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Abstract

We present an efficient algorithm for computation of surface representations enabling interactive visualization
of large dynamic particle data sets. Our method is based on a GPU-accelerated data-parallel algorithm for
computing a volumetric density map from Gaussian weighted particles. The algorithm extracts an isovalue surface
from the computed density map, using fast GPU-accelerated Marching Cubes. This approach enables interactive
frame rates for molecular dynamics simulations consisting of millions of atoms. The user can interactively adjust
the display of structural detail on a continuous scale, ranging from atomic detail for in-depth analysis, to reduced
detail visual representations suitable for viewing the overall architecture of molecular complexes. The extracted
surface is useful for interactive visualization, and provides a basis for structure analysis methods.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Computational Geometry

and Object Modeling—Boundary representations

1. Introduction

Particle-based simulations are a widely used tool in many
fields. Molecular dynamics (MD) simulations for example
are applied to simulate biomolecules like proteins. The out-
put of these simulations are often very large, time-dependent
data sets composed of hundred thousands of time steps and
millions of particles per frame. Visualization is a fundamen-
tal tool for interpreting the results. Instead of visualizing the
particles as individual spheres, surface representations are
often advantageous since many interesting phenomena oc-
cur at the boundaries between particle complexes.

We present a fast method to visualize smooth surfaces for
very large particle data sets. The algorithm is based on the
Metaball definition [B1i82]. Our method makes use of the
tremendous computing power offered by modern graphics
processing units (GPU). The resulting surface can be used
to model the analytically defined molecular surface very
closely. The representation can also be adapted interactively
to create a coarser, more approximate surface that is often
desirable for larger numbers of particles, where atomic detail
is not necessary. The surface can be colored to display per-
atom biochemical attributes which is crucial for comprehen-
sive analysis. The outline of our algorithm is quite simple:
First, a uniformly spaced density map is calculated from the
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particles. Next, the surface is extracted using the Marching
Cubes (MC) algorithm [LC87]. The extracted surface can be
used for visualization as well as for further analysis.

2. Related Work

The Solvent Excluded Surface (SES) [Ric77,Con83, TA95]
is defined by a spherical probe rolling over all atom spheres.
The probe contact surface traces out the SES. It is the most
widely used molecular surface since it provides a meaningful
representation of the molecule with respect to the substrate.
However, the computation of the SES is involved and even
recent, parallel methods [LBPH10, KGE11] can only render
the SES for dynamic data sets of less than 100 k atoms inter-
actively on current hardware.

Another molecular surface definition was introduced by
Blinn [Bli82] and is known as Metaballs. This is an implicit
surface defined as all points p € R3 which satisfy a certain
equation F(p) = 0. Each particle i is represented by a den-
sity function D;(p) that usually degrades with the distance
to the atom center ;. The density value of all particles is
added up for each point to a global density field D(p) =
Y;D;i(p). The isosurface is defined by a threshold value T
as F(p) = D(p) — T. If a Gaussian density function with
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Figure 1: (a) Semitransparent molecular surface of a small protein (7,231 atoms) combined with the stick model. (b) Molecular
surface of a chromatophore (9.6 M atoms) computed with our method. The parameters are adjusted to create a coarse surface
that shows the shape of the molecules but smooths out individual atoms. (c¢) The chromatophore data set in beads representation
(<1 M beads). (d) A poliovirus capsid (0.7 M atoms) computed to show atomic detail.

suitable parameters is used for D;, the resulting smooth iso-
surface can model the electron density surface of a molecule
closely [BI1i82] (cf. Figure 1a,d). These surfaces can be ren-
dered directly via GPU ray casting [MGE(07, KSNO8] or
an intermediate density map can be computed and used for
isosurface extraction. Falk et al. [FKRE10] used a uniform
grid to visualize particle-based simulations. They applied
GPU shader programs to generate the volume on the GPU
and extracted an isosurface using GPU ray marching. Krone
et al. [KFR*11] used a similar technique to visualize approx-
imate molecular surfaces. Fraedrich et al. [FAW10] sample
particles along a perspective grid and use GPU ray march-
ing for rendering. Dias et al. [DG11] recently presented a
CUDA-based approach for the construction of the density
map and extraction of the isosurface via MC using CUDA.

Stone et al. [SPF*07] and Rodrigues et al. [RHS*08] have
described fast GPU algorithms for computing electrostatic
potential maps on uniform lattices, strongly influencing our
GPU Gaussian density summation algorithm. Our approach
differs primarily in that it computes the spatial acceleration
structure entirely on the GPU with irregular atom bin sizes,
enabling interactive display rates for large structures.

There are several GPU-accelerated optimizations for
Lorensen and Cline’s original MC algorithm [LC87]. A
CUDA implementation based on Bourke’s MC [Bou94]
is included in the NVIDIA GPU Computing SDK.
Dyken et al.’s [DZTS08] implementation is very similar to
NVIDIA’s, but achieves a noticable speedup by replacing
prefix sums with a HistoPyramid [ZTTS06] traversal.

3. Algorithmic and Implementation Details

Our method is split into two parts: the generation of the vol-
umetric density map from the atom positions and the iso-
surface extraction using MC. A triangulated surface can be
beneficial for rendering and crucial for further computations
(cf. Section 4 & 5). The whole algorithm is designed to run
in parallel on the GPU. We implemented all steps of our al-
gorithm in CUDA, optimized for NVIDIA’s Fermi GPUs.

3.1. Volumetric density map generation

The most costly step in our molecular surface generation is
the calculation of a scalar volume containing Gaussian den-
sities summed from each of the particles in the neighborhood
of each voxel. Gaussian density distributions can be used
to approximate both electron density and solvent accessible
surfaces for all-atom molecular models [B1i82, GGP96].

The density map generation algorithm accumulates Gaus-
sian densities on a uniformly-spaced 3-D lattice defined
within a bounding box that contains all particles; padding of
the volume ensures that the extracted surface is not clipped
off. The density map generation algorithm satisfies

N
p(r;r17r27"'7rN):Ze 2“42 7 (1)
i=1

where the density p is evaluated at a position 7 by summing
over all N atoms. Each atom i is located at position 7; and
has an associated weighting factor o which is determined by
multiplying its radius with user-defined weighting or scaling
factors that customize the visualization to produce a surface
with an appropriate user-defined level of detail.

The density map can be computed serially in &(n?)
by summing up the density contributions of all N atoms
into each voxel. This quickly becomes impractical even for
molecular complexes of moderate size. Since the magnitude
of the Gaussian densities contributed by each atom decays
very rapidly with increasing distance, the algorithm can be
reduced to linear time complexity by eliminating density
contributions from atoms beyond a cutoff radius. By lim-
iting the set of contributing atoms to those within the cutoff
radius, the work associated with each grid point becomes
roughly constant since the atoms are largely uniformly dis-
tributed in space [VBWO94]. Performance can be improved
further by formulating data-parallel versions of the linear-
time approach, taking advantage of the fact that the density
p at each grid point 7 can be computed independently, and
that the partial density contributions to a given grid point 7
from different atoms may also be computed in parallel.
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We implemented a parallel gather approach for GPUs
which involves construction of a uniform spatial accelera-
tion grid with a grid spacing equal to the cutoff distance.
All particles are sorted into this acceleration grid. For each
grid point 7, the algorithm gathers density contributions by
looping over the atoms contained in the 33 neighboring cells
of the acceleration grid. Since each grid point is computed
independently, there are no parallel write conflicts and no
cache coherency is required among processing units. Our
CUDA implementation reuses Y and Z atom distance com-
ponents among multiple grid points in the same Y row, and
Z column, by computing multiple grid points in each thread,
where only the X distances are unique to each grid point. A
secondary benefit of this thread coarsening approach is that
many per-thread registers are reused and reads of atom data
from global memory are amortized over multiple grid points,
thus significantly increasing the arithmetic intensity.

When using per-atom colors for the molecular surface,
a 3-D RGB-volume is computed in addition to the density
map. The color of a grid cell is the sum of the color contri-
butions of all atoms scaled by the associated density contri-
bution and divided by the isovalue. This results in normal-
ized colors and does not require any further post-processing
of the color values prior to use in the isosurface extraction.

3.2. Marching Cubes isosurface extraction

We use the marching cubes (MC) algorithm [LC87] to ex-
tract an isosurface from the density map. Our implementa-
tion is an optimized and extended version of the MC exam-
ple from the NvIDIA GPU Computing SDK. In the first step,
the number of triangles that will be generated is determined
for each cube of 23 voxels using a lookup table [Bou94].
A cube is considered active if it contains at least one trian-
gle. The active cube flag (0 or 1) and the number of triangle
vertices per cube are written to a uint2 array. This step is
called the classification. In the second step, a parallel prefix
sum of the classification array is computed to get the total
numbers of active cubes and triangle vertices. The third step
is the compactification of the active cubes. Based on the pre-
fix sum from the previous step, a lookup table is written. The
number of entries in this lookup table equals the number of
active cubes. Subsequently, this lookup table is used to ad-
dress only active cubes. In the fourth and last step, the tri-
angles per cube are generated. Due to the compactification
in step two and three, this step is only executed for active
cubes. Again, the 23 voxel values are read and each cube is
classified, but now the triangles are actually generated and
the vertices are written to the output array. To speed up the
computation, we split the triangle vertex calculation and the
normal calculation into two separate steps. The first kernel
only writes the vertices while second kernel computes the
per-vertex normal using central differences. The surface can
also be colored according to the 3D color map created dur-
ing the generation step. Each triangle vertex is located along
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Figure 2: Membrane patch data set (22.8 M atoms). For this
screenshot, the surface of the water box (20 M atoms) was
rendered at lower detail than the membrane and proteins to
reduce the computation time.

an edge of the cube. Therefore, we just have to determine the
two voxel coordinates at the start and end point of this edge.
The vertex color can be calculated by linearly interpolating
the two color values at these voxel coordinates.

4. Enhancements and Extensions

In this section we showcase two possible extensions to our
fast molecular surface extraction.

Bead simplification. When viewing protein systems of
more than one million atoms, it is often desirable to use
reduced-detail visualizations to show the overall architec-
ture of the molecular complex instead of the clutter associ-
ated with atomic detail. Since biomolecular complexes are
usually decomposable into nucleic acids, lipids, or amino
acids, bounding spheres can be computed for the atoms they
contain, and used as coarse-grained beads for input to the
density map generation (cf. Figure 1c). The resulting order-
of-magnitude reduction in particles yields a significant per-
formance boost, allowing interactive visualization of much
larger molecular complexes.

Molecular surface area. The Gaussian surface descrip-
tors we use can model the solvent accessible surface area
(SASA) [Ric77] quite accurately (below 2 % deviation from
the area of the SES [GP95]). We implemented an interac-
tive CUDA area calculation using the MC triangulation: af-
ter computing all individual triangle areas in parallel, a prefix
sum is used to get the total area. In comparison to the rapid
stochastic measurement of the SASA of Juba et al. [JV08],
our solution is equally fast, but its accuracy is higher. Their
area can differ by more than 10 % from the SES [JV08].

5. Results and Discussion

We measured the performance of our method using various
data sets from real molecular dynamics simulations. Figure 2
shows our largest test case: a membrane patch with several
proteins in water (22.8 M atoms). Our test system was an
Intel Core i7 x980 (6x3.3 GHz) with 12GB RAM and a
NVIDIA GeForce GTX 580. In our test application, users can
adjust the surface with just three easy to understand param-
eters: The grid spacing H, the scaling factor R for the atom
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Table 1: Performance measurements (all timings in sec-
onds). Radius scaling R was set to 1.0 and isovalue I to 0.5
for all tests. H denotes the grid spacing. ts includes the
time for uploading the particles to the GPU and sorting them
into the acceleration grid, t; is the computation time for the
density map and ty;c the MC runtime. The last column shows
the overall performance (computation + rendering) in fps.

#Atoms H Map size  toon ty tye fps
147,976 1.0 183x184x184  0.007 0048 0009 132
754,200 (Fig-1d) 1.0 364x364x364  0.01 0.18 0.05 3.5
955,226 1.0 220x220x220  0.008  0.189  0.012 42
237M 2.0 429x394x58  0.03 0.17 0.016 3.9
9.62M (Fig-10) 20  377x375x355  0.16 0.023  0.06 3.4
22.8M (Fig-2) 4.0 240%222x72 4.4 0.68 0.01 0.18

radius and the isovalue /. To see the molecular surface in
atomic detail, we suggest a grid spacing of about 1.0 A. For
larger data sets a smoother, more abstract surface is often
more desirable for the visual analysis since it shows the over-
all shape of the molecule rather than drawing the attention to
insignificant single atom movements.

Table 1 shows the performance of our method. The frame
rates include the transfer of all particles to the GPU, the den-
sity map calculation and the MC extraction for each frame.
That is, using our technique it is possible to interactively vi-
sualize molecular surfaces for fully dynamic data sets with
up to one million atoms in atomic detail. All timings were
measured using per-atom coloring. If we compute just the
density map without colors, t; is 30% lower. The compu-
tation time is influenced by a combination of the following
three factors: the number of particles; the grid resolution,
which is a result of the grid spacing H; the number of trian-
gles, which also depends on the spatial arrangement of the
particles. These factors mutually influence the timings for
the three steps (¢so/¢, 14, Ipc)- In most cases, the density map
calculation is the most expensive part of our algorithm. How-
ever, for very large numbers of particles and small density
maps, the sorting time becomes the limiting factor. The MC
calculation is very fast and influences the frame rate only
marginally. The beads representation reduces the number of
particles by at least an order of magnitude for biomolecules.
Additionally, the grid spacing can be larger since the beads
are also much larger than the original atoms. This results in
high frame rates even for very large data set. Figure 1c¢ shows
the bead surface for the chromatophore data set (Figure 1b,
9M atoms). The number of beads is less than 1 M, resulting
in more than 10 fps on our test system.

Recently, Krone et al. [KGE11] presented a fast method
to analytically compute the SES on the GPU using CUDA
for fully dynamic data. For a protein of 59,000 atoms (PDB-
ID: 1AON) they measured 6.8 fps on an NVIDIA Quadro
7000. Our algorithm visualizes the molecular surface for this
data set on a GeForce GTX 580 (which is comparable to the
Quadro) with a grid spacing of 1.0 at 19 fps.

Our method is similar to the work of Dias et al. [DG11].
They also construct a density map and extract a molecular
surface via MC using CUDA. For the density grid, they use
an atom-based scattering approach rather than a voxel-based
gathering approach as we do. For a protein of 7,231 atoms
(shown in Figure 1a) they report a computation time of 10s
on a GeForce GTX 280. Our implementation computes the
surface of this protein in 0.07 s (same GPU and grid size).
Due to the lack of details in [DG11] we are not sure why our
method is that much faster, but we assume that their density
map calculation is much slower because they have to explic-
itly avoid write conflicts due to the scattering approach.

Fraedrich et al. [FAW10] sample only the visible parti-
cles in the scene into perspective, non-uniform grids in view
space. These optimizations result in low computation times
for very large, dynamic data sets. They render the isosurface
using GPU ray casting. The performance of their method is
comparable to our technique. However, since their density
grid is view-dependent and non-uniform, the method cannot
be used for further analytical processing (cf. Section 4). The
triangle-based, undistorted isosurface that we obtain is also
beneficial for applications that render the same data from
multiple points of view, like 3-D stereoscopic rendering and
can be used as input for available offline raytracers.

6. Summary and Conclusion

We have presented a fast method for computing smooth sur-
faces for large, dynamic particle data sets. Our algorithm
is intended for visualization of MD simulation trajectories,
however, it is also applicable to all other particle-based data,
e.g. SPH simulations. The surface is extracted from an in-
teractively computed density field using a parallelized MC
implementation. The density field is computed using Gaus-
sian kernels for each particle. All stages of our algorithm
run completely on the GPU, leveraging its tremendous com-
putation power to speed up the computation. The compu-
tations are highly parallel and take full advantage of the
GPU. This results in interactive frame rates for data sets of
more than one million particles. Our method is integrated
in the publicly available molecular visualization software
VMD [HDS96] as the “QuickSurf” representation, and it
has has received very positive feedback from users from the
field of biochemistry and biophysics. Users have reported
that they like the high performance and ability to display
very large structures as compared to other molecular surface
computation methods, and they felt that the process of tra-
jectory analysis is enriched by our method.
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