
Hardware Accelerated Wavelet Transformations

Matthias Hopf Thomas Ertl

fhopf,ertl g@informatik.uni-stuttgart.de
http://wwwvis.informatik.uni-stuttgart.de/

Visualization and Interactive Systems Group, University of Stuttgart

Abstract. Wavelets and related multiscale representations are important means
for edge detection and processing as well as for segmentation and registration.
Due to the computational complexity of these approaches no interactive visual-
ization of the extraction process is possible nowadays. By using the hardware of
modern graphics workstations for accelerating wavelet decomposition and recon-
struction we realize a first important step for removing lags in the visualization
cycle.

1 Introduction

Feature extraction has been proven to be a useful utility for segmentation and registra-
tion in volume visualization [7, 13]. Many edge detection algorithms used in this step
employ wavelets or related basis functions for the internal representation of the volume.
Additionally, wavelets can be used for fast volume visualization [5] using the Fourier
rendering approach [8, 12].

Wavelet analysis is a mainly memory bound problem. Graphics hardware on the
other hand regularly has memory systems that can be addressed extremely fast. As
modern graphics hardware of several vendors, for instance Silicon Graphics [9], has
support for two dimensional convolution and the ability to scale bitmaps by arbitrary
factors, all necessary steps needed for wavelet decomposition and reconstruction are
available.

Additionally, three dimensional convolution with separable filter kernels can be im-
plemented by using these hardware supported convolution filters along with volume
textures [3], paving the way to 3D wavelet analysis, which will benefit from the high
memory bandwidth of the graphics hardware even more.

However, there are still several pitfalls to be circumvented, which are addressed
in our previous paper about the first steps to hardware based wavelet analysis [4]. In
this paper, we will emphasize new algorithmic aspects of the acceleration process by
utilizing special OpenGL features.

2 Wavelets

In the past two decades, wavelet analysis has grown from a mathematical curiosity into
a major source of new basis decomposition and signal processing algorithms [10, 14].
The importance of orthonormal basis of wavelets and multi-resolution analysis resides



in their hierarchical nature, which offers a mathematical framework for describing func-
tions at different levels of resolution. Using basis functions with good approximation
properties, i.e. with many vanishing moments, one can represent functions by keep-
ing only the important coefficients (regularly calledfeatures) and discarding all others.
This sections gives a short introduction into the basics of wavelet theory. Details on the
theory can be found in [1, 2, 6].

A multi-resolution analysis can be thought of as a ladder of approximating closed
subspaces(Vj) j2Z of L2(R). The functions in these subspaces have well defined scal-
ing and translation properties. Furthermore, there exists a functionφ 2 V0 such that
fφ0;n; j;n 2 Zg with φ j ;n = 2 j=2φ(2 j x�n) is an orthonormal basis ofV0. Under these
conditions one can construct an orthonormal wavelet basisfψ j ;n; j;n 2 Zg with ψ j ;n =

2 j=2ψ(2 j x�n), such that for any functionf in L2(R)

Pj f = Pj�1 f +Qj�1 f ; (1)

wherePj andQj are the orthogonal projections ontoVj andWj , respectively:

Pj f = ∑
n2Z

< f ;φ j ;n > φ j ;n ; Qj f = ∑
n2Z

< f ;ψ j ;n > ψ j ;n :

The functionψ is sometimes called themotherwavelet. The projectionPj f onto the
subspacesVj corresponds to the different resolution levels in which the functionf can
be decomposed. These projections contain thesmoothinformation of f at a given level
of resolution. The projectionsQj f onto the subspacesWj spanned by theψ j ;n represent
the detail information of f required to move from one resolution approximation sub-
space to the next finer one. Equation (1) is the wavelet decomposition of the functionf .
Thescalingfunctionφ satisfies thetwo-scalerelation

φ =∑
n

hnφ1;n ; (2)

which is a discretelow-pass filteroperation with the filterfhngn2Z .
Now we start with a scale approximationf j+1 = Pj+1 f of a function f in Vj+1 and

decompose it into a coarser approximation inVj . Due to the fact thatVj+1 =Vj �Wj ,
we havef j+1 = f j +δ j , whereδ j = Qj f . In terms of the orthonormal basesfφ j ;ngn2Z
andfψ j ;ngn2Z, we have

f j =∑
n

cj
nφ j ;n ; δ j =∑

n
d j

nψ j ;n ;

where the relation between the coefficients of the two levels of resolution is given by

cj�1
n =∑

k

hk�2ncj
k ; dj�1

n =∑
k

gk�2ncj
k (3)

andgn = (�1)nh1�n. h andg are the low-pass and high-pass filters, respectively. The
decimation by a factor 2 corresponds to a down-sampling when going from one level
to the next coarser one. This decomposition can be continued using the relationVj+1 =
Vj �Wj and so on until a given levelJ < j, obtaining the following approximation for
f :

f j+1 = δ j + � � �+δJ+1+δJ+ f J



-1

0

1

0 1 2

-1

0

1

0 1 2

n 0 1 2 3

Haar hn
1p
2

1p
2

gn
1p
2

� 1p
2

Daub.hn
1+

p
3

4
p

2
3+

p
3

4
p

2
3�p3
4
p

2
1�p3
4
p

2

gn
1�p3
4
p

2
�3+

p
3

4
p

2
3+

p
3

4
p

2
�1�p3

4
p

2

Fig. 1. The Haar scaling function, wavelet, and filter coefficients for Haar and Daubechies (4)

jc0
j
1c j

2c j
3c j

4c j
5c

j-1c0
j-1c1

j-1c2
j-1
0d j-1

1d j-1
2d

jc0
j
1c j

2c j
3c j

4c j
5c

g0 g1h0 h1

Fig. 2. Decomposition using Haar wavelets

h1 h0

j
0c j

1c j
2c

j+1c0 cj+1
1 cj+1

2 cj+1
3 cj+1

4 cj+1
5

g1 g0

j
0d j

1d j
2d

00 0 0 0 0

Fig. 3. Reconstruction using Haar wavelets

The inverse operation, the reconstruction off j+1 from f j andδ j , is simply given by:

cj+1
k =∑

n
(hk�2n cj

n+gk�2n d j
n) (4)

Now let us take a look at an example. The simplest possible wavelet is theHaar
wavelet. Figure 1 depicts its scaling function and the mother wavelet together with the
filter coefficients.

We will now decompose a set of coefficientscj
k into thecj�1

k of the next coarser
level. In Figure 2 the decomposition process is explained. The input data are convolved
with the filter kernelshn andgn and down-sampled by a factor of 2. This process can be
continued with the low-pass filtered coefficientscj�1

k , until only one coefficient is left.
In order to reconstruct the original signal, the low- and high-pass filtered coefficients

are processed as shown in Figure 3. The coefficients are up-sampled and then convolved
with the reverted filter kernels according to (4).

So far we have only dealt with one-dimensional data. For higher dimensions bases
which are tensor products of the one-dimensional case are used. There exist other ap-
proaches for selecting orthogonal basis functions, but tensor product wavelets are easier
to understand and faster to compute.

3 The Rendering Pipeline

As it can be directly derived from Equations (3) and (4), wavelet decomposition is
practically done by an input signal filtering and a down-sampling step. Reconstruction
on the other hand is performed by first up-sampling and filtering afterwards. Modern



Scale, Bias

Convolution

Post-Convolution
Scale, Bias

Clamping
Storage Mode

PixelPixel Data
Textures

Framebuffer
Operations

Per-Fragment
Rasterization

Engine
GeometryGeometric

Primitives

Memory
Texture

Pixel Transfer Modes

Fig. 4.The OpenGL graphics pipeline

graphics hardware supports filtering and scaling (resampling) for image transfer opera-
tions, which we will utilize for hardware based wavelet decomposition and reconstruc-
tion. The relevant part of the the OpenGL graphics pipeline is depicted in Figure 4.

In order to map the wavelet transformation onto the graphics hardware, we will use
a mathematical specification of the graphics pipe. A more elaborated model has been
derived in [4]. Let us consider the relevant parts of the graphics pipeline for image data.
When a rectangular part of the frame buffer is to be copied from a source area, its color
values are piped through the pixel transfer system and the rasterizer, before they are
written to the destination area. Pixel transfer includes scaling and biasing of the color
values, convolution with a prior defined filter kernel and clamping to the usual color
value range[0;1). The rasterizer transposes the input image to the designated destina-
tion area while zooming it with arbitrary zoom factors, in other words, it performs up-
and down-sampling.

Now let pn+1 be the pixel data that results from a graphical operation onpn. For
simplification we will assume thatpn is one-dimensional. A first approximation of the
relevant part of the graphics pipeline can be written as a composition of a convolu-
tion (co), a clamping step (cl), a transposition (tr), and the scaling step (sc):

pn+1=scÆ trÆclÆco(pn) (5)

sc(pi)=pbzic (6)

tr(pi)=pi�xs+xd (7)

cl(pi)=max(0;min(1; pi)) (8)

co(pi)=s�
m

∑
j=0

kj pi+ j +b ; (9)

with zoomz, sourcexs and destinationxd position, scalings, and biasb parameters, and
with a convolution kernelk of sizem. As explained above, (co) and (cl) are performed
in the pixel transfer system, while (tr) and (sc) describe the task of the rasterizer.

These equations are applied to pixelspn+1
i of the destination areai 2 [xd;(xd +w+

1�m) �z), with w being the image size. The remaining pixels stick to their old values,
that is, they are equal topn

i .
As we now have a mathematical model of the rendering pipeline, we can address

the problem of mapping wavelet transformations onto the hardware as the next logical
step.



4 Hardware Based Decomposition

Compared to the order of operations in the graphics pipeline, of which the relevant part
is depicted in Figure 4, wavelet decomposition fits neatly into its scheme. Remember-
ing that scaling is a part of the rasterization process, convolution is performed in the
graphics pipe just before image scaling.

When we write the wavelet decomposition (3) as

c̆j�1
n = ∑

i
hi c

j
n+i ; d̆ j�1

n =∑
i

gi c
j
n+i ; (10)

cj
n = c̆j

2n ; dj
n = d̆ j

2n (11)

and compare it to Equations (5) to (9), we see that each of the wavelet decomposition
filter steps matches the calculations of the OpenGL graphics pipe perfectly, except for
the clamping steps. Clamping introduces several problems to these algorithms, that have
to be addressed by using arbitrary scale and bias parameters. This aspect is discussed
in detail in [4]. (6) implements the down-scaling in (11) and (10) can be expressed with
the convolution filters (9).

One thing to note is that the image datapn
j as well as the filter kernelkj are only

defined forj � 0. The filter kernel size is further limited by hardware specific constants,
which are rather small. Thus it is necessary to displace the filter kernel and the input
and output image specifications before invocation. Of course, the displacement has to
be compensated in the final convolution step.

The input data have to be convolved using two different filters, so either the resulting
images have to be written to another part of the frame buffer, just like in our earlier
approach, or they have to be done together in one step. Now remember that we are
actually dealing with 2D images. When we combine both tensor product steps with the
two different filters, we get a total of four filters that have to be applied to the data.

As the graphics pipeline works on RGBA images nevertheless, it seems to be straight-
forward to use RGBA convolution filters instead of luminance only filters to combine
these four steps into one as depicted in Figure 5. This will speed up the decomposition
significantly, as the raster manager needs to address only one fourth of the number of
pixels of the previous mentioned approach, and the convolution pipeline is implemented
for color filters anyway. Additionally, we do not have to copy the source image in order
to save it for the second filter, which makes for another factor of two.

=

G

B A

R

low / hi hi / hi

hi / lowlow / low

RGBA

Fig. 5. Using one RGBA convolution instead of four different luminance only convolutions



Create convolution filter:̃hj = hj+α , g̃j = gj+α ,

f R
j;k = h̃j � h̃k , f G

j;k = g̃j � h̃k , f B
j;k = h̃j � g̃k , f A

j;k = g̃j � g̃k 8 j ;k .

Calculate scalings and biasb . Set post-convolution scaling tos .
Set post-convolution bias tob .
Set pixel zoom to 1:0�1:0 . Set color matrix to

 
1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0

!
.

Copy area[δx +α+ ix ; δx + α+ ix +wx + ∆ � 1)� [δy + α+ iy ; δy + α+ iy +wy + ∆� 1)
to [ox ; ox+wx+∆�1)� [oy ; oy+wy+∆�1).

Set pixel zoom to 0:5�0:5 . Disable color matrix.
Copy area[ox ; ox+wx+∆�1)� [oy ; oy+wy+∆�1) to [ox ; ox+

1
2wx)� [oy ; oy+

1
2wy), using

convolution filterf (size∆2).

hj , gj Low- and high-pass filters, respectively
α Index of first non-zero element of both filters
∆ Size of filters
δ Shift offset (see text)
i, w Input image offset and size
o Output image offsets

Fig. 6. Implementation sequence for wavelet decomposition in hardware

However, it turns out that we still have to copy the source image, because OpenGL
does not provide a pre-convolution color matrix, which would be necessary to provide
the same information to the four different filters. As we want to address only the low-
pass filtered data of the previous step, which is stored in the red component of the
calculated image, we have to spread this information to all four color channels using
SGI’s color matrix OpenGL extension before invoking the convolution filter. Still, we
have the advantage of better utilization of the graphics pipe.

Unfortunately, OpenGL is no pixel exact specification. In particular, zooming is
only well defined according to (6) for up-sampling, that is for zoom factors greater
than one. When images are scaled down, it is up to the implementation which pixels
to transfer. We have found that even the implementations of one vendor — Silicon
Graphics in our case — vary from architecture to architecture. In order to address this
problem, a so-calledshift offsetδ is determined. When added to the specification of the
source image’s left edge, it corrects the internal pixel offset. Currently the only way
to determine the shift offset is to draw a scaled-down version of a well-known image
for several different shift values and to read it back afterwards for comparison with the
desired result.

Additionally, care has to be taken at the borders of the input image. Several strate-
gies have already been discussed, with blanking being the easiest and input mirroring
being one of the best methods in order to suppress high frequencies that are not part of
the image, but introduced by aliasing effects.

Finally, Figure 6 shows the implementation sequence for wavelet decomposition
using graphics hardware. The calculation of the scaling and bias values, which is left
out here for clarity, is discussed in detail for the one dimensional case in [4].



5 Hardware Based Reconstruction

In contrast to the decomposition algorithm, wavelet reconstruction is much more com-
plicated, because according to Equation (4) scaling and convolution is to be performed
in inverse order compared to the rendering pipeline (Figure 4). Either scaling and con-
volution have to be performed in separate rendering steps, or the filters have to be split
and special care has to be taken in order to render even and odd pixel positions sepa-
rately. Either way, reconstruction is more complicated than decomposition.

Moreover, due to different scaling and bias values for odd and even pixels, using
separate rendering steps is not a feasible option. Therefore, we will concentrate on the
second possibility of splitting the filters.

Now we examine the wavelet reconstruction (4). In order to simplify the expression,
we have to distinguish betweenk being even and odd. For evenk we substitutehk�2n

usinghev
n = h�2n (g accordingly) and get

c̄j+1
n = ∑

i

(hev
i cj

i+n+gev
i d j

i+n) ; (12)

cj+1
k = cj+1

2n = c̄j+1
n : (13)

For oddk we usehod = h1�2n, which results in

ĉj+1
n = ∑

i
(hod

i cj
i+n+god

i d j
i+n) ; (14)

cj+1
k = cj+1

2n+1 = ĉj+1
n : (15)

Again, we will concentrate on the low pass filtered data first and simply neglectg in
the terms above. We can see that (13) and (15) can be performed by setting according
zoom factors in (6). (12) and (14) can be implemented in (9) by choosinghev andhod

as filter kernels, respectively.
Of course, when rendering the odd coefficients, we have to make sure that we do not

overwrite the previously rendered even coefficients. OpenGL knows about a so-called
stencilbuffer, which provides masking tests in the per-fragment operation part of the
graphics pipeline. The stencil buffer has to be initialized with a striped pattern only
once, after that the stencil test can be set to render even or odd pixels only. We activate
the test for rendering odd pixels only due to speed reasons, as each activated test can
slow down the rendering process.

Up to now we have only dealt with the low-pass filtered coefficientscj
n. As we have

the necessary hi-pass filtered coefficientsdj
n stored as another component of the same

pixels, we can use SGI’s color matrix extension to combine them. Again, we use all
four red, green, blue, and alpha components in order to work on 2D tensor product
wavelets in one step. This is different to our previous approach, where we treated the
different coefficients in separate steps. The new approach is not only faster, but even
more accurate, because color matrix operations are performed with higher precision
than blending operations in the frame buffer, and we do not have to deal with clamping
artifacts in this case either. We disable rendering to the green, blue, and alpha channels
in order to not overwrite the hi-pass filtered coefficients there, which will be needed in
the next reconstruction step.



Create convolution filters:

h̃ev
j = h

2b αh+∆h
2 c�2 j

, h̃od
j = h

2d αh+∆h
2 e�2 j+1

, g̃ev
j = g

2b αg+∆g
2 c�2 j

, g̃od
j = g

2d αg+∆g
2 e�2 j+1

.

f x;y;R
j;k = h̃x

j � h̃
y
k , f x;y;G

j;k = g̃x
j � h̃

y
k , f x;y;B

j;k = h̃x
j � g̃

y
k , f x;y;A

j;k = g̃x
j � g̃

y
k 8 j ;k , 8x;y2 fev;odg .

δev=�bα+∆�1
2 c ; δod= 1�dα+∆�1

2 e ; ∆ev=�δev�dα
2 e+1 ; ∆od=�δod�bα

2 c+1 :

Calculate scalings and biasbx;y, x;y2 fev;odg .
Set pixel zoom to 2:0�2:0 . Enable rendering to R only, disable rendering to G, B, and A.

Set color matrix to

 
1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

!
. Initialize stencil buffer with

(
0 x even,y even
1 x odd,y even
2 x even,y odd
3 x odd,y odd

.

Disable stencil test. Set post-convolution scaling and bias tos̄ andb̄ev;ev .
Copy area [ix + δev

; ix + δev + wx + ∆ev � 1) � [iy + δev
; iy + δev + wy + ∆ev � 1)

to [ox ; ox+
1
2wx)� [oy ; oy+

1
2wy), using convolution filterf ev;ev (size∆ev�∆ev) .

Do 8x;y2 fev;odg :
Enable stencil test, render only pixels with stencil value

�
1 x = od,y = ev
2 x = ev,y = od
3 x = od,y = od

.

Set post-convolution bias tōbx;y .
Copy area[ix+δx

; ix+δx+wx+∆x�1)� [iy+δy
; iy+δy+wy+∆y�1)

to [ox ; ox+
1
2wx)� [oy ; oy+

1
2wy), using convolution filterf x;y (size∆x�∆y) .

hj , gj Low- and high-pass filters, respectively
α Index of first non-zero element of both filters
∆ Size of both filters
oc, od, w Input image offsets and size
oo Output image offset

Fig. 7. Implementation sequence for wavelet reconstruction in hardware

As we are up-sampling during reconstruction, we do not have to care about any shift
offsets during zooming, as the OpenGL specification is pixel exact in this case. How-
ever, we have to care about the fact that hardware filter kernelshk are only to be specified
for non-negativek. Together with the problem of odd sized filter kernels this leads to
quite horrible filter kernel specifications, which can be noted in the implementation se-
quence in Figure 7. Again, the scaling and bias values that have to be computed here
have been discussed in detail in our previous paper. Care has to be taken about image
borders as well. The policy here depends heavily on the policy taken during the decom-
position step. Note that Haar wavelets are quite uncomplicated, as the reconstruction
filters have the size 1, which is a mere scaling.

6 Results

Table 1 reveals that Hardware based wavelet filtering is much faster than a well tuned
software implementation. Only for very small images the software system outperforms
the OpenGL hardware. Scaling and bias computation as well as filter kernel download
adds an almost constant overhead which unsurprisingly leads to bad times for small im-
ages. On the other hand, performance analysis shows that the filter operations of current



Haar wavelet Daubechies (4) wavelet

Size 322 642 1282 2562 5122 322 642 1282 2562 5122

Software decomp. 0:50 2:0 7:8 31 150 0:70 2:8 11 45 209
Hardware decomp. 0:65 1:4 4:5 16 62 0:70 1:8 5:5 19 74
Factor 0:77 1:4 1:7 1:9 2:4 1:0 1:6 2:0 2:4 2:8

Software recons. 0:80 3:6 14 55 240 1:2 5:0 19 78 340
Hardware recons. 1:4 2:0 5:0 18 66 1:4 2:0 5:1 18 66
Factor 0:57 1:8 2:8 3:1 3:6 0:86 2:5 3:7 4:3 5:2

Table 1.Filter times in ms per 2D wavelet step

graphics hardware are still not optimized and in the future much higher throughput can
be expected.

All times have been measured on a Silicon Graphics Octane with R10000 195MHz
processor and a MXE graphics pipe. We will add performance figures for the Intergraph
Wildcat as well as soon as possible.

As hardware based wavelet filtering uses the frame buffer for its computations,
which has only a limited depth, the accuracy of the computations cannot be as good
as with software based techniques, which in contrast only have to tolerate the typically
small floating point errors. On the other hand, when using a frame buffer with a depth
of 12 bits per base color, only single bit errors can be found in images of size 5122 after
complete wavelet decomposition and reconstruction, as it can be seen on the color plate
in Figures 8 to 11. Note that the difference images have been enhanced so that one bit
differences are visible.

On the other hand, frame buffers with only eight bits per base color yield less pleas-
ing results. Figures 12 to 13 reveal the differences after complete decomposition and
reconstruction. Again, the last image has been enhanced in order to reveal the differ-
ences. The maximum absolute difference between the original image and the wavelet
decomposed image is 13, that is about 5% of the total 8 bit color range.

7 Conclusion

We have introduced a wavelet decomposition and reconstruction algorithm, that directly
works on the graphics hardware of modern OpenGL capable workstations and acceler-
ates the time consuming filtering steps a lot. By using the convolution and color matrix
extensions together with OpenGL’s facilities to scale images during copy instructions,
we are able to perform all necessary steps of 2D tensor product wavelet filtering without
copying data from or to the machine’s main memory, thus avoiding typical bottlenecks
in the visualization cycle. Different possibilities to use hardware based wavelets for
enhanced feature detection are currently subject of further investigations.

Using the frame buffer for mathematical operations is usually problematic in terms
of accuracy [11] due to the limited depth of the frame buffer. However, wavelet decom-



position and reconstruction have proven to be relatively robust. Only single-bit differ-
ences between software and hardware decomposed data can be detected when rendering
intermediate images to 12 bit accurate frame buffers.

8 Acknowledgments

We would like to thank our colleague R¨udiger Westermann for his helpful discussion
regarding wavelet basis and hardware implementation issues. Additionally, we would
like to thank our former colleague Christoph L¨urig for giving us some ideas about how
to accelerate hardware based wavelet transformations even more.

References

1. C. K. Chui.An Introduction to Wavelets. Academic Press, Inc., San Diego, 1992.
2. I. Daubechies.Ten Lectures on Wavelets. Number 61 in CBMS-NSF Series in Applied

Mathematics. SIAM, Philadelphia, 1992.
3. M. Hopf and T. Ertl. Accelerating 3D Convolution using Graphics Hardware. In D. Ebert,

M. Gross, and B. Hamann, editors,Visualization ’99, pages 471–474, San Francisco, CA,
1999. IEEE Computer Society, IEEE Computer Society Press.

4. M. Hopf and T. Ertl. Hardware Based Wavelet Transformations. In B. Girod, H. Niemann,
and H.-P. Seidel, editors,Vision, Modeling, and Visualization ’99, pages 317–328, Erlangen,
Germany, November 1999. SFB 603, Graduate Research Center, IEEE, and GI, Infix Press.

5. L. Lippert, M. H. Gross, and C. Kurmann. Compression Domain Volume Rendering for
Distributed Environments. In D. Fellner and L. Szirmay-Kalos, editors,EUROGRAPHICS
’97, volume 14, pages C95–C107. Eurographics Association, Blackwell Publishers, 1997.

6. A. K. Louis, P. Maass, and A. Rieder.Wavelets. B. G. Teubner Stuttgart, Germany, 1994.
7. C. Lürig, R. Grosso, and T. Ertl. Combining Wavelet Transform and Graph Theory for

Feature Extraction and Visualization. InProc. 8th Eurographics Workshop on Visualization
in Scientific Computing, pages 137–144. Eurographics Association, 1997.

8. T. Malzbender. Fourier-Volume-Rendering.ACM Transactions on Graphics, 12(3):233–250,
July 1993.

9. SGI. OpenGL on Silicon Graphics Systems. Silicon Graphics Inc., Mountain View, Califor-
nia, 1996.

10. G. Strang and T. Nguyen.Wavelets and Filter Banks. Wellesley-Cambridge Press, Wellesley,
Massachusetts, 1996.

11. C. Teitzel, M. Hopf, R. Grosso, and T. Ertl. Volume Visualization on Sparse Grids. Technical
Report 8/1998, Universit¨at Erlangen-N¨urnberg, Lehrstuhl f¨ur Graphische Datenverarbeitung
(IMMD IX), Erlangen, July 1998. Accepted for publication inComputing and Visualization
in Science, Springer-Verlag, Heidelberg.

12. T. Totsuka and M. Levoy. Frequency Domain Volume Rendering.Computer Graphics,
27(4):271–78, August 1993.

13. R. Westermann and T. Ertl. A Multiscale Approach to Integrated Volume Segmentation
and Rendering. InComputer Graphics Forum 16(3) (Proc. EUROGRAPHICS ’97), pages
117–129. Blackwell, 1997.

14. M. V. Wickerhauser.Adapted Wavelet Analysis from Theory to Software. IEEE Press, New
York, 1994.



Fig. 8. Thehead data set Fig. 9. Haar wavelet decomposition

Fig. 10. 1-bit differences after full Haar
decomposition and reconstruction using a
frame buffer with 12 bits per color

Fig. 11. 1-bit differences between software
and hardware Haar decomposition using a
frame buffer with 12 bits per color

Fig. 12.Reconstructed image using a frame
buffer with 8 bits per color

Fig. 13. Enhanced differences after full
Haar decomposition and reconstruction us-
ing a frame buffer with 8 bits per color


