‘Workshop on Virtual Reality Interaction and Physical Simulation VRIPHYS (2011)

J. Bender, K. Erleben, and E. Galin (Editors)

Adding Physics to Animated Characters
with Oriented Particles

Matthias Miiller and Nuttapong Chentanez

NVIDIA PhysX Research

Abstract

We present a method to enhance the realism of animated characters by adding physically based secondary motion
to deformable parts such as cloth, skin or hair. To this end, we extend the oriented particles approach to incorpo-
rate animation information. In addition, we introduce techniques to increase the stability of the original method
in order to make it suitable for the fast and sudden motions that typically occur in computer games. We also pro-
pose a method for the semi-automatic creation of particle representations from arbitrary visual meshes. This way,
our technique allows us to simulate complex geometry such as hair, thick cloth with ornaments and multi-layered
clothing, all interacting with each other and the animated character.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [1.3.5]: Computational Geometry
and Object Modeling, Physically Based Modeling—Computer Graphics [1.3.7]: Three-Dimensional Graphics and
Realism, Animation—Simulation and Modeling [1.6.8]: Type of Simulation, Animation—

Keywords: natural phenomena, physically based animation

1. Introduction

An appealing and popular way to enhance the realism of
computer games is to augment their animated world with
physical effects. The major challenges with introducing
physics to games are to make the simulations uncondition-
ally stable, controllable and fast. This is why rigid body sim-
ulation is still the most prominent physical effect in today’s
games and the main part of most physics engines. Physics
based water simulations have been introduced more recently.
For reasons of stability and speed, these are mainly restricted
to height fields driven by the wave equation and particle
effects. For the same reasons, cloth simulations have most
often been used to animate non-interacting objects such as
flags or curtains.

However, the most prominent elements in a game are the
characters. This is particulary the case for third person
games where the player’s avatar is permanently in the focus
of the camera. Traditionally, characters have been purely ani-
mated entities because even small failures such as local cloth
entanglements are immediately visible and destroy the illu-
sion a realistic world. On the other hand, adding physically

(© The Eurographics Association 2011.

DOI: 10.2312/PE/vriphys/vriphys11/083-091

based secondary motion to characters is one of the most ef-
fective ways to enhance the realism of a game with physics.

In this paper we present a new stable and fast method to add
physics to animated characters suitable for using in games.
Our method is based on the recently introduced approach of
Miiller et al. [MC11] for the simulation of solids. They rep-
resent a deformable object with a set of oriented particles
connected by an arbitrary connectivity structure. This repre-
sentation allows the skinning of a visual mesh of indepen-
dent resolution and geometry to the physical mesh. It also
provides an accurate collision volume even for a moderate
number of particles making collision handling fast.

In order to be used in connection with animated characters,
we had to extend the the basic oriented particle method (OP)
in various ways. The main extensions and contributions of
this work are:

1. A way to incorporate animation information into the OP
method. The simulation can be set to follow the anima-
tion strictly or to be influenced by it in a momentum con-
serving way.

2. A method to create regular particle meshes stably from

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org



http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/PE/vriphys/vriphys11/083-091

84 Matthias Miiller & Nuttapong Chentanez / Adding Physics to Animated Characterswith Oriented Particles

arbitrary visual meshes for the efficient simulation of
complex geometry such as multi-layered clothing.

3. Two techniques to enhance the stability of the original OP
method: continuous collision handling for particles and

4. the concept of surface particles.

2. Related Work

Our method applies deformable simulation to animated char-
acters. Stand alone deformable body simulation has been
popular since its introduction to the computer graphics com-
munity by Terzopoulos et al.. [TPBF87]. A detailed sur-
vey of the field which includes finite element, finite volume,
mass springs, particles and grid based methods can be found
in [NMK*05]. Our paper builds upon the oriented particle
method [MC11], which is an extension of position based dy-
namics [MHRO06]. We chose this method because it is un-
conditionally stable, easy to tune and fast enough for being
used in computer games.

An important use case for our method is the simulation
of multi-layered clothing and hair on animated characters.
Cloth and hair simulations have received special attention
from the community since they have a wide range of appli-
cations and are considerably different from the general de-
formable solid. Excellent surveys on both areas can be found
in [JWLO08] and [WBK*07] respectively. With only a few
exceptions, researchers in computer graphics have used the
visual mesh as simulation mesh for cloth simulation. In con-
trast, our method allows to attach multiple visual layers of
cloth to a single simulation mesh thereby avoiding expen-
sive collision detection between the layers.

The separate simulation of multiple layers of clothing has
been explored in the context of collision detection and re-
sponse for deformable objects as surveyed in [TKH*05].
Simulating multiple layers of cloth leads to the more gen-
eral problem of cloth self-collision detection, which is still
an open research problem with a large body of work. We
only list a few examples here. To accelerate cloth collision
detection, Curtis et al. [CTMO08] proposed the use of rep-
resentative triangles to reduce the number of triangle pairs
to be tested for collision. Harmon et al. [HVS*09] handle
multiple contacts asynchronously to resolve collision of lay-
ers of cloth correctly. Otaduy et al. [OTSG09] formulate the
contact force computation among layers of cloth and de-
formable bodies as a linear complementarity problem which
they show how to solve efficiently. Recently, Schvartzman
et al. [SPO10] proposed a hierarchical method to accelerate
cloth self-collision detection by exploring the regularity of
local surface patches.

Perez et al. [PuG99] devised a specialized algorithm for the
robust simulation of multi-layered garments. They pull each
layer of clothing toward a specific iso-surface defined by
blobs around animated skeleton. Another robust way to sim-
ulate layers of cloth was proposed by [WBHO04]. They com-

pute the positions of a subset of the cloth vertices in a given
layer using barycentric interpolation plus some fixed normal
offset from the triangles in the previous layer.

A second use case for our method is the simulation of the
skin of an animated character as a deformable layer. The
most popular way to attach a triangle mesh to an animated
skeleton is linear blend skinning [MTLT88]. Here, each ver-
tex is transformed by a weighted average of the bones trans-
formations. This simple approach works well in most cases
but produces artifacts near highly bent joints. Several new
methods have been proposed to alleviate this problem. Wang
and Phillips [WP02] extend the scalar weights to matri-
ces and learn them automatically from training animations.
Merry et al. [MMGO06] introduce the concept of animation
spaces. They compute the positions of the vertices as a lin-
ear combination of generalized coordinates of the bind pose
positions and bone transformations. Kavan et al. [KCZO08]
introduced dual quaternion skinning to reduce the artifacts
caused by linearly blending transformation matrices.

All these methods are kinematic and therefore not directly
aware of self-collisions of the skin. This problem can be
solved by simulating the skin as a deformable object at-
tached to a skeleton as we do. Most methods embed the sur-
face into a volumetric mesh and solve the elasticity equa-
tions using finite elements or finite differences ( [Cap04],
[IKCCO08], [CJ10] and [MZS*11]). Galoppo [Gal08] uses
simulation textures on the surface of a character. These tex-
tures implicitly define a simulation mesh on which the elas-
ticity equations are solved. For a detailed review of simula-
tion based skinning methods we refer the reader to [Gal08].

3. Simulation with Oriented Particles

Since our method is based on the OP method we will first
recap the basics of this simulation approach. For a more
detailed description see [MC11]. In a first step, simulation
particles are placed on a given visual mesh. These particles
are connected to form a simulation mesh. In what follows,
the term vertex always refers to the vertices of the visual
mesh, while the term particle is used for nodes of the sim-
ulation mesh, i.e. the simulation particles. Along with each
position vector p, oriented particles also store a unit quater-
nion q describing their orientations. In contrast to a basic
particle system, both quantities are simulated, i.e. each par-
ticle moves and rotates. The orientation q is used in sev-
eral ways. First, particles can be represented by anisotropic
shapes. As in [MC11], we use ellipsoids. This way, the ge-
ometry of the visual mesh can be approximated more accu-
rately by the particles for collision handling (see Figure 3).
In addition, the unique rigid transformation 7 mapping the
rest state (P, q) to the current state (p, q) can be used to skin
the vertices to nearby particles.

Let X;...Xy, be the positions of the vertices in the unde-
formed bind pose and let N, be the number of particles.

(© The Eurographics Association 2011.



Matthias Miiller & Nuttapong Chentanez / Adding Physics to Animated Characterswith Oriented Particles 85

4
2
3
} :\\\
%
Res

Figure 1: Left: regular simulation meshes created with our method on separate parts of the visual mesh. Middle and right:
snapshots of a walking and running animation with hair, cape and skirt interacting with each other and the body. Model

courtesy of Simultronics.

A%

- - - P -
|s1mulat1on I-—) particles I-—d vertices

pb
vb

skeleton

Figure 2: The upper row shows the basic OP flow: the par-
ticles are driven by the simulation while the vertex positions
are computed from the particle positions via skinning. With
a rigged mesh the particles can either be driven by simula-
tion or the skeleton, while the vertices can be skinned either
to the particles or directly to the skeleton.

To move the visual mesh along with the simulation mesh,
skinning weights w;”; € [0... 1] and particle references r;"; €
[1,2,...,Np] are defined for every vertex i. The superscript
vp indicates vertex-particle skinning. The deformed coordi-

nates of the vertices are updated using
X; = ZW:}IJJ Trl\z; (ii)7 (1)
J

where T; is the rigid transformation of particle j. Up to this
point, we have summarized the basic OP method. In this set-
ting, the particles move freely and the vertices follow them
via skinning. Objects simulated in this way are passive like
pillows or curtains. Our goal is to bring deformable objects
to life by combining passive simulation with active anima-
tion.

4. Combining Simulation and Animation

Since we work with animated characters, we use rigged
meshes. In addition to a regular mesh, a rigged mesh con-
tains, a skeleton, bone weights wf}; € [0...1] and bone ref-

erences r,»vfj- €[1,2,...,Np], where Nj, is the number of bones

(© The Eurographics Association 2011.

skeleton

(@ ()

Figure 3: 2D cross section through a simulation of a shirt
on a character. The inputs are a visual mesh for the skin (a)
and a visual mesh for the shirt (b) with skinning information.
Oriented particles are placed on the visual meshes. The yel-
low particles are simulated and the red particles animated,
following the skeleton. Animated particles are used to at-
tach the simulation mesh (c) or as collision primitives (all
others). The vertices of the visual meshes are marked to be
skinned to either the skeleton (black) or the particles (green)
with smooth transitions as between vertices (c) and (d).

of the skeleton and the superscript vb indicates vertex-bone
skinning. Vertices are skinned to the skeleton via

b _
X; = ZW}/J Br}ﬁ (Xi), (2)
7 y

where B is the rigid transform of the bone j.

To combine simulation and animation, we need a way to an-
imate the particles and make them follow the motion of the



86 Matthias Miiller & Nuttapong Chentanez / Adding Physics to Animated Characterswith Oriented Particles

skeleton. There is a simple way to do this. With the two sets
of skinning references, we can derive references for skin-
ning the particles to the bones of the skeleton. The links and
weights from the particles to the bones are given by

b b b b .
ooy = {hwihewi) =i} )

where the superscript pb indicates particle-bone skinning. In
words, particle i gets attached to all bones that vertex j is
attached to, if vertex j is attached to particle i. Since several
vertices attached to a given particle can be attached to the
same bone, the list defined in Equation (3) can potentially
contain multiple references to the same bone. We lump all
these references to a single entry while summing up all the
corresponding weights. To speed up skinning, we only keep
the k entries with the largest weights (we use k = 4 in all
examples) and normalize the weights so they sum up to one.
All three skinning maps discussed above are depicted in Fig-
ure 2.

With the particle-bone skinning information, particles can
either be simulated or animated. More precisely, the rigid
transformations of the particles can be either updated by the
solver or dictated by the skeleton via

b
e Zwlp ; Brﬁ. 4)
J

We let the user decide which particles should be animated
and which should be simulated. Figure 3 shows a typical use
case. Here we are given a character with skin and a shirt as
visual meshes rigged to a skeleton. We want to simulate only
part of the shirt and make sure it collides correctly against
the arm. This can be achieved by creating particles on the
shirt and the skin in the simulated region and attaching spe-
cific particles to the skeleton. In Figure 3, attached particles
are shown in red and particles driven by the simulator in yel-
low. The particle near the shoulder (c) was made animated
in order to attach the simulated particles to the character.
Therefore, this red particle and all yellow particles need to
be connected. The other red particles have been placed on
the skin mesh to ensure the yellow particles do not penetrate
the character. No connectivity is needed between them be-
cause they strictly follow the animation.

An indirect way to animate the vertices would be to skin
them to animated particles (see Figure 2). However, the ac-
curacy of this two step process depends on the placement of
the particles and the density of the simulation mesh. Also,
particles would have to be placed everywhere on the visual
mesh. We therefore use direct vertex-bone skinning to an-
imate the visual mesh in non-simulated regions. The user
paints smooth per-particle weights between zero and one to
define blending between the positions resulting from skin-
ning to particles or skinning to the skeleton. In Figure 3 the
black vertices are skinned to the skeleton while the green
ones follow the motion of the particles. The visual mesh be-
tween locations (c¢) and (d) shows a smooth transition be-
tween the two types of skinning.

Figure 4: Baron Miinchhausen pulls himself and the horse
he is sitting on out of a swamp by his own hair. (Drawing by
Theodor Hosemann, public domain).

4.1. Momentum Conserving Animation

In the method for combining simulation and animation de-
scribed above, the positions and orientations of animated
particles are determined by the skeletal animation alone.
This way, the character as a whole moves strictly according
to a pre-defined path, a path that does not need to be physi-
cally possible. For instance, the character might stand still in
open air, not touching the ground.

In certain scenarios we want the animation of the skeleton
to only influence the body in a physically possible way. This
means that the animation should not be able to change the
position of the center of mass of the body. In other worlds, a
character should not be able to pull himself out of a swamp
by his own hair, as legendary Baron Miinchhausen allegedly
did (Figure 4). To achieve this, we first compute the posi-
tions of the animated particles as before. However, instead
of overwriting the current particle positions, we perform a
shape match first [MHTOS5]. More precisely, let p; be the
current positions of the set of animated particles and a; their
positions given by the animation, i.e. skeletal skinning. We
first compute the moment matrix

A=Y mi(pi—p)(ai—a)", ®)

where m; are the particle masses, p=Y,;m;p/Y,;m; and a =
Y;m;a/Y,;m;. Then, instead of overwriting p; with a;, we
overwrite it with R(a; — @) + p, where the rotation matrix R
is the rotational part of the polar decomposition of A = RS.
We overwrite the orientation q; with r {;, where r is the unit
quaternion that corresponds to the rotation matrix R.

This technique was used in the simulation of the monster
shown in the two shots on the right in Figure 10.

(© The Eurographics Association 2011.



Matthias Miiller & Nuttapong Chentanez / Adding Physics to Animated Characterswith Oriented Particles 87

Figure 5: Approximate continuous collision handling for
two spherical particles with radius r. If, during the time step
At, the distance between two particles becomes smaller then
2r, we check whether their projected positions on the line
p| — P got inverted. If so, we flip their positions along the

line p’fLAt — pt;At to conserve momentum.

5. Collision Stabilization

The ellipsoid representation of particles allows a more ac-
curate approximation of the shape of the visual mesh. On
the other hand, particles can be arbitrarily thin. The thin-
ner the particles, the higher the chance of missing collisions.
For this reason we restrict the aspect ratio of the ellipsoids
to be smaller than 2 as [MC11] propose. Collision detec-
tion is even more challenging in the presence of animated
components because the prescribed trajectories of animated
particles can contain arbitrary velocities and accelerations.
Therefore, we extend the basic OP method with methods to
stabilize collision handling.

There are two main types of collision: collision between the
simulated components and collision of simulated against an-
imated parts. In the case of a character with simulated cloth-
ing, the first type corresponds to cloth self collision and the
second type to collision of the clothing against the charac-
ter’s skin. In most cases, correct self collision handling is not
as essential as collision handling against the animated char-
acter. For instance, a soft layer representing a belly rarely
collides with itself. In games, the parameters and the shape
of the clothing are often tuned such that self collisions oc-
cur rarely such as with capes or coats. Another example is
the hair simulation shown in Figure 11, where intersections
among the hair strands are hardly visible but penetrations
with the body would be disturbing. Therefore we suggest
a simple method to improve self collision handling which
does not avoid self collisions completely but works in most
cases. Also, if self collisions were perfectly handled, entan-
gled states would never be resolved spontaneously. In con-
trast, robust collision handling against the animated charac-
ter is essential and omnipresent. We thus propose an addi-
tional method to stabilize character collisions.

(© The Eurographics Association 2011.

Figure 6: Surface particles have their first axis aligned with
the mesh normals. For collision, they are replaced by a
sphere tangent to the ellipsoid at the extremal point of this
axis for robust collision handling. The knowledge of the out-
ward direction can also be used to modify the direction in
which colliding particles are projected out of the sphere to
prevent entanglements.

5.1. Self Collision Handling

To reduce self penetrations we propose the continuous colli-
sion handling method depicted in Figure 5. This step is per-
formed only once per time step, after the prediction step and
before the solver handles static collisions. Its aim is to make
sure that particles that collide at some point during the time
step to not pass through each other so that subsequent static
collision handling projects them in the right directions. Let
us assume we have two spherical particles with radius r trav-
eling linearly from position p} to position p’1+A’ and from
p5 to p’;m during a time step. Figure 5 depicts this situa-
tion. We first test whether the particles collide as some point
during the time step, i.e. if

(+Ar

min_[[p} +s(p} HrA —
s€(0...1]

1) — P2 —s(py ¥ —p)l| <2n
If this is the case we further test whether they pass through
each other. We do this by checking whether their projections
on the line p — p| are flipped, i.e. whether

At ! !

> (ph—ph) P (6)

If the positions are flipped, we move to particles to undo the
inversion as follows:

(P —ph) Py

1+At 1+At wi

- 4 (plTAT AN (g e 7
Pi P (P2 P )( )7w1+w2 @)
1+At 1+At 1+At 1At w2

- + — l+e)——, (8
P2 P> (P Py )( )w1+wz (®)

where wy = 1/my, wy = 1/my and € a small number. It is
important that the particles are moved along their connect-
ing line in order to conserve momentum. We do not have
to resolve the collision completely because this is done by
the solver via static collision handling. We just have to make
sure that the positions do not get flipped. For the same reason
we simply replace ellipsoids by their circumspheres.



88 Matthias Miiller & Nuttapong Chentanez / Adding Physics to Animated Characterswith Oriented Particles

5.2. Surface Particles

To keep the number of particles low a volumetric object
is ideally represented by particles on the surface only. For
a more accurate approximation of a smooth surface these
particles typically have the shape of flat, thin ellipsoids as
shown in the left image of Figure 6. However, with only
a thin layer of ellipsoids the chances of missing collisions
are high. In addition, once particles pass through the surface
layer they get trapped inside the object which results in en-
tanglements.

To alleviate these problems we let an artist mark certain par-
ticles as surface particles and treat them specially. The ori-
entation information of particles is used in various ways by
the basic OP method. We add an additional function to this
list. If the ellipsoids are created as described in [MC11], they
are aligned with the geometry of the surface and one axis
points out of the object as shown in Figure 6. We identify
this axis as the one that is best aligned with the average of
the triangle normals in the neighborhood. By making this
axis the first column in the orientation matrix, we always
know the way out of objects during the simulation.

This information is used in two ways: to enlarge the colli-
sion volume and to modify the directions in which colliding
particles are moved. We increase the collision volume of a
particle by replacing the ellipsoid with a sphere that is tan-
gent at the extremal point on the outward axis (see Figure 6).
More precisely, let a, b, c be the principal radii of a specific
ellipsoid and the outward axis aligned with the x-axis. The

o - T b e
principal curvature radii at [2,0,0]" are ry = Z- and r; = <.

We replace the ellipsoid by a sphere with radius R = r"err‘"
centered at [a — R, 0, O}T. Potentially R can become arbitrar-
ily large. However, by restricting the aspect ratios of the el-
lipsoids such that a, b, c € [ér, ...r], Ris bounded by R < or,
where r is the global particle radius. As mentioned above, we
use 0 = 2.

To make sure particles do not get trapped inside objects we
modify the direction in which other particles are projected
out of a surface particle, as shown in the left image of Fig-
ure 6. First, the vector to the closest point on the surface of
the collision sphere is computed. If the component of this
vector along the outward axis is negative, we flip it. This
yields the smooth field shown in the image. Colliding par-
ticles are then moved using this modified field. Note that
simply moving colliding particles out of the collision sphere
along the outward axis would yield unnatural drift on the
surface.

As Figure 6 shows, the collision sphere of a surface parti-
cle typically overlaps with many other particles. To make
sure that these overlaps are not registered as collisions by
the solver at run time, we filter out pairs that already inter-
sect in the rest state.

Figure 7: Vertical and horizontal cross sections of a coat
and cape. Particles (black dots) are placed on the cut lines of
the meshes with horizontal planes. A particle is only created
if there are no close particles already placed on the mesh. If
desired, edges (thick black lines) are created between subse-
quent particles on a cut line and between particles on neigh-
boring horizontal planes.

6. Mesh Generation

The authors of [MC11] distributed simulation particles ran-
domly on the visual mesh. For clothing we found that regular
simulation meshes yield better results then meshes with ir-
regular structure. Therefore, we devised a specialized mesh
generation method with the following features:

e It works with triangle soups but utilizes connectivity in-
formation if available

e It creates a quad-mesh-like distribution of particles and
connectivity but without the guarantee of being manifold

e [t creates single-layered simulation meshes for thin mul-
tilayered visual meshes.

e The method works automatically but yields better results
if the artist applies it to subregions of the meshes sepa-
rately (see Figure 1).

Artists often create their visual meshes without physical sim-
ulations in mind so being able to handle arbitrary triangle
meshes robustly is important. On the other hand, the OP
method does not pose any constraints on the connectivity
structure of the simulation mesh, which gives this algorithm
more freedom. Figure 7 shows the basic steps of approach.
The method can be applied to all visual meshes in the model
at once, like the coat and the cape. Ideally, the artist works
on sub regions or sub meshes one at a time and stitches the
parts together by hand if connectivity is needed. In case the
algorithm is used to place collision particles only, like the
red particles in Figure 3, particles alone without edges are
sufficient.

The algorithm itself works as follows. The main parameter
provided by the artist is a spacing distance /. First, we per-

(© The Eurographics Association 2011.



Matthias Miiller & Nuttapong Chentanez / Adding Physics to Animated Characterswith Oriented Particles 89

Figure 8: Left: our method creates a single layered simula-
tion mesh for a two-sided visual mesh. Right: simulation of
the thick cloth. Model courtesy of CCP.

form a principal component analysis on the selected trian-
gles and choose the axis along the largest dimension. We
then walk along this axis from bottom to top. The step size s
is determined by multiplying & with the average inclination
of the triangles w.r.t. to the axis on a given level (see Fig-
ure 7). At each level we consider the plane perpendicular to
the axis and all the triangles intersecting it. These triangles
are first unmarked. Then, for each unmarked intersecting tri-
angle we construct the intersection line of the mesh with the
plane by starting at the triangle and walking along the mesh
in both directions. All triangles visited during the process are
marked. The result is a piecewise linear chain of segments.
In the image on the right of Figure 7 there are two intersec-
tion lines, i.e. the borders of the blue and red areas. To create
the particles we start at the beginning of each chain or at an
arbitrary position if the chain is circular. In Figure 7 the start
positions and traversal directions are indicated with the two
arrows. While walking along the line we place simulation
particles with spacing /4 but only if there is no particle on the
same level closer than distance % to the new position. Posi-
tions for which this criterion is not met are shown as empty
circles in Figure 7. If a newly created particle has a predeces-
sor, we connect it by an edge. If not, we connect it with the
closest particle on the level if their mutual distance is smaller
than 4. In case of the coat, the resulting simulation mesh is
simply a connected circle. For the cape, a single line is gen-
erated even though the cross section is volumetric, which is
what we want in this case.

To connect the particles vertically, each particle on level i is
connected to the closest particle on level i — 1 if the distance
between them is smaller than /. If there are more particles
on level i — 1 than on level i, some particles on level i — 1 do
not get connected to level i particles. Therefore, the particles
on level i — 1 are also connected to the closest particles on
level i if the edge does not yet exist.

(© The Eurographics Association 2011.

Figure 9: Simulation of clothing with ornaments. Surface
particles on the legs prevent penetrations during the fast mo-
tion of a somersault. Model courtesy of Simultronics.

7. Results

All our examples were simulated in real time on a single core
of an Intel Core i7 CPU at 3.1 GHz and skinned and rendered
on an NVIDIA GeForce GTX 480 GPU. The timings are
summarized in Table 1.

Scene Particles | Triangles | Simple | Final
Cape girl 1400 12k 40 35
Monster 130 40k 250 45
Robe 780 7k 60 50
Hair 220 17k 300 40
Somersault 700 7k 90 50

Table 1: Frame rates (in frames per second) of the demo
scenes. The first column lists the number of simulation par-
ticles used, the second the number of triangles of the visual
mesh, the third the frame rate including skinning of the vi-
sual mesh with simple shading and the fourth the frame rate
including final rendering.

To simulate the hair, skirt and cape of the girl shown in Fig-
ure 1 we created simulation meshes on several parts of the
model using our method. To demonstrate physical motion
of the skin itself we added particles in the chest region (not
shown in the Figure) for discreet breast movement. There
are a total of 1400 simulation particles. All simulated parts
interact with each other and collide against the body. This
scene runs at 40 fps including skinning and rendering of the
12k triangles.

We used the animated monster shown in Figure 10 to demon-
strate the different behavior between direct and momentum
conserving animation. The first two images show the mon-
ster following a physically impossible path through the air.
The two images on the right show the behavior of the mon-
ster when the same animation is applied in a momentum
conserving way. This time, the monster stays on the floor
as expected in a physical world.

Figure 8 shows a robe modeled with a two sided visual mesh



90 Matthias Miiller & Nuttapong Chentanez / Adding Physics to Animated Characterswith Oriented Particles

Figure 10: Left: a monster following a physically impossible path through the air. Right: the same animation applied with

momentum conservation.

Figure 11: Simulating complex hair geometry with 220 simulation particles for dynamics and collision handling. Model cour-

tesy of CCP.

to give the impression of thick cloth. With our mesh gener-
ation method we created a regular, single layered simulation
mesh. This way, the solver does not see the complex visual
geometry. The visual mesh simply moves with the simula-
tion mesh via skinning. This scene comprising 780 simula-
tion particles runs at 60 fps.

We also applied our technique to the simple hair animation
shown in Figure 11. In a game, the time available for sim-
ulating the hair of a character is very limited. To make this
simulation fast, we only use 100 simulated particles and skin
multiple hair strands to a single particle chain. A nice side ef-
fect of this choice is that the hair remains volumetric because
the vertical distances between the mesh sheets are kept con-
stant. For collision handling we placed another 120 animated
particles on the body. With simple shading we achieved a
frame rate of 300 fps.

The last scene sown in Figure 9 demonstrates the robustness
of our approach. To prevent the clothing from penetrating
the legs even in the fast motion of a somersault, we placed
surface particles on the body of the character. In total we
used 700 particles on a visual mesh of 7k triangles resulting
in a simulation frame rate of 90 fps.

8. Conclusion and Future Work

We have presented a method to simulate parts of an ani-
mated character. The method extends the oriented particle
approach in various ways. We showed how to transfer ani-
mation data from the visual mesh to simulation particles for
collision handling and to attach the simulation mesh to the

animated character. We also presented ways to improve the
stability of collision handling needed for fast moving char-
acters. Finally, we proposed a mesh generation method that
works robustly with arbitrary triangle surfaces. Our method
works robustly with characters taken from real games as var-
ious test scenes have shown.

Our method is well suited to simulate complex geometry and
unstructured visual meshes. However, for simple, single lay-
ered cloth where the simulation and visual meshes match
one to one, skinning — one of the main features of the ori-
ented particle approach — is not needed. In those cases, other
methods such as mass spring systems are better suited be-
cause their computational cost per particle is lower.

In the future we plan to improve the mesh generation method
to detect principal parts of the input mesh and stitch the re-
sulting simulation meshes together automatically. We also
work on a parallelization using CUDA and integration into a
game engine.

(© The Eurographics Association 2011.



Matthias Miiller & Nuttapong Chentanez / Adding Physics to Animated Characterswith Oriented Particles 91

References

[Cap04] CAPELL S.: Interactive Character Animation Using Dy-
namic Elastic Simulation. PhD thesis, University of Washington,
2004. 2

[CJ10] CLUTTERBUCK S., JACOBS J.: A physically based ap-
proach to virtual character deformation. In ACM SIGGRAPH
2010 talks (2010). 2

[CTMO8] CuURTIS S., TAMSTORF R., MANOCHA D.: Fast
collision detection for deformable models using representative-
triangles. In Proceedings of the 2008 symposium on Interactive
3D graphics and games (New York, NY, USA, 2008), I3D 08,
ACM, pp. 61-69. 2

[Gal08] GALOPPO N.: Animation, Simulation, and Control of
Soft Characters using Layered Representations and Simplified
Physics-based Methods. PhD thesis, UNC, 2008. 2

[HVS*09] HARMON D., VouGA E., SMITH B., TAMSTORF R.,
GRINSPUN E.: Asynchronous Contact Mechanics. SIGGRAPH
(ACM Transactions on Graphics) (Aug 2009). 2

[IKCCO08] IRVING G., KAUTZMAN R., CAMERON G., CHONG
J.: Simulating the devolved: Finite elements on walle. In ACM
SIGGRAPH 2008 talks (2008). 2

[JWLO08] JIANG Y., WANG R., LIU Z.: A survey of cloth sim-
ulation and applications. In Computer-Aided Industrial Design
and Conceptual Design, 2008. CAID/CD 2008. 9th International
Conference on (nov. 2008), pp. 765 =769. 2

[KCZO08] KAVAN L., COLLINS S., ZARA J., O’SULLIVAN C.:
Geometric skinning with approximate dual quaternion blending.
vol. 27, ACM Press, p. 105. 2

[MC11] MULLER M., CHENTANEZ N.: Solid simulation with
oriented particles. In ACM Transactions on Graphics (Proc. SIG-
GRAPH 2011) (to appear) (2011). 1,2,4,6

[MHRO6] MULLER M., HENNIX B. H. M., RATCLIFF J.: Posi-
tion based dynamics. Proceedings of Virtual Reality Interactions
and Physical Simulations (2006), 71-80. 2

[MHTO05] MULLER M., HEIDELBERGER B., TESCHNER M.:
Meshless deformations based on shape matching. In Proc. SIG-
GRAPH 2005 (2005), pp. 471-478. 4

[MMGO6] MERRY B., MARAIS P., GAIN J.: Animation space:
A truly linear framework for character animation. ACM Trans.
Graph. 25 (October 2006), 1400-1423. 2

[MTLT88] MAGNENAT-THALMANN N., LAPERRIERE R.,
THALMANN D.: Joint-dependent local deformations for hand
animation and object grasping. In Proceedings on Graphics
interface '88 (Toronto, Ont., Canada, Canada, 1988), Canadian
Information Processing Society, pp. 26-33. 2

[MZS*11] MCADAMS A., ZHU Y., SELLE A., EMPEY M.,
TAMSTORF R., TERAN J. M., SIFAKIS E.: Efficient elasticity
for character skinning with contact and collisions. In ACM Trans.
Graph. (August 2011), vol. 30, pp. 37:1-37:12. 2

[NMK*05] NEALEN A., MULLER M., KEISER R., BOXERMAN
E., CARLSON M.: Physically based deformable models in com-
puter graphics. Eurographics 2005 state of the art report (2005).
2

[OTSG09] OTADUY M. A., TAMSTORF R., STEINEMANN D.,
GROSS M.: Implicit contact handling for deformable objects.
Computer Graphics Forum (Proc. of Eurographics) 28, 2 (apr
2009). 2

[PuG99] PEREZ-URBIOLA R. E., G. I. R.: Multi-layer implicit
garment models. In Shape Modeling International Proceedings
(1999), pp. 66-71. 2

(© The Eurographics Association 2011.

[SPO10] SCHVARTZMAN S. C., PEREZ L. G., OTADUY M. A.:
Star-contours for efficient hierarchical self-collision detection,
2010. 2

[TKH*05] TESCHNER M., KIMMERLE S., HEIDELBERGER B.,
ZACHMANN G., RAGHUPATHI L., FUHRMANN A., CANI M.-
P., FAURE F., MAGNENAT-THALMANN N., STRASSER W.,
VOLINO P.: Collision detection for deformable objects. Com-
puter Graphics Forum 24, 1 (2005), 61-81. 2

[TPBF87] TERZOPOULOS D., PLATT J., BARR A., FLEISCHER
K.: Elastically deformable models. In Computer Graphics (SIG-
GRAPH ’87 Proceedings) (1987), pp. 205-214. 2

[WBH04] WONG W. S.-K., BACIU G., HU J.: Multi-layered
deformable surfaces for virtual clothing. In Proceedings of
the ACM symposium on Virtual reality software and technology
(New York, NY, USA, 2004), VRST ’04, ACM, pp. 24-31. 2

[WBK*07] WARD K., BERTAILS F., KiM T.-Y., MARSCHNER
S.R., CANIM.-P., LIN M.: A survey on hair modeling: Styling,
simulation, and rendering. [EEE Transactions on Visualization
and Computer Graphics (TVCG) 13, 2 (Mar-Apr 2007), 213-34.
To appear. 2

[WP02] WANG X. C., PHILLIPS C.: Multi-weight enveloping:
least-squares approximation techniques for skin animation. In
Proceedings of the 2002 ACM SIGGRAPH/Eurographics sympo-
sium on Computer animation (New York, NY, USA, 2002), SCA
’02, ACM, pp. 129-138. 2



