
DynaVideo - A Dynamic Video Distribution

Service

Luiz Eduardo Leite, Renata Alves, Guido Lemos, and Thais Batista

Informatics Department - DIMAp
Federal University of Rio Grande do Norte - UFRN
fleduardo, renata, guido, thaisg@natalnet.br

http://www.natalnet.br

Abstract. Most solutions proposed to implement audio and video dis-
tribution services have been designed for speci�c infrastructures or have
been tailored to speci�c application requirements, such as stream and
clients types which will be supported by the service. Other important
aspect in this context is that the performance of distributed services is
becoming increasingly variable due to changing load patterns and user
mobility. This paper presents the Dynamic Video Distribution Service -
DynaVideo. The service may be designed to distribute video in a way
that is independent of the video format and to interact with di�erent
types of clients. The main feature of DynaVideo is the ability to con�g-
ure the service dynamically to a speci�c demand.

1 Introduction

The cost reduction of high-speed networks, the development of powerful and
cheaper microprocessors and the consolidation of audio and video standards to
applications such as Digital TV, Video on Demand, High De�nition Television
and Interactive TV are factors that motivate the development of video distri-
bution services over digital networks, such as the Internet. This paper presents
the Dynamic Video Distribution Service - DynaVideo. The service is designed to
distribute video in a way that is independent of the video format and to interact
with di�erent types of client. The service may be used to distribute video over
any digital network, however, it is focused on the Internet. The main feature of
DynaVideo is the ability to con�gure the service dynamically to a speci�c de-
mand. Applications that deal with video distribution, such as broadcast digital
television, normally have to deal with abrupt variations on its demand. The num-
ber, type and location of clients of the service can vary rapidily. This could occur
every time the broadcast of an interesting programme starts. Nowadays, many
systems can distribute video over digital networks like the Internet. Real System
of the Real Networks [5] encodes the video streams in many formats, but its
focus is on the support of its proprietary format RM. This system may transmit
video with IP Multicast, TCP, UDP or HTTP. The Microsoft Windows Media
Service [7] proprietary format is ASF. The following video formats BMP, WAV,

http://www.eg.org
http://diglib.eg.org

WMA, WMV, ASF, AVI, and MPEG-1 [3] are also supported and can be trans-
mitted with UDP, TCP, HTTP/TCP or IP Multicast. The IBM VideoCharger
[6] transports MPEG-1, MPEG-2 [4], AVI, WAV, LBR and QuickTime video
streams, using RTP [9], TCP, HTTP or IP Multicast. Once con�gured, distri-
bution services based on these platforms remain unchanged and cannot auto-
matically adjust con�gurations to varied demands. This paper is structured as
follows: Section 2 presents the DynaVideo Architecture; Section 3 discusses the
implementation details of the DynaVideo components; Section 4 presents some
experiments results. Finally, Section 5 contains the conclusions.

2 Dynavideo Architecture

The DynaVideo service can be dynamically con�gured. This is its main feature.
This exibility allows the service to automatically adjust itself to demand varia-
tions. The service continually tries to �nd an optimized con�guration to respond
to a given demand. In DynaVideo the demand is de�ned by the number, type
and location of the service clients. The target applications of the service are
Digital Television broadcast and Video on Demand. In such applications, the
demand can change from a few users to millions of them in a short time. Fig. 1
shows the DynaVideo architecture using the UML component diagram [2].

Primary
Server

Secundary
Server

Dyna Video
Manager

Configuration
Optimizer

Traffic
Monitor

Fault
Manager

Fig. 1. DynaVideo Architecture

The DynaVideo Manager (DM) controls the service execution. When clients
request connections, this module looks for a server with capacity to support
them. If it �nds one, DM associates the client with this server. Otherwise, a
Secondary Server is initialized to support the client. Notice that initially the
service policy is to try to serve the client as fast as possible, and not to �nd an
optimized con�guration to the video distribution.

The Primary Servers (PS) have direct access to video sources, which can be
real time encoders or video �le servers. PS captures a video stream from the
source and transmits it to the service clients.

The Secondary Servers (SS) are di�erent from PS because they do not have
direct access to video sources. They receive the video stream from a PS and
forward it to the service clients, acting as a reector. The main feature of the
DynaVideo SS is its ability to move through the network. This way, when it is
necessary to optimize the service con�guration, DM can determine that a certain
SS moves to a given node of the network.

The arrival of a client determines a change in the service con�guration. This
event activates the TraÆc Monitor (TM) [1] to �nd the routes from the active
servers to the client. This way, the role of TM is to create and update a data
structure, the route graph, which records routes from the active servers to the
service clients.

When the route graph is updated, DM activates the Con�guration Optimizer
(CO) module to compute an optimal con�guration of the service. CO is executed
in the background, searching for a better con�guration of the video distribution
service, considering the current demand represented by the route graph. Once a
con�guration better than the existing one is found, CO requests DM to:

{ move clients from a server to another one;
{ add or delete Secondary Servers;
{ move Secondary Servers from one locality to another.

The goal is to tune the service con�guration to optimize the use of trans-
mission, processing and storage resources. Fig. 2 illustrates an example of a
recon�guration, showing the evolution from a con�guration with unnecessary
streams traversing links and routers over the network to another where this does
not occur. One SS is added and three clients are transferred from PS to SS. The
other modi�cation was the creation of a multicast group with three clients. This
optimization takes into account that R2 does not support multicast, so the only
way to eliminate unnecessary transmissions in the route that traverses R2 is to
use a SS.

Finally, the Fault Manager (FM) goal is to identify failures in the service
components and to arrange replacements through a service recon�guration. For
example, if a server fails, FM detects this event and asks DM to move its clients
to other servers.

C

R2

R1

C

R3C

CC

C

PS

C

7

33 1

1 1 1

1 1
1

R2

R1

R3C

PS

3

11 1

C

SS

CC

C C C

1

1 1
1

1

Fig. 2. DynaVideo Recon�guration Example

In the following sections, we discuss the speci�cation and implementation of
DM, PS, and SS Modules. The TM module was described in [1]. CO and FM
are under development.

3 Implementation Issues

3.1 DynaVideo Manager

The DynaVideo Manager (DM) provides mechanisms to:

{ Register Primary Servers;
{ Add and delete clients;
{ Add, delete, and move Secondary Servers;
{ Select a primary or secondary server to attend a client request.

DM is divided into three parts: Server Interface, Client Interface and Man-
ager Controller. The Server Interface function is to control the communication
between DM and the modules SS and PS. The Client Interface receives a con-
nection request and forwards it to the proper server (primary or secondary). The
Manager Controller enables service management by controlling which server is
active and which server supports each client. This class updates the data struc-
tures ServerTable, ClientTypeTable and ServiceCon�guration through the exe-
cution of the routines ServerRegistration(), AddClient(), AddServer(), Primary-
ServerRegister(), DeleteClient() and MoveServer(). The choice of the server to
support a new client is made by the SelectServer() routine, which searches at
the ServiceCon�guration tree (similar to the tree shown in Fig. 2) for a server
with capacity to support the new client.

One of the target application of the DynaVideo service is to distribute Tele-
vision video. Considering this application as an example, when a user wants to
play a video using a third part player (DynaVideo client), he must do the fol-
lowing actions: the user must access a Web page and select a TV channel link.
At the client browser, an applet will be executed to send a StreamRequest() to
DynaVideo Manager, providing the proper information about the video player
that will be used. DM, executing the SelectServer() method, searches for an
appropriate server to support the client. If there is one, it is selected and Ad-
dClient() is executed to associate this server with the client. Then, the video
stream begins to be transmitted to the client. The transmission ends when the
client sends a StopStream() to DM. In response, DM removes the client from the
service with the execution of the RemoveClient() method, as shown in Fig. 3.
The same �gure illustrates a situation in which there is not an available server
to support a new client. In this case, DM initializes a Secondary Server to serve
the new client.

3.2 Primary Server

The Primary Server (PS) can be con�gured to meet service needs (video format,
transmission rate and protocol). PS supports di�erent kinds of clients (for in-
stance, Microsoft Media Player, Real Player and MTV). The interface between
PS and the data sources is based in two classes: SourceManager and SourceIn-
terface. These class speci�cations depend on the stream generator entity. If there

Client : Client Manager : Manager Secondary Server :

Secondary Server
Primary Server :

Primary Server

Stop Receive Stream()

Delete Client()
Stop Receive Stream()

PrimaryServerRegister()

Stream Request()
Select Server()

Add Server()

Add Client()

Stream Request()

Add Client()

Select Server()

Delete Client()

Fig. 3. Add Client Case Sequence Diagram

is more than one data source, an instance of each of these classes is used for each
source. The SourceInterface class receives video data segments and stores them
in an instance of the DataBu�er class, invoking the PutDataOnBu�er() method
of the MainManager class. The SourceManager class acquires parameters of the
data source. For example, if it is a TCP transmitter, the jitter is measured
and reported to the MainManager class through the SetParameter() routine.
The MainManager class controls the exchange of information between the other
classes of PS. It controls data insertion and recovery in a DataBu�er object, us-
ing the methods PutDataOnBu�er() and GetDataFromBu�er(). This class also
stores and retrieves the PS parameters con�gured by the service administrator or
de�ned by some other object, through the SetParameter() and GetParameter()
routines. TheMainManager class interprets and executes commands through the
Execute() routine and adds and removes clients using AddClient() and Delete-
Client() routines.

The DataBu�er class contains, in addition to a bu�er used to store the data
stream, mechanisms that provide mutual exclusion between bu�er accessing ob-
jects. This class has also a timestamp that indicates the time of data insertion
into the bu�er. This feature allows the classes which access objects to decide
whether they will use those data or not. The interface between the service ad-
ministrator and the MainManager class, which enables the system administra-
tion, is implemented by the UserInterface class. The ManagerInterface class acts

as an interface between PS and DM. It interprets commands from the DM, exe-
cutes some, and forwards others to SS. Each user of PS must be associated with
the classes ClientManager and ClientInterface. ClientManager controls each new
client's connection without the intervention of the administrator, negotiating its
initial parameters. It also noti�es the connection or disconnection of clients to
the MainManager class. The ClientManager class controls stream transmission
to the clients and can renegotiate the initial transmission parameters. For ex-
ample, it can change a client connection from point-to-point to multicast in real
time. ClientInterface class controls access to data stored in the DataBu�er ob-
ject, invoking the GetDataFromBu�er() method of the MainManager class. The
ClientInterface class also adjusts the data stream format, in conformity with re-
quirements of the client type associated with the class, and transmits the data.
For instance, this class adapts MPEG streams to allow their transmission using
the RTP protocol.

Primary Server was implemented to allow transmission of MPEG streams to
the following clients: MTV (MPEG-1 using TCP, UDP, HTTP and IP Multi-
cast); VideoLan (MPEG-2 using UDP); Windows Media Player (MPEG-1 and
MPEG-2 using HTTP); RealAudio (MPEG-1 using HTTP) and JMF (MPEG-1
using RTP). In the experiments done at NatalNet Laboratory at UFRN, MPEG
streams were obtained in real time from an Apollo capture card. The card is
installed in a PC Pentium II 400 with 64 MB of RAM and a Microsoft Win-
dows NT 4.0 operating system. A Named Pipe with an 8 MB bu�er was created.
The Apollo software was con�gured to write the video stream into the pipe. A
program named Streamer was implemented using two threads. One thread waits
for connection requests and accepts them if there is no other client (PS) con-
nected. The other one continues to read the MPEG stream from the pipe and
transmits it to PS using a TCP data connection. When the bu�er of the Named
Pipe becomes full, the streamer empties the bu�er and noti�es PS using a TCP
signaling connection.

PS was implemented using C++ and was installed in a Linux platform. As
already mentioned, SourceInterface class was implemented to receive the video
stream. SourceManager class receives control data from the Streamer. SourceIn-
terface object stores the data segments of the video stream in a DataBu�er
object, using the PutDataOnBu�er() method of the MainManager class. Client-
Manager and ClientInterface classes were speci�ed and implemented in a di�er-
ent way for each protocol supported by PS;

To transmit MPEG-1 streams using the TCP protocol, the ClientManager
class implementation has a main method that remains blocked until it receives
a connection request. When a connection request arrives, it is accepted, its de-
scriptor is placed in a wait list and a request is sent to the MainManager class
to insert a new client through the AddClient() method. After this, the method
remains blocked, waiting for new requests;

The ClientInterface class has a main method that reads data from the bu�er
and sends them to all clients whose descriptors are in a send list. If it is not
possible to send data to a given client, its descriptor is removed from the list

and a request is sent to an object of the MainManager class to remove this
client. If there is some client in the wait list, the method searches for an MPEG
sequence initial code. When this code is found, the stream is sent to all the
clients whose descriptors are in the wait list and these descriptions are moved
from the wait list to the transmission list. Then the method returns to reading
the bu�er, restarting the whole process;

To transmit MPEG-1 streams using the HTTP protocol, the ClientManager
class was implemented in a similar way to those used for TCP transmission. The
only di�erence is that before inserting a client in the wait list, a handshake using
HTTP protocol is performed. During this handshake, the server uses the header
�elds "Pragma: no-cache" and "Cache-Control: no-cache" to tell the client that
the content must not be cached. The format of the stream is set up through
the header �eld "Content-Type: video/mpeg". The length in bytes of the video
�le is set up in the �eld "Content-Length: 45000000". This �eld is necessary
and must be con�gured with a high value because some players start video and
audio execution only when the �le is completely loaded. ClientInterface class
was implemented in a similar way to those used with TCP protocol;

To transmit MPEG-1 using UDP protocol, ClientManager class was imple-
mented to allow insertion and removal of clients. When a client is inserted, a
socket is created to it and its identi�er is inserted in a transmission list. The
ClientInterface class has a method that reads data from the bu�er and sends it
to all the clients whose identi�ers are in the transmission list. For transmissions
of MPEG-1 using IP Multicast, the ClientManager and ClientInterface classes
are similar to those used for a UDP transmission. The only di�erence is that
the ClientManager class receives a class D IP address, instead of an IP unicast
address;

To transmit MPEG-1 video streams using the RTP transport protocol, the
ClientManager class was implemented in a similar way to those used for UDP
transmission. The ClientInterface class has a method that reads data from the
bu�er and scans it in order to identify the data structures of MPEG standard as
well as some MPEG Frames header �elds whose values are placed in speci�c RTP
permanent header �elds. In this way, MPEG-1 video is packed in conformity
to the rules posed in [10]. To transmit MPEG-2 streams, part of the code of
VideoLan Server [8] was used to produce the transmission packets. The code
was adapted to read a stream from the bu�er and to send it to a ClientInterface
object. One ClientInterface class was implemented to receive VideoLan Server
streams, instead of reading it from the bu�er.

3.3 Secondary Server

One of the main features of DynaVideo is its ability to adjust the service con-
�guration dynamically. The idea is to identify network links with unnecessary
connections to try to eliminate them. When it is not possible to use multicast, a
good solution is to instantiate Secondary Servers (SS) agents. SS has two classes.
The controller class interprets commands received from DM requiring: to start
or to �nish sending streams (Start/Stop Server); to add or to remove a client

(Add/Delete Client); and to move or to clone SS (Move/Clone Server). The com-
mands are sent by DM in Protocol Data Units. Each command has a code and
optional information such as the client IP and port number. The Streamer class
receives the video stream from PS and sends it to the clients in the ClientTable.
SS is started through an Agent Dispatcher, which is responsible for the creation,
destruction, cloning, moving and forwarding commands to SS. SS presents the
following methods:

{ AddClient: controller adds an IP address and an associated port in Client-
Table. To send streams, SS scans this table.

{ DeleteClient: controller removes the IP address and the port from the Client-
Table.

{ StartServer: controller requests SS to wait for UDP packets from the PS.
When SS receives a packet, it scans the client vector in order to forward this
packet.

{ MoveServer: controller requests SS to stop sending streams. It moves SS
(with all its clients) to the location determined by DM.

{ CloneServer: a copy of an agent is created in another context.

{ StopServer: controller requests SS to stop sending streams. It ends the exe-
cution of an agent.

{ DecodeCommand: controller receives, interprets and executes the commands
sent by DM.

To validate the SS design, we have implemented it using two di�erent envi-
ronments: IBM Aglets [14] and Agent Lua [11].

Aglet One implementation of SS was made using the Aglet library [14], de-
veloped by IBM. This library is composed of a set of classes written in Java.
These classes have methods that allow the agent to move or to clone from one
execution context to another (dispatch/clone) and to be extended with other
functions. Tahiti [14] is one application that implements the Aglet execution
context concept and was used in this work.

The SS Aglet agent has two classes: the Controller and the Streamer. The
Controller uses the methods inherited from the Aglet class to move (dispatch)
or to clone (clone) the agent to another context. When an Aglet needs to go to
another place, the method OnDispatch is executed to prepare the Aglet to travel.
This method calls Stop Stream from the Streamer class. When the agent arrives
at its target, it executes the method OnArrival that askes the Streamer to Start
Stream. The Streamer starts to receive the video stream from the PS and sends
it to the same list of clients that it had at the original place. To start a new SS,
an Agent Dispatcher must be running. When it receives a command from DM to
start an agent in another place, it clones itself to that place. The new SS will,
then, use the controller to communicate with DM and receive commands such
as Add Client or Delete Client. The class Streamer receives PDUs from PS and
sends them to the clients in the list that are initially empty.

Agent Lua The DynaVideo Secondary Server was also implemented using the
Agent Lua library (aLua) [11]. The aLua distributed programming mechanism
is an event-driven extension of the interpreted language Lua [12]. It o�ers sup-
port to send messages to remote processes containing codes to be executed at
destination. In aLua, each agent is an independent process that communicates
with another agent through asynchronous messages. This mechanism has two
important features. It is a non-blocking one, once it uses an event-driven ap-
proach and considers each event as an atomic block that must be executed as a
whole. Since aLua runs in an interpreted environment, it is easy to modify SS
whenever necessary without disturbing other DynaVideo modules. This feature
introduces exibility to the SS implementation.

Verify_Control_Socket()

Verify_Data_Socket()

Receive_Data()

Decode_Command()

Execute_Command()

Read_Stream()

Send_Stream()

[Able to Read]

[Able to Read]

Fig. 4. SS Activity Diagram in an aLua Enviroment

The SS initialization in the aLua environment happens in this way. Firstly, it
is necessary to implement a component that acts as an agent dispatcher. Then,
DM asks the agent dispatcher to prepare execution contexts, by sending to it the
command Conf (address). In response to this command, the agent dispatcher
issues a spawn command to the respective address. After this, an aLua environ-
ment becomes ready in the new location. In order to trigger the execution of a
SS, DM sends an activate command to the agent dispatcher. In response, it sends
the Lua code of the secondary server to the newly created aLua environment.
When the code is received, it begins to be executed.

The activity diagram shown in Fig. 4 describes the SS implementation using
aLua. An in�nite loop veri�es if there are, in a control socket, commands available
for reading. In this case, the commands are decoded and executed. It also veri�es
if there are, in a data socket, data available for reading. In this case, it sends
them to all the clients listed in the client table.

To move an SS from a location to another, DM asks the agent dispatcher
to initialize a secondary server code in the new location. When the sent code
is running, it adds all the clients of the old location in the new one. Then, the
manager orders the primary server to stop sending video to the old location,
and to begin sending it to the new one. And �nalizes the agent being moved, by
issuing a Com Exit() command.

4 Results

In order to test the performance of the DynaVideo service we did some experi-
ments on the following scenarios. The Primary Server (PS) was con�gured in a
PC Pentium MMX 300 with 128 Mb RAM memory, a 100 Mbps Ethernet card
and Linux operating system. A 4 Mbps real time MPEG-2 stream was gener-
ated and transmitted from the streamer to PS. This stream was generated by
an Apollo card installed in a PC Pentium II 400 with 64 MB RAM memory
and with Microsoft Windows NT 4.0 operating system. The utilization of the
link that connects PS to an IBM 8265 Switch, when PS was transmitting UDP
datagrams to a multicast address, was 9.5% (9.5Mbps). Since a video stream was
being generated at a constant rate of 4 Mbps, the reception and transmission
of this stream consume 8 Mbps, in other words, 8% of the band. Considering
that no other application was using the link at that moment, we have concluded
that 1.5 % of the band was consumed by the overhead of transport, link and
network protocols. In another experiment, a PS was con�gured in a PC Pen-
tium III 600 with 128 Mb RAM memory, 100 Mbps Ethernet card and Linux
operating system. This server received a 4 Mbps MPEG-1 video stream directly
from the streamer and transmitted it to twenty (20) MTV clients using the UDP
protocol. This scenario is illustrated by the �rst part of Fig. 5. In this case, the
utilization of the link that interconnects PS to the network reaches 100%. To
prove the feasibility of the SS concept, we move an SS to a machine at the LCC
network. In this scenario (second part of Fig. 5), we can serve 29 clients: PS
transmitting to 19 clients and to SS, and SS transmitting to 10 clients. With
this experiment, we con�rm the scalability of the DynaVideo approach.

SWSW
NatalNet

PS

C1

C3

Router
NatalNet

Router
LCC

LCC

C1

C17

LCC

LCC

SWSW
NatalNet

PS

C1

C3

Router
NatalNet

Router

C1

C26

SS

Fig. 5. DynaVideo service experimentation

The DynaVideo service was tested in a local network with the following
clients: MTV (MPEG-1 using TCP, UDP, HTTP and IP Multicast), VideoLan
(MPEG-2 using UDP), Windows Media Player (MPEG-1 and MPEG-2 using
HTTP), RealAudio (MPEG-1 using HTTP), and JMF (MPEG-1 using RTP).
In all clients, the video was played at a good quality. Fig. 6 shows an MPEG-1

Fig. 6. MPEG-1 Video exhibited by
MTV client

Fig. 7. MPEG-2 Video exhibited by
VLC client

video being exhibited by an MTV client. Fig. 7 shows an MPEG-2 video being
exhibited by a VideoLan client.

5 Conclusions

This paper has presented the architecture and implementation of the Dynamic
Video Distribution Service (DynaVideo) designed for generic data communica-
tion environments, supporting di�erent video formats and di�erent client types.
In this paper, we have described the following DynaVideo components: Dy-
navideo Manager that controls the service execution; Primary Server that has
direct access to video sources and whose function is to capture a video stream
from the source and to transmit it to the service clients; and Secondary Server
that acts like a reector, receiving the video stream from a Primary Server and
forwarding it to the service clients.

The main feature of the Secondary Server is that it can move through the net-
work. This allows the dynamic recon�guration of the service. The importance of
dynamic recon�guration of video distribution systems is also discussed in [13].
This report proposes an infrastructure to distribute video and uses agents to
update and to �x bugs in the code of the replicas. Other works [15][16] have
adopted the replication idea, but do not provide support to service recon�gu-
ration during real time video transmissions. DynaVideo allows the transmission
of MPEG streams to the MTV clients (MPEG-1 using TCP, UDP, HTTP and
IP Multicast), VideoLan clients (MPEG-2 using UDP), Windows Media Player
clients (MPEG-1 and MPEG-2 using HTTP), RealAudio clients (MPEG-1 us-
ing HTTP) and JMF clients (MPEG-1 using RTP). In the experiments done,
the video received by these clients was at good quality. In the implementation,
we have adopted a con�guration-based approach to the DynaVideo Manager.
This module integrates the other modules of DynaVideo and acts as a mediator,
sending and forwarding commands to other modules. The con�guration-based
approach facilitates the change of one module without disturbing the others. This
issue promotes the reuse and allows integration of new services in DynaVideo

whenever necessary. To support Secondary Server mobility, we have developed
two implementations. One of the implementation uses the Aglet library, an IBM
product. The other one uses aLua, an event-driven mechanism that o�ers support
to move processes. The implementations validated the feasibility of the approach,
which is a good alternative to services dealing with unstable demands, like TV
distribution. The implementation of the TraÆc Monitor module was done in
another work and it is described in [1]. Currently, the Con�guration Optimizer
and the Fail Manager modules are under development.

References

1. Madruga, M., Batista, T., Lemos, G.: SMTA: Um Sistema para Monitoramento de
Tr�afego em Aplica�c~es Multim��dia. CLEI'2000 (2000)

2. Booch, G., Jacobson, I., Rumbaugh, J.: The Uni�ed Modeling Language for Object-
Oriented Development. Documentation Set Version 0.91 Addendum UML Update
(1996).

3. Coding of Moving Pictures and Associated Audio for Digital Storage Media up to
About 1,5 Mbits/s. ISO/IEC International Standard 11172 (1993).

4. Generic Coding of Moving Pictures and Associated Audio Information. ISO/IEC
International Standard 13818 (1994).

5. Realserver Administration Guide RealSystem G2.
http://www.real.com/serveradminguideg2.pdf (2001).

6. VideoCharger Server Key Features. VideoCharger, IBM DB2 Digital Library,
http://www-4.ibm.com/software/data/videocharger/vcserverkey.html (2000).

7. Windows Media Technologies. http://www.microsoft.com/windowsmedia/ (2001).
8. VideoLan. Ecole Centrale Paris, http://www.videolan.org (2001).
9. Schulzrinne, H., Casner, S., Frederick, R., V. Jacobson: RTP: A Transport Protocol

for Real-Time Applications. RFC 1889 (1996).
10. Ho�man, D., et al.: RTP Payload Format for MPEG1/MPEG2 Video. RFC 1849

(1998).
11. Ururahy, C; Rodriguez, N.: Alua: An event-driven communication mechanism for

parallel and distributed programming. PDCS'99, Fort Lauderdale, FL (1999).
12. Ierusalimschy, R, Figueiredo, L, Celes, W.: Lua - an extensible extension language.

Software: Practice and Experience, 26(6):635-652 (1996).
13. Kon, F., Campbell, R. et al.: Dynamic Recon�guration of Scalable Internet Systems

with Mobile Agents. Technical Report, Department of Computer Science at the
University of Illinois Urbana-Champaign (1999).

14. Lange, D., Oshima, M.: Programming and Deploying Java Mobile Agents with
Aglets. Addison Wesley (2000).

15. Parveen Kumar, L. H. Ngoh, A. L. Ananda.: A Programmable Audio/Video
Streaming Framework for Broadband Infrastructures. Network Storage Symposium
- NetStore '99. Seattle, WA (1999).

16. Brian Noble, Ben Fleis, Minkyong Kim, Jim Zajkowski.: Fluid Replication. Net-
work Storage Symposium - NetStore '99, Seattle, WA (1999).

