.1, and Figure 6.3 to Figure 6.10.
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Figure 6.3: Comparison between real data and direct volume rendering: (a) Photograph of
xmas tree. (b) CT scan of xmas tree (512x512x999, 16 bit, courtesy of Institute of Computer
Graphics and Algorithms, Vienna University of Technology, Austria).

©60606

Figure 6.4: Fleeing lobster: CT scan of a teapot with lobster inside (256x256x178, 16 bit,
courtesy of Terarecon Inc, MERL, Brigham and Women's Hospital).

Figure 6.5: CT scan of a carp (256x256x512, 16 bit, courtesy of Michael Scheuring, Computer
Graphics Group, University of Erlangen, Germany).
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Figure 6.6: CT scan of a gecko (512x512x88, 16 bit, courtesy of University of Veterinary
Medicine Vienna).
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Figure 6.7: CT scan of a stag beetle (1005x1005x748, 16 bit, courtesy of J. Kastner, Wels
College of Engineering).
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(b)

Figure 6.8: CT scans: (a) Tooth (256x256x161, 16 bit, courtesy of GE Aircraft Engines,
Evendale, Ohio, USA). (b) Piggy bank (512x512x134, 16 bit, courtesy of Michael Bauer,
Computer Graphics Group, University of Erlangen, Germany).

(b)

Figure 6.9: MRl scans: (a) Orange (256x256x64, 8 bit). (b) Tomato (256x256x64,8 bit). Cour-
tesy of Bill Johnston and Wing Nip Information and Computing Sciences Division, Lawrence
Berkeley Laboratory, USA).
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Figure 6.10: CT scan of a human torso (512x512x1112, 16 bit, courtesy of Tiani MedGraph
AG).

FEvery day you may make progress. Every step may be
fruitful. Yet there will stretch out before you an
ever-lengthening, ever-ascending, ever-improving path.
You know you will never get to the end of the journey.
But this, so far from discouraging, only adds to the joy
and glory of the climb.

Sir Winston Churchill (1874 - 1965)
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